
1 

 

Retrieving CH4 emission rate from coal mine ventilation shaft using 

UAV-based AirCore observations and the GA-IPPF model 

Tianqi Shi1, Zeyu Han2, Ge Han 3, Xin Ma1*, Huilin Chen4,5*, Truls Andersen5, Huiqin Mao6,  

Cuihong Chen6, Haowei Zhang1, Wei Gong1,7 

1 State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, 5 

Wuhan University, Luoyu Road No.129, Wuhan 430079, China;  
2School of Mathematics and Statistics, Wuhan University, Luoyu Road No.129, Wuhan 430079, 

China;  
3 School of Remote Sensing and Information Engineering, Wuhan University, Luoyu Road No.129, 

Wuhan 430079, China; 10 
4Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of 

Atmospheric Sciences, Nanjing University, Nanjing, China; 
5Centre for Isotope Research, Energy and Sustainability Institute Groningen (ESRIG), University of 

Groningen, Groningen, Netherlands;  
6Ministry of Ecology and Environment Center for Satellite Application on Ecology and Environment, 15 

Beijing, China;    
7 Electronic Information School, Wuhan University, Luoyu Road No.129, Wuhan 430079, China;  

Correspondence to: Xin Ma (maxinwhu@whu.edu.cn); Huilin Chen (huilin.chen@rug.nl) 

Abstract.  

There are plenty of monitoring methods to quantify gases emission rate based on gases concentration 20 

samples around the strong sources. However, there is a lack of quantitative models to evaluate methane 

emission rate from coal mines with less priori information. In this study, we develop a genetic algorithm–

interior point penalty function (GA-IPPF) model to calculate the emission rate of large point sources of 

CH4 based on concentration sample. This model can provide optimized dispersion parameters and self- 

calibration, thus lowering the requirements for auxiliary data accuracy. During Carbon Dioxide and 25 

Methane Mission (CoMet) pre-campaign, we retrieve CH4 emission rates from a ventilation shaft in  

Pniówek coal (Silesia coal mining region mine, Poland) based on the data collected by an UAV-based 

AirCore system and GA-IPPF model. And the concerned CH4-emission rates are variable even in a single 

day, ranging from 621.3±19.8 to 1452.4±60.5 kg/hour on August 18, 2017 and from 348.4±12.1 to 

1478.4±50.3 kg/hour on August 21, 2017. Results show that, CH4 concentrations data reconstructed by 30 

the retrieved parameters are highly consistent to the measured ones. Meanwhile, we demonstrate the 

application of GA-IPPF in three gases control release experiments, and the accuracies of retrieved gases 

emission rates are better than 95.0 %. This study indicates that GA-IPPF model can quantify CH4 

emission rate from strong point sources with high accuracy. 

1.Introduction 35 

The release of CH4 into the atmosphere during coal mining is very concerning because it contributes to 

increased atmospheric concentration of CH4, one of the most important greenhouse gases and is a waste 

of resources (Cardoso-Saldana and Allen, 2020; Zhang et al., 2020). However, CH4 emissions during 

coal mining are not always stable owing to different collection mode, manufacturing processes, weather 

fluctuations, as well as terrain effects (Nathan et al., 2015b). Bottom-up inventories can provide us with 40 

CH4 emission rates from strong point sources or gridded CH4 fluxes with different spatial resolutions, 

which play a great role in statistical analysis. However, the low temporal resolution of inventory data 
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does not allow us to obtain emission intensity from target sources instantaneously (Pan et al., 2021; Liu 

et al., 2020). With the development of different atmospheric CH4 concentration measurement techniques, 

like Fourier spectrometer, differential absorption Lidar, AirCore system, and in-situ sensors, CH4 45 

emission rates from strong emission sources can be quickly quantified by top-down methods with high 

accuracy.  

Greenhouse gases observing satellite (GOSAT) and TROPOspheric Monitoring Instrument (TROPOMI) 

are capable of obtaining the column concentration of CH4 (XCH4, ppb) with spatial resolution of 10 

km×10 km and 5 km×7.5 km respectively. The regional CH4 flux can be retrieved by assimilating the 50 

measured XCH4 into an atmospheric dispersion model (Tu et al., 2022; Feng et al., 2016). Hyperspectral 

Precursor of the Application Mission (PRISMA) hyperspectral imaging satellite and GHGsat can detect 

increased CH4 caused by strong emission sources with high spatial resolutions, and the comprehensive 

CH4 emission can be quantified by integrated mass enhancement or cross-sectional flux method (Guanter 

et al., 2021; Varon et al., 2020). It plays a huge role in the analyzing methane emission rate from strong 55 

sources, but it has high requirements for satellites’ detection track, that is, to monitor the methane 

distribution in the target area within coverage range (Schneising et al., 2020; Varon et al., 2019). Airborne 

sensors can fly at low altitudes to improve the acquisition of CH4 concentration data and estimate CH4 

emission from strong sources by the cross-sectional flux method or the Gaussian dispersion method 

(Elder et al., 2020; Wolff et al., 2021a; Krautwurst et al., 2021). It enables repeated monitoring of 60 

emission sources in a large area in a short period of time, however, airborne experiments’ cost is high 

and the flight tracks may be restricted by the aviation control policies. Ground-based eddy covariance 

sites can monitor agriculture and forestry ecology methane flux with high temporal resolution, such as 

mangrove ecosystem(Jha et al., 2014), larch forest in eastern Siberia(Nakai et al., 2020). Its accuracy is 

very high, but there is currently less monitoring of methane emissions from strong point sources using 65 

eddy covariance. When ground-based concentration sensors fixed in appropriate position, they have the 

advantage of continuously sampling gas concentration in downwind direction from the source. It will 

provide important dispersion data for methane emission quantification model at the enterprise level, but 

these sensors usually need to be carried on a vehicle platform to obtain methane concentration at different 

locations (Zhou et al., 2021; Robertson et al., 2017; Caulton et al., 2017). Ground-based differential 70 

absorption LIDAR can obtain the CH4 profile concentration in different altitudes, whose data is suitable 

as the input of the emission-retrieval model (Shi et al., 2020a), but it has high requirements in terms of 

hardware performance and system stability (Shi et al., 2020b). An unmanned aerial vehicle (UAV) can 

reach any location rapidly around the CH4 sources, which can sample CH4 concentration with location 

information (Nathan et al., 2015b; Iwaszenko et al., 2021), when equipped with concentration sensors. It 75 

can acquire the distribution characteristics when sufficient concentration data are collected, which is 

beneficial to retrieving emission rate. The cost of UAV-based AirCore system is low and the process of 

its sample data is relatively simple, but the diffusion of methane emitted from strong sources may be 

sampled incompletely. 

In 2017, we developed an UAV-based active AirCore system, which could sample spatial atmospheric 80 

CO2, CH4, and CO with high accuracy (Andersen et al., 2018), aiming to retrieve greenhouse gases 

emission from strong sources. The most urgent issue we need to address is developing an emission 

quantification model to make use of the advantage of AirCore, namely to collect data at different 

locations with a high degree of flexibility. This model should have less uncertainty in retrieved result and 

conform to the actual emission dispersion characteristics of the studied emission sources. Mass-balance 85 

method has been applied in determining CH4 emissions based on UAV-based samples (Allen et al., 2018). 
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Emission rates calculated by this method contain large uncertainty because the main kernel is Kriging 

interpolation (Nathan et al., 2015a), which can cause obvious uncertainty in representing the actual 

feature of diffusion. The Gaussian dispersion model has also been applied in retrieving gas emission from 

strong sources (Shah et al., 2019; Ma and Zhang, 2016), and it is also used to model CH4 diffusion in 90 

this study. However, existing emission-retrieval methods based on Gaussian dispersion model need priori 

information on key diffusion parameters (Nassar et al., 2021), which cannot be regarded as certain values 

in different circumstances. Moreover, the measurements accuracy of auxiliary meteorological data also 

has a great impact on CH4 emission calculation.  

To end this, we develop herein a model to overcome these shortcomings, named GA-IPPF, which 95 

combines the advantages of genetic algorithms (GA) and interior point penalty functions (IPPF). GA can 

model the fitness function as a process of biological evolution(Yuan and Qian, 2010), which can be used 

to calculate the potential solutions in Gaussian dispersion model. IPPF can find the minimum of the 

criteria in setting domain (Kuhlmann and Buskens, 2018), which can help us achieve global optimal 

solutions for concerned parameters. Finally, GA-IPPF can calculate the diffusion parameters without 100 

prior information and reduce the impact of meteorological data on the calculated CH4-emission rate. 

We introduce the structure of our developed GA-IPPF in detail in section 2. In section 3, we evaluate 

the performance of GA-IPPF in field campaign around a coal mine ventilation shaft by using AirCore 

system in 8 Flights. Then, we discuss the comparisons between different quantification methods for CH4 

emission, and evaluated the performance of GA-IPPF when the meteorological data are acquired from 105 

the fifth generation of ECMWF atmospheric reanalysis of the global climate (ERA5) database. In section 

4, we validate the accuracy of GA-IPPF in Observing System Simulation Experiments (OSSE), and 

evaluate the uncertainty in retrieved emission rate of CH4. Furthermore, we test the performance of GA-

IPPF in quantifying emission rate based on three gases control release database.  

2.Data and methods 110 

2.1. Active AirCore System 

The active AirCore system comprises a ~50 m coiled stainless-steel tube that works in conjunction with 

a micropump and a small pinhole orifice (45 𝜇𝑚) to sample air along the trajectory of a drone. If the 

pressure downstream of the orifice is more than half of that of the upstream (ambient) pressure, a critical 

flow through the orifice is obtained. This means that the flow rate depends only on two variables, namely, 115 

the air temperature and the upstream (ambient) pressure, both of which are monitored during the flight. 

After obtaining air samples during field campaigns, CO2, CH4 and CO collected by AirCore system 

would be analyzed by ground-based cavity ring down Spectrometer model G2401-m (Picarro). For CH4, 

the accuracy of samples is 0.02 parts per million (ppm). The active AirCore system is controlled using 

an Arduino-built data logger, which records the temperature inside the carbon fiber housing. It also 120 

records the ambient temperature, ambient pressure, relative humidity, and pressure downstream of the 

pinhole orifice to ensure that critical flow is achieved. The data logger also logs the GPS coordinates. 

The weight of the active AirCore system is ~1 kg. The active AirCore system is attached to a DJI Inspire 

Pro 1, which is capable of providing flights of ~12 min. 

2.2. Meteorological measurements 125 

A radiosonde (Sparv Embedded AB, Sweden, model S1H2-R) measures ambient temperature, ambient 

pressure, ambient relative humidity, wind speed, and wind direction. The detection range of the 

temperature sensor is –40 °C to +80 ℃, with an accuracy of 0.3 ℃. The pressure sensor has a detection 

range of 300–1100 mbar, with an accuracy of 1 mbar. The relative humidity sensor measures in the range 

of 0%–100%, with an accuracy of approximately 2%. Owing to the good connection between the 130 
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radiosonde and satellites, we assume that the uncertainty in the wind direction is low. The wind speed 

can be estimated within a range of 0–150 m/s, with an uncertainty of approximately 5%. If the wind-

speed reading is less than 4 m/s, a minimum uncertainty of 0.2 m/s is given. The radiosonde is lifted by 

a ~30 L helium-filled balloon and is tethered onto a fishing line for easier retrieval after making a vertical 

profile. 135 

2.3. Measurement Site  

The Pniówek coal mine (49.975 N, 18.735 E) is a large mine in Pniówek, Silesian Voivodeship, Poland, 

which is 190 km southwest of the capital Warsaw, see Fig.1. It has a large coal reserve estimated to be 

about 101.3 million tons and coal production is about 5.16 million tons per year.  

 140 

Fig.1. Pniówek coal mine; a. red mark represent the location of Pniówek coal mine in Poland; b. the 

surrounding circumstance of Pniówek coal mine, blue mark represent Pniówek coal mine; c. detailed 

layout of Pniówek coal mine, deep mine with shaft. 

2.4 Emission retrieve model 

2.4.1. Gaussian dispersion model  145 

The Gaussian dispersion model was used to analyze the CH4 fugitive from the coal mine in this work. 

The location of emission source is regarded as the coordinate origin; X-axis is the direction of the 

downwind, Y-axis is cross-wind direction, and Z-axis is the altitude above the ground. Based on the 

established coordinate system, the Gaussian plume can be modeled by Equation 1: 
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                 d

z c x =                                                (3) 

Where C is the concentration of CH4 (g/m3), q (g/s) is the emission rate of CH4 from coal mine, u is the 

mean wind speed around the stack (m/s), H is the effective stack height, σy is the dispersion coefficient 

in the horizontal direction, σz is the dispersion coefficient in the vertical direction, u is the wind speed 155 

(m/s), and B is the background concentration of CH4. Moreover, α is the reflection index of the 

measurement phenomenon; and x, y, and z are the positions of the samples in the determined coordinate 
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system. 

2.4.2.GA-IPPF model.  

First, the genetic algorithm (GA) kernel calculates Q and other dispersion parameters with a first guess 160 

(Liu and Michalski, 2016). It guarantees that the unknown parameters are retrieved through the global 

optimum solution, as shown in Fig.2. Then, the results calculated by GA serve as initial input parameters 

and constraints in the IPPF model, and actual values of the concerned parameters are retrieved by IPPF. 

Detailed information can be found in S1 (supplement).  

Based on the Gaussian dispersion model, auxiliary meteorological data, location information, and CH4 165 

samples, we determine the unknown parameters in equations 1 to 3 by using GA, including q, H, a, b, c, 

d, and α, in logical range constrained by lower boundary and upper boundary. First, the locations and 

concentration of CH4 samples and wind serve as the initial input of equation 1. Then, the fitness value 

evaluates the applicability of the calculated parameters in each step. We define the fitness value as  
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Where F is the fitness value; n is the total amount of concentration samples; C
i 
m is the sample CH4 

concentration; i is the number of samples; C
i 
s is the simulated concentration of CH4 in the location of 

samples calculated by equation 5; and q′, u′, σ
′ 
y, σ

′ 
z, H′, α′, and B′ are the calculated CH4-emission rate, 

wind speed, diffusion parameters, emission height, reflect index, and background CH4 concentration, 
175 

respectively, acquired from the “Mutation” in Fig.2. When f is less than the threshold value (1×10-5) of 

the fitness value, the corresponding parameters are treated as the results of output.  

IPPF rebuilds the inequality constraint conditions to the unconstrained solution process. It forces the 

start point to satisfy the constraints, as shown in equation 6. 

                   ( )x, f (x) ( )k kminF r r B x= +                                 (6)
 

180 

Where f(x) is the unconstrained equation, and rk is the coefficient of the constrained equation B(x). 

When the solution parameters are out of the constraints, rkB(x) is large, thereby ensuring that the final 

solution is feasible under the inequality constraint conditions.  

To obtain the inequality constraints, GA is repeated 10000 times, and the mean values of the calculated 

wind speed, wind direction, H, a, b, c, d, and α are treated as the initial input of IPPF model. The domains 
185 

of H, a, b, c, d, and α are determined by two times the standard deviation of the corresponding results in 

GA. The constraint values of wind speed (Ws) and direction (Wd) are set according to the precision of 

actual measurements, m±σ，whereas m is the measured value of wind speed or wind direction, and σ is 

their measured precision. Actual B values are considered to be within 1800–2500 ppb. Then, the
 
Pearson 

correlation coefficient (R) values of the actual samples and simulated values work as the criterion in the 
190 

solution process of equation 7.  
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The results are treated as the final retrieved values of the concerned parameters when the R reaches 

the maximum. 
 

 195 
Fig.2. Flow chart of GA-IPPF model, including data inputs and process in each step.  

Uncertainty Analyses 

The GA-IPPF model will be calculated 1000 times repeatedly based on the collected samples of CH4 

concentration, then, the uncertainty and final retrieved emission rate could be defined by 
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 σ is the uncertainty of retrieved emission rate;qi is the i th retrieved emission rate, i=1,2,3…1000; q is 

the mean value of the qi; N is 1000; qr is regarded as the value of retrieved emission rate. The values of 

other parameters (a,b,c,d,H,Ws,Wd,B,α) calculated by GA-IPPF are also defined in same principle. 

3. Results 205 

3.1. Actual experiments 

As part of the Carbon Dioxide and Methane Mission (CoMet) pre-campaign,15 active AirCore Flights 

successfully collected data around a ventilation shaft of Pniówek coal mine on August 18, 2017 and 

August 21, 2017. The sample data in Flight 6 (18/8/2017) and Flight 15 (21/8/2017) were used to evaluate 

the GA-IPPF model detailly, as shown in Fig. 3. Retrieved results of data collected by other Flights are 210 

presented in S2 (supplement). 
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Fig. 3. Samples of CH4 concentration in two Flights: (a) Flight 6 and (b) Flight 15.  

In Flight 6, the AirCore system collected CH4 from 0 m to 98 m around the ventilation shaft in a spiral 

pattern, with a total of 376 samples, ranging from 1980.1 ppb to 49 113.9 ppb, and a measurement period 215 

of 7 minutes. In Flight 15, the AirCore system collected CH4 with a total of 400 samples, ranging from 

2131.7 ppb to 57 265.3 ppb, and a measurement period of 9 minutes. Both Flights show high spatial 

variability in CH4 exhaust from ventilation shaft. Subsequently, we inputted the wind speed, wind 

direction, location information, and CH4 samples collected from Flights into the GA-IPPF model. To 

express the final retrieved emission (Q) in g/s, the dry-air mixing ratio of CH4 (ppb) is transformed into 220 

mass concentration m (mg/m3) as follows: 

                 34 10CH

Air

M
m C

M

−=                                     (10) 

Where MCH4 is the molar mass of CH4, and Mair is the molar mass of air. 

The retrieved results are shown in Table 1, the uncertainty is presented in Discussion in detail. Notably, 

the emission height in Flight 15 was larger than that of Flight 6, which might be caused by the difference 225 

in thermal energy and vertical wind speed of the two flights. The background concentrations of CH4 were 

1.43 and 1.41 mg/m3 in Flights 6 and 15, respectively, which show little difference. The dates of the two 

Flights were very close, so the background concentration of CH4 in two days had nearly the same seasonal 

characteristics. The exhaust gases of coal mine were emitted through the ventilation shaft with effective 

emission heights of 58.4 and 35.5 m, respectively. 230 

To evaluate the rationality of the retrieved results, these parameters are used to simulate CH4 diffusion 

from the ventilation shaft according to equation 1. The comparison between simulated CH4 concentration 

data and actual samples in the same locations is shown in Fig.4.   

Table 1. Results calculated by GA-IPPF model 

Parameters Flight 6 Flight 15 

Initial wind speed (m/s) 2.8 3.2 

Initial wind direction (°) 310 125.4 

Emission intensity (kg/hour) 693.7±20.2 958.9±42.4 

Wind speed (m/s) 2.83±0.2  2.4±0.3 

Wind direction (°) 349.6°±1.2 128.1±0.8 

a 0.60±0.01 0.31±0.01 

b 0.73±0.02 0.95±0.01 

c 0.2±0.01 0.08±0.01 
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d 0.68±0.01 0.94±0.02 

B (mg/m3) 1.43±0.01 1.41±0.01 

Emission height (m) 58.4±2.3 35.5±1.8 

Reflection index 0.90±0.01 1.0±0.01 

 Then, we also calculate the difference between the actual measured samples and simulated ones as  235 

                     
c s mD C C= −                                           (11) 

Where Dc is the difference of CH4 concentration data between actual measured and simulated ones, Cs 

is simulated CH4 concentration (mg/m3), and Cm is measured CH4 concentration (mg/m3). 

 

 240 

Fig. 4. Comparison between the measured samples and the simulated ones based on the parameters in 

Table 1: (a). Flight 6 and (d) Flight 15. The difference of simulated CH4 concentration data and actual 

measured ones: (b) Flight 6 and (e) Flight 15. Correlation Analysis: (c) Flight 6 and (f) Flight 15. 

Fig 4 shows that the simulated CH4 concentration is high consist with actual sampled ones in two Flights. 

In Flight 6, the largest value of sampled CH4 concentration is 23.92 mg/m3, while the corresponding 245 

simulated one is 22.45 mg/m3, relative error is only 0.2 %. It is worth noting that it exists three peaks in 

Flight 15, mainly occur at the altitudes of about 16 m, 25 m and 40 m, see S3 in supplement. Fig.4 (d) 

shows the simulated CH4 concentration data around the 1th and 3th peak are not better than that around 

the 2th peak. Because GA-IPPF method can assign more weights to the samples with higher concentration 

(NO.120 to 180 in Flight 15) to get the global optimal solution of the unknown parameters, which leads 250 

to lower fitness to simulated CH4 concentration around the 1th and 3th peaks. Values of Dc are ranging 
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from -2.50 to 2.35 mg/m3 in Flight 6, which are lower than that in Flight 15. R2 between simulated CH4 

concentration and actual sampled ones are larger than 0.8 in two Flights, root mean square errors (RMSEs) 

are 0.79 mg/m3and 4.52 mg/m3 respectively. The simulated CH4 concentration in the other Flights are 

seen in S2. In summary, the tendency of the simulated CH4 concentration data remains consistent with 255 

that of the actual samples in Flight.  

3.2 Comparison with other methods 

To investigate the difference between our proposed emission model and the others, three methods were 

applied to estimate CH4 emission in all Flights, including mass-balance approach, nonlinear least square 

fit (NLSF), and facility emission. 260 

Mass-balance approach quantifies CH4 emission by calculating the cross-sectional flux perpendicular 

to the wind direction (Krings et al., 2018). First, a two-dimensional plane is selected according to the 

amount of CH4 samples. Second, the two-dimensional plane is divided into a grid of equal spatial 

resolution. Third, CH4 samples are regarded as original points to interpolate full grids defined by the 

Kriging interpolation scheme (Mays et al., 2009). Finally, the emission rate of the CH4 source is 265 

calculated by  

                   ( 4) ( , ) bgsin( ) ( - )CH x zF v C C dxdz=                         (12) 

Where v is the wind speed, α is the angle between wind direction and the two-dimensional plane, C(x,z) 

is the density of CH4 in each grid, and Cbg is the background of CH4 in each grid. The uncertainty analyses 

of this method are detailed in Nathan et al. (Nathan et al., 2015a).  270 

NLSF and the combination of NLSF with Gaussian diffusion model are also extensively used for point-

source emission retrieval (Zheng et al., 2020; Wolff et al., 2021b). In this study, NLSF is used to estimate 

Q in each Flight by fitting the unknown parameters in equation 1.  

Andersen et al. also developed an inverse Gaussian approach to quantify CH4 emissions from coal 

mine ventilation shaft based on the same Flights (Andersen et al., 2021). Firstly, the Gaussian dispersion 275 

is built as
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Where θ is the angle between the wind direction and the perpendicular line of the flight trajectory. This 

model does not include the item of background of CH4. Furthermore, σy and σz are treated as certain 

values in equation 11.  

Facility-emission data and hourly CH4 emission from shaft are calculated by measuring raw CH4 280 

concentration and air flux through the shafts, following the equation below   

   =
flow

Inventory

P V
Q

R T





 

 

(14) 

Where 𝑉𝑓𝑙𝑜𝑤  is the volumetric flow rate of CH4 in m3 s-1, given by the air flow rate (scaled by a 

constant factor of 0.95 to account for the ~5% additional air flow not coming from the ventilation shaft) 

multiplied by the CH4 concentration, and P, R, T, ρ are the atmospheric pressure in Pa, the universal gas 

constant in J mol-1 K-1, the ambient temperature in K, and the molar density of CH4 in g mol-1 (16.043 g 285 

mol-1), respectively. 

CH4 emission rates from ventilation shaft estimated by hourly facility-emission data for 

18 August 2017 and 21 August 2017 are 1655.3 ±479.45 and 913.2 ±285.4 kg/hour, respectively, as 

shown in Fig. 5.  
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 290 

Fig. 5. Quantified CH4 emission by different methods based on the collected data: (a) August 18, 2017 

and (b) August 21, 2017. CH4 emission rates from ventilation shaft calculated by Mass balance and 

Inverse Gaussian refer to Andersen et al. 

As shown in Fig. 5, Flights 4, 6, and 8 were measured on 18 August 2017, whereas Flights 12, 14, 15, 

17, and 18 were measured on 21 August 2017. Fig.5 (a) shows that the CH4-emission rates calculated by 295 

mass balance are smaller than the inventory estimation in all Flights. In Flight 8, q retrieved by mass 

balance is extremely lower than those quantified by other methods, whereas q retrieved by GA-IPPF 

model (1478.4±50.3 kg/hour) shows only a slight difference from the inventory. As shown in Fig.5 (b), 

CH4 emissions retrieved by mass balance, inverse Gaussian, and GA-IPPF model are overestimated 

compared with the inventory in Flight 12. Mass balance and inverse Gaussian method also show 300 

obviously underestimated q in Flight 17. Estimations of retrieved CH4 emission in Flight 18 show 

consistency among methods of mass balance, GA-IPPF, and inverse Gaussian. The CH4 emission rate of 

coal generally has significant variability in each measurement, even on the same day. Mass balance is 

very sensitive to the size settings of grids, and both height and length settings can affect the concentration 

distribution across the cross-section. NLSF has a high-accuracy requirement for wind measurements, and 305 

errors on these measurements have a linear influence on the final emission estimation. Notably, the 

standard errors of q quantified by GA-IPPF are always the least among these methods, indicating the 

stability of the model we developed. And we also simulated 2-D CH4 plume from the ventilation shaft in 

Flight 6 and Flight 15 based on different methods, seen S4.    

3.3 Application of Reanalysis meteorological database in GA-IPPF model 310 

Wind speed and wind direction acquired by the radiosonde or weather station are two main parameters 

in GA-IPPF. However, additional sensors are bound to increase the cost and difficulty during actual CH4-

emission measurements. To explore the possibility of weather reanalysis data instead of actual wind 

measurement by sensors, we use 10 m U and V wind components from the ERA5 meteorological 

reanalysis database (spatial resolution is 0.1°×0.1°, and temporal resolution is 1 h) developed by the 315 

European Centre for Medium-range Weather Forecast (Hersbach et al., 2020) to evaluate GA-IPPF model. 

However, the wind directions from ERA obviously differed from the actual measurements during the 

Flights. Hence, we determine the wind direction by using the CH4 samples, for example, the line between 

the shaft and the location of the maximum value of samples in the same heights was treated as the 

downwind direction, whose uncertainty was set as 50°. Wind speed from ERA is used for the CH4-320 

emission calculation, and the uncertainty was supposed as 2 m/s. Even if the initial wind speed and wind 

direction obviously differed between the two sources, the GA-IPPF model adjusted them into reasonable 

ranges. The results of q retrieved by two meteorological data sources during all Flights were evaluated, 

as shown in Table 2.  
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Table 2. CH4 emission retrieved by two meteorological data sources  325 

Flights Measured (kg/hour) ERA5 (kg/hour) 

4 621.3±19.8 672.8±25.2 

6 693.7±26.2 726.6±37.3 

8 1452.4±60.5 1597.4±82.7 

12 1478.4±50.3 1526.8±64.9 

14 712.6±21.2 597.8±32.7 

15 922.9±27.4 874.7±37.4 

17 348.4±12.1 390.1±14.2 

18 722.0±24.8 784.1±27.4 

Table 2 shows that the values of quantified q between the two meteorological sources are within 20% 

in the same Flight. The standard errors of q retrieved by the ERA5 database are larger than those from 

actual measurements, wind data acquired from ERA5 database perhaps be treated as alternative input 

parameters in GA-IPPF model if no meteorological instruments are equipped in field experiments. 

We also explore the reason that little difference of the calculated emission rates by the two different 330 

sources of meteorological data. The concerned parameters in Flight 6 and Flight 15 calculated based on 

ERA5 meteorological data are presented in Table 3.  

Table 3. Parameters retrieved by GA-IPPF through ERA5 database  

Parameters Flight 6 Flight 15 

Initial wind speed (m/s) 2.5  2.4 

Initial wind direction (°) 300 120 

Emission intensity (kt/hour) 726.6±37.3 898.7±52.1 

Wind speed (m/s) 2.5±0.4  2.2±0.3 

 Wind direction (°) 349.4°±2.1 128.1±0.4 

a 0.60±0.02 0.30±0.01 

b 0.73±0.03 0.97±0.02 

c 0.40±0.02 0.07±0.02 

d 0.57±0.02 0.96±0.01 

B (mg/m3) 1.43±0.01 1.41±0.01 

Emission height (m) 59.2±3.1 35.1±2.7 

Reflection index 0.94±0.02 0.90±0.03 

The initial wind speed and wind direction in Table 3 are obviously different from those in Table 1. 

However, the retrieved wind directions are nearly the same based on the two sources of meteorological 335 

data. Retrieved diffusion parameters and emission heights are also show less difference in two Tables 

(Table 1 and Table 3). It is worth noting that the wind speed and reflection index can be adjusted to reach 

the global solution by GA-IPPF model, which leads to little bias in retrieving emission rate.  
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Fig. 6. Comparison between the measured samples and the simulated ones based on the ERA5 340 

meteorological data: (a). Flight 6 and (d) Flight 15. The difference of simulated CH4 concentration data 

and actual measured ones: (b) Flight 6 and (e) Flight 15. Correlation Analysis: (c) Flight 6 and (f) Flight 

15.  

The tendency of simulated CH4 concentration data in the two Flights are similar to that in Fig.4. 

What’s more, both R2 and RMSE between simulated CH4 concentration data and actual measured ones 345 

in both Flights show less difference with that in Fig.4. Values of Dc shown in Fig.6 (b) are ranging from 

-2.25 to 2.62 mg/m3, which is nearly the same as the result in Fig.4 (b). Values of Dc shown in Fig.6 (e) 

are ranging from -11.04 to 15.21 mg/m3, while -11.3 to 12.85 mg/m3 in Fig.4 (e). Because the difference 

between actual measured wind speed and ERA 5 speed is 0.8 m/s in Flight 15, which is larger than that 

in Flight 6 (0.3 m/s). In summary, GA-IPPF can still simulated reasonable diffusion of CH4 through 350 

ERA5 wind data.  

4.Discussion  

4.1. Validation of performance of GA-IPPF model through OSSEs 

Firstly, the dispersion of CH4 emission from a strong point source was simulated by equation 1 using the 

dispersion parameters shown in Table 4. To make the simulations close to the actual measurement 355 

scenarios, random errors were added to the CH4 concentration samples (0.5 %), wind speed (± 0.3 m/s), 

and wind direction (± 20°). Then, the simulated flight track of UAV was conducted in crossing section 

(300 m to strong source), in Fig 7. The spatial resolution of the supposed samples is set as 10 m, and 99 

samples are selected from the simulated dispersion to represent the data acquired by the UAV-based 
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AirCore. Then, the concerned parameters are retrieved by the GA-IPPF method based on the above 360 

assumptions. Simulations are repeated 10 000 times, and the average values of the corresponding 

parameters were treated as the “Retrieved” results in Table 4.  

 

Fig. 7. Rectangle represents crossing section perpendicular to wind direction, covering a distance of 

300 m near the point source; Red line represents simulated flight track of UAV-based AirCore system; 365 

colored points represent the CH4 concentration samples in OSSEs, totally 99.   

Table 4. The parameters setting in dispersion simulation and the retrieved results by GA-IPPF 

Parameters 
Lower 

boundary 

Upper 

boundary 
Actual Retrieved 

Emission intensity (g/s) 0 100000 180 180.2±0.02 

Wind speed (m/s) 0 100000 3 3±0.01 

Wind direction (°) 70 110 90 90±0.10 

a 0 1000 0.6 0.6±0.02 

B 0 1000 0.7 0.7±0.02 

c 0 1000 0.2 0.2±0.01 

d 0 1000 0.6 0.6±0.01 

B (ppb) 1700 2500 1900 1900±2.7 

Emission height (m) 0 150 50 49.8±1.1 

α 0 1 0.9 0.91±0.01 

“Actual” means the set values of parameters, and “Retrieved” means the average values of parameters 

retrieved by GA-IPPF model through 10 000 times of simulation. 

As shown in Table 1, q retrieved by GA-IPPF has only 0.11% bias compared with the set values. 370 

Emission height only has 0.2 m bias in terms of the set one, and the uncertainty is only 0.4% to 50 m. 

Other retrieved parameters also show high consistency with the original settings.  

4.2. Stability analyses 

The necessary input parameters in GA-IPPF contain meteorological data (wind speed and wind direction), 

accuracy of CH4 samples, and amount of CH4 samples. In equation 1, wind speed has a nearly linear 375 

relationship with the emission estimation. Wind speed is also an important factor that determines 

atmospheric stability according to the Pasquill–Gifford method (Venkatram, 1996) as it affects the 

diffusion parameters of σy and σz. The coordinate is built according to the wind direction, which is defined 

as the plane coordinates of CH4 samples. According to equations 2 to 3, errors in wind-direction 
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measurement lead to wrong σy and σz on each position of samples. CH4 samples are the most important 380 

factors to determine the Gaussian diffusion. The accuracy of samples influences the judgment of “fitness” 

in the GA process. More samples collected in different positions help rebuild the spatial-distribution 

characteristics of the plume, because this provides larger possibility for fitting process in IPPF and helps 

determine the optimum solution. To evaluate the influence of errors in the measurements of necessary 

parameters on the final retrieved results, the same settings in Table 4 are used as actual results. The 385 

performance of the GA-IPPF model with additional random errors in each parameter was simulated 

10 000 times, as shown in Fig. 8. 

 

Fig. 8. Influence of accuracy of parameters on retrieved emission results. The baseline represents the 

emission rate setting of CH4, 300 g/s: (a) wind speed, with additional error ranging within 0.2–2 m/s and 390 

an interval of 0.1 m/s, (b) wind direction, with additional error ranging within 5°–50° and an interval of 

5 °, (c) accuracy of CH4 samples, with additional error ranging within 0.5%–5.0% and an interval of 

0.5%, and (d) amount of CH4 samples, randomly selected as 20–90 among the defined 99 samples.  

In Fig.8 (a), the mean value of q retrieved by GA-IPPF is nearly the same as the baseline if the error 

in wind speed is less than 0.4 m/s. It occurs to maximum retrieved emission bias (10.2 g/s) to the baseline 395 

when 2 m/s error in wind speed. Fluctuation of q occurs obviously if the error in wind speed exceeds 0.4 

m/s. The standard errors of q are positively correlated with the values of errors in wind speed, indicating 

that the accuracy of wind-speed measurements largely influence the stability of the GA-IPPF model. This 

model has a self-adjustment function for wind speed; for example, when the initial wind speed is 3 m/s, 

the maximum standard error of q is only 6.6 g/s (3.7% to the 180.0 g/s) when the additional error of wind 400 

is 2.0 m/s (66.7% to 3.0 m/s).  

The retrieved q shows less sensitivity to errors in wind direction (see Fig.8 (b)). When errors in wind 

direction are 5° to 40°, all biases of q are within 0.7 g/s and the standard errors are around 1.6 g/s. Wind 

direction determines the spatial location of the sampling point, and wrong location information leads to 

distinct errors in emission estimation. GA-IPPF shows highly accurate ability to obtain the global 405 

optimum solution in wind direction.  

Sampling accuracy has small impact on the retrieved q within different settings in CH4 samples’ 

accuracy, see Fig.8 (c). Standard deviation is positively correlated with errors in CH4 measurements. The 
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standard deviation is 2.6 g/s when the measurement error reaches 5.0 %. Notably, the uncertainty of CH4 

samples measured by UAV-based AirCore system is far less than 5.0 %. The UAV-based AirCore system 410 

can acquire more than 99 CH4 samples in actual feasible measurements, therefore, it is believed that 

accuracy of CH4 samples (>95.0 %) collected by the AirCore system bring less influence in theory.  

The number of measurement points obviously influences the final accuracy of q by the GA-IPPF model 

(see Fig.8 (d)). It has a bias of 9.7 g/s to 180.0 g/s when n is 20. The accuracy of q and the standard error 

are negatively correlated with n which provides the number of criterion for the fitting process in the 415 

retrieval model. Hence, n directly influences the retrieved results. The AirCore system has the advantage 

of continuous sampling during flight, which integrates the atmospheric signals along the flight path and 

helps reduce the uncertainty in the retrieved q. Besides, the smoothing of the atmospheric signal also 

reduces the spatial resolution of the measurements, which needs to be considered during the optimization.   

IPPF can suitably solve the problem of inequality constraints, and the calculated solution guarantees 
420 

the calculated parameters to be within the feasible region. In this section, the performance of the GA-

IPPF model and the influence of the four key input parameters are discussed.  

Suggestions for quantifying emission rate through UAV-based AirCore system 

1. Meteorological instruments should be equipped when collecting concentration samples to acquire wind 

speed, wind direction, humidity and atmosphere pressure. 425 

2. The wind speed should be greater than 2.0 m/s. 

3. During actual experiments, after the stable wind speed and wind direction are measured, the UAV-

based AirCore system will start its concentration collection, and the system should try to fly along the 

cross section perpendicular to the wind direction. 

These criterions are also determined the analyzed 8 Flights from the total 15 Flights.   430 

Application of GA-IPPF 

 

Fig.9. Application of GA-IPPF in quantifying emission source of gases through different sample systems, 

including UAV-based AirCore system, ground-based In-situ network and mobile collection system.   

GA-IPPF, works as an emission gas quantification method, which can achieve rapid real-time 435 

monitoring of methane leakage caused by landfills, chemical plants and other strong sources. In theory, 

the recommended model is applicable not only to UAV-based AirCore system, but also to other sample 

systems which can measure gases concentration and location information. Each country's environmental 

Dave Lowry

These criteria were used to select 



16 

 

monitoring department may have built gases sample equipment based on different platforms, including 

UAV, vehicles, and ground-based in-situ stations. These systems may not only monitor greenhouse gases 440 

like CO2 and CH4, as well as polluting and harmful gases. Therefore, we demonstrate the application of 

GA-IPPF in quantifying gases emission based on different gases concentration collected systems in 

actual experiments. 

Emission Estimates in control release experiment  

To evaluate the performance of GA-IPPF in control release experiments, we quantify the gases 445 

emission rates in release experiment through different gases sample systems, including UAV-based 

AirCore system, mobile sampling system and ground-based in-situ network. Detailed introduction of the 

concerned release experiment are as follows: 

Agrar Hauser control release 

  This CH4 release experiment was conducted on Agrar Hauser field near Dübendorf, 450 

Switzerland(Morales et al., 2022). The controlled CH4 was release from an artificial source, 50 L high-

pressure cylinder with a height of 1.5 m. Meteorological information were acquired by 3D anemometers 

around the emission source. UAV-based sample systems used in these release experiments contained two 

sensors, Quantum cascade laser spectrometer (QCLAS) and active AirCore. It carried series active 

measurements from 23 February to 14 March 2020.There was no other CH4 source around Agrar Hauser 455 

field and the topography was flat. In this section, active AirCore CH4 samples on 12 march 2020 (312_01) 

were chosen to use GA-IPPF to quantify methane release rate. 

EPA methane control release  

Environmental Protection Agency (EPA),USA developed OTM 33A method to quantify oil and gas 

leakage based on mobile measurement platforms(Brantley et al., 2014), which consisted CH4 in-situ 460 

sensor (G1301-fc cavity ring-down spectrometer (Picarro)), a collocated compact weather station and a 

Hemisphere Crescent R100 Series GPS system. The accuracy of in-situ sample was within ±5%, and 

in-situ sensor was implemented at height of 2.7 m based on vehicle. Weather station provided 

atmospheric temperature, pressure and humidity, as well as 3-D wind direction and wind speed. A 99.9% 

CH4 high pressure cylinders was used as the gas supply to simulate the CH4 leakage source. EPA 465 

published total 20 experiments of control releases to evaluate OTM 33A method. 

Prairie Grass emission experiment  

Prairie Grass emission experiment was mainly conducted to evaluate the diffusion of SO2 from point 

source under different meteorological circumstances (Barad et al, 1958). The height of emission source 

was 0.46 m, and all in-situ sensors were set at heights of 1.5 m. SO2 concentration was sampled by the 470 

in-situ network at the radius of 50 m, 100 m, 200 m, 400 m and 800 m around the source. Samples in 

R57 release (10-minute sampling periods), totally 94, were selected to quantified SO2 emission rate from 

release instrument. The reported emission rate of SO2 in R57 was 105.1 g/s, and the samples collected at 

the radius of 800 m were neglected in this discussion because of their very small quantity. The reported 

wind speed was 4.85±1 m/s, wind direction was 184±10°.   475 

Table 4 Performance of GA-IPPF model in different control release experiments 

Database Number Gas Release rates (g/s) Retrieved by GA-IPPF (g/s) 

Agrar Hauser 312_01 CH4 0.31±0.03  0.3±0.03 

EPA STR_6061411_01 CH4 0.60  0.57±0.04 

Prairie Grass 57 SO2 101.5  104.7±3.7 

Table 4 shows the emission rates and uncertainties through GA-IPPF in control release experiments, 

and the reported emission rates. The average difference between retrieved emission rates and reported 
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ones is 3.8 %, which indicates the high accuracy of GA-IPPF in quantification estimation. 

 480 

Fig.10. The simulated gases diffusions based on retrieved parameters in control release experiments; a1 

and a2 are comparisons between simulated diffusion and actual samples in Agrar Hauser; b1 and b2 are 

comparisons between simulated diffusion and actual samples in EPA control release; c1 and c2 are 

comparisons between simulated diffusion and actual samples in Prairie Grass experiment. 

 As shown in Fig.10, the gases diffusions simulated by GA-IPPF in the three control release experiments 485 

conform to logic. Simulated gases concentrations are in good agreement with actual samples (see 

Fig.10.a1, Fig.10.b1 and Fig.10.c1,), and each peak of the samples in control release experiments can be 

reconstructed. The correlations between simulated gases concentrations and actual samples are larger 

than 0.65, and the RMSE are within 2.7% (relative to the mean value of the selected samples’ 

concentration).  490 

In general, reconstructions of gases concentration based on both mobile-platform and UAV are worse 

than that based on in-situ network. Collected data by in-situ network is usually the mean value of a certain 

time, like 10 min in Prairie Grass emission experiment, which provides stabile inputs data for GA-IPPF, 

especially concentration samples. While the concentrations sampled by mobile-platform and UAV-based 
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AirCore experiments are instantaneous, which may be inaccurate and exist fluctuations in collections. 495 

The advantages of vehicle-based and UAV-based sample systems are flexibility, that is, they can freely 

acquire the distribution of gases around the target monitoring sources. In-situ network implement is 

complicated with a high cost, and the wind direction should be considered during deployment. But its 

high stability and accuracy can help us to quantify emission source. Therefore, environmental protection 

departments can choose detection systems according to actual emission monitoring needs. 500 

5.Conclusion 

In this study, we present a quantified model for strong point emission source based on concentration 

sampling data, named GA-IPPF. During CoMet campaign in 2017, we successfully monitor methane 

emissions from a ventilation shaft in Pniówek coal mine through the concentration data measured by 

UAV-based AirCore system. Results show that CH4 emissions rate from ventilation shaft are not 505 

consistent even in a short time. 

GA-IPPF can reconstruct the concentration dispersion around the point emission source, and the 

largest R2 between the measured CH4 concentration and the reconstructed concentration in the selected 

Flights around Pniówek coal mine can reach 0.99. 

In Observing System Simulation Experiments (OSSE), we discussed the sensitivity analysis of 510 

different parameters setting on final retrieved emission rate by GA-IPPF. We demonstrate that GA-IPPF 

has self-adjust function to achieve an optimal solution on emission rate, which will reduce the 

requirements for hardware performance in actual emission quantification experiment. 

 We also tested the performance of GA-IPPF in three control release experiments with different 

sampling devices, including vehicle-mounted in-situ system, UAV-based AirCore system and ground-515 

based in-situ network observation, and the biases between retrieved emission rates and reported ones 

within 5.0 %. 

In future, GA-IPPF has great potential in the point-source quantitation based on mobile concentration 

sampling system, which can help to renew and enrich the gases emission inventories on strong point 

sources.  520 
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