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Abstract. Emissions inventories are crucial inputs to air quality simulations and represent a major source of uncertainty. 

Various methods have been adopted to optimise emissions inventories, yet in most cases the methods were only applied to 15 

total anthropogenic emissions. We have developed a new approach that updates a priori emission estimates by source sector, 

which are particularly relevant for policy interventions. At its core is a perturbed emissions ensemble (PEE), constructed by 

perturbing parameters in an a priori emissions inventory within their respective uncertainty ranges. This PEE is then input to 

an air quality model to generate an ensemble of forward simulations. By comparing the simulation outputs with observations 

from a dense network, the initial uncertainty ranges are constrained and a posteriori emission estimates are derived. Using this 20 

approach, we were able to derive the transport sector NOX emissions for a study area centred around Beijing in 2016 based on 

a priori emission estimates for 2013. The absolute emissions were found to be 1.5-9×104 Mg, corresponding to a 57-93% 

reduction from the 2013 levels, yet the night-time fraction of the emissions was 67-178% higher. These results provide robust 

and independent evidence of the trends of traffic emission in the study area between 2013 and 2016 reported by previous 

studies. We also highlighted the impacts of the chemical mechanisms in the underlying model on the emission estimates 25 

derived, which is often neglected in emission optimisation studies. This work paves forward the route for rapid analysis and 

update of emissions inventories using air quality models and routine in situ observations, underscoring the utility of dense 

observational networks. It also highlights some gaps in the current distribution of monitoring sites in Beijing which result in 

an underrepresentation of large point sources of NOX. 
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1 Introduction 30 

Nitrogen dioxide (NO2) is an important atmospheric trace gas whose adverse health impacts have been extensively studied. 

Controlled human exposure experiments have shown associations between short-term exposure to very high levels of NO2 and 

airway inflammation (Blomberg et al., 1999), increased bronchial reactivity (Folinsbee, 1992), increased susceptibility to 

respiratory virus infections (Goings et al., 1989), etc. Chronic exposure to lower doses of NO2 (e.g. those currently observed 

in Europe and North America) has also been linked to lower lung function and deficits in lung function growth among children 35 

(Gauderman et al., 2000; Peters et al., 1999), chronic respiratory symptoms (Zemp et al., 1999) and increased cardiopulmonary 

mortality (Hoek et al., 2002) among adults in epidemiological studies. A key challenge for these epidemiological studies is to 

separate out the health effects due to NO2 exposure from those due to exposure to other pollutants, whose concentrations are 

often highly correlated with those of NO2. 

 40 

NO2 belongs to the highly reactive group of nitrogen oxides (NOX), whose emissions occur primarily in the form of nitric 

oxide (NO) with a small proportion of NO2 (i.e. NOX = NO + NO2). NO is quickly oxidised by ozone (O3) to NO2 which, in 

daylight hours, rapidly photolyses to reform NO and (via O(3P)) O3. Thus, during daytime, NO, NO2 and O3 reach a 

photostationary state, typically on the time scale of a few minutes (Leighton, 1961). The presence of volatile organic 

compounds (VOCs) perturbs this null cycle by producing hydroperoxyl radical (HO2) and organic peroxy radicals (RO2) which 45 

oxidise NO without consuming O3, leading to faster NO to NO2 conversion and net O3 production. This results in a non-linear 

response of O3 concentrations to reductions in the emissions of NOX and VOCs (Seinfeld and Pandis, 2016). It is therefore 

crucial to have accurate emission estimates for developing effective and synergetic control strategies for these interdependent 

pollutants (Cohan et al., 2005).  

 50 

NOX can be produced from both anthropogenic and natural/biogenic sources such as fossil fuel combustion, biomass burning,  

soil microbial processes and lightning (Lee et al., 1997). Global total anthropogenic NOX emissions flattened around 2008, as 

reductions in Europe and North America were offset by increases in Asia (Hoesly et al., 2018). China, in particular, witnessed 

a rapid rise in anthropogenic NOX emissions until 2011-2012 (with the exceptions of a few regions where the emissions peaked 

earlier), which resulted from economic growth along with an absence of regulations (van der A et al., 2017; Liu et al., 2016; 55 

Zheng et al., 2018). Emission reduction targets were first announced in the 12th Five-Year Plan (2011-2015) (People’s Republic 

of China, 2011), followed by the Action Plan on Prevention and Control of Air Pollution (2013-2017) (State Council of the 

People’s Republic of China, 2013) and the Three-Year Action Plan for Winning the Blue Sky Defence Battle (2018-2020) 

(State Council of the People’s Republic of China, 2018). The main measures implemented included the installation of selective 

catalytic reduction equipment in power generating and industrial facilities and the implementation of stricter vehicle emission 60 

standards combined with accelerated fleet turnover (Liu et al., 2020). Decreases in anthropogenic sources are accompanied by 

an increased importance of soil NOX emissions, which are largely driven by nitrogen fertiliser application and can reach up to 
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20% of the anthropogenic emissions in the crop growing season in some regions with high agricultural activities (Lu et al., 

2021). These emissions are relatively poorly quantified and currently unabated (State Council of the People’s Republic of 

China, 2018).  65 

 

Numerous studies have quantified China’s NOX emissions and evaluated the short- or long-term trends in emissions. Some 

have used a bottom-up method that combines specific emission factors (i.e. mass of a pollutant emitted per unit fuel 

consumption or industrial production) with the corresponding activity rates (i.e. fuel consumption or industrial production), 

thus providing sector- or process-resolved emission estimates (Liu et al., 2016; Zhang et al., 2009; Zhao et al., 2013; Zheng et 70 

al., 2018). However, the underlying data are mostly not immediately available, resulting in an inevitable time-lag between the 

occurrence of emissions and the establishment of an inventory (Janssens-Maenhout et al., 2015). Moreover, they can introduce 

potentially large and poorly quantified uncertainties into the emission estimates (Hong et al., 2017; Zhao et al., 2011), which 

can be further propagated through modelled pollutant concentrations into disease or mortality burden (Crippa et al., 2019) and 

economic loss estimates (Solazzo et al., 2018).  Other studies have inferred top-down estimates of emissions using satellite 75 

observations (Ding et al., 2020; Lin et al., 2010; Qu et al., 2017; Zhang et al., 2012). This method requires tropospheric column 

densities of NO2, which are retrieved by transforming slant column densities to vertical column densities, removing the 

stratospheric contribution, and correcting for the effects of albedo, cloud and aerosols (Leue et al., 2001). Earlier studies used 

a mass balance approach that assumes a linear relationship between emission rates and column densities (Martin et al., 2003) 

or between the normalised differences in the two quantities (Lamsal et al., 2011). The linear coefficient was determined from 80 

a chemical transport model (CTM) using an a priori emissions inventory. The linear relationship in one grid cell is assumed 

to be unaffected by atmospheric transport and chemistry in neighbouring grid cells (Mijling and Van Der A, 2012; Streets et 

al., 2013). For pollutants of longer lifetimes or at finer model resolutions, however, it is important to account for non-local 

sensitivities of pollutant concentrations to emissions. Advanced data assimilation techniques such as Kalman Filter (Napelenok 

et al., 2008), ensemble Kalman Filter (Miyazaki et al., 2012) and four-dimensional variational assimilation (Kurokawa et al., 85 

2009) have been increasingly adopted to combine satellite observations and CTM simulations with prior emission estimates 

to derive a posteriori emission estimates. These inverse methods provide more timely emission estimates of high spatial and 

temporal coverage (based on the nature of satellite observations). Nonetheless, the derived emission estimates are not resolved 

by source sector. They are also subject to uncertainties propagated from the satellite retrievals and the model simulations. For 

instance, Archer-Nicholls et al. (2021) showed large differences in the NO2 column density simulated by two chemical 90 

mechanisms with different treatment of non-methane volatile organic compounds (NMVOCs), which are integrated into the 

same model with identical NOX emissions. When used in inverse modelling, these modelled NO2 quantities would result in 

different a posteriori NOX emissions.  

 

This study introduces a novel approach that provides timely updates of a priori emission estimates by source sector using 95 

readily available in-situ air quality observations. Using this approach, a priori NOX emissions in a bottom-up inventory 
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compiled for Beijing for the year 2013 are updated for 2016. Uncertainties associated with emission trends between 2013 and 

2016 were sampled by a perturbed emissions ensemble (PEE), which was constructed on the basis of an expert elicitation. The 

PEE was then input to an atmospheric dispersion model to generate an ensemble of air quality simulations. By comparing the 

simulated surface concentrations of NO, NO2 and O3 with observations from a dense monitoring network, the initially 100 

estimated uncertainties could be reduced, and a posteriori emissions could be derived. The sensitivity of the results to the 

chemical mechanisms in the model was also evaluated. 

 

2 Methods 

2.1 Observations 105 

Emission estimates were constrained using pollutant concentrations measured in ground-based networks of high 

spatiotemporal resolution. NO2 and O3 are measured hourly at the long-term air quality monitoring sites operated by the Beijing 

Municipal Environmental Monitoring Center using reference instruments. Figure 1 shows the 33 sites that were in operation 

in 2016 and located within the study area (also see Table S1), determined by extent of the base emissions (see Sect. 2.2), and 

a classification according to the local environment. Traffic monitoring sites are situated up to 20 m from the kerbside of major 110 

roads, while urban and suburban sites monitor air quality in built-up areas not in close proximity to traffic in the six central 

districts and the outer districts, respectively. Clean and regional background sites that are away from built-up areas and major 

pollution sources measure the baseline concentrations. In addition, measurements at the regional background sites are 

representative of pollution transport from and to neighbouring regions (Ministry of Environmental Protection of the People’s 

Republic of China, 2013). We used provisional real-time measurements from 2016 archived at https://quotsoft.net/air/ (last 115 

accessed 22 August 2020), as ratified historical data are not publicly available.  

 

In addition, we used high frequency (20 s) measurements of NO, NO2 and O3 from November-December 2016, the winter 

campaign period of the Atmospheric Pollution & Human Health in a Chinese Megacity (APHH-Beijing) research programme 

(Shi et al., 2019). The measurements were made with low-cost sensors also deployed in a variety of near-surface locations in 120 

Beijing (with an average measurement height of 8 m) and are hereinafter referred to as SNAQ (Sensor Network for Air Quality) 

(Fig. 1 and Table S2). The dataset has been validated against reference instrument measurements also obtained during the 

campaign and those from the aforementioned long-term monitoring sites. 
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 125 
Figure 1. The modelling domain as set by the extent of the base emissions (see Sect. 2.2) with the locations of air quality measurements 
used in this study, including a magnified view of the area within the 5th Ring Road of Beijing (right panel). Long-term monitoring 
sites are colour-coded according to the site type and labelled by their acronyms. Full names and coordinates are listed in Table S1. 
Locations of low-cost sensor (SNAQ) measurements are shown in dark grey, and the coordinates can be found in Table S2. The 
weather station where the input meteorological observations were made is marked by the grey star symbol. The administrative 130 
divisions of Beijing are shown by light grey outlines. 

 

2.2 Perturbed emissions ensemble  

We used a special version of the Multi-resolution Emission Inventory for China (MEIC) v1.3 (Li et al., 2017; Zheng et al., 

2018) developed for use in the APHH-Beijing programme. The inventory characterises emissions of CO, NOX (and NO2), total 135 

VOC (TVOC), SO2, PM10 and PM2.5 from the industry, power, residential and transport sectors in 2013. It extends 120 km and 

150 km in the North-South and East-West directions, respectively, covering most of Beijing and parts of Hebei Province with 

3 km × 3 km horizontal resolution. In the vertical, there are seven layers with the top of each layer at 38, 90, 152, 228, 337, 

480 and 660 m above ground, respectively. Each source sector is associated with a specific set of diurnal, monthly and vertical 

variation profiles that is applied to emissions of all pollutants from the sector. This inventory has been used to simulate street 140 

level air quality (Biggart et al., 2020) and quantify regional pollution transport (Panagi et al., 2020) and has been compared 

with direct flux measurements (Squires et al., 2020). To focus on locations where observations were available, we cropped the 

original extent to a smaller region of 105 km × 144 km (starting from the Northwest) and used it as the a priori emissions, 

hereinafter referred to as the base emissions. Annual NOX emissions in this region are shown in Fig. S1 by source sector. 

 145 
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NOX and TVOC emissions in Beijing were reported to have decreased substantially between 2013 (the year of the emission 

estimates) and 2016, when the observations were made (Cheng et al., 2019; Xue et al., 2020). In the surrounding provinces, 

NOX emissions also revealed a downward trend, while no apparent trend has been identified for TVOC emissions (Zheng et 

al., 2018). In addition to spatial disparities, emissions from individual source sectors also showed different patterns. In Beijing, 

for example, vehicle emission control contributed the most NOX reductions, while the largest TVOC decrease was found in 150 

the petrochemical industry (Cheng et al., 2019; Xue et al., 2020). Hence, uncertainties associated with the NOX emissions from 

each sector in the base emissions were estimated separately. Due to a lack of long-term observations, uncertainties associated 

with the TVOC emissions were not investigated, the impact of which on the constrained NOX emissions is discussed in Sect. 

4. 

 155 

To reduce subjectivity, the uncertainties were determined based on elicitation of expert knowledge. Table 1 shows the NOX 

emission parameters investigated. To facilitate the expert elicitation and the subsequent construction of PEEs, the parameters 

were defined as ratios of the 2016 values to the corresponding 2013 estimates in the base emissions. An exception is the last 

parameter which represents the night-time fraction (in percentage) of transport sector NOX emissions in 2016, irrespective of 

that in 2013. It allowed for perturbations to the diurnal distributions of traffic NOX emissions on top of perturbations to the 160 

total magnitude. In the initial PEE (see below and Sect. S1), the night-time fraction was defined as emissions occurring between 

11 pm and 6 am (inclusive) following Biggart et al. (2020), who provided evidence of an underestimation in the night-time 

vehicle sources of NOX in the a priori emissions inventory. This was attributed to an underrepresentation of emissions from 

heavy duty diesel trucks, which typically travel from surrounding provinces into Beijing at night, as they are banned from 

entering the central urban areas during the day. After reviewing a previous study which summarised the varying traffic rules 165 

and restrictions for different types of vehicles in Beijing (Zhang et al., 2019), the definition was modified to traffic NOX emitted 

during 0 – 5 am (inclusive) for the adjusted PEE. 

 

To simultaneously perturb the total magnitude and the vertical distribution of emissions, the three-dimensional industry sector 

was split into two parameters, namely ground-level emissions (i.e. from the lowest vertical layer) and elevated emissions (i.e. 170 

from all upper layers). This was also intended for the power sector. However, as emissions from the sector are present in all 

but the lowest layer, their vertical variation profile was effectively unchanged in the initial PEE. The issue was fixed by 

introducing two new parameters for power sources below and above 152 m (top height of the 4th vertical layer), respectively, 

for the adjusted PEE. Residential and transport emissions are only found in the ground layer and were thus represented each 

by a single parameter.  175 

 

An online questionnaire was designed for the elicitation (available at 

https://cambridge.eu.qualtrics.com/jfe/form/SV_3eGxf9XvC7WXESV, last accessed 14 April 2022) and circulated via the 

mailing list of the APHH-Beijing programme. A total of seven responses was received. Despite constituting a relatively small 
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group, the participants included researchers with expertise in compiling emissions inventory for the region of interest and 180 

researchers who used the same a priori emissions inventory in their own work. The fact that their responses were largely 

consistent also backs the credibility of the results. Specifically, the participants were invited to advise a lower and an upper 

bound of uncertainty for each emission parameter, such that it would be very unlikely for the true value to fall outside this 

range. The responses from the first round of elicitation were sent back to the participants anonymously for review. Finally, the 

maximum and minimum values advised by all participants for each parameter in the second round were adopted (Table 1, 185 

column Initial PEE). These wide uncertainty ranges also compensated for the small size of the expert group. 

 

Model simulations using the initial PEE as inputs showed substantial overestimation of NO2 concentrations, such that many 

members of the ensemble were unusable for constraining the emissions (see Sect. S1). Hence, we designed an adjusted PEE 

by decreasing the elicited lower bounds of uncertainty for all parameters concerning the magnitude of NOX emissions from a 190 

certain source sector. The upper bound of uncertainty for the transport emissions was also reduced, as the modelled diurnal 

concentration profiles indicated positive biases linked specifically to the sector. Lastly, the uncertainty range of the night-time 

fraction of transport emissions was adjusted following the new definition described above (Table 1, column Adjusted PEE). 

 
Table 1. Emission parametersa and the respective uncertainty ranges sampled by the initial and the adjusted perturbed emissions 195 
ensembles (PEEs). 

 

 

 

 200 

 

 

 

 

 205 

 

 

 
a All parameters are defined as ratios of the 2016 emissions to the base emissions from 2013, except for the night-time fraction 

of transport sector NOX emissions which is defined as a percentage (%) of the daily totals in 2016. 210 
b Power sector NOX emissions are effectively represented by one parameter in the initial PEE. In the adjusted PEE, the 

emissions are split into two parameters, namely emissions below and above 152 m. 

Parameter Initial  

PEE 

Adjusted  

PEE 

Min Max Min Max 

Industry sector ground level NOX emissions 0.4 1.6 0.05 1.6 

Industry sector elevated NOX emissions 0.4 1.4 0.05 1.4 

Power sector NOX emissionsb 0.2 1.4 NA NA 

Power sector NOX emissions below 152 m NA NA 0.05 1.6 

Power sector NOX emissions above 152 m NA NA 0.05 1.6 

Residential sector NOX emissions 0.4 1.5 0.05 1.5 

Transport sector NOX emissions 0.4 2 0.05 1.5 

Night-time fraction of transport sector NOX emissionsc 10 40 10 30 
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c Night-time fraction of transport sector NOX emissions is defined as those occurring during 11am-6am in the initial PEE. In 

the adjusted PEE, it is modified to NOX emitted during 0-5 am from the transport sector. 

 215 

As this study also sought to improve emission estimates of CO in the base emissions (the results of which are presented in 

Yuan et al. (2021)), the uncertainty ranges of relevant emission parameters were also elicited and modified in the same 

processes as the NOX emission parameters. The 14 parameters in total (i.e. 7 for NOX, 7 for CO) determined for the adjusted 

PEE constituted a 14-dimensional uncertain space, which was probed efficiently using the maximin Latin hypercube sampling, 

which maximises the minimum inter-sample distance (Johnson et al., 1990). A rule of thumb is to have a sample size 10 times 220 

the dimension (Loeppky et al., 2009). We drew 140 samples, effectively doubling the sample size generally required (i.e. if 

only NOX emission parameters were perturbed). A simultaneous perturbation to both CO and NOX was justified by the fact 

that CO is treated as an inert pollutant in the model used (see Sect. 2.3), thus varying CO emissions do not affect the modelled 

NOX concentrations (and vice versa). The sample values were then used as spatiotemporally uniform scaling factors to perturb 

the corresponding values in the base emissions to construct a 140-member PEE, hereinafter referred to as the adjusted PEE. 225 

Figure 2 shows the total NOX emissions by source sector and vertical layer and the mean diurnal variations of NOX emissions 

in the ensemble members. In each member, the set of scaling factors applied to NOX was also applied to the emissions of NO2, 

such that primary NO2 (f-NO2, i.e. the proportion of NOx emitted directly as NO2) in the base emissions remained unchanged, 

with a value of 6.7% in all source sectors (and thus grid cells). In reality, however, the f-NO2 varies between sectors. Much 

attention has been paid to the f-NO2 in vehicle exhausts, while little is known about the f-NO2 in residential emissions. It is 230 

thus difficult to evaluate whether the 6.7% in the base emissions is representative of the aggregated NOX emissions in the study 

area. 
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Figure 2. (a) Annual total NOX emissions shown by contributions from individual source sectors in the 140-member adjusted 235 
perturbed emissions ensemble (PEE) and the base emissions (marked by black frames). (b) Vertical distributions of the annual total 
NOX emissions in the adjusted PEE and the base emissions. The height represents the top height (above local ground level) of each 
vertical layer. (c) Annual mean diurnal variations (in local time) in total NOX emissions in the adjusted PEE and the base emissions. 
In panels (b) and (c), the base emissions are marked by black lines and triangle symbols, while the adjusted PEE members are 
colour-coded according to their annual total NOX emissions with darker colour indicating higher values. 240 

 

2.3 Model description and simulation setup 

We used ADMS-Urban (version 4.2), a state-of-the-art urban scale high resolution quasi-Gaussian dispersion model (McHugh 

et al., 1997; Owen et al., 2000). The model has been applied in air quality simulations in cities worldwide including Beijing 

(Biggart et al., 2020; He et al., 2019; Hood et al., 2018). Dispersion calculations are based on the state of the atmospheric 245 

boundary layer which is parameterised based on Monin-Obukhov similarity theory (Venkatram, 1996). The parameterisation 

is explained in detail in previous studies (e.g. Biggart et al., 2020). The minimum required meteorological input data including 
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hourly wind speed, wind direction and cloud cover were measured at a weather station at the Beijing Capital International 

Airport (see Fig. 1) and archived in the NOAA Integrated Surface Database (Smith et al., 2011). Local disturbance to the mean 

flow field by individual buildings and street canyons was not accounted for as such data were unavailable. Nonetheless, 250 

differences in the near-surface dynamics at the weather observatory (situated in open landscape) and at the measurement sites 

(the majority of which are located in built-up areas) were represented by different values of roughness length and minimum 

Obukhov length,  as described in Yuan et al. (2021).  

 

Chemistry calculations are enabled by two fast chemistry schemes for the NOX photolytic chemistry and the formation of 255 

sulphate aerosols, respectively (Cambridge Environmental Research Consults Limited, 2017). The former is based on the 

Generic Reaction Set (Azzi et al., 1992) which reduces the complex mechanisms involving NOX, O3 and VOCs to seven 

reactions: 

ROC + hν → RP + ROC            (R1) 

RP + NO →	NO!                                                                                                                                                               (R2) 260 

NO! + hν → NO + O"            (R3) 

NO + O" → NO!                              (R4) 

RP + RP → RP                          (R5) 

RP + NO! → SGN                         (R6) 

RP + NO! → SNGN	                         (R7) 265 

2NO + O! → 2NO!                         (R8) 

where ROC, RP, SGN and SNGN represent reactive organic compounds, radical pool, stable gaseous nitrogen product and 

stable non-gaseous nitrogen product, respectively. Reaction (R8) has been added to the scheme in ADMS-Urban, but its impact 

is only significant with sustained high levels of NO concentrations (e.g. 1000 μg m-3 for several hours) due to a small rate 

constant (Cambridge Environmental Research Consults Limited, 2017). It is evident that only reactions (R3) and (R4) are 270 

conservative chemical reactions, while the rest represent approximations of multiple reactions lumped together. For example, 

reaction (R1) represents all reactions that produce radicals via the photo-oxidation of VOCs. Thus, the rate coefficients of 

these generic reactions have been determined empirically by fitting the simulation outputs to smog chamber data (Azzi et al., 

1992). The rate constant of the explicit reaction (R3) can be calculated from solar radiation, which is often estimated by ADMS-

Urban based on the input meteorological data, when direct measurements are unavailable (as is the case in this study). By 275 

appealing to NOX-O3 photostationary state the model also derives a NO2 photolysis rate from the background concentrations 

of NO, NO2 and O3 and takes the lower value between the two (Cambridge Environmental Research Consults Limited, 2017).  
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Background pollutant concentrations are thus required as an input, not only to account for pollution sources not included in 

the input emissions (e.g. transported from outside the extent of the emissions inventory), but also to constrain the reaction 280 

coefficients for reactive species. As mentioned in Sect. 2.1, continuous measurements of NO2 and O3 are available from the 

long-term monitoring network. In each hour, we input the inverse distance weighted mean of the concentrations at two of the 

clean or regional background sites (a total of six, see Fig. 1) located to each side of the incoming wind direction in that hour 

as the background in the adjusted PEE simulations. This was different from the initial PEE simulations (see Sect. S1) which 

used a baseline concentration, defined as the 10th percentile of the concentrations from all sites in a moving 3-h window. The 285 

method of using a network baseline to represent the non-local pollution signal has previously been applied to CO, which is 

inert in ADMS-Urban (Yuan et al., 2021), and NOX and O3 at a small spatial scale (Popoola et al., 2018). At larger scales, 

however, though it has been established that concentrations of total oxidants (OX = O3 + NO2) consist of a local component 

that correlates with NOX emissions and a NOX-independent regional component (Clapp and Jenkin, 2001; Han et al., 2011), 

the partition of OX between NO2 and O3 may be highly variable in time and space due to their rapid interconversion and 290 

reactions with other species. Using values measured at two neighbouring sites away from major sources ensured a more 

realistic partition of OX in the adjusted PEE simulations. The sensitivity of the simulation output to different definitions of 

NO2 and O3 background concentrations is further investigated in Sect. 4. 

 

For NO and TVOC for which long-term measurements were unavailable, we used upwind concentrations from the Copernicus 295 

Atmosphere Monitoring Service (CAMS) reanalysis dataset (Inness et al., 2019). At each time step (every 3 hours), we 

calculated the inverse distance weighted mean of the values from the two grid cells in the lowest vertical layer located directly 

outside of the modelling domain and to each side of the incoming wind. The time series obtained was then linearly interpolated 

to hourly resolution, as required by ADMS-Urban. As TVOC is not a standard output variable in the dataset, a sum of the 8 

available VOC species was used to approximate TVOC. To validate this approach, we compared the sum of mixing ratios of 300 

29 VOC species measured at the Institute of Atmospheric Physics, Chinese Academy of Sciences during the APHH-Beijing 

winter campaign with the approximate TVOC mixing ratios from the corresponding grid cell in the reanalysis product during 

the same period. Apart from a few peak events not seen in the latter, the two time series show a good level of agreement both 

in terms of the trend and the magnitude (Fig. 3a). The upwind NO mixing ratios extracted from the CAMS reanalysis dataset 

were compared to NO baseline mixing ratios extracted from the SNAQ measurements. Figure 3b shows a substantial positive 305 

bias in the NO extracted from the reanalysis dataset, the cause of which remains unknown. To prevent this bias from being 

propagated into the modelled concentrations, a bias correction was applied using empirical quantile mapping. This method 

equates the (empirically estimated) cumulative distribution functions (i.e. quantile functions) of the modelled and observed 

time series for regularly spaced quantiles (Boé et al., 2007; Cannon et al., 2015). During the campaign period, this significantly 

reduced the bias while the correlation was only slightly decreased. However, larger uncertainties would have been introduced 310 

when the transfer function was extrapolated to the entire time series of 2016, which were unavoidable and difficult to quantify 
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due to a lack of long-term measurements. Yet these were likely smaller than the uncertainties associated with using the 

uncorrected, positively biased values obtained from the CAMS reanalysis product. 

 

 315 
Figure 3. (a) Mixing ratios of TVOC at the Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences during the APHH-
Beijing winter campaign from the Copernicus Atmosphere Monitoring Service (CAMS) reanalysis dataset, compared to 
observations. TVOC from the reanalysis product was approximated by the sum of 8 available VOC species. The observed TVOC 
was calculated as the sum of 29 VOC species measured. (b) Original and bias-corrected upwind mixing ratios of NO from the 
reanalysis dataset (the latter were input as background pollution levels in the PEE simulations), compared to baseline (10th 320 
percentile) mixing ratios from the SNAQ measurements. For each reanalysis time series, the data and the normalised mean bias 
(NMB) and Pearson’s correlation coefficient (r) are shown in the same colour.  

 

The input meteorology data and background pollutant concentrations described above provided the same lateral boundary 

conditions for the 140 adjusted PEE simulations, among which only the emissions of NOX (and NO2) varied. An additional 325 
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simulation forced with these boundary conditions and the base emissions was also performed and is hereinafter referred to as 

the base run. All 141 simulations were run for the whole year of 2016 to produce hourly pollutant concentrations at each 

measurement location (see Fig. 1). Output of these simulations were then compared to measurements to derive a posteriori 

emission estimates.   

3 Results 330 

We first evaluated the performance of the adjusted PEE simulations in modelling NO2 concentrations at the long-term 

monitoring sites using mean square error (MSE). It is a compact indicator of model performance whose merit is demonstrated 

in the following. The MSE is calculated as: 

MSE = 	 #
$
∑ (mod% − obs%)!$
%&#  ,          (1) 

where 𝑜𝑏𝑠' is the observed value for a given averaging period 𝑖 (e.g. an hour, a day, a month), 𝑚𝑜𝑑' is the corresponding 335 

simulation output and 𝑛 represents the number of the available observations.  

 

At each site, MSE is calculated for the hourly NO2 concentrations output by each adjusted PEE simulation and the base run. 

Figure 4a shows a distinct trend of increasing MSEs with growing annual total NOX emissions, such that at most sites, the base 

run with input emissions at the upper end of the scale (see Fig. 2a) is outperformed by most of the PEE simulations. Although 340 

a single MSE does not differentiate between over- and underestimation, this clear positive association between MSEs and NOX 

emissions suggests that NOX emissions are positively biased, both in the base emissions and in most members of the PEE. If 

NOX emissions were negatively biased in a considerable subset of the ensemble members, the MSEs would first decrease as 

emissions increased, until the absolute bias in the emissions reached a minimum. It is also evident that the base run is generally 

associated with larger errors at urban and traffic monitoring sites compared to other sites. Moreover, the increase in MSEs 345 

with increasing emissions is more rapid at these locations, resulting in a wider range of errors associated with the ensemble of 

simulations. This is an indication that the base emissions are larger in magnitude in the central areas (where these sites are 

situated, see Fig. 1) than in the periphery and are overestimated to a larger extent. Though spatially uniform scaling factors 

were applied within the study area, regions with higher base emissions would show larger variations in the perturbed emissions 

and thus model errors. This highlights a potential issue associated with spatially uniform perturbations to spatially non-uniform 350 

emissions. 

 

Due to the important role of O3 in converting NO into NO2, the adjusted PEE simulations’ performance in modelling the O3 

concentrations was also evaluated. In other words, this was to ensure that the underlying chemical mechanisms were correctly 

modelled and that simulations with lower NOX emissions showed better agreement with NO2 observations for the right reasons. 355 
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We calculated the MSEs in maximum daily 8-hour mean (MDA8) O3 concentrations1. Among the numerous O3 metric 

available, the MDA8 O3 is widely used for model-observation comparison due to its relevance in regulation and health impact 

assessments (Lefohn et al., 2018). Figure 4b shows that as with NO2, the base run is also generally associated with higher 

MSEs than many PEE simulations. At more sites, however, the positive association between model error and NOX emissions 

seen in Fig. 4a breaks down (e.g. at DSH and MTG) or even becomes reversed (e.g. at HR and LLH). This underscores the 360 

complex effects of non-linear chemistry and suggests that the MSEs in MDA8 O3 are less strongly associated with the input 

NOX emissions, the reason for which can be revealed by a breakdown of the MSE. 

 

 
1 The adjusted PEE simulations’ performance in modelling the hourly O3 concentrations was also evaluated. The median MSEs in hourly 
O3 concentrations of all simulations are dominated by the mMSE, and their association with the input NOX emissions is substantially 
weaker than the association between median MSEs in MDA8 O3 concentrations and NOX emissions. 
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Figure 4. Mean square errors (MSE) in (a) hourly NO2 concentrations and (b) daily maximum 8-hour mean (MDA8) O3 365 
concentrations associated with the adjusted perturbed emissions ensemble (PEE) simulations, arranged in ascending order of the 
input annual total NOX emissions (from left to right), and the base run (marked by black frames) at each long-term monitoring site. 
In each panel, the MSEs are grouped into quartiles and colour-coded accordingly. The monitoring sites are arranged and colour-
coded according to the site type: urban site (magenta), traffic monitoring site (purple), suburban site (orange), clean site (light green) 
and regional background site (green).  370 

(a)

(b)
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The MSE can be mathematically decomposed into the sum of three terms (Solazzo and Galmarini, 2016): 

MSE =		 [CmodDDDDDD − obsDDDDDE!] + [(σ()* − rσ)+,)!] + [σ)+,
! × (1 − r!)]                                                                           (2) 

where 𝜎-./ and 𝜎.01 represent the standard deviation of the modelled and observed values, respectively, and 𝑟 is the Pearson’s 

correlation coefficient between model outputs and observations. The first term in Eq. (2) represents the bias component of 375 

model error and it is largely introduced by external forcings, for example, input emissions and boundary conditions. The second 

term is the variance error which is associated with the processes resolved in a model. A trade-off between bias and variance, 

in other words, accuracy and precision, is often inevitable in complex models (Sun and Archibald, 2021). The last term, by 

definition, represents the proportion of the observed variance unexplained by the model. It summarises all non-systematic 

errors, including the noise and inherent variability (e.g. due to turbulence closure) in the observations as well as errors arising 380 

from the linearisation of non-linear processes, and is referred to as the minimum achievable MSE (mMSE). The MSE is thus 

a well-rounded metric suitable for operational model evaluation, and its decomposition provides indications of possible sources 

of model error (Solazzo and Galmarini, 2016).  

 

The values of MSEs shown in Fig. 4 were decomposed according to Eq. (2) and the term with the largest contribution to the 385 

MSE associated with each simulation at each site is shown in Fig. 5. There are striking differences in the attribution of error 

for hourly NO2 and MDA8 O3. Variance errors have the largest share in the MSEs in hourly NO2 concentrations associated 

with most of the adjusted PEE simulations at over half of the reference sites. At another 1/4 of the sites, all of which are urban 

or traffic monitoring sites, bias accounts for most of the errors in the bulk of the simulations. This is another indication of a 

higher degree of overestimation in the central areas in the base emissions and subsequently in many members of the adjusted 390 

PEE. For most sites (regardless of the site type), simulations using the lowest annual total NOX emissions are associated with 

MSEs that are mostly made up by the mMSE. 

 

At the urban and traffic monitoring sites where the MSEs in hourly NO2 associated with the ensemble simulations are mainly 

made up of the bias error, the bias also happens to be the largest term in most MSEs in MDA8 O3 (Fig. 5b). At most other sites 395 

(including all suburban, clean and regional background sites), however, the MSEs in MDA8 O3 are dominated by the mMSE, 

irrespective of the input NOX emissions. This explains the weaker association between the total MSEs in MDA8 O3 and the 

emissions revealed in Fig. 4b, as the mMSE is much less dependent on model inputs. A further breakdown of the mMSEs (Fig. 

S4) reveals that variances in the observations of MDA8 O3 are substantially higher than those in the observed hourly NO2 

concentrations. Despite considerably better correlation between model outputs and the observations, these large variances in 400 

the observations result in mMSEs in MDA8 O3 concentrations that are only moderately smaller than those associated with 

hourly NO2 concentrations. Meanwhile, the MSEs in O3 are considerably lower than those in NO2, the largest share of the 
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mMSEs in the former is thus explained. Because of this dependence on the observations and the weaker connection to external 

drivers, the mMSE is often considered the least concerning component of model error (Solazzo and Galmarini, 2016). 

 405 

 
Figure 5. Error component with the highest contribution to the mean square errors (MSE) in (a) hourly NO2 concentrations and (b) 
daily maximum 8-hour mean (MDA8) O3 concentrations associated with the adjusted perturbed emissions ensemble (PEE) 
simulations, arranged in ascending order of the input annual total NOX emissions (from left to right), and the base run (marked by 
black frames) at each long-term monitoring site. The monitoring sites are arranged and colour-coded according to the site type: 410 
urban site (magenta), traffic monitoring site (purple), suburban site (orange), clean site (light green) and regional background site 
(green).  

(a)

(b)

Bias Variance Min. achievable MSE
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As the distributions of the 33 MSEs (i.e. one for each long-term monitoring site) associated with individual PEE simulations 

are mostly non-Gaussian, we used the median MSE to represent a simulation’s average performance for a certain pollutant 415 

across all sites within the modelling domain. A breakdown of the median MSEs (Fig. 6) is consistent with the findings 

described above: with more accurate (lower) input NOX emissions, a simulation’s average performance for hourly NO2 can be 

improved substantially to a point that the remaining model error consists mostly of the non-systematic mMSE. The average 

performance for MDA8 O3 is less strongly associated with NOX emissions, as it is dominated by the mMSE in the majority of 

the PEE simulations. These associations between median MSEs and input emissions are also tested using simple linear 420 

regression (Fig. S5). Though both regression models are statistically significant (p-value < 0.001), more variability in the 

modelled hourly NO2 is explained, compared to that in the modelled MDA8 O3. The scatter of the points around the regression 

line reveals the variations in model performance with varying mix of source sectors, given similar strengths of total emissions 

(note that these are represented on an ordinal scale in Fig. 4 – Fig. 6). This also demonstrates the importance of using network 

observations as constraints. With spatially uniform perturbations, it is likely that several different combinations of emission 425 

parameter values result in similar concentrations at a particular location. The risk of constraining the parameter values to just 

one of the possible combinations is reduced, when observations that sample a wide range of local environments are used. 
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Figure 6. Decomposed median mean square errors (MSE) in (a) hourly NO2 concentrations and (b) daily maximum 8-hour mean 430 
(MDA8) O3 concentrations associated with the adjusted perturbed emissions ensemble (PEE) simulations, arranged in ascending 
order of the input annual total NOX emissions (from left to right), and the base run (marked by black frames).  

 

On account of the analysis above, we only used observations of NO2 to constrain NOX emissions, which is also in line with 

numerous top-down emission optimisation studies using satellite observations of column NO2 (Lamsal et al., 2011; Martin et 435 

al., 2003; Napelenok et al., 2008; Qu et al., 2017). Figure 7 shows the average performance for hourly NO2 of individual PEE 

simulations against the value set for each emission parameter in Table 1. Figure 7(f) reveals a strong positive correlation 

between the median MSE in hourly NO2 of a simulation and the input transport sector NOX emissions. Simulations with a 

median MSE within the 1st quartile are forced with transport emissions 6-65% of those in the base emissions. This range 

continues to reduce (from both ends) with improving simulation performance, such that when the median MSE falls below the 440 

10th percentile, the corresponding traffic emissions are only 7-43% of those in the base emissions. The range determined by 

the top performing 5% of the simulations (i.e. with a median MSE within the 5th percentile) remains the same, while it can be 

further constrained one-sidedly to 7-18% if only the top 1% were considered. However, as the top 1% of a 140-member 

ensemble contains (maximally) 2 simulations, the difference in whose average performance is marginal (≤1.5%), this range 

was considered not robust.  445 
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In addition to the total magnitude, the night-time fraction of the transport sector NOX emissions could also be constrained (Fig. 

7g). Instead of hourly NO2, performance of the adjusted PEE simulations was evaluated against the observed annual mean 

diurnal variations of NO2 at each long-term monitoring site. The median of all 33 MSEs in the diurnal profiles at individual 

sites modelled by a simulation was also used to represent its average performance in modelling the different diurnal profiles 450 

observed within the study area (see Fig. S3). Though not as evident as the case of total transport emissions, the range of the 

night-time fraction also becomes narrower with improving model skill. Amongst simulations with a median MSE in diurnal 

NO2 profiles within the 15th percentile, 11-29% of the transport emissions occur at night (in contrast to the 9% in the base 

emissions). In the top 5% of the simulations, this fraction varies between 15% and 25%.  

 455 

Emission parameters for other source sectors could not be constrained with strong confidence (Fig. 7a-e), as the ranges of 

parameter values only start to noticeably differ from the full uncertainty range when the median MSE in hourly NO2 falls 

within the 10th percentile or even below. The residential sector is the smallest source sector of NOX in the base emissions (see 

Fig. 2a). A source apportionment of the base run reveals that its contribution to the annual mean NOX concentrations at 

individual long-term monitoring sites varies between 3% and 8% (Fig. S6). It can thus be expected that even a 150% increase, 460 

i.e. its upper bound of uncertainty (see Table 1, column Adjusted PEE), is not sufficient to cause substantial changes in the 

simulation performance for NOX, based on which the emissions can be constrained.  

 

Interestingly, Fig. S6 also reveals that at most sites, the contribution of NOX base emissions from the power sector to the 

modelled annual mean NO2 concentrations is even smaller than that from the residential sector, though the emissions are over 465 

two times higher (see Fig. 2a). This is attributable to the nature of the power sector, which is characterised by a few large point 

sources emitting at elevated levels. These sources undergo greater dispersion before reaching the surface-based monitoring 

sites (compared to ground level emissions), thus their impact at most sites is small. As an example, the annual mean NOX 

concentration simulated at the site NZG is very similar to that modelled at the site GC, yet less than 3% of this concentration 

stems from NOX emissions from the power sector, as opposed to the 11% share at GC (Fig. S6). This can be explained by Fig. 470 

S7 in which the concentration resulted from power emissions is further apportioned to each grid cell. It is evident that the 

concentration at GC is predominantly contributed by the grid cell directly to its west. In fact, this grid cell contains the highest 

power emissions of NOX within the study area. In comparison, the site NZG is located at some distance from other grid cells 

with relatively large power sources. The contributions of these grid cells to the NOX concentrations at NZG are smaller. The 

differences are about one order of magnitude, as the contributions are log transformed in the figure. 475 

 

The fact that emissions released at higher levels are not well sampled by the existing surface-based monitoring sites also applies 

for those of NOX from industrial sources (emitted at up to 152 m). In addition, emissions from both source sectors were 

separated into two parameters and perturbed simultaneously (i.e. in an uncorrelated matter) for varying vertical distributions. 
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The uncertainty range of the sum of the two parameters, i.e. the total power or industrial emissions, was thus smaller than the 480 

individual uncertainty ranges and may not be sufficiently large to capture the actual emissions. 

 

The short-term, independent SNAQ measurements of NO2 were also used to constrain the emission parameters following the 

same approach (Fig. S8). Similarly, adjusted PEE simulations showing better performance for hourly NO2 concentrations and 

mean diurnal variations of NO2 concentrations (over the measurement period) at SNAQ sites are associated with lower 485 

transport sector total emissions, but a higher percentage of these emissions occurring at night. In the top performing 5% of the 

simulations, total traffic emissions are 7-43% of those in the base emissions, while the night-time fraction varies between 15% 

and 26%. The fact that the uncertainty ranges constrained by the short-term SNAQ measurements are consistent with those 

using long-term reference measurement demonstrates the robustness of both this approach and the findings. This also supports 

the use of low-cost sensors for this particular application, as they are more affordable for deployment in a dense network. 490 
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Figure 7. Average performance of the adjusted perturbed emissions ensemble (PEE) simulations and the base run (marked with 
black strokes) as a function of emission parameter values. The scales on the x-axes correspond to the uncertainty ranges in Table 1, 
column Adjusted PEE. The top performing 25%, 20%, 15%, 10%, 5% and 1% of the simulations are coloured in a darkening green 495 
shade, as measured by their median mean square errors (MSE) in hourly NO2 concentrations at the long-term monitoring sites 
across the modelling domain (see Fig. 6) in all panels except in (g), where median mean square errors in the annual mean diurnal 
variations of NO2 concentrations are used (note the different scale on the y-axis). 
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4 Discussion 500 

According to the base emissions, total NOX emissions from the transport sector were 2.1×105 Mg within the study area which 

extends over most of Beijing and parts of Hebei Province in 2013, 9% of which occurred during 0-5 am. Based on the top 5% 

of the adjusted PEE simulations for modelling NO2 hourly concentrations and diurnal profiles, we found that transport NOX 

emissions were likely to have decreased to 1.5-9×104 Mg (i.e. a 57-93% reduction) in 2016 and the night-time fraction was 

between 15% and 25%.  505 

 

An exact comparison of these results with findings of previous studies is not possible, as the emissions were investigated over 

different spatial and/or temporal scales. However, it is possible to compare the relative changes in emissions. Biggart et al. 

(2020) found that total NOX emissions rates from the same a priori emissions inventory (and all source sectors) were 1.8 times 

higher than those from an optimised emissions inventory (with which ADMS-Urban simulated NOX and NO2 concentrations 510 

that were in much better agreement with the corresponding observations), though their investigation was focused on a small 

domain in urban Beijing and the duration of the APHH-Beijing winter campaign only. They also found that the modelled mean 

diurnal variations in NO2 concentrations at most sites could be substantially improved when the night-time fraction of NOX 

emissions was increased by 25% and 50%. Nonetheless, as mentioned in Sect. 2.2, this was defined as NOX emitted between 

11 pm and 6 am from all source sectors. 515 

 

Squires et al. (2020) compared NOX emission rates in the same a priori emissions with flux measurements made from a tower 

in central Beijing (where SNAQ39 was also deployed, see Fig. 1) during the APHH-Beijing winter campaign. The study area 

was also smaller than that in this work, as the flux footprint (i.e. the upwind source area of the measured fluxes) was on average 

within 2 km (maximal 7 km) of the tower. Compared to the measured fluxes, the emissions rates were found to be overestimated 520 

by a mean factor of 9.9. They further considered emissions only from the transport and residential sectors (as no industrial or 

power sources were identified within the average footprint) and reduced these by 30%, yet these were still on average 3.3 times 

higher than the fluxes. They also found much smoother diurnal variations in the NOX fluxes compared to those in the emission 

rates, indicating that the night-time fraction was underestimated in the latter. 

 525 

In the standard MEIC v1.3 (from which the a priori emissions were downscaled and re-gridded), annual NOX emissions from 

the transport sector were estimated to be 1.05×105 Mg in Beijing and 6.59×105 Mg in Hebei Province in 2013. In 2016, these 

figures decreased to 8.87×104 Mg and 5.68×105 Mg, respectively, corresponding to reductions by 15.5% and 13.8%, which 

are substantially lower than the reductions reported in this work. A slightly larger reduction of 20% (from 1.44×105 Mg in 

2013 to 1.15×105 Mg in 2016) was estimated for vehicle (including on- and off-road vehicles) sources of NOX in Beijing by 530 
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Cheng et al. (2019), who used a bottom-up emissions inventory for Beijing which was compiled from the county level and 

associated with finer spatial resolutions than MEIC established from the province level. They also concluded that vehicle 

emission control measures contributed the most to the total reductions in NOX emissions over this period. According to the 

China Vehicle Environmental Management Annual Reports, NOX emissions from on-road vehicles were 7×104 Mg in Beijing 

and 5.2×105 Mg in Hebei Province in 2013. These fell by 14% and 10%, respectively, to 6×104 Mg and 4.7×105 Mg in 2016, 535 

despite an increase in vehicle ownership (Ministry of Environmental Protection of the People’s Republic of China, 2014, 

2017). 

 

The downward trends in traffic sources of NOX between 2013 and 2016 found by this study and the studies and reports 

mentioned above contrast with the results in Xue et al. (2020). Based on yet another bottom-up emissions inventory for Beijing, 540 

they showed that mobile (i.e. on-road and off-road vehicles) sources of NOX increased from 9.6×104 Mg to 1.1×105 Mg over 

the same period. Though they found a 20% reduction in the total anthropogenic NOX emissions from 2013 to 2016, this was 

primarily attributed to optimised energy structure in the industry, power and residential sectors. In this study, we found that 

amongst the top performing 5% of the adjusted PEE simulations, the reduction in total NOX emissions from the base emissions 

varies between 59% and 74% (due to reductions from transport sources only, with other sources fixed). These conflicting 545 

findings again highlight the presence of inherent uncertainties in emissions inventories, the impact of which on the results of 

this work is discussed in the following, along with the impact of other sources of uncertainty. 

 

Two types of uncertainties may be associated with the base emissions. Inherent uncertainties due to underlying emission factors 

and activity rates were estimated to be ±31% for NOX emissions in MEIC (Cheng et al., 2019), which are smaller than the 550 

uncertainty ranges in Table 1, suggesting that the trends in (real-world) emissions from 2013 to 2016 represent a larger source 

of uncertainty when using the 2013 base emissions for 2016 simulations. Additional uncertainties may have been introduced 

when the standard MEIC v1.3 was downscaled and re-gridded to the a priori emissions inventory used in this work. As an 

example, Zheng et al. (2017) compared MEIC with another emissions inventory with a much larger share of point sources 

(which were allocated directly to grid cells) and different sets of spatial proxies to allocate non-point sources. They found that 555 

NOX emission fluxes from the most populated grid cells in Hebei Province were overestimated by 46-140% in MEIC, mainly 

driven by spatial proxies that over-allocated industrial emissions to urban areas. Such uncertainties may have contributed to 

the spatial inhomogeneities of the biases in the base emissions revealed in Fig. 4 and, to a certain extent, propagated into the 

derived emission estimates, as spatially uniform perturbations were applied when constructing the adjusted PEE. Hence, biases 

in the spatial distribution of emissions may also be present in the a posteriori estimates, despite improvement in terms of the 560 

total magnitude. In comparison, the propagation of inherent uncertainties in the base emissions is of less concern. Though most 

emission parameters were defined relative to the corresponding values in the base emissions for an efficient perturbation, their 

uncertainty ranges were ultimately constrained solely by the observations.  
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Uncertainties in the observational constraints are also twofold. While those due to measurement errors are most likely small, 565 

as demonstrated by the consistency in the results derived using two independent sets of observations, the underrepresentation 

of the existing observations of power and industrial sources prohibited an update of emission strengths from these sources.   

 

Another source of uncertainty is the input lateral boundary conditions which include meteorology and background pollution 

levels. The impacts of uncertainties in the input meteorological observations (i.e. due to measurement errors) are minimal, as 570 

reported in Yuan et al. (2021) using simulations forced with perturbed meteorological data. The effect of uncertainties 

associated with different background concentrations of NOX and O3 on the constrained NOX emissions is discussed next in the 

context of uncertainties in the underlying chemical mechanisms in ADMS- Urban. 

 

The chemical partition of NOX emissions into NO2 concentrations by the model represents a potentially important source of 575 

uncertainty. Many studies that infer NOX emissions from satellite observations of the tropospheric NO2 column assumed an 

accurate representation of NOX chemistry in the CTM used. However, Valin et al. (2011) demonstrated the presence of biases 

in the modelled NO2 column that are dependent on the horizontal resolution of the model, which has implications on the 

inference of NOX emissions when matching the modelled column to satellite observations. These biases result from an 

inaccurate representation of NO2 lifetime (and thus concentration) at coarse resolutions, which is determined primarily by OH 580 

concentration in daytime which, in turn, has a non-linear dependence on NOX concentration. 

 

While NO2 rapidly interconverts with NO in the presence of sunlight via NO2 photolysis and reactions of NO with O3 and 

peroxy radicals, it is also oxidised by hydroxyl radical (OH) to nitric acid (HNO3) which can then be removed from the 

atmosphere via wet/dry deposition. At night, NO oxidation continues but it cannot be converted from NO2 as no photolysis 585 

takes place. With very low concentrations of OH, NO2 is mainly oxidised by O3 to form nitrate radical (NO3) which further 

reacts with NO2 and reaches an equilibrium with dinitrogen pentoxide (N2O5). NO2 also hydrolyses on aerosol surfaces to form 

nitrous acid (HONO). NO3, N2O5 and HONO are described as night-time reservoirs of NOX, as they can regenerate NO or NO2 

after sunrise (Seinfeld and Pandis, 2016). These reservoir species are absent in the semi-empirical chemical mechanism in 

ADMS-Urban described in Sect. 2.3.  590 

 

The SNAQ measurements which included NO allowed an evaluation of the NOX photolytic chemistry in ADMS-Urban. Han 

et al. (2011) demonstrated the presence of strong linear relationship between NOX and NO during night-time and between NOX 

and NO2 during the day in observations from Tianjin, another megacity not far from Beijing. Following this approach, simple 

linear regression models were fitted to the SNAQ measured hourly averaged mixing ratios of NO and NO2, as a function of 595 

the corresponding mixing ratios of NOX. In addition, a linear function was fitted between log transformed mixing ratios of O3 

and (non-logarithmic) mixing ratios of NOX due to a negative correlation between the two (Fig. S9a). Additional linear 

functions were also fitted to day-time or night-time data only. Data from the individual SNAQ sites were not differentiated 
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because of the short duration of operation at each site. Consistent with findings by Han et al. (2011), a good linear correlation 

can be found between the day-time mixing ratios of NO2 and NOX, while there is a strong correlation between night-time 600 

mixing ratios of NO and NOX. The lowest coefficients of determination are calculated for O3 as a function of NOX, which is 

consistent with the finding of Fig. 4 and Fig. 5 that O3 concentrations are less strongly dependent on NOX emissions (Fig. S9b). 

 

We then fitted linear models to the corresponding output (i.e. for the same locations and time frame) from the top performing 

5% of the adjusted PEE simulations (see Sect. 3). These are compared with models fitted to the SNAQ measurements with 605 

respect to the slope, as it indicates the amount of changes in NO, NO2, (log transformed) O3 as NOX increases/decreases, which 

is directly related to the input NOX emissions. As can been seen from Fig. 8a, the modelled slopes of the linear models between 

NO2 and NOX are higher, whereas modelled slopes for NO as a function of NOX are lower compared to those observed, 

irrespective of the time of day. The discrepancies between modelled and observed slopes for O3 as a function of NOX are 

relatively small. This suggests that with similar concentrations of NOX as observed, the top performing adjusted PEE 610 

simulations tend to overestimate NO2 while underestimating NO. In other words, lower NOX emissions may be needed for the 

model to simulate NO2 concentrations that are consistent with the observations. This suggests that the constrained emission 

estimates of NOX are indeed sensitive to the NOX photolytic chemistry in ADMS-Urban and in this case, may be low-biased.  

 

There are several possible explanations for the model’s tendency to partition more (less) NOX into NO2 (NO). As described in 615 

Sect. 2.3, the reaction with O3 (R4) and reactions with the HO2 or RO2 (R2) are the two pathways of NO oxidation to form 

NO2 in ADMS-Urban. Organic radicals are produced via reaction (R1) in which ROC is defined as the proportion of TVOC 

that is reactive and calculated by multiplying the TVOC concentrations with a reactivity coefficient. In ADMS-Urban version 

4.2 (used in this study), a coefficient of 0.1 is adopted. It is set to 0.05 in the most up- to-date version 5 (Cambridge 

Environmental Research Consults Limited, 2017, 2020). As a secondary pollutant, modelled O3 concentrations depend on the 620 

input background levels, for which there is no widely accepted definition. To investigate the sensitivity of the model output to 

these two NO oxidation pathways, a series of sensitivity simulations were performed. All simulations were input with the same 

NOX (and VOC) emissions as R97, the adjusted PEE simulation with the best performance in simulating hourly NO2 

concentrations at the long-term monitoring sites. Again, simple linear regression models were fitted between hourly mixing 

ratios of NO, NO2, (log transformed) O3 and NOX output by these simulations. 625 

 

Figure 8b shows that different definitions of background NO2 and/or O3 (see Table S3) indeed have an impact on the modelled 

NO-to-NO2 conversion. For example, in the sensitivity simulation S5 input with the lowest background levels of NO2 and O3, 

the modelled slopes for NO2 as a function of NOX are considerably lower than the corresponding slopes modelled by R97, and 

thus closer to the observed slopes. Also, the slopes between NO and NOX associated with outputs from S5 are higher than 630 

those found in outputs from R97 and agree better with the observed slopes. However, it is important to underscore that this 

does not suggest that the 10th percentile concentration is most representative of the background concentrations of NO2 and O3. 
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It simply highlights the impact of the input background concentrations of reactive pollutants on the model outputs of relevant 

species (and thus on the emission estimates inferred on the basis of these model outputs), which can be comparable to the 

impact of varying the input NOX emissions (amongst the top performing 5% of the adjusted PEE simulations) shown in Fig. 635 

8a. This calls for further research into appropriate definitions for background levels of NOX and O3 within a vast and 

heterogeneous urban area like the modelling domain in this study. Also, it is worth noting that the modelled chemistry is also 

influenced by the input background levels of NO. However, the specific sensitivities were not investigated, as the upwind 

concentrations extracted from the CAMS reanalysis dataset are the only set of NO observations available long-term. 

 640 

The effect of organic radicals on the partition of NOX between NO2 and NO is shown in Fig. 8c by varying the concentrations 

of ROC. As explained above, ROC concentrations are controlled by both the TVOC concentrations (that result from the input 

emissions and background levels of VOC) and a reactivity coefficient which was set to 0.1 in R97 (as with other adjusted PEE 

simulations). With fixed TVOC concentrations, using a coefficient of 0.2 doubles the ROC available to produce HO2 and RO2, 

leading to an even more pronounced overestimation of NO2, accompanied by an underestimation of NO. In contrast, halving 645 

the ROC concentrations by using a coefficient of 0.05 partitions less of the NOX emitted into NO2. This highlights that the 

emissions and background concentrations of VOC (which are not evaluated in this study due to a lack of observations) also 

have an impact on the modelled NOX photolytic chemistry and thus the a posteriori emission estimates of NOX. It is also worth 

noting that biogenic VOCs are likely underestimated in the current simulations, as these are only represented by one of the 8 

species (i.e. isoprene) output by the CAMS reanalysis product used to approximate the background levels of TVOC, and are 650 

not represented at all in the base emissions (which include anthropogenic sources only). Despite low in concentrations in the 

study area (compared to anthropogenic VOCs) (Mo et al., 2018), they are associated with high radical production and thus O3 

creation potentials. Unlike background concentrations of NOX and O3, however, the effect of VOCs on the modelled NOX-O3 

chemistry is restricted to daylight hours, as they only produce radicals in the presence of solar radiation in the model. 

     655 
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Figure 8. Slopes of linear regression models fitted between the modelled hourly mixing ratios of NO, NO2, log transformed O3 and 
those of NOX at all SNAQ sites by (a) the top performing 5% of the adjusted perturbed emissions ensemble simulations (PEE) and 
the base run, (b) the background concentration sensitivity simulations and the best PEE simulation R97, (c) the ROC concentration 
sensitivity simulations and the best PEE simulation R97, compared to the corresponding slopes fitted to SNAQ measurements. The 660 
slopes for log transformed O3 as a function of NOX are exponentiated. Details of the background concentration sensitivity simulations 
are provided in Table S3. The simulations Si and Sii represent a doubling and halving of the ROC concentrations (by modifying the 
reactivity coefficient) in R97, respectively. In all panels, day-time is defined as complete hours between sunrise and sunset in Beijing 
during November-December 2016, namely 8:00-15:00 local time. 
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 665 

Another factor that affects the modelled NOX photolytic chemistry is the f-NO2 in the input emissions (see Sect. 3.1). Although 

not investigated with sensitivity experiments, it can be expected that a higher f-NO2 would result in higher NO2 concentrations 

and lower NO concentrations simulated by the model, thus further increasing the discrepancies between the modelled and 

observed slopes of linear functions, whilst a lower f-NO2 would have the opposite effect. 

 670 

5 Conclusions 

We developed a novel approach to update a priori emission estimates using ground-based network measurements as constraints 

and an ensemble of forward simulations which are input with a PEE. Using this approach, we were able to update the transport 

sector NOX emissions in Beijing from a 2013 emissions inventory for the year 2016. The updated emissions are substantially 

lower with a higher proportion occurring at night-time and are broadly consistent with findings of several previous studies. It 675 

would be possible to also update emissions from other (non-negligible) source sectors, provided that appropriate measurements 

were available. 

 

As with existing emission optimisation techniques, this approach is sensitive to the chemical mechanisms in the underlying 

model, the uncertainties of which can be propagated into uncertainties in the emission estimates. Nonetheless, this approach 680 

has several unique advantages. Compared to inverse modelling techniques, the construction of a PEE and the forward 

simulations are rapidly executable. Even when the Gaussian dispersion model used in this study is replaced with a CTM for 

more explicit representations of chemistry, the efficiency can be maintained via parallel computing. Also, surface-based 

measurements of ambient concentrations are used as constraints, which are readily available and closer to the sources of 

emissions than the satellite-based measurements. This proximity to emission sources may be particularly important for 685 

capturing the high temporal and spatial variability of highly reactive species. For example, Qu et al. (2021) found that in 

comparison to surface concentrations, the NO2 column showed a muted response to the step decrease in NOX emissions in the 

US during the COVID-19 crisis. Most importantly, this approach allows for an update of emissions by source sector, which is 

more relevant for policy interventions than total emissions, as they directly reflect the (in)effectiveness of the corresponding 

pollution control measures. Hence, we believe that this approach, particularly combined with low-cost sensors, has great 690 

potential in providing timely updates of emissions in regions undergoing rapid changes, where emissions inventories may be 

biased or out-dated as soon as they have been compiled and computing facilities may be limited. 
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