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Abstract.

There are plenty of monitoring methods to quantify gases emission rate based on gases concentration
samples around the strong sources. However, there is a lack of quantitative models to evaluate methane
emission rate from coal mines with less priori information. In this study, we develop a genetic algorithm—
interior point penalty function (GA-IPPF) model to calculate the emission rate of large point sources of
CHa4 based on concentration sample. This model can provide optimized dispersion parameters and self-
calibration, thus lowering the requirements for auxiliary data accuracy. During Carbon Dioxide and
Methane Mission (CoMet) pre-campaign, we retrieve CH4 emission rates from a ventilation shaft in
Pnidwek coal (Silesia coal mining region mine, Poland) based on the data collected by an UAV-based
AirCore system and GA-IPPF model. And the concerned CHs-emission rates are variable even in a single
day, ranging from 621.3£19.8 to 1452.4+60.5 kg/hour on August 18, 2017 and from 348.4+12.1 to
1478.4+50.3 kg/hour on August 21, 2017. Results show that, CH4 concentrations data reconstructed by
the retrieved parameters are highly consistent to the measured ones. Meanwhile, we demonstrate the
application of GA-IPPF in three gases control release experiments, and the accuracies of retrieved gases
emission rates are better than 95.0 %. This study indicates that GA-IPPF model can quantify CHy
emission rate from strong point sources with high accuracy.

1.Introduction

The release of CHy into the atmosphere during coal mining is very concerning because it contributes to
increased atmospheric concentration of CHa, one of the most important greenhouse gases and is a waste
of resources (Cardoso-Saldana and Allen, 2020; Zhang et al., 2020). However, CHs emissions during
coal mining are not always stable owing to different collection mode, manufacturing processes, weather
fluctuations, as well as terrain effects (Nathan et al., 2015b). Bottom-up inventories can provide us with
CHj4 emission rates from strong point sources or gridded CH4 fluxes with different spatial resolutions,

which play a great role in statistical analysis. However, the low temporal resolution of inventory data
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does not allow us to obtain emission intensity from target sources instantaneously (Pan et al., 2021; Liu
et al., 2020). With the development of different atmospheric CH4 concentration measurement techniques,
like Fourier spectrometer, differential absorption Lidar, AirCore system, and in-situ sensors, CHy
emission rates from strong emission sources can be quickly quantified by top-down methods with high
accuracy.

Greenhouse gases observing satellite (GOSAT) and TROPOspheric Monitoring Instrument (TROPOMI)
are capable of obtaining the column concentration of CH4 (XCHa4, ppb) with spatial resolution of 10
kmx10 km and 5 kmx7.5 km respectively. The regional CH4 flux can be retrieved by assimilating the
measured XCHy into an atmospheric dispersion model (Tu et al., 2022; Feng et al., 2016). Hyperspectral
Precursor of the Application Mission (PRISMA) hyperspectral imaging satellite and GHGsat can detect
increased CH4 caused by strong emission sources with high spatial resolutions, and the comprehensive
CH4 emission can be quantified by integrated mass enhancement or cross-sectional flux method (Guanter
et al., 2021; Varon et al., 2020). It plays a huge role in the analyzing methane emission rate from strong
sources, but it has high requirements for satellites’ detection track, that is, to monitor the methane
distribution in the target area within coverage range (Schneising et al., 2020; Varon et al., 2019). Airborne
sensors can fly at low altitudes to improve the acquisition of CH4 concentration data and estimate CHy
emission from strong sources by the cross-sectional flux method or the Gaussian dispersion method
(Elder et al., 2020; Wolff et al., 2021a; Krautwurst et al., 2021). It enables repeated monitoring of
emission sources in a large area in a short period of time, however, airborne experiments’ cost is high
and the flight tracks may be restricted by the aviation control policies. Ground-based eddy covariance
sites can monitor agriculture and forestry ecology methane flux with high temporal resolution, such as
mangrove ecosystem(Jha et al., 2014), larch forest in eastern Siberia(Nakai et al., 2020). Its accuracy is
very high, but there is currently less monitoring of methane emissions from strong point sources using
eddy covariance. When ground-based concentration sensors fixed in appropriate position, they have the
advantage of continuously sampling gas concentration in downwind direction from the source. It will
provide important dispersion data for methane emission quantification model at the enterprise level, but
these sensors usually need to be carried on a vehicle platform to obtain methane concentration at different
locations (Zhou et al., 2021; Robertson et al., 2017; Caulton et al., 2017). Ground-based differential
absorption LIDAR can obtain the CH4 profile concentration in different altitudes, whose data is suitable
as the input of the emission-retrieval model (Shi et al., 2020a), but it has high requirements in terms of
hardware performance and system stability (Shi et al., 2020b). An unmanned aerial vehicle (UAV) can
reach any location rapidly around the CH4 sources, which can sample CH4 concentration with location
information (Nathan et al., 2015b; Iwaszenko et al., 2021), when equipped with concentration sensors. It
can acquire the distribution characteristics when sufficient concentration data are collected, which is
beneficial to retrieving emission rate. The cost of UAV-based AirCore system is low and the process of
its sample data is relatively simple, but the diffusion of methane emitted from strong sources may be
sampled incompletely.

In 2017, we developed an UAV-based active AirCore system, which could sample spatial atmospheric
COy, CHs, and CO with high accuracy (Andersen et al., 2018), aiming to retrieve greenhouse gases
emission from strong sources. The most urgent issue we need to address is developing an emission
quantification model to make use of the advantage of AirCore, namely to collect data at different
locations with a high degree of flexibility. This model should have less uncertainty in retrieved result and
conform to the actual emission dispersion characteristics of the studied emission sources. Mass-balance
method has been applied in determining CH4 emissions based on UAV-based samples (Allen et al., 2018).
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Emission rates calculated by this method contain large uncertainty because the main kernel is Kriging
interpolation (Nathan et al., 2015a), which can cause obvious uncertainty in representing the actual
feature of diffusion. The Gaussian dispersion model has also been applied in retrieving gas emission from
strong sources (Shah et al., 2019; Ma and Zhang, 2016), and it is also used to model CH4 diffusion in
this study. However, existing emission-retrieval methods based on Gaussian dispersion model need priori
information on key diffusion parameters (Nassar et al., 2021), which cannot be regarded as certain values
in different circumstances. Moreover, the measurements accuracy of auxiliary meteorological data also
has a great impact on CH,4 emission calculation.

To end this, we develop herein a model to overcome these shortcomings, named GA-IPPF, which
combines the advantages of genetic algorithms (GA) and interior point penalty functions (IPPF). GA can
model the fitness function as a process of biological evolution(Yuan and Qian, 2010), which can be used
to calculate the potential solutions in Gaussian dispersion model. IPPF can find the minimum of the
criteria in setting domain (Kuhlmann and Buskens, 2018), which can help us achieve global optimal
solutions for concerned parameters. Finally, GA-IPPF can calculate the diffusion parameters without
prior information and reduce the impact of meteorological data on the calculated CH4-emission rate.

We introduce the structure of our developed GA-IPPF in detail in section 2. In section 3, we evaluate
the performance of GA-IPPF in field campaign around a coal mine ventilation shaft by using AirCore
system in 8 Flights. Then, we discuss the comparisons between different quantification methods for CHy
emission, and evaluated the performance of GA-IPPF when the meteorological data are acquired from
the fifth generation of ECMWF atmospheric reanalysis of the global climate (ERAS) database. In section
4, we validate the accuracy of GA-IPPF in Observing System Simulation Experiments (OSSE), and
evaluate the uncertainty in retrieved emission rate of CHs. Furthermore, we test the performance of GA-
IPPF in quantifying emission rate based on three gases control release database.
2.Data and methods
2.1. Active AirCore System
The active AirCore system comprises a ~50 m coiled stainless-steel tube that works in conjunction with
a micropump and a small pinhole orifice (45 pum) to sample air along the trajectory of a drone. If the
pressure downstream of the orifice is more than half of that of the upstream (ambient) pressure, a critical
flow through the orifice is obtained. This means that the flow rate depends only on two variables, namely,
the air temperature and the upstream (ambient) pressure, both of which are monitored during the flight.
After obtaining air samples during field campaigns, CO,, CH4 and CO collected by AirCore system
would be analyzed by ground-based cavity ring down Spectrometer model G2401-m (Picarro). For CHa,
the accuracy of samples is +0.02 parts per million (ppm). The active AirCore system is controlled using
an Arduino-built data logger, which records the temperature inside the carbon fiber housing. It also
records the ambient temperature, ambient pressure, relative humidity, and pressure downstream of the
pinhole orifice to ensure that critical flow is achieved. The data logger also logs the GPS coordinates.
The weight of the active AirCore system is ~1 kg. The active AirCore system is attached to a DJI Inspire
Pro 1, which is capable of providing flights of ~12 min.

2.2. Meteorological measurements

A radiosonde (Sparv Embedded AB, Sweden, model SIH2-R) measures ambient temperature, ambient
pressure, ambient relative humidity, wind speed, and wind direction. The detection range of the
temperature sensor is —40 °C to +80 °C, with an accuracy of 0.3 °C. The pressure sensor has a detection
range of 300—1100 mbar, with an accuracy of 1 mbar. The relative humidity sensor measures in the range

of 0%—-100%, with an accuracy of approximately 2%. Owing to the good connection between the
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radiosonde and satellites, we assume that the uncertainty in the wind direction is low. The wind speed
can be estimated within a range of 0—150 m/s, with an uncertainty of approximately 5%. If the wind-
speed reading is less than 4 m/s, a minimum uncertainty of 0.2 m/s is given. The radiosonde is lifted by
a~30 L helium-filled balloon and is tethered onto a fishing line for easier retrieval after making a vertical
profile.

2.3. Measurement Site

The Pnidwek coal mine (49.975° N, 18.735° E) is a large mine in Pnidéwek, Silesian Voivodeship, Poland,
which is 190 km southwest of the capital Warsaw, see Fig.1. It has a large coal reserve estimated to be

about 101.3 million tons and coal production is about 5.16 million tons per year.
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Fig.1. Pnidowek coal mine; a. red mark represent the location of Pniowek coal mine in Poland; b. the
surrounding circumstance of Pniowek coal mine, blue mark represent Pnidéwek coal mine; c. detailed
layout of Pnidowek coal mine, deep mine with shaft.

2.4 Emission retrieve model

2.4.1. Gaussian dispersion model

The Gaussian dispersion model was used to analyze the CH4 fugitive from the coal mine in this work.
The location of emission source is regarded as the coordinate origin; X-axis is the direction of the
downwind, Y-axis is cross-wind direction, and Z-axis is the altitude above the ground. Based on the
established coordinate system, the Gaussian plume can be modeled by Equation 1:

__q -(y)* —(z-H)? ) —(z+H)?
Cxy.2)= 27uoc,o, exp( 20'5 ){exp( 20'12 ) +a-exp( 20'22 )}+ B 1)
o,=a-x" 3]
o, =C-x° @)

Where C is the concentration of CH4 (g/md), g (g/s) is the emission rate of CH4 from coal mine, u is the
mean wind speed around the stack (m/s), H is the effective stack height, oy is the dispersion coefficient
in the horizontal direction, o, is the dispersion coefficient in the vertical direction, u is the wind speed
(m/s), and B is the background concentration of CHs. Moreover, a is the reflection index of the
measurement phenomenon; and X, y, and z are the positions of the samples in the determined coordinate
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system.

2.4.2.GA-IPPF model.

First, the genetic algorithm (GA) kernel calculates Q and other dispersion parameters with a first guess
(Liu and Michalski, 2016). It guarantees that the unknown parameters are retrieved through the global
optimum solution, as shown in Fig.2. Then, the results calculated by GA serve as initial input parameters
and constraints in the [PPF model, and actual values of the concerned parameters are retrieved by IPPF.
Detailed information can be found in S1 (supplement).

Based on the Gaussian dispersion model, auxiliary meteorological data, location information, and CHy4
samples, we determine the unknown parameters in equations 1 to 3 by using GA, including q, H, a, b, c,
d, and a, in logical range constrained by lower boundary and upper boundary. First, the locations and
concentration of CH4 samples and wind serve as the initial input of equation 1. Then, the fitness value

evaluates the applicability of the calculated parameters in each step. We define the fitness value as

F=3(Ch-Cly @
Ci(x Y,2)= le Zﬂuqo_.p; exp((_(f_gz ){exp(_(i;z'; Y)ia -exp(%)h B ()

Where F is the fitness value; n is the total amount of concentration samples; Crln is the sample CH4
concentration; i is the number of samples; C!S is the simulated concentration of CH, in the location of

samples calculated by equation 5; and ¢, U', oy, 6z, H’, o/, and B’ are the calculated CH,-emission rate,

wind speed, diffusion parameters, emission height, reflect index, and background CH4 concentration,
respectively, acquired from the “Mutation” in Fig.2. When f is less than the threshold value (1x<10) of
the fitness value, the corresponding parameters are treated as the results of output.

IPPF rebuilds the inequality constraint conditions to the unconstrained solution process. It forces the
start point to satisfy the constraints, as shown in equation 6.

minF (x, 1, ) =f(x)+B(x) ©6)

Where f(x) is the unconstrained equation, and r is the coefficient of the constrained equation B(x).
When the solution parameters are out of the constraints, reB(x) is large, thereby ensuring that the final
solution is feasible under the inequality constraint conditions.

To obtain the inequality constraints, GA is repeated 10000 times, and the mean values of the calculated
wind speed, wind direction, H, a, b, ¢, d, and a are treated as the initial input of IPPF model. The domains
of H, a, b, ¢, d, and o are determined by two times the standard deviation of the corresponding results in
GA. The constraint values of wind speed (Ws) and direction (Wg) are set according to the precision of
actual measurements, m+c, whereas m is the measured value of wind speed or wind direction, and o is
their measured precision. Actual B values are considered to be within 1800-2500 ppb. Then, the Pearson
correlation coefficient (R) values of the actual samples and simulated values work as the criterion in the
solution process of equation 7.

e Zu(C-C)(en-C) )
Z(e-e )z (e -c.)
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The results are treated as the final retrieved values of the concerned parameters when the R reaches

the maximum.
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Fig.2. Flow chart of GA-IPPF model, including data inputs and process in each step.
Uncertainty Analyses
The GA-IPPF model will be calculated 1000 times repeatedly based on the collected samples of CH4
concentration, then, the uncertainty and final retrieved emission rate could be defined by
S N2
2.(@ -0
200 o={t——- ®)
N
- o1&
9 =d==2.0 (9
N =

o is the uncertainty of retrieved emission rate;q; is the 1 ¢4 retrieved emission rate, i=1,2,3...1000; a is

the mean value of the q;; N is 1000; q; is regarded as the value of retrieved emission rate. The values of
other parameters (a,b,c,d,H,Ws,Wd,B,a) calculated by GA-IPPF are also defined in same principle.
205  3.Results
3.1. Actual experiments
As part of the Carbon Dioxide and Methane Mission (CoMet) pre-campaign, 15 active AirCore Flights
successfully collected data around a ventilation shaft of Pnidéwek coal mine on August 18, 2017 and
August 21,2017. The sample data in Flight 6 (18/8/2017) and Flight 15 (21/8/2017) were used to evaluate
210 the GA-IPPF model detailly, as shown in Fig. 3. Retrieved results of data collected by other Flights are
presented in S2 (supplement).



a ppb 104 b ppb x10*
5 60 - !
100 .o -, 5
r . -.....-" . ‘u._,.\
E —— .,\' 2.5 540 | ? 4
S— GJ .
2 .
S 50 ~ U E N ,
:'3 15 =20+ L
< < — ,
IVentiIation ) 1 IVentiIation |
0L shaft T 0 shaft —
18.73¢  EL__ 49978 WM 5 49.976 g7 3178-738 1
18.736 T~ 49977 : 49.975 " 18.736
. - 49.976 49.974 LOI’]gItUde (o)

Longitude () Latitude ()~ -@titude ()
Fig. 3. Samples of CH4 concentration in two Flights: (a) Flight 6 and (b) Flight 15.

In Flight 6, the AirCore system collected CH4 from 0 m to 98 m around the ventilation shaft in a spiral

215 pattern, with a total of 376 samples, ranging from 1980.1 ppb to 49 113.9 ppb, and a measurement period

of 7 minutes. In Flight 15, the AirCore system collected CH4 with a total of 400 samples, ranging from

2131.7 ppb to 57 265.3 ppb, and a measurement period of 9 minutes. Both Flights show high spatial

variability in CHs4 exhaust from ventilation shaft. Subsequently, we inputted the wind speed, wind

direction, location information, and CH4 samples collected from Flights into the GA-IPPF model. To

220 express the final retrieved emission (Q) in g/s, the dry-air mixing ratio of CHs4 (ppb) is transformed into
mass concentration m (mg/m?) as follows:

m=C Moy 107

Air

(10)

Where Mcug is the molar mass of CHy4, and M, 1s the molar mass of air.

The retrieved results are shown in Table 1, the uncertainty is presented in Discussion in detail. Notably,
225 the emission height in Flight 15 was larger than that of Flight 6, which might be caused by the difference
in thermal energy and vertical wind speed of the two flights. The background concentrations of CH4 were
1.43 and 1.41 mg/m® in Flights 6 and 15, respectively, which show little difference. The dates of the two
Flights were very close, so the background concentration of CH4 in two days had nearly the same seasonal
characteristics. The exhaust gases of coal mine were emitted through the ventilation shaft with effective
230  emission heights of 58.4 and 35.5 m, respectively.

To evaluate the rationality of the retrieved results, these parameters are used to simulate CH4 diffusion

from the ventilation shaft according to equation 1. The comparison between simulated CH4 concentration
data and actual samples in the same locations is shown in Fig.4.

Table 1. Results calculated by GA-IPPF model

Parameters Flight 6 Flight 15
Initial wind speed (m/s) 2.8 3.2
Initial wind direction (°) 310 125.4
Emission intensity (kg/hour) 693.7+£20.2 958.9+42.4
Wind speed (m/s) 2.83+0.2 2.4+0.3
Wind direction (°) 349.6°+1.2 128.1+0.8
a 0.60+0.01 0.31+0.01
b 0.73+0.02 0.95+0.01
c 0.2+0.01 0.08+0.01
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d 0.68+0.01 0.94+0.02

B (mg/m?) 1.43£0.01 1.41£0.01
Emission height (m) 58.4+2.3 35.5+1.8
Reflection index 0.90+0.01 1.0£0.01

Then, we also calculate the difference between the actual measured samples and simulated ones as

D, =C, —

Cn

(11)

Where D. is the difference of CH4 concentration data between actual measured and simulated ones, Cs

is simulated CH4 concentration (mg/m?), and Cr, is measured CHy4 concentration (mg/m?).
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Fig. 4. Comparison between the measured samples and the simulated ones based on the parameters in
Table 1: (a). Flight 6 and (d) Flight 15. The difference of simulated CH4 concentration data and actual
measured ones: (b) Flight 6 and (e) Flight 15. Correlation Analysis: (c) Flight 6 and (f) Flight 15.

Fig 4 shows that the simulated CH4 concentration is high consist with actual sampled ones in two Flights.
In Flight 6, the largest value of sampled CH4 concentration is 23.92 mg/m?, while the corresponding
simulated one is 22.45 mg/m?, relative error is only 0.2 %. It is worth noting that it exists three peaks in
Flight 15, mainly occur at the altitudes of about 16 m, 25 m and 40 m, see S3 in supplement. Fig.4 (d)
shows the simulated CH4 concentration data around the 1" and 3" peak are not better than that around
the 2" peak. Because GA-IPPF method can assign more weights to the samples with higher concentration
(NO.120 to 180 in Flight 15) to get the global optimal solution of the unknown parameters, which leads

to lower fitness to simulated CH4 concentration around the 1" and 3" peaks. Values of Dc are ranging
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from -2.50 to 2.35 mg/m? in Flight 6, which are lower than that in Flight 15. R? between simulated CHy4
concentration and actual sampled ones are larger than 0.8 in two Flights, root mean square errors (RMSEs)
are 0.79 mg/m’and 4.52 mg/m? respectively. The simulated CH4 concentration in the other Flights are
seen in S2. In summary, the tendency of the simulated CH4 concentration data remains consistent with
that of the actual samples in Flight.

3.2 Comparison with other methods

To investigate the difference between our proposed emission model and the others, three methods were
applied to estimate CH4 emission in all Flights, including mass-balance approach, nonlinear least square
fit (NLSF), and facility emission.

Mass-balance approach quantifies CHs emission by calculating the cross-sectional flux perpendicular
to the wind direction (Krings et al., 2018). First, a two-dimensional plane is selected according to the
amount of CH4 samples. Second, the two-dimensional plane is divided into a grid of equal spatial
resolution. Third, CH4 samples are regarded as original points to interpolate full grids defined by the
Kriging interpolation scheme (Mays et al., 2009). Finally, the emission rate of the CHs source is
calculated by

Fena = I I vsin(a)-(C,, ,,-Cy, )dxdz (12)

Where v is the wind speed, a is the angle between wind direction and the two-dimensional plane, C )
is the density of CHs4 in each grid, and Cyg is the background of CHy in each grid. The uncertainty analyses
of this method are detailed in Nathan et al. (Nathan et al., 2015a).

NLSF and the combination of NLSF with Gaussian diffusion model are also extensively used for point-
source emission retrieval (Zheng et al., 2020; Wolff et al., 2021b). In this study, NLSF is used to estimate
Q in each Flight by fitting the unknown parameters in equation 1.

Andersen et al. also developed an inverse Gaussian approach to quantify CH4 emissions from coal
mine ventilation shaft based on the same Flights (Andersen et al., 2021). Firstly, the Gaussian dispersion

is built as

C(x.y.2) = q exp( () ){exp( (20

Z+ H
27uo, o, cos(0) ; . ) rexp(— ( . )} (13)
Where 0 is the angle between the wind direction and the perpendicular line of the flight trajectory. This
model does not include the item of background of CHs4. Furthermore, oy and o are treated as certain
values in equation 11.
Facility-emission data and hourly CH. emission from shaft are calculated by measuring raw CHa

concentration and air flux through the shafts, following the equation below

— P 'Vﬂow
anventory - ? P (14)

Where Vo is the volumetric flow rate of CHs in m? 57!, given by the air flow rate (scaled by a
constant factor of 0.95 to account for the ~5% additional air flow not coming from the ventilation shaft)
multiplied by the CH4 concentration, and P, R, T, p are the atmospheric pressure in Pa, the universal gas
constant in J mol! K-!, the ambient temperature in K, and the molar density of CH4 in g mol”' (16.043 g
mol'), respectively.

CH4 emission rates from ventilation shaft estimated by hourly facility-emission data for
18 August 2017 and 21 August 2017 are 1655.3 +479.45 and 913.2 +285.4 kg/hour, respectively, as

shown in Fig. 5.
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Fig. 5. Quantified CH4 emission by different methods based on the collected data: (a) August 18, 2017
and (b) August 21, 2017. CH4 emission rates from ventilation shaft calculated by Mass balance and
Inverse Gaussian refer to Andersen et al.

As shown in Fig. 5, Flights 4, 6, and 8 were measured on 18 August 2017, whereas Flights 12, 14, 15,
17, and 18 were measured on 21 August 2017. Fig.5 (a) shows that the CHs-emission rates calculated by
mass balance are smaller than the inventory estimation in all Flights. In Flight 8, q retrieved by mass
balance is extremely lower than those quantified by other methods, whereas q retrieved by GA-IPPF
model (1478.4+50.3 kg/hour) shows only a slight difference from the inventory. As shown in Fig.5 (b),
CH4 emissions retrieved by mass balance, inverse Gaussian, and GA-IPPF model are overestimated
compared with the inventory in Flight 12. Mass balance and inverse Gaussian method also show
obviously underestimated q in Flight 17. Estimations of retrieved CH4 emission in Flight 18 show
consistency among methods of mass balance, GA-IPPF, and inverse Gaussian. The CH4 emission rate of
coal generally has significant variability in each measurement, even on the same day. Mass balance is
very sensitive to the size settings of grids, and both height and length settings can affect the concentration
distribution across the cross-section. NLSF has a high-accuracy requirement for wind measurements, and
errors on these measurements have a linear influence on the final emission estimation. Notably, the
standard errors of q quantified by GA-IPPF are always the least among these methods, indicating the
stability of the model we developed. And we also simulated 2-D CH4 plume from the ventilation shaft in
Flight 6 and Flight 15 based on different methods, seen S4.

3.3 Application of Reanalysis meteorological database in GA-IPPF model

Wind speed and wind direction acquired by the radiosonde or weather station are two main parameters
in GA-IPPF. However, additional sensors are bound to increase the cost and difficulty during actual CHs-
emission measurements. To explore the possibility of weather reanalysis data instead of actual wind
measurement by sensors, we use 10 m U and V wind components from the ERA5 meteorological
reanalysis database (spatial resolution is 0.1°%0.1°, and temporal resolution is 1 h) developed by the
European Centre for Medium-range Weather Forecast (Hersbach et al., 2020) to evaluate GA-IPPF model.
However, the wind directions from ERA obviously differed from the actual measurements during the
Flights. Hence, we determine the wind direction by using the CH4 samples, for example, the line between
the shaft and the location of the maximum value of samples in the same heights was treated as the
downwind direction, whose uncertainty was set as 50°. Wind speed from ERA is used for the CHs-
emission calculation, and the uncertainty was supposed as 2 m/s. Even if the initial wind speed and wind
direction obviously differed between the two sources, the GA-IPPF model adjusted them into reasonable
ranges. The results of q retrieved by two meteorological data sources during all Flights were evaluated,

as shown in Table 2.
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Table 2. CH4 emission retrieved by two meteorological data sources

Flights Measured (kg/hour) ERAS5 (kg/hour)
4 621.3£19.8 672.8+£25.2
6 693.7+26.2 726.6+£37.3
8 1452.4+60.5 1597.4+82.7
12 1478.4+50.3 1526.8+64.9
14 712.6+£21.2 597.8+£32.7
15 922.9+27.4 874.7+£37.4
17 348.4+12.1 390.1+£14.2
18 722.0+£24.8 784.1+£27.4

Table 2 shows that the values of quantified q between the two meteorological sources are within 20%
in the same Flight. The standard errors of q retrieved by the ERA5 database are larger than those from
actual measurements, wind data acquired from ERAS5 database perhaps be treated as alternative input
parameters in GA-IPPF model if no meteorological instruments are equipped in field experiments.

We also explore the reason that little difference of the calculated emission rates by the two different

sources of meteorological data. The concerned parameters in Flight 6 and Flight 15 calculated based on

ERAS meteorological data are presented in Table 3.
Table 3. Parameters retrieved by GA-IPPF through ERAS5 database

Parameters Flight 6 Flight 15
Initial wind speed (m/s) 2.5 2.4
Initial wind direction (°) 300 120

Emission intensity (kt’hour) 726.6+37.3 898.7+£52.1
Wind speed (m/s) 2.5£0.4 2.2+0.3
Wind direction (°) 349.4°£2.1 128.1£0.4

a 0.60+0.02 0.30+0.01

b 0.73+0.03 0.97+0.02

c 0.40+0.02 0.07+0.02

d 0.57+0.02 0.96+0.01

B (mg/m?) 1.43+0.01 1.41+0.01
Emission height (m) 59.243.1 35.142.7
Reflection index 0.94+0.02 0.90+0.03

The initial wind speed and wind direction in Table 3 are obviously different from those in Table 1.
However, the retrieved wind directions are nearly the same based on the two sources of meteorological
data. Retrieved diffusion parameters and emission heights are also show less difference in two Tables
(Table 1 and Table 3). It is worth noting that the wind speed and reflection index can be adjusted to reach

the global solution by GA-IPPF model, which leads to little bias in retrieving emission rate.

1



340

345

350

355

a + Measured 2 + Measured
A 25 +  Simulated +  Simulated
E £« iy
220 2 |
c S
_§ 154 =
S 10 ¥ 2
g 8
(5] =
§ 51 ¢ \ 8"
o 0
0 T T T T T T T 1 U T T T T T 1 T T T T T T T T T T T T
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160 180 200
Samples (a.u.) Samples (a.u.)
16 .
o 3 . — ~ Difference
EE‘,, , b X " Difference f‘:g 12] e 3
E"] ] £ 8 -
c 14 ' = 4] I il
£ ] s ]
o - ) -
=0 n i —~= @ 0 ~ T
g f' e P :__/_ = 4 _'\ I \/ 4l :
8 -1 # 8 \_/‘ iy <[l
o s i} S 8- i
O, . S0 i
_3 T T T T T T T T T T T T T M T _16 T T T T T T T T T
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160 180
Samples (a.u.) Samples (a.u.)
25 4 C R?=0.98 s Concentration 50 4 R2=0.80 Concentration
RMSE=0.92 mg/m Fitting Line ] f RMSE=5.04 mg/m® Fitting Line
—~20 = 404
Ll
£ E
2 g
E154 E 304
o
2 £
2104 @ 20 -
g g
= 5 10 4
0 L} T T L} 1 G T T T T T T T T T T T T T 1
0 5 10 15 20 25 0 5 10 15 20 25 30 35 40 45

Simulated (mg/m?3) Simulated (mg/m?®)

Fig. 6. Comparison between the measured samples and the simulated ones based on the ERAS
meteorological data: (a). Flight 6 and (d) Flight 15. The difference of simulated CH4 concentration data
and actual measured ones: (b) Flight 6 and (e) Flight 15. Correlation Analysis: (c) Flight 6 and (f) Flight
15.

The tendency of simulated CH4 concentration data in the two Flights are similar to that in Fig.4.
What’s more, both R? and RMSE between simulated CH4 concentration data and actual measured ones
in both Flights show less difference with that in Fig.4. Values of D, shown in Fig.6 (b) are ranging from
-2.25 to 2.62 mg/m®, which is nearly the same as the result in Fig.4 (b). Values of D, shown in Fig.6 (¢)
are ranging from -11.04 to 15.21 mg/m?, while -11.3 to 12.85 mg/m? in Fig.4 (¢). Because the difference
between actual measured wind speed and ERA 5 speed is 0.8 m/s in Flight 15, which is larger than that
in Flight 6 (0.3 m/s). In summary, GA-IPPF can still simulated reasonable diffusion of CH4 through
ERAS wind data.
4.Discussion
4.1. Validation of performance of GA-IPPF model through OSSEs
Firstly, the dispersion of CH4 emission from a strong point source was simulated by equation 1 using the
dispersion parameters shown in Table 4. To make the simulations close to the actual measurement
scenarios, random errors were added to the CH4 concentration samples (0.5 %), wind speed (+ 0.3 m/s),
and wind direction (+ 20°). Then, the simulated flight track of UAV was conducted in crossing section
(300 m to strong source), in Fig 7. The spatial resolution of the supposed samples is set as 10 m, and 99

samples are selected from the simulated dispersion to represent the data acquired by the UAV-based
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AirCore. Then, the concerned parameters are retrieved by the GA-IPPF method based on the above
assumptions. Simulations are repeated 10 000 times, and the average values of the corresponding

parameters were treated as the “Retrieved” results in Table 4.
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Fig. 7. Rectangle represents crossing section perpendicular to wind direction, covering a distance of
300 m near the point source; Red line represents simulated flight track of UAV-based AirCore system,;
colored points represent the CH4 concentration samples in OSSEs, totally 99.

Table 4. The parameters setting in dispersion simulation and the retrieved results by GA-IPPF

Lower Upper .
Parameters Actual Retrieved
boundary boundary
Emission intensity (g/s) 0 100000 180 180.2+0.02
Wind speed (m/s) 0 100000 3 3+0.01

Wind direction (°) 70 110 90 90£0.10
a 0 1000 0.6 0.6+0.02

B 0 1000 0.7 0.7+0.02

c 0 1000 0.2 0.2+0.01

d 0 1000 0.6 0.6+0.01

B (ppb) 1700 2500 1900 1900+2.7
Emission height (m) 0 150 50 49.8+1.1
a 0 1 0.9 0.91+0.01

“Actual” means the set values of parameters, and “Retrieved” means the average values of parameters
retrieved by GA-IPPF model through 10 000 times of simulation.

As shown in Table 1, q retrieved by GA-IPPF has only 0.11% bias compared with the set values.
Emission height only has 0.2 m bias in terms of the set one, and the uncertainty is only 0.4% to 50 m.
Other retrieved parameters also show high consistency with the original settings.

4.2. Stability analyses

The necessary input parameters in GA-IPPF contain meteorological data (wind speed and wind direction),
accuracy of CH4 samples, and amount of CH4 samples. In equation 1, wind speed has a nearly linear
relationship with the emission estimation. Wind speed is also an important factor that determines
atmospheric stability according to the Pasquill-Gifford method (Venkatram, 1996) as it affects the
diffusion parameters of oy and o,. The coordinate is built according to the wind direction, which is defined

as the plane coordinates of CH4 samples. According to equations 2 to 3, errors in wind-direction
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measurement lead to wrong o, and 6, on each position of samples. CH4 samples are the most important
factors to determine the Gaussian diffusion. The accuracy of samples influences the judgment of “fitness”
in the GA process. More samples collected in different positions help rebuild the spatial-distribution
characteristics of the plume, because this provides larger possibility for fitting process in IPPF and helps
determine the optimum solution. To evaluate the influence of errors in the measurements of necessary
parameters on the final retrieved results, the same settings in Table 4 are used as actual results. The
performance of the GA-IPPF model with additional random errors in each parameter was simulated

10 000 times, as shown in Fig. 8.
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Fig. 8. Influence of accuracy of parameters on retrieved emission results. The baseline represents the
emission rate setting of CHy, 300 g/s: (a) wind speed, with additional error ranging within 0.2-2 m/s and
an interval of 0.1 m/s, (b) wind direction, with additional error ranging within 5°-50° and an interval of
5 °, (c) accuracy of CH4 samples, with additional error ranging within 0.5%-5.0% and an interval of
0.5%, and (d) amount of CH4 samples, randomly selected as 20-90 among the defined 99 samples.

In Fig.8 (a), the mean value of q retrieved by GA-IPPF is nearly the same as the baseline if the error
in wind speed is less than 0.4 m/s. It occurs to maximum retrieved emission bias (10.2 g/s) to the baseline
when 2 m/s error in wind speed. Fluctuation of q occurs obviously if the error in wind speed exceeds 0.4
m/s. The standard errors of q are positively correlated with the values of errors in wind speed, indicating
that the accuracy of wind-speed measurements largely influence the stability of the GA-IPPF model. This
model has a self-adjustment function for wind speed; for example, when the initial wind speed is 3 m/s,
the maximum standard error of q is only 6.6 g/s (3.7% to the 180.0 g/s) when the additional error of wind
is 2.0 m/s (66.7% to 3.0 m/s).

The retrieved q shows less sensitivity to errors in wind direction (see Fig.8 (b)). When errors in wind
direction are 5° to 40°, all biases of q are within 0.7 g/s and the standard errors are around 1.6 g/s. Wind
direction determines the spatial location of the sampling point, and wrong location information leads to
distinct errors in emission estimation. GA-IPPF shows highly accurate ability to obtain the global
optimum solution in wind direction.

Sampling accuracy has small impact on the retrieved q within different settings in CH4 samples’

accuracy, see Fig.8 (¢). Standard deviation is positively correlated with errors in CH4 measurements. The
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standard deviation is 2.6 g/s when the measurement error reaches 5.0 %. Notably, the uncertainty of CHy4
samples measured by UAV-based AirCore system is far less than 5.0 %. The UAV-based AirCore system
can acquire more than 99 CHy4 samples in actual feasible measurements, therefore, it is believed that
accuracy of CH4 samples (>95.0 %) collected by the AirCore system bring less influence in theory.

The number of measurement points obviously influences the final accuracy of q by the GA-IPPF model
(see Fig.8 (d)). It has a bias of 9.7 g/s to 180.0 g/s when n is 20. The accuracy of q and the standard error
are negatively correlated with n which provides the number of criterion for the fitting process in the
retrieval model. Hence, n directly influences the retrieved results. The AirCore system has the advantage
of continuous sampling during flight, which integrates the atmospheric signals along the flight path and
helps reduce the uncertainty in the retrieved q. Besides, the smoothing of the atmospheric signal also
reduces the spatial resolution of the measurements, which needs to be considered during the optimization.

IPPF can suitably solve the problem of inequality constraints, and the calculated solution guarantees
the calculated parameters to be within the feasible region. In this section, the performance of the GA-
IPPF model and the influence of the four key input parameters are discussed.

Suggestions for quantifying emission rate through UAV-based AirCore system

1. Meteorological instruments should be equipped when collecting concentration samples to acquire wind
speed, wind direction, humidity and atmosphere pressure.

2. The wind speed should be greater than 2.0 m/s.

3. During actual experiments, after the stable wind speed and wind direction are measured, the UAV-
based AirCore system will start its concentration collection, and the system should try to fly along the
cross section perpendicular to the wind direction.

These criterions are also determined the analyzed 8 Flights from the total 15 Flights.

Application of GA-IPPF
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Fig.9. Application of GA-IPPF in quantifying emission source of gases through different sample systems,

including UAV-based AirCore system, ground-based In-situ network and mobile collection system.
GA-IPPF, works as an emission gas quantification method, which can achieve rapid real-time

monitoring of methane leakage caused by landfills, chemical plants and other strong sources. In theory,

the recommended model is applicable not only to UAV-based AirCore system, but also to other sample

systems which can measure gases concentration and location information. Each country's environmental
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monitoring department may have built gases sample equipment based on different platforms, including
440 UAV, vehicles, and ground-based in-situ stations. These systems may not only monitor greenhouse gases
like CO; and CHg, as well as polluting and harmful gases. Therefore, we demonstrate the application of
GA-IPPF in quantifying gases emission based on different gases concentration collected systems in
actual experiments.
Emission Estimates in control release experiment
445 To evaluate the performance of GA-IPPF in control release experiments, we quantify the gases
emission rates in release experiment through different gases sample systems, including UAV-based
AirCore system, mobile sampling system and ground-based in-situ network. Detailed introduction of the
concerned release experiment are as follows:
Agrar Hauser control release
450 This CH4 release experiment was conducted on Agrar Hauser field near Diibendorf,
Switzerland(Morales et al., 2022). The controlled CH4 was release from an artificial source, 50 L high-
pressure cylinder with a height of 1.5 m. Meteorological information were acquired by 3D anemometers
around the emission source. UAV-based sample systems used in these release experiments contained two
sensors, Quantum cascade laser spectrometer (QCLAS) and active AirCore. It carried series active
455 measurements from 23 February to 14 March 2020.There was no other CHy4 source around Agrar Hauser
field and the topography was flat. In this section, active AirCore CH4 samples on 12 march 2020 (312_01)
were chosen to use GA-IPPF to quantify methane release rate.
EPA methane control release
Environmental Protection Agency (EPA),USA developed OTM 33A method to quantify oil and gas
460 leakage based on mobile measurement platforms(Brantley et al., 2014), which consisted CH4 in-situ
sensor (G1301-fc cavity ring-down spectrometer (Picarro)), a collocated compact weather station and a
Hemisphere Crescent R100 Series GPS system. The accuracy of in-situ sample was within 5%, and
in-situ sensor was implemented at height of 2.7 m based on vehicle. Weather station provided
atmospheric temperature, pressure and humidity, as well as 3-D wind direction and wind speed. A 99.9%
465 CHs4 high pressure cylinders was used as the gas supply to simulate the CHs leakage source. EPA
published total 20 experiments of control releases to evaluate OTM 33 A method.
Prairie Grass emission experiment
Prairie Grass emission experiment was mainly conducted to evaluate the diffusion of SO, from point
source under different meteorological circumstances (Barad et al, 1958). The height of emission source
470 was 0.46 m, and all in-situ sensors were set at heights of 1.5 m. SO, concentration was sampled by the
in-situ network at the radius of 50 m, 100 m, 200 m, 400 m and 800 m around the source. Samples in
R57 release (10-minute sampling periods), totally 94, were selected to quantified SO, emission rate from
release instrument. The reported emission rate of SO, in R57 was 105.1 g/s, and the samples collected at
the radius of 800 m were neglected in this discussion because of their very small quantity. The reported
475  wind speed was 4.85+1 m/s, wind direction was 184=+10°.
Table 4 Performance of GA-IPPF model in different control release experiments

Database Number Gas Release rates (g/s) Retrieved by GA-IPPF (g/s)
Agrar Hauser 312 01 CH4 0.31£0.03 0.3%0.03
EPA STR_6061411_01 CH4 0.60 0.57£0.04
Prairie Grass 57 SO, 101.5 104.7£3.7

Table 4 shows the emission rates and uncertainties through GA-IPPF in control release experiments,

and the reported emission rates. The average difference between retrieved emission rates and reported
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ones is 3.8 %, which indicates the high accuracy of GA-IPPF in quantification estimation.
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Fig.10. The simulated gases diffusions based on retrieved parameters in control release experiments; al
and a2 are comparisons between simulated diffusion and actual samples in Agrar Hauser; b1 and b2 are
comparisons between simulated diffusion and actual samples in EPA control release; cl and c2 are
comparisons between simulated diffusion and actual samples in Prairie Grass experiment.

As shown in Fig.10, the gases diffusions simulated by GA-IPPF in the three control release experiments
conform to logic. Simulated gases concentrations are in good agreement with actual samples (see
Fig.10.al, Fig.10.b1 and Fig.10.c1,), and each peak of the samples in control release experiments can be
reconstructed. The correlations between simulated gases concentrations and actual samples are larger
than 0.65, and the RMSE are within 2.7% (relative to the mean value of the selected samples’
concentration).

In general, reconstructions of gases concentration based on both mobile-platform and UAV are worse
than that based on in-situ network. Collected data by in-situ network is usually the mean value of a certain
time, like 10 min in Prairie Grass emission experiment, which provides stabile inputs data for GA-IPPF,

especially concentration samples. While the concentrations sampled by mobile-platform and UAV-based
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AirCore experiments are instantaneous, which may be inaccurate and exist fluctuations in collections.
The advantages of vehicle-based and UAV-based sample systems are flexibility, that is, they can freely
acquire the distribution of gases around the target monitoring sources. In-situ network implement is
complicated with a high cost, and the wind direction should be considered during deployment. But its
high stability and accuracy can help us to quantify emission source. Therefore, environmental protection
departments can choose detection systems according to actual emission monitoring needs.
5.Conclusion

In this study, we present a quantified model for strong point emission source based on concentration
sampling data, named GA-IPPF. During CoMet campaign in 2017, we successfully monitor methane
emissions from a ventilation shaft in Pniéwek coal mine through the concentration data measured by
UAV-based AirCore system. Results show that CHs emissions rate from ventilation shaft are not
consistent even in a short time.

GA-IPPF can reconstruct the concentration dispersion around the point emission source, and the
largest R? between the measured CH4 concentration and the reconstructed concentration in the selected
Flights around Pniéwek coal mine can reach 0.99.

In Observing System Simulation Experiments (OSSE), we discussed the sensitivity analysis of
different parameters setting on final retrieved emission rate by GA-IPPF. We demonstrate that GA-IPPF
has self-adjust function to achieve an optimal solution on emission rate, which will reduce the
requirements for hardware performance in actual emission quantification experiment.

We also tested the performance of GA-IPPF in three control release experiments with different
sampling devices, including vehicle-mounted in-situ system, UAV-based AirCore system and ground-
based in-situ network observation, and the biases between retrieved emission rates and reported ones
within 5.0 %.

In future, GA-IPPF has great potential in the point-source quantitation based on mobile concentration
sampling system, which can help to renew and enrich the gases emission inventories on strong point
sources.
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