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Abstract 19 

Quantifying CH4 emissions from coal mines has large uncertainty owing to the lack of effective 20 

monitoring methods. In this study, we developed a genetic algorithm–interior point penalty function 21 

(GA-IPPF) model to calculate the emission rate of large point sources of CH4. This model can provide 22 

the detailed optimized dispersion parameters and has self-calibration characteristics that reduce the 23 

accuracy requirements for auxiliary data. We evaluate the influence of different parameters on the 24 

retrieved CH4-emission rate by the GA-IPPF, including the uncertainty of CH4 concentration 25 

measurements, number of CH4 measurements, and meteorological data. Furthermore, based on the 26 

atmospheric CH4 concentration measurements downwind of a Pniówek coal-mine ventilation shafts 27 

from a UAV-based AirCore system and the GA-IPPF model, we retrieve the CH4-emission rates from 28 

the Pniówek coal (Silesia coal mining region mine, Poland) ventilation shaft. Results show that the CH4-29 

emission rates are variable even in a single day, ranging from 5.6±0.2 kt/year to 12.4±0.6 kt/year on 30 

August 18, 2017 and from 3.0±0.3 kt/year to 12.7±0.5 kt/year on August 21, 2017. The combination of 31 

the flexible UAV-based AirCore CH4 measurements and the robust GA-IPPF model provides a effective 32 

means of quantifying CH4 emissions from coal mines. 33 

1.Introduction 34 

The release of CH4 into the atmosphere during coal mining is very concerning because it contributes 35 

to increased atmospheric concentration of CH4, one of the most important greenhouse gases and waste 36 

resources(Cardoso-Saldana and Allen 2020; Zhang et al. 2020). However, CH4 emissions during coal 37 

mining are not always stable owing to collection or manufacturing processes, weather fluctuations, 38 

terrain effects(Nathan et al. 2015b). Bottom-up inventories could provide us with approximate 39 

information on CH4-emission rates from strong sources. However, inventories cannot serve as a standard 40 

for formulating policies to reduce anthropic CH4 emission because of their low temporal resolution and 41 

uncertainty. The temporal resolution and accuracy of bottom-up inventory are too low to obtain emission 42 
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information instantaneously(Liu et al. 2020; Pan et al. 2021). Based on the measurements of CH4 43 

concentration around the emission source, developing a fast retrieval model to obtain emission intensity 44 

is an acceptable method. With the development of remote-sensing technologies, the CH4 emission rate 45 

has become possible to quantify based on CH4 concentration samples or measurement. 46 

Greenhouse gases observing satellite and TROPOspheric Monitoring Instrument could obtain the 47 

column concentration of CH4 (XCH4, ppb) with a spatial resolution of 10 km×10 km and 5 km×7.5 km. 48 

The regional CH4 flux could be retrieved by assimilating the measured XCH4 into an atmospheric 49 

dispersion model(Feng et al. 2016; Tu et al. 2022). PRISMA hyperspectral imaging satellite and GHGsat 50 

could detect increased CH4 caused by strong emission sources with high spatial resolution, and the 51 

comprehensive CH4 emission could be quantified by integrated mass enhancement or cross-sectional 52 

flux method(Guanter et al. 2021; Varon et al. 2020). However, CH4 emission from coal is not constant 53 

even in a short time, and the spatial and temporal resolutions of satellites are not allowed to repeat the 54 

quantification of CH4 emission from coals in the same day(Schneising et al. 2020; Varon et al. 2019). An 55 

airborne platform could fly in low altitude to improve the acquisition of CH4 concentration(Elder et al. 56 

2020; Wolff et al. 2021a) and estimate CH4 emission from strong sources by cross-sectional flux method 57 

or Gaussian dispersion method. However, it has strict requirements for the flight track (downwind 58 

direction) and amount of measured CH4 concentration data. Most ground-based sensors have the 59 

advantage to sample the concentration around the source continuously, but it could collect data only near 60 

the surface or could only measure column concentration(Caulton et al. 2017; Robertson et al. 2017; Zhou 61 

et al. 2021), which are insufficient to generate the distribution characteristic of the emission source. 62 

Ground-based different-absorption LIDAR could obtain the CH4 profile concentration in different 63 

altitudes, which is suitable as the input of the emission-retrieval model(Shi et al. 2020a), but it has high 64 

requirements in terms of performance of hardware and system stability(Shi et al. 2020b). An unmanned 65 

aerial vehicle (UAV) could reach any location rapidly around the CH4 sources, which could sample CH4 66 

concentration with location information(Iwaszenko et al. 2021; Nathan et al. 2015b), when equipped 67 

with an in-situ gas sensor. It could also acquire the characteristic of distribution with adequate data, which 68 

is beneficial to retrieving the emission rate.  69 

Mass-balance method has been applied in determining CH4 emissions based on UAV-based 70 

samples(Allen et al. 2018). Emission rates calculated by this method contain large uncertainty because 71 

the main kernel is Kriging interpolation(Nathan et al. 2015a), which causes obvious uncertainty in 72 

representing the actual feature of diffusion. The Gaussian dispersion model has also been applied in 73 

retrieving gas emission from strong sources(Shah et al. 2019),30, and is used to quantify CH4 emission 74 

from a coal-mine ventilation shaft in this study. However, existing emission-retrieval models need priori 75 

information on diffusion parameters to retrieve the emission rate. Moreover, the accuracy of 76 

measurements of auxiliary meteorological data influences the result of CH4-emission calculation. 77 

Therefore, we develop herein a model to overcome these shortcomings. Our model could calculate the 78 

diffusion parameters without prior information and reduce the impact of meteorological data on the 79 

calculated CH4-emission rate.  80 

In the present study, we collected CH4 concentration around a coal-mine ventilation shaft by using 81 

UAV-based active AirCore system with high accuracy(Andersen et al. 2018) for a total of seven Flights. 82 

Then, a CH4 emission-retrieval model based on genetic algorithm (GA) combined with interior point-83 

penalty function (IPFF) is presented. GA-IPPF could help us obtain detailed information on emission 84 

intensity and diffusion parameters. Finally, the performance of GA-IPPF model is compared with other 85 

quantification methods for CH4 emission.  86 

Dave Lowry

Poor English and not clear - you mean that the orbital pattern of the satellite means that they do not pass over the same area twice within the same day.

Dave Lowry

I presume you mean fixed location. This is also dependent on wind direction, so the emission will not be sampled all of the time, unless monitoring is inside of the source.

data

Accuracy of what? AirCore only collects the sample so presumably GPS location X.Y.Z co-ordinates at high frequency. 

Dave Lowry



3 

 

2.Data and methods 87 

2.1.Active AirCore System 88 

The active AirCore system comprises a ~50 m coiled stainless-steel tube that works in conjunction 89 

with a micropump and a small pinhole orifice (45 𝜇𝑚) to sample air along the trajectory of a drone. As 90 

long as the pressure downstream of the orifice is more than half of that of the upstream (ambient) pressure, 91 

a critical flow through the orifice is obtained. This finding means that the flow rate depends only on two 92 

variables, namely, the air temperature and the upstream (ambient) pressure, both of which are monitored 93 

during the flight. After obtaining the air sample, the sample is analyzed on a cavity ring down 94 

Spectrometer model G2401-m for CO2, CH4, and CO. For CH4, the accuracy of samples is 0.02 parts 95 

per million (ppm). The active AirCore system is controlled using an Arduino-built data logger, which 96 

records the temperature inside the carbon fiber housing. It also records the ambient temperature, ambient 97 

pressure, relative humidity, and pressure downstream of the pinhole orifice to ensure that critical flow is 98 

achieved. The datalogger also logs the GPS coordinates. The weight of the active AirCore system is ~1 99 

kg. The active AirCore system is attached to a DJI Inspire Pro 1, which is capable of providing flights of 100 

~12 min. 101 

2.2. Meteorological measurements 102 

A radiosonde (Sparv Embedded AB, Sweden, model S1H2-R) measures ambient temperature, ambient 103 

pressure, ambient relative humidity, wind speed, and wind direction. The detection range of the 104 

temperature sensor is –40 °C to +80 ℃, with an accuracy of 0.3 ℃. The pressure sensor has a detection 105 

range of 300–1100 mbar, with an accuracy of 1 mbar. The relative humidity sensor measures a range of 106 

0%–100%, with an accuracy of approximately 2%. Owing to the good connection between the 107 

radiosonde and satellites, we assume that the uncertainty in the wind direction is low. The wind speed 108 

can be estimated within a range of 0–150 m/s, with an uncertainty of approximately 5%. If the wind-109 

speed reading is less than 4 m/s, a minimum uncertainty of 0.2 m/s is given. The radiosonde is lifted by 110 

a ~30 L helium-filled balloon and is tethered onto a fishing line for easier retrieval after making a vertical 111 

profile. 112 

2.3 Emission retrieve model 113 

2.3.1.Gaussian dispersion model  114 

The Gaussian dispersion model is used to analyze the CH4 fugitive from the coal mine in this work. 115 

The location of emission source is regarded as the coordinate origin; X-axis is the direction of the 116 

downwind, Y-axis is cross-wind direction, and Z-axis is the altitude above the ground. Based on the 117 

established coordinate system, the Gaussian plume could be modeled by Equation 1: 118 
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C is the concentration (g/m3), q (g/s) is the emission rate of coal from stack, u is the mean wind speed 122 

around the stack (m/s), H is the effective stack height, σy is the dispersion coefficient in the horizontal 123 

direction, σz is the dispersion coefficient in the vertical direction, u is the wind speed (m/s), and B is the 124 

background concentration of CH4. Moreover, α is the reflection index of this phenomenon; and x, y, and 125 

z are the positions of the samples in the determined coordinate system. 126 

2.3.2.GA-IPPF model.  127 

First, the genetic algorithm (GA) kernel calculates Q and other dispersion parameters as first guess(Liu 128 

Need to be clear that the AirCore sample is removed from the drone and replayed through the Picarro on the ground
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and Michalski 2016). It guarantees the retrieved unknown parameters through the global optimum 129 

solution, including Q and diffusion parameters, as shown in Figure1.Then, the results calculated by GA 130 

serve as oral input parameters and constraints in the IPPF model, and actual values of the concerned 131 

parameters are retrieved by IPPF.  132 

Based on the Gaussian dispersion model, auxiliary meteorological data, location information, and CH4 133 

samples, we determine the unknown parameters in equations 1 to 3 by using GA, including q, H, a, b, c, 134 

d, and α. First, the locations and concentration of CH4 samples and wind serve as an initial input of 135 

equation 1. Then, the fitness value evaluates the applicability of the calculated parameters in each step. 136 

We define the fitness value as  137 
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F is the fitness value; C
i 
m is the sample CH4 concentration; i is the number of samples; C

i 
s is the 

140 

simulated concentration of CH4 in the location of samples calculated by formula 5; and q′, u′, σ
′ 
y, σ

′ 
z, H′, 

141 

α′, and B′ are the calculated CH4-emission rate, wind speed, diffusion parameters, emission height, reflect 
142 

index, and background CH4 concentration, respectively, acquired from the “Mutation” in Figure1. When 
143 

f is less than the threshold value (1×10-5) of the fitness value, the corresponding parameters are treated 
144 

as the results of output.  
145 

IPPF rebuilds the inequality constraint conditions to the unconstrained solution process. It forces the 
146 

start point to satisfy the constraints, as shown in formula 6. 
147 

                ( )x, f (x) ( )k kminF r r B x= +                            (6)
 

148 

f(x) is the unconstrained equation, and rk is the coefficient of the constrained equation B(x).When the 
149 

solution parameters are out of the constraints, rkB(x) is large, thereby ensuring that the final solution is 
150 

feasible under the inequality constraint conditions.  
151 

To obtain the inequality constraints, GA is repeated 1000000 times, and the mean values of the 
152 

calculated wind speed, wind direction, H, a, b, c, d, and α are treated as the oral input of IPPF model. 
153 

The domains of H, a, b, c, d, and α are determined by two times the standard deviation of the 
154 

corresponding results in GA. The constraint values of wind speed and direction are set according to the 
155 

precision of actual measurements, m±σ，whereas m is the measured value of wind speed or wind direction, 
156 

and σ is their precision. Actual B values are considered to range within 1800–2500 ppb. Then, the
 
Pearson 

157 

correlation coefficient (R) values of the actual samples and simulated one work as judgment in the 
158 

solution process of formula 7.  
159 
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The results are treated as the final retrieved values of the concerned parameters when the R reaches 
161 

the maximum. We use the “fmincon (interior point)” toolbox in MATLAB 2020a to implement the IPPF 
162 

model.
 163 

164 
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 165 

Figure1. Flow chart of Genetic Algorithm and IPPF model.  166 

2.4.Measurement Site  167 

The Pniówek coal mine (49.975 N, 18.735 E) is a large mine in south Poland in Pniówek, Silesian 168 

Voivodeship, which is 190 km southwest of the capital Warsaw, see Figure2. It has a large coal reserve 169 

estimated to be about 101.3 million tons. Its coal production is about 5.16 million tons per year. 170 

 171 

Figure2. The Pniówek coal mine    172 

3. Results 173 

This section needs to go before the model section as the location is mentioned. You should also make it clear what type of source this is as this will make a big difference to the model. Is a a large open coal pit, or emission from a deep mine shaft or vent, or is it a combination of both.
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3.1. Validation of performance of GA-IPPF model through simulations  174 

First, the dispersion of CH4 emission from a coal is simulated by equation 1, and the dispersion 175 

parameters are shown in Table 1. To make the simulations close to the actual measurement scenarios, 176 

random errors are added to the CH4 concentration samples (5%), wind speed (± 0.3 m/s), and wind 177 

direction (± 20°). The spatial resolution of the supposed samples is 10 m, and 70 samples are selected 178 

from the simulated dispersion to represent the data acquired by the UAV-based AirCore. Then, the 179 

concerned parameters are retrieved by the GA-IPPF method. The input parameters include hypothetical 180 

wind speed, wind direction, and 70 samples, as shown in Figure3. Simulations are repeated 10 000 times, 181 

and the average values of the corresponding parameters are treated as the “Retrieved” results in Table 1.  182 

 183 
Figure3. The determined 70 CH4 samples in simulations 184 

Table 1.Set parameters in dispersion simulation and the retrieved results 185 

Parameters Actual Retrieved 

Emission intensity (g/s) 300 300.5±0.01 

Wind speed (m/s) 3 3±0.01 

Wind direction (°) 90 90±0.01 

a 0.11 0.13±0.02 

B 0.9 0.9±0.02 

c 0.1 0.12±0.01 

d 0.82 0.8±0.01 

B (ppb) 1900 1900±3 

Emission height (m) 20 19.7±1.2 

α 0.9 0.89±0.03 

“Actual” means the set values of parameters, and “Retrieved” means the average values of parameters 186 

retrieved by GA-IPPF model through 10 000 times of simulation. 187 

 As shown in Table 1, q retrieved by GA-IPPF has only 0.17% bias compared with the set values. 188 

Emission height only has 0.3 m bias to set one, and uncertainty is only 0.6% to 20 m. Other retrieved 189 

parameters also show high consistency with the original settings.  190 

3.2. Stability analyses 191 

The necessary input parameters in GA-IPPF contain meteorological data (wind speed and direction), 192 

accuracy of CH4 samples, and amount of CH4 samples. In formula 1, wind speed nearly has a linear 193 

relationship with the emission estimation. Wind speed is also an important factor that determines 194 

Dave Lowry
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atmospheric stability according to the Pasquill–Gifford method(Venkatram 1996) as it affects the 195 

diffusion parameters of σy and σz. The coordinate is built according to the wind direction, which is defined 196 

the plane coordinates of CH4 samples. According to formulas 2 to 3, errors in wind-direction 197 

measurement lead to wrong σy and σz on each position of samples. CH4 samples are the most important 198 

factors to determine the Gaussian diffusion. The accuracy of samples influences the judgment of “fitness” 199 

in the GA process. More samples collected in different positions help rebuild the spatial-distribution 200 

characteristics of the plume because it provides larger possibility for fitting process in IPPF and helps 201 

determine the optimum solution. To evaluate the influence of errors in the measurements of necessary 202 

parameters on the final retrieved results, the same settings in Table 1 are used as actual results. The 203 

performance of the GA-IPPF model with additional random errors in each parameter are simulated 204 

10 000 times, as shown in Figure4.  205 

 206 

Figure4. Influence of accuracy of parameters on final results. Baseline represents the set emission rate 207 

of CH4, 300 g/s: (a) wind speed, with additional error ranging within 0.2–2 m/s and an interval of 0.1 208 

m/s, (b) wind direction, with additional error ranging within 5°–40° and an interval of 5 °, (c) accuracy 209 

of CH4 samples, with additional error ranging within 0.5%–5.0% and an interval of 0.5%, and (d) amount 210 

of CH4 samples, randomly selected as 20–70 among the defined 70 samples.  211 

In Figure 4 (a), the mean value of q retrieved by GA-IPPF has nearly the same with the baseline if the 212 

error in wind speed is less than 0.4 m/s and the maximum bias to the baseline is 16.3 g/s. Fluctuation of 213 

q occurs obviously if error in wind speed exceeds 0.4 m/s. The standard errors of q are positively 214 

correlated with the values of errors in wind speed, indicating that the accuracy of wind-speed 215 

measurements largely influences the stability of the GA-IPPF model. This model has a self-adjustment 216 

function for wind speed; for example, when the oral wind speed is 3 m/s, the maximum standard error of 217 

q is only 8.5 g/s (3.5% to the 300 g/s) when the additional error of wind is 2 m/s (66.7% to 3 m/s).  218 

The retrieved q shows less sensitivity on errors in wind direction, see Figure4(b). When errors in the 219 

wind direction are 5° to 40°, all biases of q are within 1.1 g/s and the standard errors are around 2.3 g/s. 220 

Wind direction determines the spatial location of the sampling point, and wrong location information 221 

leads to distinct errors in emission estimation. GA-IPPF shows highly accurate ability in wind direction 222 

Dave Lowry
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to obtain the global optimum solution.  223 

Sampling accuracy has small impact on the retrieved q within different settings in CH4 samples’ 224 

accuracy, see Figure4(c). Standard deviation is positively correlated with errors in CH4 measurements. 225 

The standard deviation is 3.1 g/s when the measurement error reaches 5%. Notably, the uncertainty of 226 

CH4 samples measured by UAV-based AirCore system is far less than 5%. The AirCore system could 227 

acquire more than 70 CH4 samples in actual feasible measurements, thereby guaranteeing the accuracy 228 

of the retrieved CH4 emission by coal to exceed 99.2%.  229 

The number of measurement points obviously influences the final accuracy of q by the GA-IPPF model, 230 

see Figure4(d). It has 5.9 g/s bias to 300 g/s when n is 20. The accuracy of q and the standard error are 231 

negatively correlated with n, which provides the number of judging criteria for the fitting process in the 232 

retrieval model. Hence, n directly influences the retrieved results. The AirCore system has the advantage 233 

of continuous sampling during flight, which integrates the atmospheric signals along the flight path and 234 

helps reduce the uncertainty of the retrieved q. On the other hand, the smoothing of the atmospheric 235 

signal also reduces the spatial resolution of the measurements, which needs to be considered during the 236 

optimization30.   237 

IPPF can suitably solve the problem of inequality constraints, and the calculated solution guarantees 
238 

the calculated parameters to be within the feasible region. In this section, GA-IPPF model performance 
239 

and its adjustments on the concerned four input parameters were discussed.  
240 

3.3. Actual experiments 241 

Fifteen active AirCore flights around Pniówek coal mine are collected successfully on August 18, 2017 242 

and August 21, 2017. The sample data in Flight 8 (18/8/2017) and Flight 15 (21/8/2017) are used to 243 

evaluate the GA-IPPF model, as shown in Figure5.  244 

 245 

Figure5. Samples of CH4 in two Flights: (a) Flight 6 and (b)Flight 15.  246 

In Flight 5, the AirCore system collects CH4 around the coal spirally from 0 m to 98 m, for a total of 247 

376 samples, and the measurement period is 7 min, ranging from 1980.1 ppb to 49 113.9 ppb. In Flight 248 

15, the AirCore system collects a total of 400 samples, and the measurement period is 9 min, ranging 249 

from 2131.7 ppb to 57 265.3 ppb. Both Flights show high spatial variability in CH4 exhaust from coal 250 

mine. Subsequently, we input the wind speed, wind direction, location information, and CH4 samples 251 

collected from Flights into the GA-IPPF model. To express the final retrieved emission (Q) in g/s, the 252 

dry-air mixing ratio of CH4 C (ppb) is transformed into mass concentration m (g/m3) as follows: 253 

                 4CH

Air

M
m C

M
=                                    (8) 254 
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MCH4 is the molar mass of CH4, Mair is the molar mass of air. 255 

The retrieved results are shown in Table 2. Notably, the emission height in Flight 15 is larger than that 256 

of Flight 6, which may be caused by the difference in thermal energy and vertical wind speed of the two 257 

flights. The background concentrations of CH4 are 2001.3 and 2002.1 ppb in Flights 6 and 15, 258 

respectively, which show little difference. The dates of the two Flights are very close, so the background 259 

concentration of CH4 in two days have nearly the same seasonal characteristic. The exhaust gases of coal 260 

mine are emitted through the stack with effective emission heights of 5.7 and 3.64 m, respectively. 261 

To evaluate the rationality of the retrieved results, these parameters are used to simulate CH4 diffusion 262 

from the Pniówek coal mine according to equation 1. The comparison between simulated CH4 263 

concentration and actual samples in the same locations is shown in Figure6. 264 

Table 2. Results calculated by GA-IPFF model 265 

Parameters Flight 6 Flight 15 

Oral wind speed (m/s) 4.5 4.1 

Oral wind direction (°) 310 125.4 

Emission intensity (kt/year) 6.1±0.3 8.4±0.5 

Wind speed (m/s) 3.25  3.20 

Wind direction (°) 349.6° 128.1 

a 0.22 0.31 

b 0.90 0.90 

c 0.006 1.50 

d 1.29 0.38 

B (mg/m3) 1.55 1.57 

Emission height (m) 59.3 36.3 

Reflection index 0.85 1.0 

 Then, we also calculated the difference between the actual measured points and simulated ones as  266 

                     c s mD C C= −                                           (9) 267 

Dc is the difference of CH4 concentration between actual measured and simulated ones. Cs is simulated 268 

CH4 concentration (mg/m3),Cm is simulated CH4 concentration (mg/m3). 269 

Dave Lowry
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 270 

Figure6. Comparison between the measured samples and the simulated ones based on the parameters in 271 

Table 1: (a). Flight 6 and (d) Flight 15. The difference of simulated CH4 concentration and actual 272 

measured ones:(b) Flight 6 and (e)Flight 15. Correlation Analysis: (c) Flight 6 and (f)Flight 15. 273 

As shown in Figure6(a), the tendency of the simulated concentration data is consistent with the 274 

measured ones in Flight 6. The largest value (NO.55) of the measured CH4 concentration is 23.9 mg/m3, 275 

whereas simulated one is 23.8 mg/m3 on same location, only 0.42% bias. Dc is ranging from -2.4 to 2.3 276 

mg/m3 in Flight 6 (see Figure6(b)), this little bias indicates the simulated result is reasonable. The R2 of 277 

the measured samples and simulated ones is 0.99, root mean square error (RMSE) is 0.42 mg/m3.It 278 

indicates the GA-IPPF model could correctly rebuild the diffusion of CH4 in Flight 6. Figure6(d) shows 279 

a slight difference between the two items in the first peak and third peak. Since the GA-IPPF method 280 

would adjust more weights to the samples with higher concentration (NO.100 to 150 in Flight 15) to get 281 

the global optimal solution of the relevant parameters, this would lead to the low fitness of the first peak 282 

in Figure6(e). In general, the tendency of the simulated ones remains consistent with that of the actual 283 

samples in Flight 15, especially for the points in the second peak. R2 and RMSE of the measured samples 284 

and simulated ones in Flight 15 also show the high applicability of the retrieved parameters. 285 

3.4. Uncertainty Analyses 286 

The uncertainties in CH4-emission estimations are derived from the measurements of meteorological 287 

data and CH4 samples in the discussed Flights. As shown in Figure3, n is the largest source that 288 

contributes to the uncertainty in emission calculation, and the accuracy of AirCore samples, wind speed, 289 

and wind direction should also be of concern. Therefore, the total uncertainty in actual CH4 emission 290 

retrieved could be calculated as  291 

     

2 2 2 2+ +t n m w d    = +

 

(10) 

Where εt is the total uncertainty of Q estimation. In this section, εn, εm, εw, and εd are the uncertainty 292 

caused by n, accuracy of CH4 samples, wind speed, and wind direction, respectively. Results in Figure3 293 
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are used to determine the values of εn, εm, εw, and εd in each Flight.  294 

4.Discussion 295 

4.1.Comparison with other methods 296 

To investigate the difference between our recommended emission model and others, three methods 297 

have been applied to estimate CH4 emission in all Flights, including mass-balance approach, nonlinear 298 

least square fit (NLSF), and facility emission. 299 

Mass-balance approach quantifies CH4 emission by calculating the cross-sectional flux perpendicular to 300 

the wind direction(Krings et al. 2018). First, a two-dimensional plane is selected according to the amount 301 

of CH4 samples. Second, the two-dimensional plane is divided into a grid of equal spatial resolution. 302 

Third, CH4 samples are regarded as origin points to interpolate full grids defined by the Kriging 303 

interpolation scheme(Mays et al. 2009). Finally, the emission rate of the CH4 source is calculated by  304 

                   ( 4) ( , ) bgsin( ) ( - )CH x zF v C C dxdz=                    (11) 305 

Where v is the wind speed, α is the angle between wind direction and the two-dimensional plane, C(x,z) 306 

is the density of CH4 in each grid, and Cbg is the background of CH4 in each grid. The uncertainty analyses 307 

of this method are detailed in Nathan et al. (Nathan et al. 2015a).  308 

NLSF and the combination of NLSF with Gaussian diffusion model are also extensively used for point-309 

source emission retrieval (Wolff et al. 2021b; Zheng et al. 2020). In this study, NLSF is used to estimate 310 

Q in each Flight by fitting the unknown parameters in equation 1, and the uncertainty of the retrieved Q 311 

is evaluated with formula 6.  312 

Andersen et al. also developed an inverse Gaussian approach to quantifying CH4 emissions from coal 313 

mine based on the same Flights (Andersen et al. 2021). First, the Gaussian dispersion is built as

 

 314 
2 2 2

2 2 2

( ) ( ) ( )
( , , ) exp( ) exp( ) exp( )

2 cos( ) 2 2 2y z y z z

q y z H z H
C x y z

u


      

 − − − − +
+ 


= 



 (12) 

Where θ is the angle between the wind direction and the perpendicular line of the flight trajectory. This 315 

model does not contain the item of background of CH4. Furthermore, σy and σz are treated as certain 316 

values in equation 8. Then, q and the related parameters are retrieved by “fmincon optimizer” in 317 

MATLAB (detailed settings are found in Andersen et al.). The CH4 emissions in each Flight, as evaluated 318 

by Andersen et al., are presented in this section.  319 

Facility-emission data and hourly CH4 emission from shaft are calculated by measuring raw CH4 320 

concentration and air flux through the shafts. The CH4 emission rates estimated using hourly facility-321 

emission data for 21 August 2017 and 21 August 2017 are 14.4 ±4.9 and 8.2 ±2.9 kt/year, respectively, 322 

as shown in Figure7.  323 
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 324 

Figure7. Quantified CH4 emission by different methods based on the collected data: (a) August 18, 2017 325 

and (b) August 21, 2017. The results of CH4 emission rate calculated by Mass balance and Inverse 326 

Gaussian refer to Andersen et al30. 327 

As shown in Figure7, Flights 4, 6, and 8 are measured on 18 August 2017, whereas Flights 12, 14, 15, 328 

17, and 18 are measured on 21 August 2017. Figure7(a) shows that the CH4-emission rates calculated by 329 

mass balance are smaller than the inventory estimation in all Flights. In Flight 8, q retrieved by mass 330 

balance is extremely lower than those quantified by other methods, whereas q retrieved by GA-IPPF 331 

model (12.4±0.6 kt/year) shows only a slight difference from the inventory. As shown in Figure 7(b), 332 

CH4 emissions retrieved by mass balance, inverse Gaussian, and GA-IPPF model are overestimated 333 

compared with the inventory in Flight 12. Mass balance and inverse Gaussian method also show 334 

obviously underestimated q in Flight 17. Estimations of retrieved CH4 emission in Flight 18 show 335 

consistency among methods of mass balance, GA-IPPF, and inverse Gaussian. The CH4-emission rate of 336 

coal generally has significant variability in each measurement, even on the same day. Mass balance is 337 

very sensitive to the size settings of grids, and different height and length settings can affect the 338 

concentration distribution across the cross-section. NLSF has a high-accuracy requirement for wind 339 

measurements, and errors on these measurements have a linear influence on the final emission estimation. 340 

Notably, the standard errors of q quantified by GA-IPPF always are the least among these methods, 341 

indicating the stability of our developed model.  342 

4.2 Application of Reanalysis meteorological database in GA-IPFF model 343 

Wind speed and wind direction acquired by the radiosonde or weather station are two main parameters 344 

in GA-IPPF. However, additional sensors are bound to increase the cost and difficulty during actual CH4-345 

emission measurements. To explore the possibility of weather reanalysis data instead of actual wind 346 

measurement by sensors, we use 10 m U and V wind components from the ERA5 meteorological 347 

reanalysis database (spatial resolution is 0.1°×0.1°, and temporal resolution is 1 h) developed by the 348 

European Centre for Medium-range Weather Forecast(Hersbach et al. 2020) to evaluate GA-IPPF model. 349 

However, the wind directions from ERA obviously differ from the actual measurements during the 350 

Flights. Hence, we determine the wind direction by using the CH4 samples, for example, the line between 351 

the shaft and the location of the maximum value of samples in the same heights is treated as the 352 

downwind direction, whose uncertainty is set as 50°. Wind speed from ERA is used for the CH4-emission 353 

calculation, uncertainty is supposed as 2 m/s. Even oral wind speed and direction obviously differ 354 

between the two sources; however, the GA-IPPF model adjusts them into reasonable ranges. The results 355 

of q during all Flights retrieved by two meteorological data sources have been evaluated, as shown in 356 
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Table 3.  357 

Table 3. Retrieved CH4 emission by ERA meteorological data  358 

Flights Actual ERA 

4 5.6±0.2 6.0±0.3 

6 6.1±0.3 6.4±0.5 

8 12.4±0.6 14.4±0.9 

12 12.7±0.5 13.2±0.7 

14 6.4±0.3 5.0±0.4 

15 8.4±0.5 7.8±0.5 

17 3.0±0.3 3.4±0.5 

18 6.5±0.4 7.0±0.5 

Table 3 shows that the values of quantified q between two meteorological sources are within 20% in 359 

the same Flight. The standard errors of q retrieved by the ERA5 database are larger than those from actual 360 

measurements, which depends on the accuracy of the reanalysis of wind speed and wind direction. Thus, 361 

it reduces the necessity of additional equipment except for the AirCore system and the complexity of this 362 

program. 363 

To explore the reason that the acceptable difference of calculated methane emission rate by the two 364 

sources of meteorological data. The concerned parameters in Flight 6 and Flight 15 calculated based on 365 

ERA5 meteorological data were presented in Table 4.  366 

Table 4. Results calculated ERA5 meteorological data  367 

Parameters Flight 6 Flight 15 

Oral wind speed (m/s) 2.6  4.1 

Oral wind direction (°) 300 120 

Emission intensity (kt/year) 6.4±0.5 7.8±0.6 

Wind speed (m/s) 2.99  4.52 

Wind direction (°) 349.4° 128.1 

a 0.28 0.18 

b 0.90 0.93 

c 0.01 0.13 

d 1.26 0.84 

B (mg/m3) 1.56 1.57 

Emission height (m) 60.2 36.0 

Reflection index 0.80 0.71 

The oral wind speed and wind direction in Table 4 are obviously different from those in Table 2. 368 

However, the calculated wind directions are nearly the same based on the two sources of meteorological 369 

data. Diffusion parameters and emission height in Table 8 also show less difference in two Tables (Table 370 

2 and Table 4). It is worth nothing that the wind speed and reflection index would be adjusted to reach 371 

the global solution by GA-IPPF model, which leads to little bias for the emission rate of CH4 in Table 3.   372 
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 373 

Figure8. Comparison between the measured samples and the simulated ones based on the ERA5 374 

meteorological data: (a). Flight 6 and (d) Flight 15. The difference of simulated CH4 concentration and 375 

actual measured ones:(b) Flight 6 and (e)Flight 15. Correlation Analysis: (c) Flight 6 and (f)Flight 15.  376 

The simulated concentration of CH4 in Flight 6 and Flight 15 calculated by parameters in Table 377 

4 are shown in Fig.8. In Fig.8(a), the consistency between actual samples and simulated ones is 378 

slight lower than that in Fig.6(a), Dc is ranging from -2.4 to 4.3 mg/m3, which is an acceptable bias 379 

as only 6 points exceed 2.3 mg/m3. R2 (0.98) of measured samples and simulated ones is almost 380 

same to that in Fig.6(c), while RMSE is nearly three times than that in Fig.6(c). In Fig.8(d), the 381 

tendency of simulated CH4 concentration is similar to Fig.6(d). Dc is ranging from -11.9 to 11.6 382 

mg/m3, which is nearly same as the result in Fig.6 (e), it worth nothing that Dc simulated by ERA 383 

meteorological data is slight larger on samples (NO.1 to 20) compared with that in Fig.6 (e). The R2 384 

and RMSE in Fig. 8(f) indicate that the retrieved results using ERA data are less accurate than that 385 

using actual measured meteorological data. In summary, though we set large uncertainties in ERA 386 

meteorological data, GA-IPPF can still guarantee reasonable and adequate accuracy for the retrieved 387 

emission rate and diffusion parameters. 388 

5.Conclusion 389 

CH4 emissions from coal are inconsistent even with short time differences. They usually show a large 390 

difference for different mining volumes and types. Enhancement in CH4 by the emission source is much 391 

larger than the background concentration, and the distribution of leak gas shows an obvious spatial 392 

difference. Hence, the retrieval time needs to be shortened for each emission measurement. AirCore has 393 

high portability and flexibility to measure CH4 concentration around emission sources, accompanied by 394 

the GA-IPPF model, which is acceptable to calculate CH4 emission from coals or other point sources. 395 

This program can help improve the accuracy of estimating CH4 emission from coals, especially 396 

developed countries that even lack no inventories of gas emission. It can also help governments evaluate 397 
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the fugitive CH4-emission rate during mining and formulate policies to promote the innovation of mining 398 

equipment and technology. The recommended program is appropriate for quantifying local sources based 399 

on the advantage of hardware and retrieval model. The UAV-based AirCore system helps rebuild the 400 

diffusion of CH4 with flexibility and high sampling rate. The GA model could restrict the calculated 401 

emission details within a reasonable range. Therefore, this program has great potential application in the 402 

point-source quantitation of other gases, such CO2, SO2, etc. 403 
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