1	Fire-climate interactions through aerosol radiative effect in a global chemistry-climate-	Formatted: Centered
2	vegetation model	
3	Chenguang Tian ^{1, 2} , Xu Yue ¹ , Jun Zhu ¹ , Hong Liao ¹ , Yang Yang ¹ , Yadong Lei ³ , Xinyi Zhou ¹ , Hao	
4	Zhou ² , Yimain Ma ² , Yang Cao ²	
5	¹ Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control,	
6	Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School	
7	of Environmental Science and Engineering, Nanjing University of Information Science &	
8	Technology (NUIST), Nanjing, 210044, China	
9	2 Climate Change Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences,	
10	Beijing, 100029, China	
11	³ State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA,	
12	Chinese Academy of Meteorological Sciences, Beijing, 100081, China	
13		
14	Corresponding author: Xu Yue (Email: yuexu@nuist.edu.cn)	

16 Abstract

17 Fire emissions influence radiation, climate, and ecosystems through aerosol radiative effects. 18 Meanwhile, these instantaneous environmental perturbations can feed back to affect fire emissions. 19 However, the magnitude of such fire elimate interactions feedback remains unclear on the global scale. Here, we quantify the impacts of fire aerosols on climate through direct, indirect, and albedo 20 21 effects based on the two-way simulations using a well-established chemistry-climate-vegetation 22 model. Globally, fire emissions cause a reduction of $-0.57 \text{ W}565 \pm 0.166 \text{ W} \text{ m}^{-2}$ in net radiation at 23 the top of the atmosphere with dominant contributions by aerosol indirect effect (AIE). 24 Consequently, terrestrial surface air temperature decreases by 0.06061 ± 0.165 °C with coolings 25 of >0.25°C over eastern Amazon, western U.S., and boreal Asia. Both aerosol direct effect (ADE) and AIE contribute to such cooling while the aerosol albedo effect (AAE) exerts an offset warming, 26 27 especially at high latitudes. Land precipitation decreases by 0.018180 ± 0.966 mm month⁻¹ (1.78 ± 28 9.56%) mainly due to the inhibition in central Africa by AIE. Such rainfall deficit further reduces 29 regional leaf area index (LAI) and lightning ignitions, leading to changes in fire emissions. Globally, 30 fire emissions reduce by 2%-3% because of the fire-induced changesfast responses in humidity, 31 lightning, and LAI. The fire-climate interactions aerosol radiative effects may cause larger 32 perturbations to climate systems with likely more fires under global warming. 33 34 Short summary

We quantify the impacts of fire aerosols on climate through direct, indirect, and albedo effects. We find global fire aerosols cause *a*-cooling of surface air temperature and-*an* inhibition of precipitation. These climatic perturbations further reduce regional leaf area index and lightning ignitions, both of which are not beneficial for fire emissions. By considering the feedback of fire aerosols on humidity, lightning, and <u>LAHeaf area index</u>, we predict a slight reduction in fire emissions.

42 Keywords: Fire emissions; fire climate interaction; radiative effect; climate feedback; ModelE2-

Formatted: Font: Not Bold Formatted: Indent: First line: 0.74 cm, No widow/orphan control

43 YIBs model

45 1 Introduction

74

46 Fire occurs all year round in both hemispheres, burning about 1% of the Earth's surface and 47 emitting roughly 2-3 Pg (=1015 g) carbon into atmosphere every year (Van Der Werf et al., 2017).(van der Werf et al., 2017). Fire activities are strongly influenced by fuel availability, 48 ignition/suppression, and climate conditions (Flannigan et al., 2009)(Flannigan et al., 2009). The 49 50 fuel type, continuity, and amount affect fire occurrence and spread probability (Flannigan et al., 51 2013)(Flannigan et al., 2013). Lightning discharge is the most important natural source of fire 52 ignition (Macias Fauria and Johnson, 2006). Human activities affect fire patterns by adding ignition 53 sources or by suppressing processes (Andela et al., 2017)(Andela et al., 2017). Compared to the 54 above factors, climate shows a more dominant role in modulating fire activities through the changes 55 of fuel moisture and spread conditions (Flannigan and Harrington, 1988). 56 Fire exerts prominent impacts on Earth systems and human society through various processes. 57 Biomass burning emits a large amount of trace gases and aerosol particles into the troposphere, 58 affecting air quality at the local and downwind regions (Yue and Unger, 2018). In situ observations

59 showed that about one-third of the background particles in the free troposphere of North America 60 were originated from biomass burning (Hudson et al., 2004)(Hudson et al., 2004). Extremely intense 61 fires can even inject aerosols into stratosphere, where the particles were transported globally (Yu et 62 al., 2019)(Yu et al., 2019). Fire-induced air pollution can reduce global terrestrial productivity of 63 unburned forests (Yue and Unger, 2018), leading to weakened carbon uptake by ecosystems. The 64 global transport of fire air pollution also causes large threats to public health by increasing the risks 65 of diseases and mortality (Liu et al., 2015) (Liu et al., 2015). It is estimated that fire-induced particulate matter causes more than 33,000 deaths globally each year (Chen et al., 2021). 66 67 Aerosols from fires can cause substantial feedbacks to impact on climate via radiative effect

68 owing to their different optical and chemical properties (Xu et al., 2021). (Xu et al., 2021). Aerosol

69 radiative effect is the instantaneous radiative impact on energy balance of climate system,

70 representing the fast adjustment or response before changing global mean surface air temperature

71 (TAS). First, aerosols scatter and/or absorb solar radiation through aerosol direct effect (ADE),

12 leading to altered energy budget and climate variables (Carslaw et al., 2010)(Carslaw et al., 2010).

73 There is no agreement on the sign of ADE of biomass burning aerosols at the global scale. Some

Formatted: Font: Italic Formatted: Font: Italic Formatted: Font: Italic

Formatted: Font: Italic

studies (Heald *et al.*, 2014; Veira *et al.*, 2015; Zou *et al.*, 2020) predicted positive forcing while

75	others (Ward et al., 2012; Jiang et al., 2016; Grandey et al., 2016) yielded negative forcing (-0.2 to	
76	6 0.2 W m ⁻²), mainly because of the large uncertainties in the absorption of fire-emitted black carbon	
77	(BC) (Carslaw et al., 2010; Ipec, 2014).(Carslaw et al., 2010; IPCC, 2014). Second, aerosols can	
78	serve as cloud condensation nuclei (CCN) or ice nuclei to affect the microphysical properties of	
79	O cloud. Such aerosol indirect effect (AIE) further influences climate system through the changes of	
80	cloud albedo and lifetime (Twomey, 1974; Albrecht, 1989). Globally, fire aerosols account for ~30%	
81	of the total CCN (Andreae et al., 2004)(Andreae et al., 2004) and the overall negative AIE of fire	
82	aerosol is stronger than the ADE in magnitude (Liu <i>et al.</i> , 2014; Ward <i>et al.</i> , 2012; Jiang <i>et al.</i> , 2016).	
83	Third, deposition of fire-emitted BC aerosols reduces surface albedo and promotes ice/snow melting,	
84	which is called aerosol-albedo effect (AAE) (Hansen and Nazarenko, 2004; Warren and Wiscombe,	
85	1980). Compared with other two effects, the AAE shows more regional characteristics (Kang et al.,	
86	5 2020)(Kang et al., 2020). These fire-induced disturbance in radiative fluxes further alter	
87	7 meteorological and hydrologic variables, which in turn affect fire activities through the changes in	
88	fuel moisture and weather conditions.	
89	The two-way interactions between fire and climateImpact of fire-induced instantaneous	
90	climatic perturbations to fire activities on the global scale have not been fully assessed. While	
91	observations revealed fire-induced perturbations to regional climate (Bali et al., 2017; Zhuravleva	<
92	2 et al., 2017), its feedback to fire activities are difficult to be isolated from the influences of	
93	background climate. Models provide unique tools to explore fire-climate interactions <u>resulting from</u>	
94	aerosol radiative effect especially at the regional to global scales. However, fire-elimate	
95	5 interactionsthey are not routinely included in most of Earth system models. The IPCC sixth	
96	assessment report (AR6) did not provide a quantitative assessment of fire-climatesuch feedback as	
97	well (Ipcc, 2021). In this study, we explore the impacts of fire aerosols(IPCC, 2021). In this study,	
98	3 we explore the impacts of fire aerosol radiative effect on climate and the consequent feedbacks to	
99	fire emissions by using a well-established fire parameterization coupled to a chemistry-climate-	
100	vegetation model ModelE2-YIBs (Yue and Unger, 2015). The main objectives are (1) to isolate the	
101	radiative effects of fire aerosols through ADE, AIE, and AAE processes and (2) to quantify the	
102	feedback of fire-induced <u>instantaneous</u> climate effects to fire emissions and air pollutants.	
103	3	

Formatted: Font: Italic Formatted: Font: Italic Formatted: Font: Italic

-	Formatted:	Font:	Italic
-	Formatted:	Font:	Italic
Y	Formatted:	Font:	Italic

Formatted: Font: Italic Formatted: Font: Italic

104 2 Data and methods

105 2.1 Data

106 We use the emissions-of BC and organic carbon (OC) aerosols from Global Fire Emission 107 Database version 4.1s (GFED4.1s) to validate the simulated fire emissions. The GFED4.1s provides 108 monthly fire emission fluxes of various air pollutants based on satellite retrieval of area burned from 109 the Moderate Resolution Imaging Spectroradiometer (MODIS) (Van Der Werf et al., 2017).(van 110 der Werf et al., 2017). Area burned in GFED4.1s is mainly derived from the MODIS burned area 111 product (Giglio et al., 2013)(Giglio et al., 2013), taking into account "small" fires outside the burned 112 area maps based on active fire detections (Randerson et al., 2012)(Randerson et al., 2012). The 113 gridded fire emission dataset has a spatial resolution of 0.25°×0.25° and is available for every month 114 from July 1997. To estimatecompute anthropogenic ignition and suppression effects, (see section 115 2.3), we use a downscaled population density dataset from Gao (2017, 2020). Monthly sea surface 116 temperature (SST) and sea ice concentration (SIC) obtained from Hadley Centre Sea Ice and Sea 117 Surface Temperature (HadISST) dataset (Rayner et al., 2003)(Rayner et al., 2003) are used as the 118 boundary conditions for the climate model.

119

120 2.2 ModelE2-YIBs model

121 The chemistry-climate-vegetation model ModelE2-YIBs is used to simulate the two-way 122 coupling between fire aerosols and climate systems. The ModelE2-YIBs is composed of the NASA 123 Goddard Institute for Space Studies (GISS) ModelE2 model (Schmidt et al., 2014) and the Yale 124 Interactive terrestrial Biosphere Model (YIBs) (Yue and Unger, 2015). The GISS ModelE2 is a 125 global climate-chemistry model with a horizontal resolution of 2° × 2.5° latitude by longitude and 126 40 vertical layers extending to the stratosphere (0.1hPa). The model simulates gas-phase chemistry, 127 aerosols, and interactions among them. Well established schemes are used to calculate direct (Koch 128 et al., 2006), indirect (Menon et al., 2008; Menon et al., 2010), and albedo (Warren and Wiscombe, 129 1980, 1985) effects of aerosol species on the climate. The dynamics and physics codes are executed 130 every 30 minutes and the radiation code is calculated every 2.5 hours. - It has 131 evaluated for meteorological and chemical variables against observations, reanalysis products and 132 other models, and widely used for atudia 133 interactions (Schmidt et al., 2014),

134 The gas-phase chemistry scheme considers 156 chemical reactions among 51 species,

5

Formatted: Font: Italic

Formatted: Font: Italic

Formatted

135 including NOx-HOx-Ox-CO-CH4 chemistry and different species of volatile organic compounds. 136 Aerosol species in ModelE2 include sulfate, nitrate, sea salt, dust, BC, and organic carbon (OC), 137 which are interactively calculated and tracked for both mass and number concentrations. The aerosol 138 microphysical scheme is based on the quadrature method of moments, which incorporates 139 nucleation, gas-particle mass transfer, new particle formation, particle emissions, aerosol phase 140 chemistry, condensational growth, and coagulation (Bauer et al., 2008). The residence time of 141 aerosol species varies greatly in space and time due to different removal rates. Turbulent dry 142 deposition is determined by resistance-in-series scheme, which is closely coupled to the boundary 143 layer scheme and implemented between the surface layer (10 m) and the ground (Koch et al., 2006). 144 The wet deposition consists of several processes including scavenging within and below cloud, 145 evaporation of falling rainout, transportation along convective plumes, and detrainment and 146 evaporation from convective plumes (Koch et al., 2006; Shindell et al., 2006). 147 In ModelE2, gases can be converted to aerosols through chemical reactions, while aerosols 148 affect photolysis and provide reaction surface for gases. For example, the formation of sulfate 149 aerosols is driven by modeled oxidants (Bell et al., 2005), and the chemical production of nitrate 150 aerosols is dependent on nitric acid and gaseous ammonia (Bauer et al., 2007). Moreover, the 151 disturbances of aerosols on climate systems via direct, indirect, and albedo effects are considered in 152 ModelE2. Size-dependent optical parameters of aerosols are calculated by the Mie scattering theory. 153 The first AIE is estimated by the prognostic treatment of cloud droplet number concentration, which 154 is a function of contact nucleation, auto-conversion, and immersion freezing (Menon et al., 2008; 155 Menon et al., 2010). The AAE of BC is considered by estimating the decline of surface albedo as a 156 function of aerosol concentrations at the top layer of snow or ice (Koch and Hansen, 2005). BC 157 content in snow is determined by measurement-based average scavenging ratios (Hansen and Nazarenko, 2004). More detailed descriptions of ModelE2 can be found in Schmidt et al. (2014). It 158 159 has been extensively evaluated for meteorological and chemical variables against observations, 160 reanalysis products and other models, and widely used for studies of climate systems, atmospheric 161 components, and their interactions (Schmidt et al., 2014). 162 YIBs is a process-based vegetation model that dynamically simulates tree growth and 163 terrestrial carbon fluxes with prescribed fractions of nine plant functional types (PFTs), including

deciduous broadleaf forest, evergreen needleleaf forest, evergreen broadleaf forest, tundra,

164

Formatted: Font: Italic

165	shrubland, C_3/C_4 grassland, and C_3/C_4 cropland. Essential biological processes such as
166	photosynthesis, phenology, autotrophic and heterotrophic respiration are considered and
167	parameterized using the state-of-the-art schemes (Yue and Unger, 2015). Dynamic daily leaf area
168	index (LAI) is estimated based on carbon allocation and prognostic phenology which is dependent
169	on temperature and drought conditions. Simulated tree height, phenology, gross primary
170	productivity and leaf area index (LAI) agree well with site-level observations and/or satellite
171	retrievals (Yue and Unger, 2015). The YIBs model joined the dynamic global vegetation model
172	inter-comparison project TRENDY and showed reasonable performance of carbon fluxes against
173	available observations (Friedlingstein, et al., 2020). In the coupled model, ModelE2 provides
174	meteorological drivers to YIBs, which feeds back to alter land surface water and energy fluxes
175	through changes in stomatal conductance, surface albedo, and LAI. By incorporating YIBs into
176	ModelE2, the new coupled model ModelE2-YIBs can simulate interactions between terrestrial
177	ecosystems and climate systems through the exchange of water and energy fluxes, and chemical
178	components (Yue and Unger, 2015; Yue et al., 2017).
179	
180	2.3 Fire parameterization

181 We implemented the active global fire parameterization from Pechony and Shindell 182 (2009)Pechony and Shindell (2009) into ModelE2-YIBs model. The parameterization considers key 183 fire-related processes including fuel flammability, lightning and human ignitions, and human 184 suppressions. Flammability is a unitless metric indicating conditions favorable for fire occurrence, 185 and is calculated using vapor pressure deficit (VPD, hPa), precipitation (R, <u>mm</u> day-<u>mm</u>⁻¹), and LAI 186 (m² m⁻²) as follows:

$$Flam = VPD \times LAI \times e^{-C_R \times R}$$
(1)

Here, LAI represents vegetation density and is dynamically calculated by YIBs model. c_R is a
 constant set to 2. VPD is a vital indicator of flammability conditions:

190
$$VPD = e_s \times \left(1 - \frac{RH}{100}\right)$$
(2)

191 where e_s is the saturation vapor pressure and RH is surface relative humidity. e_s can be 192 calculated by Goff-Gratch equation:

193

$$\mathbf{e}_{\rm s} = \mathbf{e}_{\rm st} \times 10^{\rm Z} \tag{3}$$

7

Formatted: Font: Italic

Formatted: Font: Italic

194 where est is 1013.246 hPa and $Z=a\times \left(\frac{T_s}{T}-1\right)+b\times log\frac{T_s}{T}+c\times \left(10^{d\left(1-\frac{T_s}{T}\right)}-1\right)+f\times \left(10^{h\left(\frac{T_s}{T}-1\right)}-1\right)$ 195 (4) Here, a, b, c, d, f and h are constants set to -7.90298, 5.02808, -1.3816×10⁻⁷, 11.344, 8.1328×10⁻³ 196 197 and -3.49149, respectively. T_s is boiling point of water and equal to 373.16 K. VPD and LAI in Eq. (1) are calculated in half-hourly and daily time step, respectively, while 30-day running average 198 199 precipitation is employed to avoid unrealistically huge flammability fluctuations. 200 Natural and anthropogenic ignitions determineignition determines whether the fire can actually 201 occur. If ignition is zero, the resulting fire emissions will be zero, regardless of flammability. Natural 202 ignition source I_N depends on cloud-to-ground lightning (CoGL); rate, which is simulated by 203 ModelE2 following the parameterization of Price and Rind (1994): $I_N = \text{CoGL} = \left\{ \begin{array}{l} 3.44 \times 10^{-5} \times \text{H}^{4.9} \ \text{over land} \\ 6.4 \times 10^{-4} \times \text{H}^{1.73} \ \text{over ocean} \end{array} \right. \label{eq:IN}$ 204 (5)205 where H is the cloud depth (unit: km). The number L is 206 calculated as follows: 207 Humans influence fire activity by adding ignition sources and suppressing fire events, the rates 208 of which increase with population and to some extent counteract each other. The number of anthropogenic ignition source IA_(number km⁻² month⁻¹) is calculated as follows (Venevsky et al., 209 210 2002): 211 $I_A = k(PD) \times PD \times \alpha$ (6) 212 where PD is population density (number/ km^2); km^2). $k(PD) = 6.8 \times PD^{-0.6}$ stands for ignition 213 potentials of human activity, and assuming that people in scarcely populated areas interact more with 214 the natural ecosystems and therefore produce more ignition potential. a is equal the number of 215 potential ignitions per person per month and set to 0.03. Human activities can also suppress 216 In principle, the successful suppression of fires, especially is dependent on early detection. It* 217 is reasonably assumed that fires are detected earlier and suppressed more effectively in highly 218 populated area. Theareas. Therefore, the fraction of non-suppressed fires F_{NS} can be expressed as: 219 $F_{NS} = c_1 + c_2 \times \exp(-\omega \times PD)$ (7)220 where c_1 , c_2 and ω are constants and set to 0.05, 0.95 and 0.05, respectively. The selection of 221 constant values in Eq. (7) is done in a heuristic way, due to lack of quantified data globally. It 222 assumes that up to 95% of fires is suppressed in the densely populated regions but only 5% in

Formatted: Indent: First line: 0.74 cm

223	unpopulated areas.
224	With the calculation of flammability (Flam), ignition (I _N and I _A), and non-suppression (F _{NS}),
225	the fire count density N_{fire} (unit: number/ $\frac{km^2}{km^2}$) at a specific time step can be derived as:
226	$N_{\rm fire} = {\rm Flam} \times (I_{\rm N} + I_{\rm A}) \times F_{\rm NS} $ (8)
227	Finally, fire emissions of trace gases and particulate matters (FireEmis) are calculated as:
228	$FireEmis = N_{fire} \times EF $ (9)
229	Here, EF is the PFT-specific emission factor of an air pollutant such as black earbon (BC), organic
230	earbon (,_OC), NOx, NH3, SO2, CO, CH4, Alkenes and Paraffin. For each pollutant-species,
231	simulated gridded emissions are grouped by dominant PFT and compared to GFEDannual total
232	emissions from GFED4.1s over the same grids. The EF is then calibrated to minimize the root-
233	mean-square error between the simulated and GFED data- for all land grids. Such calibration adjusts
234	only the global total amount of fire emissions without changing the spatiotemporal pattern predicted
235	by the parameterization
236	Compared to fire indexes, such as Canadian Fire Weather Index system (Wagner, 1987), this
237	fire parameterization shows advantages in integrating the effects of meteorology, vegetation, natural
238	ignition, and human activities (both ignition and suppression) on fires. Furthermore, it is physically
239	straightforward and has been validated based on global observations (Pechony and Shindell, 2009).
240	In ModelE2-YIBs, fire emissions are affected by environmental factors following above
241	parameterizations. In turn, the radiative effects of fire-emitted aerosols feed back to affect those
242	climatic and ecological factors. We consider only the fire emissions at surface due to the large
243	uncertainties in depicting fire plume height (Sofiev et al., 2012; Ke et al., 2021). The fire emissions
244	include both primary aerosols and trace gases, the latter of which react with other species to form
245	the secondary aerosols. These particles could be transported across the globe by the three-
246	dimensional atmospheric circulation and eventually removed through either dry or wet deposition.
247	
248	2.4 Simulations
249	We perform four groups of sensitivity experiments (Table 1) with the ModelE2-YIBs model to

quantify the fire-climate interactions through different radiative processes. The first group with

suffix 'AD' considers only the ADE. The second (third) group with suffix 'AD_AI' ('AD_AA')

considers both ADE and AIE (ADE and AAE). The fourth group with suffix 'AD_AI_AA' includes $_{9}$

250

251

252

Formatted: Subscript

253	all three aerosol radiative effects (ADE, AIE, and AAE). Within each group, two runs are performed
254	with (YF) or without (NF) fire emissions. For YF simulations, fire-induced aerosols including
255	primarily emitted and secondarily formed are dynamically calculated based on fire
256	emissionsparameterization (see section 2.3) and atmospheric transport. These fire aerosolsemissions
257	cause radiative perturbations and the consequent changes in climatic variables, which feedback to
258	influence fire emissions. For NF simulations, fire emissions at each step are set to zero-are calculated
259	offline at each step without perturbing the climate system, which can be considered that there is no
260	fire emission. By comparing the climatic variables from the YF and NF runs in the first group, we
261	isolate the impacts of fire aerosols on climate through ADE. By comparing the climatic effects from
262	the first and second (third) groups, we isolate the AIE (AAE) of fire aerosols. By comparing the
263	climatic variables from YF and NF runs in the fourth group, the overall effect (ADE+AIE+AAE) is
264	obtained. Besides, the differences of fire emissions between simulations of "YF_AD_AI_AA" and
265	"NF_AD_AI_AA" represent the feedback of fire aerosol-induced environmental perturbations.
266	For each simulation, <u>climatological mean CO2</u> concentrations, SST/SIC, and population
267	density in the year 2000 <u>during 1995-2005</u> are used as boundary conditions to drive the model. Such
268	configuration ignores the year-to-year variability in climate systems, which may cause significant
269	changes in annual fire emissions (Burton et al., 2020). Each simulation is integrated for 25 years
270	with the first 5 years spinning up and the last 20-years-year averaged-and analyzed. Student. Two-
271	tail student t -test is performed and-to assess 90% confidence levels of the significant changes at
272	predicted radiative and climatic responses ($p < 0.1$ -are analyzed.). In this study, downward (upward)
273	radiative/heat fluxes are defined as positive (negative). Given that the model is driven by prescribed
274	SST and SIC, only the rapid adjustments of atmospheric variables are taken into account and we
275	mainly focus on climate changes over land grid. The radiative effect simulated with such model
276	configuration is termed the effective radiative forcing (ERF).
277	
278	3 Results
279	3.1 Model evaluation

- 280 Simulated fire emissions of BC and OC show hotspots in the tropics, such as Amazon, Sahel,
- 281 central Africa, and Southeast Asia (Fig. S1). The large tropical fire emissions are related to abundant
- 282 vegetation and/or distinct dry seasons. Compared to GFED4.1s data, ModelE2-YIBs slightly

Formatted: Font: Not Italic

Formatted: Font: Times New Roman

underestimates boreal fire emissions especially over northern Asia and North America. On the global scale, fire releases 1.85 ± 0.01 Tg (1 Tg = 10^{12} g) C year⁻¹ of BC and 16.8 ± 0.92 Tg C year⁻¹ of OC in ModelE2-YIBs, close to the 1.86 Tg C year⁻¹ of BC and 16.4 Tg C year⁻¹ of OC estimated by GFED4.1s. In general, ModelE2-YIBs reasonably captures the spatial distribution of fire emissions, with high spatial correlations of 0.67 (p < 0.01) for BC and 0.58 (p < 0.01) for OC, and low normalized mean biases of 0.6% for BC and 2.4% for OC against satellite-based observations.

290 **3.2 Fire-induced radiative perturbations**

Fig. S2 shows the fire-induced changes in Aerosol Optical Depth (AOD) at 550nm. Fire emissions largely enhance surface aerosols especially over tropical regions. Hotspots are located in southern Africa and South America with regional enhancement larger than 0.05. In addition, large enhancement is also found at boreal high latitudes (> 0.01). At the global scale, fires enhance AOD by 0.006 ± 0.001 with 0.010 ± 0.001 over land.

296 Fire aerosols cause large perturbations in net radiation at top of atmosphere (TOA). Globally, 297 the net radiation at TOA decreases 0.565 ± 0.166 W m⁻² by fire aerosols (Fig. 1a). Regionally, 298 negative changes are predicted over central Africa, western South America, western North America 299 and the boreal high latitudes. Diagnosis shows that fire-induced AIE dominates the reduction of 300 TOA flux with a global value of -0.4440 ± 0.264 W m⁻² (Fig. 1c), accounting for 78% of the total 301 effects TOA radiative effect by fire aerosols. The spatial correlation coefficient is 0.62 over land 302 grids between the perturbations by all aerosol effects and that by AIE alone. Compared to AIE, the 303 changes in TOA radiative fluxes are much smaller for fire ADE (-0.058 \+ 0.213W m⁻², Fig. 1b) 304 and AAE (-0.016 \pm 0.283 W m⁻², Fig. 1d) with limited perturbations on land.

305 At the surface, fireFire aerosols decrease net shortwave radiation reaching the surface up to 9 306 W m⁻² in central Africa and 7 W m⁻² in Amazon (Fig. 2a), where biomass burning emissions are 307 most intense (Fig. S1). Such pattern is in general consistent with the changes of TOA fluxes (Fig. 308 1a), leading to an average reduction of -1.23227 ± 0.216 W m⁻² in the shortwave radiation over 309 global land. The fire-induced ADE alone reduces land surface shortwave radiation by $0.65654 \pm$ 310 0.353 W m⁻² with the maximum center in Amazon (Fig. S3a). As a comparison, the fire-induced 311 AIE causes a smaller reduction of -0.55553 ± 0.518 W m⁻² with the hotspot in central Africa (Fig. 312 S3c). The net effect of AAE $(0.263 \pm 0.551 \text{ W m}^{-2})$ by fire aerosols is positive mainly because fire 11

313 AAE reduces surface albedo and increase shortwave radiation over Tibetan Plateau, and boreal high 314 latitudes, and Australia (Fig. S3e). However, the magnitude of AAE is much smaller compared to 315 that of ADE and AIE.

Changes in surface longwave radiation (Fig. 2b) are much smaller than those in shortwave 316 317 radiation (Fig. 2a). Regionally, positive changes are predicted in the western U.S., eastern Amazon, 318 and South Africa, where fire-induced surface cooling (Fig. 3a) decreases the upward longwave 319 radiation. On the global scale, fire aerosols cause a decrease of 0.28281 ± 0.371 W m⁻² in surface 320 upward longwave radiation. As a result, fire aerosols induce a net atmospheric absorption of 0.191 321 \pm 0.227 W m⁻² over land grids (Fig. 2c). The reductions in surface shortwave radiation are largely 322 balanced by changes in heat fluxes at the surface, which shows an average decrease of $0.83826 \pm$ 323 0.311 W m⁻² in the upward fluxes over land grids (Fig. 2e2d). Fire ADE and AIE lead to reductions 324 of 0.50503 ± 0.289 W m⁻² and $0.43 \times 432 \pm 0.411$ W m⁻² in surface upward heat fluxes, respectively 325 (Fig. S3b and S3d). Changes in sensible heat account for 82.2 % of the changes in total heat reduction, much higher than the contributions of 17.8% by latent heat fluxes (Fig. S4). Regionally, 326 327 the upward sensible heat decreases in the western U.S. and Amazon mainly due to fire ADE, while 328 the upward latent heat decreases in central Africa mainly by fire AIE (Fig. S5).

329

330 3.3 Fire-induced fast climatic change responses

Formatted: Font: Bold

331 In response to the perturbations in radiative fluxes, land surface air temperature (TAS) 332 decreases 0.061 ± 0.165 °C globally by fire aerosols (Fig. 3a). Such cooling is mainly located in 333 western U.S., Amazon, and boreal Asia, following the large reductions in shortwave radiation (Fig. 334 2a). Meanwhile, moderate warming is predicted at the high latitudes of both hemispheres especially 335 over the areas covered with land ice such as Greenland and Antarctica. Sensitivity experiments show 336 that both ADE (Fig. 4a) and AIE (Fig. 4c) of fire aerosols result in net cooling globally, with regional 337 reductions of TAS over boreal Asia and North America. In contrast, the fire AAE causes increases 338 of TAS over boreal Asia and North America (Fig. 4e), where the deposition of BC aerosols reduces 339 surface albedo. Consequently, the fire AAE results in a global warming of 0.054 ± 0.163 °C, which 340 in part offsets the cooling effects by the ADE and AIE of fire aerosols. 341 Meanwhile, global land precipitation decreases by 0.18180 ± 0.966 mm/month ($1.78 \pm 9.56\%$)

342 with great spatial heterogeneity (Fig. 3b). Decreased precipitation is predicted over central Africa, 12

boreal North America, and eastern Siberia. In contrast, increased rainfall is predicted in western
U.S., eastern Amazon, and northern Asia. The reduction of precipitation is mainly contributed by
fire AIE, which reduces cloud droplet size and inhibits local rainfall in central Africa (Fig. 4d).
Consequently, latent heat fluxes are reduced to compensate the rainfall deficit in central Africa (Fig.
S4b).

348

349 3.4 Fire-climate interactions

350 <u>3.4 Climate feedback to fire aerosol radiative effect</u>

351 The fire-aerosol-induced changesfast response in precipitation, VPD, lightning, and LAI can 352 feed back to affect fire emissions. However, these changes may have contrasting impacts on fire 353 activities. For example, the aerosol-induced reduction of precipitation in central Africa (Fig. 3b) 354 increases local VPD (Fig. 5a) and consequently causes more fire emissions. Meanwhile, such 355 enhanced drought condition inhibits plant growth and decreases local LAI (Fig. 5c), which has negative impacts on fire emissions by reducing fuel density. Furthermore, the fire AIE inhibits the 356 357 development of convective cloud, which limits cloud height and the number of cloud-to-ground 358 lightning in central Africa (Fig. 5b), leading to reduced ignition sources and fire emissions.

359 To illustrate the joint the impacts of fire-aerosol-induced instantaneous climatic change, we 360 count the number out of the four factors contributing positive effects to fire emissions over land 361 grids (Fig. 5d). The larger (smaller) number indicates higher possibility of increasing (decreasing) fire emissions. Most of areas show neutral number of 2, indicating offsetting effects of the changes 362 in fire-prone factors. Only 13.5 % of land grids show numbers higher than 2 with sparse distribution. 363 In contrast, 32.1 % of land grids show numbers smaller than 2, especially for the grids over Siberia 364 365 and western U.S. where the increased rainfall (Fig. 3b) and decreased VPD (Fig. 5a) inhibit fire 366 emissions. Furthermore, the regional reductions in lightning ignition or LAI promote the inhibition 367 effects. As a result, fire emissions in YF_AD_AI_AA <u>slightly</u> decrease by 31.0 ± 35.9 Gg year⁻¹ 368 (1.7%) for BC and 493.6 ± 566.8 Gg year⁻¹ (2.9%) for OC compared to NF_AD_AI_AA in which 369 fire emissions do not perturb climate (Fig. 6).

370

371 4 Conclusions and discussion

We used the chemistry-climate-vegetation coupled model ModelE2-YIBs to quantify fire-

373 climate interactions through ADE, AIE, and AAE. Globally, fire aerosols decrease TOA net radiation 374 by 0.565 ± 0.166 W m⁻², dominated by the AIE over central Africa. Surface net solar radiation also 375 exhibits widespread reductions especially over fire-prone areas with compensations from the 376 decreased sensible and latent heat fluxes. Following the changes in radiation, surface air 377 temperature land TAS decreases by 0.061 ± 0.165 °C and land precipitation decreases by $0.18180 \pm$ 378 0.966 mm/month, albeit with regional inconsistencies. The surface cooling is dominated by fire 379 ADE and AIE, while the drought tendency is mainly contributed by fire AIE with hotspots in central 380 Africa. AAE also plays an important role by introducing warming tendency at the mid-to-high 381 latitudes. The These fire-induced fast climatic changeresponses further affect VPD, LAI, and 382 lightning ignitions, leading to reductions in global fire emissions of BC by 2% and OC by 3%._

383 Our predicted reduction of 0.565 ± 0.166 W m⁻² in TOA radiation by fire aerosols is close to 384 the estimate of -0.51 W m⁻² reported by Jiang et al. (2016)Jiang et al. (2016) and -0.59 W m⁻² of 385 Zou et al. (2020)Zou et al. (2020) using different models with prescribed SST/SIC and fire-induced 386 ADE, AIE and AAE (Table 2). Within such change, fire ADE alone makes a moderate contribution 387 of -0.06016 ± 0.283 W m⁻², falling within the range of -0.2 to 0.2 W m⁻² from other studies. The 388 large uncertainty of fire ADE is likely related to the discrepancies in the BC absorption among 389 climate models, which cause varied net effects when offsetting the radiative perturbations of 390 scattering aerosols. As a comparison, fire AIE in our model induces a significant radiative effect of 391 -0.44440 ± 0.264 W m⁻². However, such magnitude is much smaller than previous estimates of -0.7 392 to -1.1 W m⁻² using different models (Table 2). We further estimated a limited fire AAE of -0.02016 393 ± 0.283 W m⁻², consistent with previous findings showing insignificant role of AAE by fire aerosols 394 (Ward et al., 2012; Jiang et al., 2016). Our estimates of reductions in TAS and precipitation also fall 395 within the range of previous studies (Table 2).

396Our estimates are subject to some limitations and uncertainties. First, we considered only the397fast climatic responses of land surface with prescribed SST and SIC in the simulations. Although398most of fire-induced AOD changes are located on land (Fig. S2), the air-ocean interactions may399cause complex feedbacks to aerosol radiative effects (Jiang et al., 2020). Such feedback should be400explored in the future studies with a coupled ocean model.S2), the air-sea interaction may cause401complex climatic responses to aerosol radiative effects. In a recent study, Jiang *et al.* (2020)402emphasized the role of slow feedback contributed by fire aerosols on global precipitation reduction14

Formatted: Font: Italic

403	by using a coupled model. Such air-sea interaction will modify the magnitude and/or spatial pattern
404	of fast climatic responses revealed in this study, and should be explored in the future studies with
405	coupled ocean models. Second, the nonlinear effects of different radiative processes may influence
406	the attribution results. In this study, we isolate the effects of AIE and AAE by subtracting variables
407	between different groups following the approaches by Bauer and Menon (2012). However, the
408	additive perturbations from individual processes are not equal to the total perturbations with all
409	processes in one simulation. For example, the sum of three processes causes changes of TOA
410	radiation by -0.54513 ± 0.324 W m ⁻² (Figs 1b-1d), surface temperature by -0.037 ± 0.160 °C (Figs
411	4a, 4c, 4e), and precipitation by -1.09090 ± 1.122 mm month ⁻¹ (Figs 4b, 4d, 4f). These perturbations
412	are weaker than the net effects of -0.57565 ± 0.166 W m ⁻² (Fig. 1a) in radiation and $-0.061 \pm$
413	<u>0.165</u> °C in temperature (Fig. 3a), but much stronger than that of -0.18 \pm 0.96 mm month ⁻¹ in
414	precipitation (Fig. 3b) predicted by the simulation with all three processes. As a result, the nonlinear
415	feedbacks among different radiative processes may magnify or offset the final climatic responses to
416	fire aerosols. Third, considering the complex nature of fire activities, the fire parameterization in
417	this study does not incorporate all fire-related processes (e.g., the influence of wind). In addition,
418	the simulations omit several factors influencing fire emissions (e.g., moist content of fuels) and
419	aerosol radiative effects (e.g. fire plume height). For example, studies show significant impacts of
420	plume rise on the vertical distribution of fire aerosols and the consequent radiative effects (Walter
421	et al., 2016). The impacts of human activity on fire emissions are calculated as a function of
422	population density without considerations of differences in economy, education, and policies. These
423	auxiliary factors may increase the spatial heterogeneity of fire aerosol radiative effects and deserve
424	further explorations in the future studies.
425	Despite these limitations, we made the first attempt to assess the two-way interaction between
426	fire emissions and climate, via aerosol radiative effects. Our results show that fire-emitted aerosols
427	cause negative effective radiative forcing (ERF) of -0.57565 ± 0.166 W m ⁻² , which is about 20% of
428	the anthropogenic ERF due to the increased greenhouse gases and aerosols from 1950 to 2019 (Ipee,
429	2021).(IPCC, 2021). Such fire ERF largely reduces surface air temperature and regional TAS and
430	precipitation, leading to further changes in fire emissions. Although the reduction of -2% to -3% in

Formatted
Formatted
Formatted
Formatted
Formatted
Formatted
Formatted

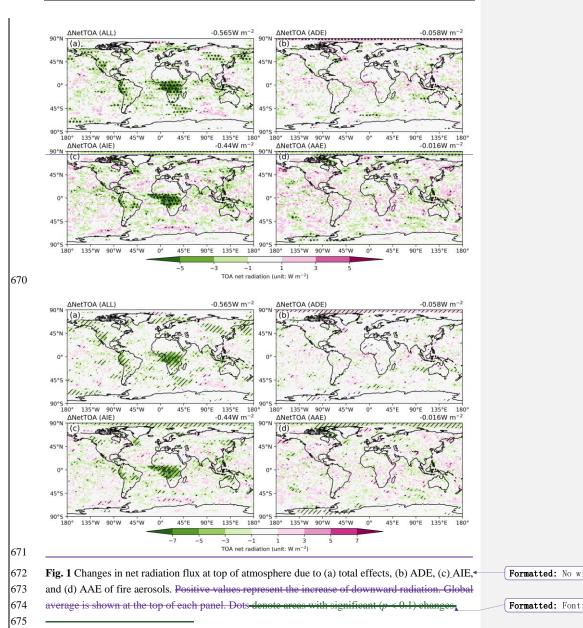
change is a result of several complex feedbacks that may exert offsetting effects. Furthermore, our 15

fire emissions by the fire-climate interaction through aerosol radiative effect seems limited, such

431

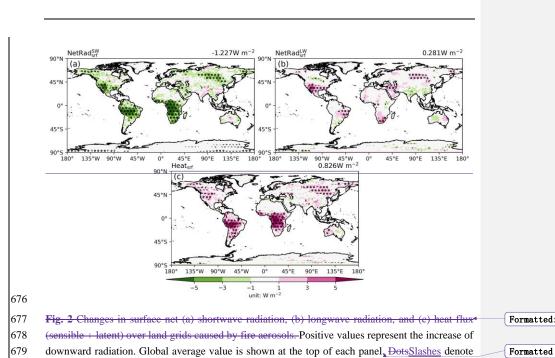
433	simulations reveal a strong inhibition effect of fire aerosols on LAI in central Africa due to the
434	aerosol-induced drought intensification. Such negative effects on ecosystems are inconsistent with
435	previous estimates that showed certain fertilization effects by fire aerosols (Yue and Unger, 2018),
436	mainly because the rainfall deficit overweighs the diffuse fertilization effects of aerosols. With likely
437	more fires under global warming (Abatzoglou et al., 2019)(Abatzoglou et al., 2019), our results
438	suggested complex and uncertain perturbations by fire emissions to radiation, climate, and
439	ecosystem through fire-climate interactions.
440	
441	Acknowledgements
442	The authors are grateful to Dr. Matthew Kasoar and another anonymous reviewer for their
443	constructive comments that have improved this study.
444	
445	Financial support
446	This research was supported by the National Key Research and Development Program of China
447	(grant no. 2019YFA0606802)
448	
449	Competing Interests
450	The authors declare that they have no conflict of interest.
451	
452	Data availability
453	Hadley Centre Sea Ice and Sea Surface Temperature dataset were obtain from
454	https://www.metoffice.gov.uk/hadobs/hadisst/. Population data could be downloaded form
455	https://cmr.earthdata.nasa.gov/search/concepts/C1739468823-SEDAC.html. GFED data were
456	obtained from https://daac.ornl.gov/VEGETATION/guides/fire_emissions_v4_R1.html.
457	

458 **Reference:**


458	Kelerence:	
459	Abatzoglou, J. T., Williams, A. P., and Barbero, R.: 2019 Global Emergence of Anthropogenic Climate	Formatted: Indent: Left: 0 cm, Hanging: 7.2 ch
460	Change in Fire Weather Indices, Geophysical Research Letters, 46, 326-336,	Formatted: Font: Italic
461	10.1029/2018gl080959, 2019.<u>36</u>	Formatted: Font: Bold
462	Albrecht, B. A.: 1989 Aerosols, Cloud Microphysics, and Fractional Cloudiness, 245, 1227-1230,	Formatted: Font: Bold
463	doi:10.1126/science.245.4923.1227, 1989.30	
464	Andela; N.;, Morton; D. C.;, Giglio; L.;, Chen; Y.;, van der Werf; G. R.;, Kasibhatla; P. S.;, DeFries; R.	
465	$S_{\overline{\imath}_{3}} \text{ Collatz}_{\overline{\imath}} \text{ G}_{\overline{\imath}} \text{ J}_{\overline{\imath}_{3}} \text{ Hantson}_{\overline{\imath}} S_{\overline{\imath}_{3}} \text{ Kloster}_{\overline{\imath}} S_{\overline{\imath}_{3}} \text{ Bachelet}_{\overline{\imath}} \text{ D}_{\overline{\imath}_{3}} \text{ Forrest}_{\overline{\imath}} \text{ M}_{\overline{\imath}_{3}} \text{ Lasslop}_{\overline{\imath}} \text{ G}_{\overline{\imath}_{3}} \text{ Li}_{\overline{\imath}} \text{ F}_{\overline{\imath}_{3}}$	
466	Mangeon; S., Melton; J. R., Yue; C., and Randerson; J. T.: 2017 A human-driven decline in	
467	global burned area, <i>Science</i> , 356 , 1356, 10.1126/science.aal4108, 2017.	Formatted: Font: Italic
468	$Andreae_{7} M_{7} O_{\overline{17}_{2}} Rosenfeld_{7} D_{\overline{17}_{2}} Artaxo_{7} P_{\overline{17}_{2}} Costa_{7} A_{7} A_{\overline{17}_{2}} Frank_{7} G_{7} P_{\overline{17}_{2}} Longo_{7} K_{7} M_{\overline{17}} and Silva-Dias_{7} Hard Silva-Dia$	Formatted: Font: Bold
469	M. A. F.: 2004 Smoking Rain Clouds over the Amazon, 303, 1337-1342,	Formatted: Font: Bold
470	doi:10.1126/seience.1092779, 2004.42	
471	$Bali_{5}K_{\overrightarrow{3}\underline{a}}Mishra_{\overline{5}}A_{\overline{7}}K_{\overrightarrow{3}}and\ Singh_{\overline{5}}S_{\overrightarrow{7}}\underline{2017}\ Impact\ of\ anomalous\ forest\ fire\ on\ aerosol\ radiative\ forcing$	
472	and snow cover over Himalayan region; Atmospheric Environment; 150; 264-275;	Formatted: Font: Italic
473	https://doi.org/10.1016/j.atmosenv.2016.11.061, 2017.75	Formatted: Font: Bold
474	$Bauer_{7} S_{7} E_{7} \text{ and } Menon_{7} S_{7} \underline{2012} \text{ Aerosol direct, indirect, semidirect, and surface albedo effects from}$	
475	sector contributions based on the IPCC AR5 emissions for preindustrial and present-day	
476	conditions, 117, https://doi.org/10.1029/2011JD016816, 2012.117	Formatted: Font: Bold
477	Bauer S E, Mishchenko M I, Lacis A A, Zhang S, Perlwitz J and Metzger S M 2007 Do sulfate and nitrate	
478	coatings on mineral dust have important effects on radiative properties and climate modeling?	
479	<u>112</u>	
480	Bauer S E, Wright D L, Koch D, Lewis E R, McGraw R, Chang L S, Schwartz S E and Ruedy R 2008	
481	MATRIX (Multiconfiguration Aerosol TRacker of mIXing state): an aerosol microphysical	
482	module for global atmospheric models Atmos. Chem. Phys. 8 6003-35	
483	Bell N, Koch D and Shindell D T 2005 Impacts of chemistry-aerosol coupling on tropospheric ozone and	
484	sulfate simulations in a general circulation model 110	
485	Burton C, Betts R A, Jones C D, Feldpausch T R, Cardoso M and Anderson L O 2020 El Niño Driven	
486	Changes in Global Fire 2015/16 8	
487	Carslaw, KS, Boucher, O, Spracklen, DV, Mann, G. W, Rae, JG. L, Woodward, S, and Kulmala,	Formatted: Indent: Left: 0 cm, Hanging: 7.2 ch
488	$M \div 2010$ A review of natural aerosol interactions and feedbacks within the Earth system, Atmos.	Formatted: Font: Italic
489	Chem. Phys., 10; 1701-1737, 10.5194/acp 10 1701 2010, 2010.37	Formatted: Font: Bold
490	Chen; G _{17a} Guo; Y _{17a} Yue; X _{17a} Tong; S _{17a} Gasparrini; A _{17a} Bell; M ₇ L _{17a} Armstrong; B _{17a} Schwartz; J _{17a}	
491	Jaakkola , J. J <u>. J</u> K., Zanobetti, A., Lavigne, E., Nascimento Saldiva, P. H., Kan, H., Royé,	
492	D ₁₇₄ Milojevic, A ₁₇₄ Overcenco, A ₁₇₄ Urban, A ₁₇₄ Schneider, A ₁₇₄ Entezari, A ₁₇₄ Vicedo-Cabrera, A ₁	
493	M., Zeka, A., Tobias, A., Nunes, B., Alahmad, B., Forsberg, B., Pan, S. C., Íñiguez, C.	
494	Ameling, C., De la Cruz Valencia, C., Åström, C., Houthuijs, D., Van Dung, D., Samoli, E.	
495	$Mayvaneh; F_{\overline{\gamma_{a}}} Sera; F_{\overline{\gamma_{a}}} Carrasco-Escobar; G_{\overline{\gamma_{a}}} Lei; Y_{\overline{\gamma_{a}}} Orru; H_{\overline{\gamma_{a}}} Kim; H_{\overline{\gamma_{a}}} Holobaca; I{H_{\overline{\gamma_{a}}}} H_{\overline{\gamma_{a}}} Holobaca; I{H_{\overline{\gamma_{a}}}} H_{\overline{\gamma_{a}}} Holobaca; H_{\overline{\gamma_{a}}} H_$	
496	$Kysel \acute{y_{7}} J_{\overrightarrow{\gamma_{2}}} Teixeira_{7} J_{7} P_{\overrightarrow{\gamma_{2}}} Madureira_{7} J_{\overrightarrow{\gamma_{2}}} Katsouyanni_{7} K_{\overrightarrow{\gamma_{2}}} Hurtado-Díaz_{7} M_{\overrightarrow{\gamma_{2}}} Maasikmets_{7}$	
497	M ₁₇₇₄ Ragettli ₇ M ₁ S ₁₇₇₄ Hashizume ₇ M ₁₇₇₄ Stafoggia ₇ M ₁₇₇₄ Pascal ₇ M ₁₇₇₄ Scortichini ₇ M ₁₇₇₄ de Sousa	
498	Zanotti Stagliorio Coêlho, M., Valdés Ortega, N., Ryti, Nr R-I., Scovronick, N., Matus, P.,	
499	Goodman; P ₁₃₄ Garland; R. M ₁₃₄ Abrutzky; R ₁₃₄ Garcia; S. O ₁₃₄ Rao; S ₁₃₄ Fratianni; S ₁₃₄ Dang; T:	
500	$N_{\overrightarrow{\tau_{2}}} \text{ Colistro}_{\overrightarrow{\tau}} V_{\overrightarrow{\tau_{2}}} \text{ Huber}_{\overrightarrow{\tau}} V_{\overrightarrow{\tau_{2}}} \text{ Lee}_{\overrightarrow{\tau}} W_{\overrightarrow{\tau_{2}}} \text{ Seposo}_{\overrightarrow{\tau}} X_{\overrightarrow{\tau_{2}}} \text{ Honda}_{\overrightarrow{\tau}} Y_{\overrightarrow{\tau_{2}}} \text{ Guo}_{\overrightarrow{\tau}} Y_{\overrightarrow{\tau}} Ve_{\overrightarrow{\tau}} Ye_{\overrightarrow{\tau}} Yu_{\overrightarrow{\tau}} W_{\overrightarrow{\tau_{2}}} W_{$	
501	Abramson, M. J., Samet, J. M., and Li, S. 2021 Mortality risk attributable to wildfire-related	
	17	

502	PM _{2·5} pollution: a global time series study in 749 locations-, The Lancet	Formatted: Font: Italic
503	Planetary Health, 5, e579-e587, 10.1016/S2542-5196(21)00200-X, 2021.e87	Formatted: Font: Bold
504	Flannigan, M. M. Cantin A S, de Groot W J, Wotton M, Newbery A and Gowman L M 2013 Global	
505	wildland fire season severity in the 21st century Forest Ecology and Management 294 54-61	
506	Flannigan M and Harrington, J-B.: 1988 A Study of the Relation of Meteorological Variables to Monthly	Formatted: Indent: Left: 0 cm, Hanging: 7.2 ch
507	Provincial Area Burned by Wildfire in Canada (1953-80), Julan and Applied Meteorology and	Formatted: Font: Italic
508	Climatology, 27, 441-452, 10.1175/1520-0450(1988)027<0441:ASOTRO>2.0.CO;2, 1988.52	Formatted: Font: Bold
509	Flannigan, M., Krawchuk, M. A., de Groot, W. J., Wotton, B. M., and Gowman, L. M.: 2009	
510	Implications of changing climate for global wildland fire %J International Journal of Wildland	
511	Fire, 18, 483-507, https://doi.org/10.1071/WF08187, 2009.	Formatted: Font: Bold
512	Flannigan, M., Cantin, A. S., de Groot, W. J., Wotton, M., Newbery, A., and Gowman, L. M.: Global	
513	wildland fire season severity in the 21st century, Forest Ecology and Management, 294, 54-61,	
514	https://doi.org/10.1016/j.foreco.2012.10.022, 2013.	
515	Friedlingstein; P.; O'Sullivan; M.; Jones; M. W.; Andrew; R. M.; Hauck; J.; Olsen; A.; Peters; G. P.;	Formatted: Indent: Left: 0 cm, Hanging: 7.2 ch
516	Peters, W., Pongratz, J., Sitch, S., Le Quéré, C., Canadell, J. G., Ciais, P., Jackson, R. B.,	
517	Alin, S., Aragão, L. E. O. C., Arneth, A., Arora, V., Bates, N. R., Becker, M., Benoit-Cattin,	
518	A-712 Bittig: H- C-712 Bopp: L-712 Bultan; S-712 Chandra; N-712 Chevallier; F-712 Chini; L- P-712 Evans; W-712	
519	Florentie, L., Forster, P. M., Gasser, T., Gehlen, M., Gilfillan, D., Gkritzalis, T., Gregor, L.	
520	Gruber, N-7, Harris, I-7, Hartung, K-7, Haverd, V-7, Houghton, R- A-7, Ilyina, T-7, Jain, A- K-7,	
521	Joetzjer, E., Kadono, K., Kato, E., Kitidis, V., Korsbakken, J. I., Landschützer, P., Lefèvre,	
522	Nr, Lenton, Ar, Lienert, Sr, Liu, Zr, Lombardozzi, Dr, Marland, Gr, Metzl, Nr, Munro, Dr	
523	Rina Nabel, J. E. M. Sina Nakaoka, S. In Niwa, Yina O'Brien, Kina Ono, Tin Palmer, P. In Pierrot,	
524	D ₇₁₂ Poulter, B ₇₁₃ Resplandy, L ₇₁₃ Robertson, E ₇₁₂ Rödenbeck, C ₇₁₃ Schwinger, J ₇₁₃ Séférian, R ₇₁₃	
525	Skjelvan, I., Smith, A. J. P., Sutton, A. J., Tanhua, T., Tans, P. P., Tian, H., Tilbrook, B., van	
526	der Werf ₇ G ₁₇₃ Vuichard ₇ N ₁₇₃ Walker ₇ A. P ₁₇₃ Wanninkhof ₇ R ₁₇₃ Watson ₇ A. J ₁₇₃ Willis ₇ D ₁₇₃	
527	Wiltshire, A. J., Yuan, W., Yue, X., and Zaehle, S.: 2020 Global Carbon Budget 2020, Earth	Formatted: Font: Italic
528	Syst. Sci. Data, 12, 3269-3340, 10.5194/essd-12-3269-2020, 2020.340	Formatted: Font: Bold
529	Gao ₇ J.: 2017 Downscaling Global Spatial Population Projections from 1/8-degree to 1-km Grid Cells ₇	
530	<u>2017.</u>	
531	Gao ₇ J. <u>+ 2020</u> Global 1-km Downscaled Population Base Year and Projection Grids Based on the Shared	
532	Socioeconomic Pathways, Revision 01 ₅ . (Palisades, NY: NASA Socioeconomic Data and	
533	Applications Center (SEDAC) [dataset], 2020.))	
534	Giglio ₇ L _{π_3} Randerson ₇ J ₋ T _{π_7} and van der Werf ₇ G ₇ R _{π_7} 2013 Analysis of daily, monthly, and annual burned	
535	area using the fourth-generation global fire emissions database (GFED4) ₂ , Journal of	Formatted: Font: Italic
536	Geophysical Research: Biogeosciences, 118, 317-328, https://doi.org/10.1002/jgrg.20042,	Formatted: Font: Bold
537	2013. 28	
538	Grandey, B. S., Lee, H. H., and Wang, C.: 2016 Radiative effects of interannually varying vs.	
539	interannually invariant aerosol emissions from fires, Atmos. Chem. Phys., 16, 14495-14513,	Formatted: Font: Italic
540	10.5194/acp 16 14495 2016, 2016, 513	Formatted: Font: Bold
541	Hansen, J- and Nazarenko, $L \div 2004$ Soot climate forcing via snow and ice albedos, 101_7 423-428,	Formatted: Font: Bold
542	10.1073/pnas.2237157100 %J Proceedings of the National Academy of Sciences of the United	
543	States of America, 2004.8	
544	Heald ₇ C ₇ L ₁₇₂ Ridley ₇ D ₇ A ₁₇₂ Kroll ₇ J ₇ H ₁₇₂ Barrett ₇ S ₇ R ₇ H ₁₇₂ Cady-Pereira ₇ K ₇ E ₁₇₂ Alvarado ₇ M ₇ J ₁₇ and	
545	Holdes, C. D. 2014 Contrasting the direct radiative effect and direct radiative forcing of	

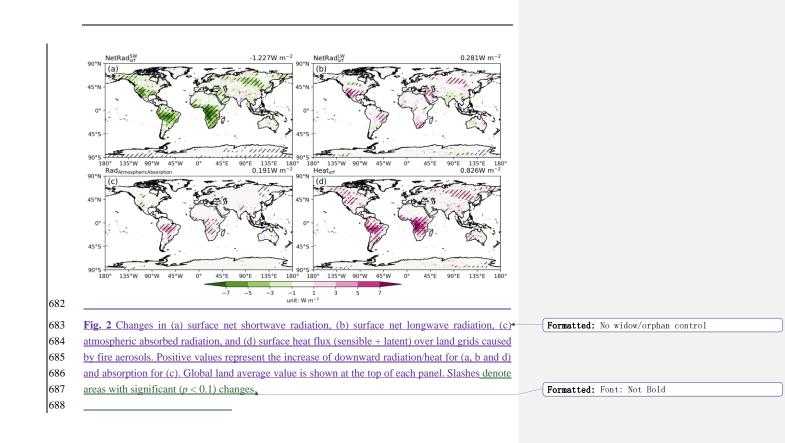
1			
546	aerosols , Atmos. Chem. Phys., 14, 5513-5527, 10.5194/aep 14 5513 2014, 2014.27	\leq	Formatted: Font: Italic
547	$Hudson_7 P_7 K_{\tau_{72}} Murphy_5 D_7 M_{\tau_{72}} Cziczo_7 D_7 J_{\tau_{72}} Thomson_7 D_7 S_{\tau_{72}} de Gouw_5 J_7 A_{\tau_{72}} Warneke_7 C_{\tau_{72}} Holloway_7 J_7 A_{\tau_{72}} Warneke_7 C_{\tau_{72}} Holloway_7 J_7 A_{\tau_{72}} Holloway_7 H$	7	Formatted: Font: Bold
548	$J_{\overline{1}\overline{2}}$ Jost, $H_{\overline{1}}J_{\overline{2}}$ and Hübler, $G_{\overline{2}}2004$ Biomass-burning particle measurements: Characteristic		
549	composition and chemical processing, 109, <u>https://doi.org/10.1029/2003JD004398, 2004</u>	\leq	Formatted: Font: Bold
550	IPCC: 2014 Contribution of Working Groups I, II and III to the Fifth Assessment Report of the		Formatted: Font: Bold
551	Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A.		Formatted: Font: Italic
552	Meyer (eds.)], .)/ (IPCC, Geneva, Switzerland, 151 pp.2014.		
553	IPCC: <u>2021</u> Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the		Formatted: Font: Italic
554	Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte,		
555	V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I.		
556	Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O.		
557	Yelekçi, R. Yu and B. Zhou (eds-)],)/ vol In Press.: Cambridge University Press.2021)		
558	Jiang, Y., Lu, Z., Liu, X., Qian, Y., Zhang, K., Wang, Y., and Yang, X. Q. 2016 Impacts of global		
559	open-fire aerosols on direct radiative, cloud and surface-albedo effects simulated with CAM57		
560	Atmos. Chem. Phys., 16, 14805-14824, 10.5194/acp-16-14805-2016, 2016.24		Formatted: Font: Italic
561	Jiang, Y., Yang, X., Qian, Y., Qian, Y., Zhang, K., Wang, M., Li, F., Wang, Y., and Lu, Z., 2020		Formatted: Font: Bold
562	Impacts of Wildfire Aerosols on Global Energy Budget and Climate: The Role of Climate		
563	Feedbacks, Journal of Climate, 33, 3351-3366, 10.1175/JCLI D 19 0572.1, 2020.66		Formatted: Font: Italic
564	Kang, S., Zhang, Y., Qian, Y., and Wang, H.: 2020 A review of black carbon in snow and ice and its		Formatted: Font: Bold
565	impact on the cryosphere, Earth-Science Reviews, 210, 103346,		Formatted: Font: Italic
566	https://doi.org/10.1016/j.earscirev.2020.103346, 2020.		Formatted: Font: Bold
567	Ke Z, Wang Y, Zou Y, Song Y and Liu Y 2021 Global Wildfire Plume-Rise Data Set and		
568	Parameterizations for Climate Model Applications 126 e2020JD033085		
569	Koch ₇ D and Hansen J 2005 Distant origins of Arctic black carbon: A Goddard Institute for Space Studies		
570	ModelE experiment Journal of Geophysical Research: Atmospheres 110		
571	Koch D ₇₃ Schmidt ₇ G ₇ A ₁₇ and Field ₇ C ₇ V.: 2006 Sulfur, sea salt, and radionuclide aerosols in GISS	(Formatted: Indent: Left: 0 cm, Hanging: 7.2 ch
572	ModelE ₇ ,111, https://doi.org/10.1029/2004JD005550, 2006,		Formatted: Font: Bold
573	Liu, J. C., Pereira, G., Uhl, S. A., Bravo, M. A., and Bell, M. L. 2015 A systematic review of the	\leq	Formatted: Font: Bold
574	physical health impacts from non-occupational exposure to wildfire smoke ₅ Environmental		Formatted: Font: Italic
575	Research; 136 ; 120-1 32 ; <u>https://doi.org/10.1016/j.envres.2014.10.015</u> ; 2015.32		Formatted: Font: Bold
576	Liu ₅ Y ₋₇ , Goodrick ₅ S ₋₇ and Heilman ₇ W ₊₊ 2014 Wildland fire emissions, carbon, and climate: Wildfire–		
577	climate interactions, Forest Ecology and Management, 317_3 80-96,		Formatted: Font: Italic
578	https://doi.org/10.1016/i.foreco.2013.02.020.2014.	\leq	Formatted: Font: Bold
579	Macias Fauria, M- and Johnson, E- A-: 2006 Large-scale climatic patterns control large lightning fire		
580	occurrence in Canada and Alaska forest regions ₅ Journal of Geophysical Research:	_	Formatted: Font: Italic
581	Biogeosciences, 111, https://doi.org/10.1029/2006JG000181, 2006,		Formatted: Font: Bold
582	Menon, S., Koch, D., Beig, G., Sahu, S., Fasullo, J., and Orlikowski, D.: Black carbon aerosols and the	\leq	Formatted: Font: Bold
583	third polar ice cap, Atmos. Chem. Phys., 10, 4559-4571, 10.5194/acp-10-4559-2010, 2010.		
585 584	Menon, S., Del Genio, A. D., Kaufman, Y., Bennartz, R., Koch, D., Loeb, N., and Orlikowski, D.:	(Formatted: Indent: Left: 0 cm, Hanging: 7.2 ch
585	2008 Analyzing signatures of aerosol-cloud interactions from satellite retrievals and the GISS	l	TOTEGOUCUT INCENT. LETT. U CH, Hanging. 7.2 Ch
585 586	GCM to constrain the aerosol indirect effect, 113, <u>https://doi.org/10.1029/2007JD009442</u>, 2008.		
580 587		(Formattad: Font: Bold
588	113 Menon S, Koch D, Beig G, Sahu S, Fasullo J and Orlikowski D 2010 Black carbon aerosols and the third	1	Formatted: Font: Bold
589	polar ice cap Atmos. Chem. Phys. 10 4559-71		

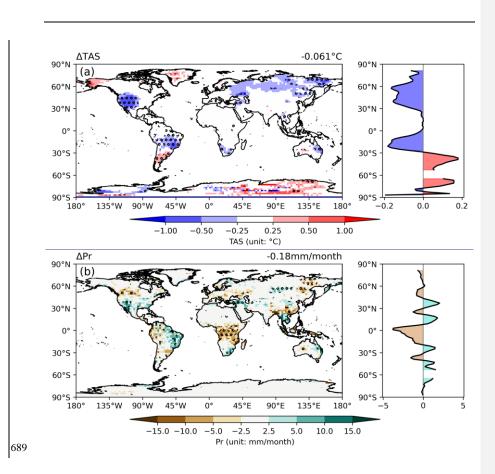

1			
590	Pechony, O- and Shindell, D- T.: 2009 Fire parameterization on a global scale, Journal of Geophysical		Formatted: Indent: Left: 0 cm, Hanging: 7.2 ch
591	<u>Research, 114, https://doi.org/10.1029/2009JD011927, 2009,</u>		Formatted: Font: Italic
592	Price, C. and Rind, D. 1994 Modeling Global Lightning Distributions in a General Circulation Model,	$\overline{\ }$	Formatted: Font: Bold
593	Monthly Weather Review, 122, 1930-1939, 10.1175/1520-		Formatted: Font: Bold
594	0493(1994)122<1930:MGLDIA>2.0.CO;2, 1994.9	$\overline{\ }$	Formatted: Font: Italic
595	Randerson, J. T., Chen, Y., van der Werf, G. R., Rogers, B. M., and Morton, D. C. 2012 Global burned		Formatted: Font: Bold
596	area and biomass burning emissions from small fires, Journal of Geophysical Research:		Formatted: Font: Italic
597	Biogeosciences, 117, https://doi.org/10.1029/2012JG002128, 2012,		Formatted: Font: Bold
598	Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E.		Formatted: Font: Bold
599	C., and Kaplan, A.; 2003 Global analyses of sea surface temperature, sea ice, and night marine		
600	air temperature since the late nineteenth century, 108, https://doi.org/10.1029/2002JD002670,		
601	2003. 108		Formatted: Font: Bold
602	Schmidt, G. A., Kelley, M., Nazarenko, L., Ruedy, R., Russell, G. L., Aleinov, I., Bauer, M., Bauer,		
603	S- E Bhat, M- K Bleck, R Canuto, V Chen, Y Cheng, Y Cheng, Y		
604	Aria de Fainchtein, Rria Faluvegi, Gria Hansen, J. Eria Healy, R. Jria Kiang, N. Yria Koch, Dria Lacis,		
605	A- A		
606	Oinas ₇ V ₇₇₂ Oloso ₇ A- O ₇₇₂ Perlwitz ₇ J- P ₇₇₂ Puma ₇ M- J ₇₇₂ Putman ₇ W- M ₇₇₂ Rind ₇ D ₇₇₂ Romanou ₇		
607	A _{ria} Sato, M _{ria} Shindell, D. T _{ria} Sun, S _{ria} Syed, R. A _{ria} Tausnev, N _{ria} Tsigaridis, K _{ria} Unger, N _{ria}		
608	Voulgarakis ₇ A ₇₇ , Yao ₇ M ₇₇ -S ₇₇ and Zhang ₇ J \rightarrow 2014 Configuration and assessment of the GISS		
609	ModelE2 contributions to the CMIP5 archive ₅ Journal of Advances in Modeling Earth Systems ₅		Formatted: Font: Italic
610	6 , 141- 184, 10.1002/2013MS000265, 2014.84		Formatted: Font: Bold
611	Shindell D T, Faluvegi G, Unger N, Aguilar E, Schmidt G A, Koch D M, Bauer S E and Miller R L 2006		
612	Simulations of preindustrial, present-day, and 2100 conditions in the NASA GISS composition		
613	and climate model G-PUCCINI Atmos. Chem. Phys. 6 4427-59		
614	Sofiev M, Ermakova T and Vankevich R 2012 Evaluation of the smoke-injection height from wild-land		
615	fires using remote-sensing data Atmos. Chem. Phys. 12 1995-2006		
616	Twomey ₇ S.: <u>1974</u> Pollution and the planetary albedo ₅ Atmospheric Environment (1967) ₇ 8_{7} 1251-1256,*		Formatted: Indent: Left: 0 cm, Hanging: 7.2 ch
617	https://doi.org/10.1016/0004-6981(74)90004-3, 1974.6		Formatted: Font: Italic
618	van der Werf ₇ G- R		Formatted: Font: Bold
619	M ₁₇₁₂ van Marle ₇ M ₇ J E ₁₇₁₂ Morton ₇ D C ₁₇₁₂ Collatz ₇ G J ₁₇₁₂ Yokelson ₇ R J ₁₇₁ and Kasibhatla ₇ P S		
620	2017 Global fire emissions estimates during 1997–2016; Earth Syst. Sci. Data; 9, 697-720;		Formatted: Font: Italic
621	<u>10.5194/essd-9-697-2017, 2017.</u>	<hr/>	Formatted: Font: Bold
622	Veira, A., Kloster, S., Schutgens, N. A. J., and Kaiser, J. W. 2015 Fire emission heights in the climate		
623	system – Part 2: Impact on transport, black carbon concentrations and radiation _{$\frac{1}{2} Atmos. Chem.$}		Formatted: Font: Italic
624	Phys., 15, 7173-7193, 10.5194/acp-15-7173-2015, 2015.93		Formatted: Font: Bold
625	Venevsky S, Thonicke K, Sitch S and Cramer W 2002 Simulating fire regimes in human-dominated		
626	ecosystems: Iberian Peninsula case study Global Change Biology 8 984-98		
627	Wagner V 1987 Development and structure of the Canadian Forest Fire Weather Index System, Forestry		
628	Technical Report: Canadian Forestry Service)		
629	Walter C, Freitas S R, Kottmeier C, Kraut I, Rieger D, Vogel H and Vogel B 2016 The importance of		
630	plume rise on the concentrations and atmospheric impacts of biomass burning aerosol <i>Atmos</i> .		
631	Chem. Phys. 16 9201-19		
632	Ward; D. S.; Kloster; S.; Mahowald; N. M.; Rogers; B. M.; Randerson; J. T.; and Hess; P. G.; 2012 The		Formatted: Indent: Left: 0 cm, Hanging: 7.2 ch
633	changing radiative forcing of fires: global model estimates for past, present and future, <i>Atmos</i> .		Formatted: Font: Italic
1			

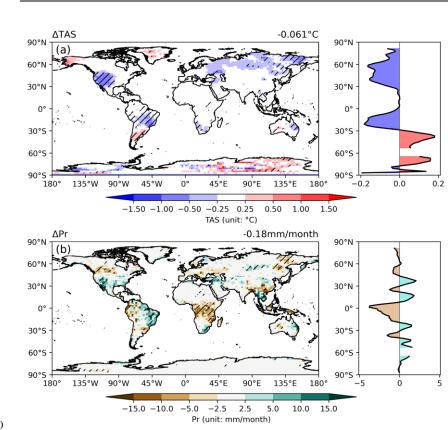
634	Chem. Phys., 12, 10857-10886, 10.5194/acp 12 10857 2012, 2012.86	Formatted: Font: Bold
635	Warren, S. G. and Wiscombe, W. J.: 1980 A Model for the Spectral Albedo of Snow. II: Snow Containing	
636	Atmospheric Aerosols %J Journal of Atmospheric Sciences, 37, 2734-2745, 10.1175/1520-	
637	0469(1980)037<2734:Amftsa>2.0.Co;2, 1980. <u>37</u> 2734-45	
638	Warren, S. G. and Wiscombe, W. J.: Dirty snow after nuclear war, Nature, 313, 467-470,	
639	10.1038/313467a0, 1985.	
640	Xu ₇ L ₇₇₂ Zhu ₇ Q ₇₇₂ Riley ₇ W ₇ J ₇₇₂ Chen ₇ Y ₇₇₂ Wang ₇ H ₇₇₂ Ma ₇ P ₇₂ L ₇₇ and Randerson ₇ J ₇ T ₇ <u>2021</u> The Influence	Formatted: Indent: Left: 0 cm, Hanging: 7.2 ch
641	of Fire Aerosols on Surface Climate and Gross Primary Production in the Energy Exascale Earth	
642	System Model (E3SM); Journal of Climate; 34, 7219-7238, 10.1175/JCLI-D-21-0193.1,	Formatted: Font: Italic
643	<u>2021.38</u>	Formatted: Font: Bold
644	Yan H, Zhu Z, Wang B, Zhang K, Luo J, Qian Y and Jiang Y 2021 Tropical African wildfire aerosols	
645	trigger teleconnections over mid-to-high latitudes of Northern Hemisphere in January	
646	Environmental Research Letters 16 034025	
647	Yu; P.; Toon; O: B.; Bardeen; C: G.; Zhu; Y.; Rosenlof; K: H.; Portmann; R. W.; Thornberry; T. D.;	Formatted: Indent: Left: 0 cm, Hanging: 7.2 ch
648	Gao, RS, Davis, S. M., Wolf, E. T., Gouw, J. d., Peterson, D. A., Fromm, M. D., and	
649	Robock, A .: 2019 Black carbon lofts wildfire smoke high into the stratosphere to form a	
650	persistent plume , 365, 587-590, doi:10.1126/science.aax1748, 2019.<u>90</u>	Formatted: Font: Bold
651	Yue, X. and Unger, N.: Yue X, Strada S, Unger N and Wang A 2017 Future inhibition of ecosystem	
652	productivity by increasing wildfire pollution over boreal North America Atmos. Chem. Phys. 17	
653	13699-719	
654	Yue X and Unger N 2015 The Yale Interactive terrestrial Biosphere model version 1.0: description,	Formatted: Indent: Left: 0 cm, Hanging: 7.2 ch
655	evaluation and implementation into NASA GISS ModelE2 , Geosci. Model Dev., 8, 2399-2417,	Formatted: Font: Italic
656	10.5194/gmd-8-2399-2015, 2015.417	Formatted: Font: Bold
657	Yue, X. and Unger, N.: 2018 Fire air pollution reduces global terrestrial productivity, Nature	Formatted: Font: Italic
658	Communications, 9, 5413, 10.1038/s41467-018-07921-4, 2018.	Formatted: Font: Bold
659	Yue, X., Strada, S., Unger, N., and Wang, A.: Future inhibition of ecosystem productivity by increasing	
660	wildfire pollution over boreal North America, Atmos. Chem. Phys., 17, 13699-13719, 10.5194/acp-17-	
661	13699-2017, 2017.	
662	Zhuravleva; T: B:, Kabanov; D: M:, Nasrtdinov; I: M:, Russkova; T: V:, Sakerin; S: M:, Smirnov; A:,	Formatted: Indent: Left: 0 cm, Hanging: 7.2 ch
663	and Holben, B- N.: 2017 Radiative characteristics of aerosol during extreme fire event over	
664	Siberia in summer 2012, Atmos. Meas. Tech., 10, 179-198, 10.5194/amt-10-179-2017, 2017.98	Formatted: Font: Italic
665	Zou, Y., Wang, Y., Qian, Y., Tian, H., Yang, J., and Alvarado, E.: <u>2020</u> Using CESM-RESFire to	Formatted: Font: Bold
666	understand climate-fire-ecosystem interactions and the implications for decadal climate	
667	variability, Atmos. Chem. Phys., 20, 995-1020, 10.5194/acp-20-995-2020, 2020.	Formatted: Font: Italic
668		Formatted: Font: Bold
000		

Formatted: No widow/orphan control

Formatted: Font: Not Bold

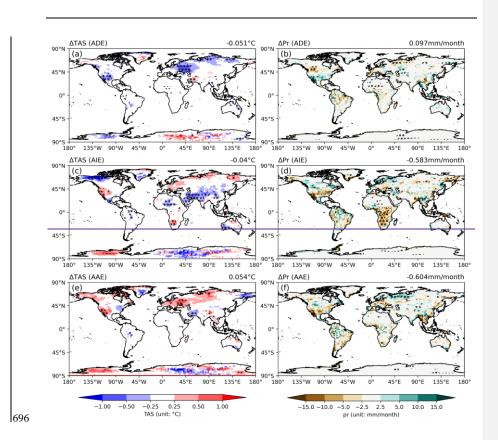


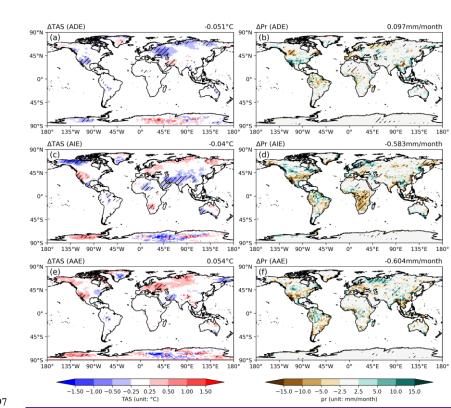

Formatted: Widow/Orphan control


Formatted: Font: Bold

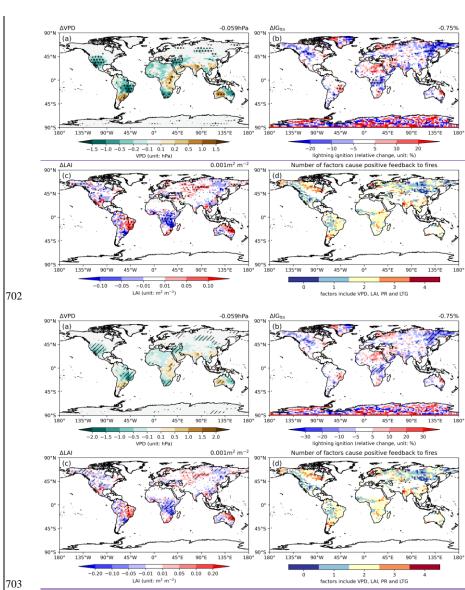
679 680

areas with significant (p < 0.1) changes.

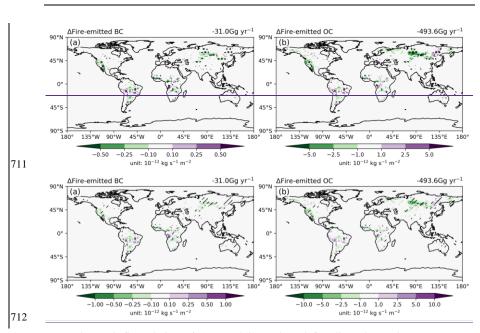




690


Fig. 3 Changes in (a) surface air temperature and (b) precipitation over land grids caused by fireaerosols. The zonal averages of these changes are shown by the side of each panel. Global average

693 value (land average for precipitation) value is shown at the top of each panel. DotsSlashes denote 694 areas with significant (p < 0.1) changes.



698Fig. 4 Changes in (a, c, e) surface air temperature and (b, d, f) precipitation over land grids due to699(a, b) ADE, (c, d) AIE, and (e, f) AAE of fire aerosols. Global land average value is shown at the700top of each panel. DotsSlashes denote areas with significant (p < 0.1) changes.

704 Fig. 5 Changes in (a) vapor pressure deficit (VPD), (b) lightning ignition, and (c) leaf area index 705 (LAI) over land grids induced by fire aerosols. Global land average value is shown at the top of 706 each panel. Dots<u>Slashes</u> denote areas with significant (p < 0.1) changes. The number of factors 707 whose changes induced by fire aerosols cause positive feedback to fire emissions is shown in (d). 708 Only grids with fire-emitted OC larger than 1×10⁻¹² kg s⁻¹ m⁻² (colored domain in Fig. S1b) are 709 shown in (d).

713 **Fig. 6** Changes in fire emissions of (a) BC and (b) OC through fire-climate interactions. The changes

714 of fire emissions are calculated as the differences between YF_AD_AI_AA and NF_AD_AI_AA 715 with $\frac{\text{dotsslashes}}{\text{dotsslashes}}$ indicating significant (p < 0.1) changes.

716 The total emission is shown at the top of each panel.

Formatted: Justified

717	Table 1. Summary of simulations using ModelE2-YIBs								
Simulation	Fires ^a	Aerosol direct effect	Aerosol indirect effect	Aerosol albedo effect					
NF_AD	No	Yes	No	No					
YF_AD	Yes	Yes	No	No					
NF_AD_AI	No	Yes	Yes	No					
YF_AD_AI	Yes	Yes	Yes	No					
NF_AD_AA	No	Yes	No	Yes					
YF_AD_AA	Yes	Yes	No	Yes					
NF_AD_AI_AA	No	Yes	Yes	Yes					
YF_AD_AI_AA	Yes	Yes	Yes	Yes					

719 ^a All simulations predict fire emissions but the runs with NF do not feed the fire aerosols into the

720 model to perturb radiative fluxes.

722	Table 2. Comparsion	n of the sin	nulated fire-	induced cha				
723		surface climate with previous studies						
	Reference	RF	ADE	AIE	AAE	TAS	Pr	Formatted Table
	Kelefenee	(W m ⁻²)	(W m ⁻²)	(W m ⁻²)	(W m ⁻²)	(°C)	(mm month ⁻¹)	
	Ward et al							
	(2012) ^a Ward <i>et al.</i>	-0.55	0.10	-1.00	0.00	_		
	<u>(2012)</u> ^a							
	Heald et al			—	_	_		
	(2014) <u>Heald et al.</u>	_	-0.19					
	<u>(2014)</u>							
	Veira et al			—	—	—		
	(2015)Veira et al.	—	-0.20					
	(2015)							
	Grandey et al.							
	(2016)Grandey et al.	-1.0	0.04	-1.11	-0.1	—	-0.018	
	<u>(2016)</u>							
	Jiang et al.							
	(2016)Jiang et al.	-0.51	0.16	-0.70	0.03	-0.03	-0.3	
	(2016)							
	<u>Zou et al. (2020)Zou</u>	-0.59	-0.003	-0.82	0.19			
	<u>et al. (2020)</u>	0.07	0.000	0.02	0.17			
	Xu et al. (2021)<u>Xu et</u>	-0.73	0.25	-0.98	_	-0.17	-1.2	
	<u>al. (2021)</u>						1	
	Yan et al. (2021)	-0.62	0.17	-0.74	-0.04	0.03	=	
_	This study	-0.565	-0.058	-0.440	-0.016	-0.061	-0. <u>18180</u> •	Formatted Table
724								

^a other effects of fire-induced on radiative turbulances are considered in this paper