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Abstract.

In this study, we employ a regional inverse modelling approach to estimate monthly carbon fluxes over the Australian

continent for 2015–2019 using the assimilation of the total column-averaged mole fractions of carbon dioxide from the Orbiting

Carbon Observatory-2 (OCO-2, version 9). Subsequently, we study the carbon cycle variations and relate their fluctuations to

anomalies in vegetation productivity and climate drivers. Our five-year regional carbon flux inversion suggests that Australia5

was a carbon sink averaging -0.46 ± 0.08 PgC yr−1 (excluding fossil fuel emissions), largely influenced by a strong carbon

uptake (-1.04 PgC yr−1) recorded in 2016. Australia’s semi-arid ecosystems, such as sparsely vegetated regions (in central

Australia) and savanna (in northern Australia), were the main contributors to the carbon uptake in 2016. These regions showed

relatively high vegetation productivity, high rainfall and low temperature in 2016. In contrast to the large carbon sink found

in 2016, the large carbon outgassing recorded in 2019 coincides with an unprecedented deficit of rainfall and higher than10

average temperature across Australia. Comparison of the posterior column average CO2 concentration against the Total Carbon

Column Observing Networks (TCCON) and in situ measurements offers limited insight into the fluxes assimilated with OCO-

2. However, the lack of these monitoring stations across Australia, mainly over ecosystems such as the savanna and areas with

sparse vegetation, impedes us from providing strong conclusions. To a certain extent, we found that the flux anomalies across

Australia are consistent with the ensemble mean of the OCO-2 Multi-model Intercomparison Project (MIP) and FLUXCOM15

(2015-2018), which also estimates an anomalous carbon sink for Australia in 2016 of -1.09 and -0.42 PgC yr−1 respectively.

More accurate estimates of OCO-2 retrievals, with the addition of ocean glint data into our system, and a better understanding

of the error in the atmospheric transport modelling will yield further insights into the difference in magnitude of our carbon

flux estimates.
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1 Introduction20

On average, each year, the global terrestrial biosphere absorbs about one-quarter of total global fossil-fuel CO2 emissions

that human activities add to the atmosphere (Friedlingstein et al., 2020). Carbon uptake by the terrestrial biosphere plays an

important role in the Earth’s carbon cycle and in future climate projections, since they can slow down the rise in atmospheric

CO2 concentrations. Due to uncertainties in quantifying carbon fluxes by terrestrial biosphere models (Sitch et al., 2013,

2015), scientists are unsure whether the growth rate of emissions in the atmosphere is going to increase or decrease in the25

future. In particular the contributions of semi-arid regional ecosystems such as Australia are uncertain and subject to high

variability (Trudinger et al., 2016). Understanding which are the main drivers behind carbon flux variability in semi-arid

ecosystems is crucial not only for understanding the global carbon cycle but also for predicting future trends in atmospheric

CO2 concentration and consequently the future of climate change.

Australia’s contribution to inter-annual global carbon cycle variability has been a topic of interest to the carbon-cycle research30

community due to an unusually large land carbon sink anomaly of about -0.70 PgC yr−1 (relative to the 2003–2012) recorded

in 2011, which alone accounted for 57% of the global terrestrial carbon uptake anomaly in this period. Poulter et al. (2014)

suggests that the reason for this large carbon uptake in Australia was due to an increase of vegetation cover as a result of

increased precipitation in 2011, one of the wettest years on record for Australia. Another study performed by Trudinger et al.

(2016) found similar results to Poulter et al. (2014); they estimated a carbon uptake anomaly of -0.40 to -0.61 PgC yr−1 (relative35

to the 1982–2013). Global atmospheric inversions based on atmospheric CO2 concentrations also support this unexpected large

sink over Australia. A study carried out by Detmers et al. (2015) based on the assimilation of the Greenhouse Gases Observing

Satellite (GOSAT) retrievals found that the carbon sink anomaly in Australia in 2011 was about -0.23 PgC yr−1 (relative to

the period June 2009–June 2013). All these studies agree that the main driver behind the carbon sink anomaly in 2011 was

an increase in the gross primary productivity (GPP) arising from an increase in rainfall which coincides with La Niña event40

that occurred from 2010 to 2011. Haverd et al. (2016) suggested that the carbon sink anomaly recorded in 2011 was 90%

attributable to a higher than expected carbon uptake by semi-arid ecosystems such as savanna and sparsely vegetated regions,

mostly driven by a positive response of these ecoregions to precipitation anomalies.

Ma et al. (2016) suggested that the size of the 2011 carbon sink anomaly in Australia was abruptly reduced in 2012, and

was nearly eliminated in 2013 (0.08 PgC yr−1) due to a decrease in rainfall across Australia. In this study, the authors show45

that Australia’s semi-arid ecosystems’ productivity is strongly influenced by drivers such as rainfall and temperature. A recent

continental-scale inverse modelling study, utilising OCO-2 satellite data, suggests that Australia was a sink of CO2 of -0.41

± 0.08 PgC yr−1 for 2015 (Villalobos et al., 2021). In this study, the authors indicate that the stronger carbon sink estimated

in 2015 was primarily driven by an increase in productivity over the savanna and sparsely vegetated regions. In this study,

the authors also mentioned that periods with a stronger carbon uptake were likely related to increased rainfall in Australian50

semi-arid ecosystems.

The current study builds upon the work of Villalobos et al. (2021), which only performed an inversion for 2015 and focused

on the total mean of carbon flux for that period. In this study, we assimilate the total column average retrieval from NASA’s
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Orbiting Carbon Observatory−2 (OCO-2) to study the interannual variability of the Australia carbon fluxes for the period

2015–2019. An interesting question is whether the large carbon sink estimated in 2015 over semi-arid ecosystems will follow55

the same patterns after this year or whether such patterns will become stronger or weaker due to changes in precipitation and

temperature. Our paper is organized as follows: Sect. 2 describes the methodology and data we used to perform the inversion,

which also includes a description of the climate drivers and auxiliary data. Section. 3 presents the results of our five-year

inversion, which includes the analysis of the inversion performance and the study of the prior and posterior Australian carbon

fluxes, along with an assessment of the GPP carbon flux estimate derived from the CABLE model. In this section, we also60

assess the robustness of the inversion (against independent data) and provide the analysis of inter-annual variability of rainfall,

temperature and the Enhanced Vegetation Index (EVI) over semi-arid ecosystems across Australia. Section. 4 discusses how

well our assimilated OCO-2 carbon fluxes align with other global products: MIP OCO-2 global inversions and FLUXCOM,

and give some directions for future work. Finally, in Sect. 3, we summarize the results of this study.

2 Method and data65

We follow the same four-dimensional variational data assimilation approach used to estimate the Australia carbon fluxes

described in Villalobos et al. (2021). In this section we will give a brief description of the system and the data used in the

inversion. Further details can be found in Villalobos et al. (2020, 2021).

2.1 Inversion set-up

Our regional inversion system optimizes monthly-mean gridded-based surface carbon emissions x using a four-dimensional70

variational data assimilation method, which was configured to use the Community Multi-scale Air Quality Model (CMAQ)

(version, v5.3) and its adjoint (version 4.5.1; Hakami et al., 2007). Each year of the five-year period was run independently,

with a spin-up of one month for each year. Our system optimizes CO2 surface fluxes by finding the minimum of the cost

function J(x) shown in Eq. 1. Notation in this study follows Rayner et al. (2019).

J(x) =
1

2

[
(x−xb)TB−1(x−xb)

]
+

1

2

[
(H(x)−y)TR−1(H(x)−y)

]
(1)75

This cost function measures the mismatch between the CMAQ forward model simulation H and OCO-2 satellite observa-

tions y and the deviation of the control vector x from its background (also termed prior) estimate xb. In our case, the control

vector x (vector of unknowns) consists not only of the gridded CO2 surface fluxes, but also incorporates initial and boundary

conditions (BCs). These two latter variables were incorporated into the control vector to reduce any potential biases related

to the boundary inflow that could affect our system (detail of how we treat the boundary and initial conditions in our system80

can be found in Sect. 2.2 in Villalobos et al., 2020, 2021), and brief description of this treatment is found in Section 2.2. R

represents the observational error covariance matrix, which was defined as a diagonal matrix (full description of this covariance

matrix is found in Sect.2.3 in Villalobos et al., 2020) and a brief explanation of how was constructed is found in Sect. 2.4. B
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is the associated error covariance matrix of xb, boundary and initial concentrations, and includes off-diagonal terms. In these

off-diagonal values, we only include spatial and non-temporal correlations of the prior fluxes (details of the structure of the85

prior error covariance matrix is found in Section 2.4 in Villalobos et al., 2020), and summary of its description is found in

Sect 2.3.

The minimization procedure involves iterative calculations of J(x) and its gradient ∇xJ(x), using the CMAQ forward

model H and its adjoint HT, as is shown in Eq. 2.

∇xJ =B−1(x−xb)+HT (R−1 [H(x)−y)]) (2)90

The algorithm that our inversion system uses to minimize the J(x) is the Limited-Memory Broyden-Fletcher-Goldfarb-

Shanno (L-BFGS-B) (Byrd et al., 1995), implemented in the scipy python module. The L-BFGS-B algorithm iteratively

adjusts x until J(x) reaches a minimum. We reached a reasonable convergence for each year run after iteration 25. The ratio

between the cost function and the number of observations was close to the theoretical expected value (see details Sect. 3.1).

Posterior uncertainties in this study were assumed to be the same as Villalobos et al. (2020, Sect. 2.4). However, we increase95

their value by a factor of 1.2 to satisfy the theoretical assumption in the variational optimization (p.211, Tarantola, 1987).

2.2 Initial and boundary conditions

To avoid the effect of initial conditions (ICs) and boundary conditions (BCs) on our OCO-2 assimilated carbon fluxes, we

optimized them within the control vector x. Each lateral boundary (south, east, north, and west) of our regional WRF-CMAQ

domain was split into two regions. Lateral BCs at lower layer of the atmosphere were taken from σ = 1 to σ = 0.96, which100

correspond (on average) to a pressure of 972.5 hPa, while the upper boundary layer were solved from 972.5 up to 50 hPa.

Each lateral BCs was solved at a monthly scale. Boundary and initial concentration were taken from CAMS global CO2 atmo-

spheric inversion product data (version v19r1) (Chevallier, 2019). BCs uncertainties were assumed as the standard deviation

(1σ uncertainty) in the perimeter of each region of the boundaries, and uncertainties for the initial condition were set at 1%

(approximately 4 ppm). An diagram of the WRF-CMAQ domain is illustrated in Fig. 1.105
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Figure 1. Horizontal WRF-CMAQ modelling domain (shown in lighter colours) based on the Lambert conformal projection.

2.3 Transport model and prior fluxes

The CMAQ model was used to simulate atmospheric transport and dispersion. These simulations, which were run off-line

from the meteorological model, were conducted without atmospheric chemistry. The meteorological data used as input for

the CMAQ model were taken from the Weather Research and Forecasting (WRF) model (version V4.1.1) (Skamarock et al.,

2008). We run the CMAQ model at hourly resolution at a grid-cell scale of 81 km. The model has 32 vertical levels using the110

terrain-following σ vertical coordinate system. Details of the parameterizations are listed in Villalobos et al. (2021, Sect. 2.4,

Table 1). We run WRF at a spatial resolution of 81 km on a single domain (i.e., non-nested). WRF initial conditions were

taken from the ERA-Interim global atmospheric reanalysis (Dee et al., 2011), which has a resolution of approximately 80 km

on 60 vertical levels from the surface up to 0.1 hPa. Sea surface temperatures were obtained from the National Centers for

Environmental Prediction/Marine Modeling and Analysis Branch (NCEP/MMAB). The WRF model was run with a spin-up115

period of 12 hours.

The prior flux estimates used in our inversion consisted of four datasets: land biosphere fluxes, fossil-fuel, fires and ocean

fluxes. Biosphere carbon fluxes were simulated by the Community Atmosphere-Biosphere Land Exchange model (CABLE)

set-up in BIOS3 environment (hereafter referred to as CABLE BIOS3) (Haverd et al., 2018). The CABLE land surface model

consists of a biophysical core, a biogeochemical module including a nitrogen and phosphorous cycle (Wang et al., 2010),120

the Populations-Order-Physiology (POP) module for woody demography and disturbance-mediated landscape heterogeneity

(Haverd et al., 2013b), and a module for land use and land management (POPLUC; Haverd et al., 2018). However, the func-

tionality of POPLUC was not considered in BIOS runs, and the land-use change was held to be static at year 2000. CABLE can
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be run on global or regional scales. For our regional study case, CABLE was run at a regional scale (resolution 0.25 degree),

and it was forced with Australian regional drivers and observations (BIOS3 set-up). Biosphere fluxes from CABLE (∼NBP)125

include gross primary productivity (GPP), net ecosystem respiration (autotrophic and heterotrophic respiration). However, they

do not include carbon losses from fires disturbances, harvest, erosion, and export of carbon in river flow. We used averages of

3-hourly NBP estimates as input for CMAQ (further details of how we constructed NBP can be found in Sect.2.3 Villalobos

et al., 2021). The prior error covariance matrix of the terrestrial biosphere flux from CABLE was assumed to be an approxima-

tion of the net primary productivity (NPP) following the approach of Chevallier et al. (2010) with a ceiling of 3 gC m−2 d−1.130

We assumed that these uncertainties were spatially correlated with length-scale 500 km over land following Basu et al. (2013).

Within our inversion system, no temporal correlations were considered.

Fossil fuel emissions used here were based on two different inventory data sets: the Open-source Data Inventory for An-

thropogenic CO2 (ODIAC) (version 2019) (Oda et al., 2018) and the Emissions Database for Global Atmospheric Research

(EDGAR) (Crippa et al., 2020). We added some missing sectors from the EDGAR inventory to ODIAC (such as aviation climb-135

ing and descent, aviation cruise, and aviation landing and take-off datasets). ODIAC is a global gridded product distributed at

0.1◦ × 0.1◦ spatial resolution over land, which uses power plant profiles (emissions intensity and geographical location) and

satellite-observed nighttime lights. We used ODIAC monthly fluxes and incorporated a diurnal scale factor to estimate diurnal

CO2 emission variability (Nassar et al., 2013). Given that the ODIAC product only covers the period from 2015 to 2018, we

repeated the data from 2018 in 2019 but increased the value in each grid cell by 1.7%, which represents the mean annual growth140

rate of these emissions from 1970 to 2018. EDGAR is also gridded at 0.1◦ × 0.1◦ with monthly temporal resolution. There is

no EDGAR gridded product for 2016–2019, so we repeated the 2015 product to cover the other years. We increased EDGAR

aviation emissions by 2.5%, which represents the mean growth rate in this emissions sector from 2016 to 2019. Fossil fuel

prior uncertainties were assigned to be 0.44 times the value of the monthly fossil fuel estimates described above (see details in

Sect. 2.3. in Villalobos et al., 2021). Errors in fossil fuel emissions were assumed to be uncorrelated.145

Ocean flux estimates were selected from CAMS global data (version v19r1) (Chevallier, 2019). Ocean prior uncertainties

were assumed to be 0.2gC m−2 d−1 and uniform across the ocean, as in Chevallier et al. (2010). Similar to correlations for

biosphere prior uncertainties, uncertainties of ocean fluxes were assumed to be correlated in space with length-scale 1000 km.

Fire prior emissions were selected from the Global Fire Emission Database (GFED), version 4.1s, which includes emissions

from small fires. Fire emissions uncertainties were assumed to be 20% of the GFED emissions and correlated in space with150

length-scale 500 km, but not in time. The combination of all prior fluxes was regridded to the spatial resolution of the CMAQ

model.

2.4 OCO-2 observations and their uncertainties

Our regional inversion assimilates satellite observations derived from NASA’s Orbiting Carbon Observatory-2 (OCO-2; El-

dering, 2018). The OCO-2 satellite instrument carries a single instrument that incorporates three-channel imaging grating155

spectrometers developed to measure reflected sunlight by the Earth’s surface in three spectral bands: two CO2 spectral bands

in the shortwave infrared (SWIR) at 1.6 and 2.1 µm and one in the near-infrared (NIR) ar 0.76 µm (O2 A-band). From these
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radiance spectra is possible to calculate the column-averaged dry-air mixing ratio of carbon dioxide. OCO-2 employs three

different sampling strategies to collect data: nadir, glint and target mode. Nadir observations provide useful information over

land because the satellite points straight down at the surface of the Earth (surface solar zenith angle is less than 85◦). In glint160

mode the instrument points to the bright glint spot on Earth where solar radiation is directly reflected off the Earth’s surface

(local solar zenith angle is less than 75◦). In Target mode, the instrument points towards a specific location on the ground.

Target mode is use for validation, where the performance of the instrument is validated against ground-based observations

from the Total Carbon Column Observation Network (TCCON) (Wunch et al., 2011).

In this study, the regional inversion was performed using the combination of both land (nadir and glint) (LNLG) OCO-2165

observations (version 9). We used the combination of both datasets because it has been demonstrated by Miller and Michalak

(2020) that combining both modes provides a stronger and better constraint of CO2 fluxes at regional scales. Also, both datasets

present negligible bias (O’Dell et al., 2018). We did not incorporate ocean glint measurements in our inversion, because ocean

observations still have undetermined biases (O’Dell et al., 2018), which might impact the Australian carbon flux estimates.

OCO-2 LNLG dataset were selected from December 2014 to December 2019. We considered OCO-2 data since December170

2014 because we run CMAQ with a spin up of one extra-month. As an example, Fig. E1 in the Appendix show the spatial

pattern of OCO-2 soundings (LNLG) that fall in our CMAQ domain for 2015. In these Figures, we can see that OCO-2 data

provides a very good coverage over the Australian region. Such spatial coverage offers good potential to help constrain regional

biosphere CO2 fluxes.

Given that the OCO-2 spatial resolution (1.29 km × 2.25 km) is higher than the CMAQ model grid cell (81 × 81 km),175

the OCO-2 data were averaged to the CMAQ model grid-level following a two-step process described in (Sect 2.3, Villalobos

et al., 2021). The first step involves averaging all OCO-2 soundings across 1-second intervals, while the second step involves

averaging these 1-second averages into the CMAQ vertical column (approximately 11-seconds averages). The algorithm to

estimate the uncertainties across 1-second averages follows Crowell et al. (2019). Here, we considered three different forms of

uncertainty calculation. First, we assumed that uncertainties that fall within 1-second span were perfectly correlated in time and180

space (uncertainties defined as σs). Second, given that the average of OCO-2 uncertainties (σs) is relatively lower than the real

OCO-2 uncertainties (mainly because they only consider the errors from measurement noise, and not systematic errors), we

also used the spread (standard deviation) of the OCO-2 retrievals in the 1-second average (uncertainties defined as σr). Third,

we also considered a baseline uncertainty (defined as σb) for cases where the number of OCO-2 soundings was not enough

to compute a realistic spread. Our baseline uncertainties were assumed to be 0.8 ppm over land and 0.5 ppm over ocean.185

Finally, we selected the maximum value between these three uncertainties (σs, σr, and σb). For each grid-cell, we also added

(in quadrature) to this term 0.5 ppm as the contribution of the CMAQ model uncertainty (defined as σm). We also increase the

final observation uncertainty by a factor of 1.2 to satisfy the theoretical assumptions of the inversion (Villalobos et al., 2021).

We interpolated the retrieval OCO-2 profile to the CMAQ model vertical profile as described in (Sect. 2.6., Villalobos et al.,

2020). Note that we only selected OCO-2 retrievals with quality flag “0” and bias-corrected data, as described by Kiel et al.190

(2019).
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2.5 Validation data

2.5.1 TCCON

For validation of our inversion, we compared our posterior column averaged concentration simulated by CMAQ against the

TCCON sites located in Australia and New Zealand (Fig 2). TCCON is a network of ground-based Fourier Transform Spec-195

trometers (FTS) recording direct solar spectra in the NIR/SWIR spectral region (Wunch et al., 2011). From these spectra,

accurate and precise total column amounts of CO2 and other trace gases are retrieved. In our study domain, there are three

TCCON stations (Darwin, Wollongong and Lauder). The Darwin and Wollongong sites are located within Australia, while

the Lauder site is located in New Zealand. The Darwin and Wollongong sites are operated by the Centre for Atmospheric

Chemistry at the University of Wollongong, Australia (Griffith et al., 2017a, b). The Lauder site is operated by New Zealand’s200

National Institute of Water and Atmospheric Research (NIWA) (Sherlock et al., 2017; Pollard et al., 2019). As is shown in

Fig 2, the Lauder monitoring station is located on the South Island of New Zealand at 2 km north from the town of Lauder.

It is sheltered from the prevailing wind direction by the Southern Alps, which increases the number of days with clear skies

and results in an air mass that is largely unmodified by regional anthropogenic sources (Pollard et al., 2017). From mid-2015,

the Darwin site has been located about 9 km east of Darwin city, approximately 4.5 km south-east of its previous location205

(Deutscher et al., 2010). The Wollongong site is a coastal site close to populated areas and industry to the north, and native

forest and less dense population to the south and west (Deutscher et al., 2014). At each site, TCCON data were selected within

one hour windows and averaged to be consistent with temporal resolution of the output of the CMAQ simulations. Each TC-

CON retrieval is provided with an averaging kernel and a prior profile, which were interpolated to the CMAQ vertical profiles.

After the interpolation, we applied the averaging kernel (following Eq.15 Connor et al., 2008) to compute the TCCON CMAQ210

simulated CO2 concentrations. The residual between CMAQ and TCCON was constructed based on monthly mean concen-

trations, which were calculated by taking local time averages (10:00 – 14:00 LT), where the solar radiation intensity is most

stable (Kawasaki et al., 2012).

2.5.2 Ground-based in-situ measurements

We also compared our posterior concentrations against four ground-based in-situ monitoring sites: Cape Grim, Gunn Point,215

Burncluith and Ironbark, whose geographic locations are shown in Fig. 2. These monitoring sites form part of the Global

Atmosphere Watch (GAW) Programme of the World Meteorological Organisation (WMO), and they are operated by CSIRO’s

Climate Science Centre located in Aspendale, Australia. We used hourly data from these monitoring sites, but the monthly

mean averaged data shown in Section 3.4.2 were calculated using local time averages (12:00–05:00 LT, Australian local time,

local referred to the monitoring site locations).220

Atmospheric CO2 concentration measurements at the Gunn Point, Ironbark and Burncluith sites are made continuously at

high frequency (∼0.3 Hz) using Picarro cavity ring-down spectrometers. Instruments located at the Gunn Point and Ironbark

sites use the Picarro model (G2301), while the Burncluith site uses a model G2401. All the inlets are placed at the height of 10

m. Descriptions of the Ironbark, Gunn Point and Burncluith installations can be found in Etheridge et al. (2016). Cape Grim also
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operates a Picarro G2301 analyser; however, the inlet is positioned at 70 m. The instrument precision for these spectrometers225

is better than 0.1 ppm (Etheridge et al., 2014) and all measurements are calibrated to the World Meteorological Organization

(WMO) X2007 CO2 mole fraction scale (Zhao and Tans, 2006), ensuring comparability between all measurements used. We

note that we used “baseline” and “non-baseline” data from Cape Grim. Baseline data is selected when winds blow straight off

the Southern Ocean and have not been in recent contact with land. In this study, we used both datasets because our inversion

only uses OCO-2 soundings located over land.230

3232

Gunn Point

Darwin

Ironbark

Burncluith

Cape Grim

Tropics

Savanna

Warm Temperate

Cool Temperate

Mediterranean

Sparsely vegetated

Wollongong

Lauder

Figure 2. Location of the Total Carbon Column Observing Network (TCCON) sites across Australia and New Zealand (red points) and

in-situ sites (blue points). This map also shows a classification of six bioclimatic regions for Australia.

2.6 Australian bioclimatic classification

To understand which ecosystems contributed the most to the Australian inter-annual carbon flux variability between 2015–

2019, we divided the continent into six bioclimatic classes: tropical, savanna, warm temperate, cool temperate, Mediterranean

and sparsely vegetated (Fig. 2). We used the same six bioclimatic regions at a 0.05◦ spatial resolution as in Haverd et al.

(2013a). The classes were regridded over our CMAQ grid (81 × 81 km) resolution.235

2.7 Climate data

In order to analyse the impact of climatic drivers on Australian terrestrial carbon cycle variability, we investigated the anomalies

of rainfall and temperature across Australia for the period 2015-2019. Rainfall data were selected from the Australian Water
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Availability Project (AWAP), Bureau of Meteorology (BOM) (Jones et al., 2009) for the period 2015 to 2019. AWAP is a

gridded product at 0.05◦ resolution. It is generated by spline interpolation of in situ rainfall observations. We also used air240

temperature data at 2 m above the land surface from ERA5, the fifth generation of European Centre for Medium-Range

Weather Forecasts (ECMWF) atmospheric reanalyses. The dataset selected from ERA5 was monthly and it was gridded at

0.25 degrees spatial resolution. We constructed 3-month running means of rainfall anomalies and air temperature anomalies

relative to a mean across 2015-2019. These anomalies were calculated by subtracting their long-term mean (2015–2019) for

each month from the raw time series and constructing the 3-month running mean on the resultant time series. We regridded the245

rainfall anomalies onto the grid of the CMAQ model in order to simplify the comparison with the estimated terrestrial carbon

uptake from the flux inversions.

2.8 Enhanced vegetation index (EVI) as an indicator of the vegetation greenness

Plant photosynthesis and respiration are two fundamental physiological processes in the carbon cycle. Physiological and struc-

tural changes in vegetation modulate the exchange of CO2 between the land and atmosphere. In order to understand what phys-250

iological factors drive the inter-annual variability of our posterior fluxes, we studied the anomalies of the enhanced vegetation

index (EVI). EVI provides information on vegetation state, and we used it to characterize changes in Australian vegetation

greenness and activity (e.g photosynthesis) from 2015 to 2019. The EVI product was derived from the Moderate-Resolution

Imaging Spectroradiometer (MODIS) MOD13C1 version 6 data product, which flies on board Terra, a NASA earth-observing

satellite (Didan, 2014). The MODIS EVI is a gridded product, which has a temporal resolution of 16 days composite and 0.05-255

degree spatial resolution. The EVI ranges from -0.2 to +1, where values less than 0 indicate a lack of green vegetation or arid

areas. We calculate the 3-month running mean of EVI anomalies in Australia relative to the long-term mean from 2015-2019

and subtract the mean seasonal cycle. These monthly EVI MODIS products were also regridded into the CMAQ domain to

calculate the temporal correlation between prior and posterior flux anomalies.

2.9 Gross Primary Productivity (GPP)260

To understand the difference between posterior and prior fluxes, we compared the climatological seasonal cycle of the gross

primary productivity (GPP) from the CABLE BIOS3 model against the remote-sensing based DIFFUSE model (Donohue et al.,

2014), and the latest MODIS terra GPP product (MOD17A2H version 6) (Running et al., 2015) for the period 2015–2019. We

also calculated 3-month running mean GPP anomalies for these three datasets.

The DIFFUSE GPP estimates are taken to be the product of the fraction of photosynthetically active radiation (PAR) ab-265

sorbed by vegetation and the light-use efficiency. These datasets have a temporal resolution of 16-days at 250 m resolution.

Similar to the DIFFUSE estimates, the MODIS GPP product is based on a light-use efficiency approach and provides a cumu-

lative 8-day composite product gridded at 500 m. For comparison, the CABLE BIOS3, DIFFUSE and MODIS GPP products

were averaged to a monthly resolution and regridded over the CMAQ domain.
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2.10 Global Atmospheric Inversions270

We compared our Australian assimilated fluxes against nine independent global atmospheric inversions: AMES, PCTM,

CAMS, CMS-Flux, CSU, CT, OU, TM5−4DVAR, UT (Sect. 4). These global inversions are part of the OCO-2 Model In-

tercomparison Project (MIP) (Crowell et al., 2019; Peiro et al., 2021). In this study, we used the OCO-2 MIP flux version

found in Peiro et al. (2021). In Peiro et al. (2021), the global inversions were performed using the assimilation OCO-2 (version

9, bias-corrected) from 2015-2018. A summary of these nine global inversions is given in Table 1, and a complete description275

of them and their input fields can be found in Peiro et al. (2021, Appendix A: model information). We can see in Table 1 that

all global inversions were run using different inverse systems and were configured at different spatial resolutions with different

atmospheric transport models and prior fluxes. Some global inversion methods use a four-dimensional variational (4D-Var)

approach, while others utilize the technique known as ensemble Kalman filter (EnKF) or Bayesian synthesis.

Table 1. Summary of the configuration of the MIP OCO-2 (version 9) design.

Acronym
Transport Meteorological Grid spacing Prior Land Prior Inverse

Model fields (degree) Biosphere Fire System

AMES GEOS-Chem MERRA-2 4◦ × 5◦ CASA-GFED4.1s GFED4.1s 4D-Var

Baker PCTM MERRA-2 6.7◦ × 6.7◦ CASA-GFED3 GFEDv3 4D-Var

CAMS LMDz ERA-Interim 1.9◦ × 3.75◦ CMEMS GFEDv4 Variational

CMS-Flux GEOS-Chem GEOS-FP 4◦ × 5◦ CARDAMOM GFED4.1s 4D-Var

CSU GEOS-Chem MERRA-2 1◦ × 1◦ SIB4 GFED4 Bayesian synthesis

CT TM5 ERA-Interim
3◦ × 2◦ CT2019 CT2019

EnKF
1◦ × 1◦ CASA GFED4.1s CASA-GFED4.1s

OU TM5 ERA-Interim 4◦ × 6◦ CASA-GFED3 GFEDv3 4D-Var

TM5-4DVAR TM5 ERA-Interim 2◦ × 3◦ SIB-CASA GFEDv4 4D-Var

UT GEOS-Chem GEOS-FP 4◦ × 5◦ BEPS GFEDv5 4D-Var

2.11 FLUXCOM carbon fluxes280

We also compared our assimilated fluxes against the FLUXCOM net ecosystem exchange (NEE) ensemble mean product.

The FLUXCOM dataset is created using machine learning approaches, which combine data from FLUXNET eddy covariance

towers (at site level observation) with satellite remote sensing, and meteorological data to estimate carbon fluxes such as NEE

and along with their uncertainties (Jung et al., 2020; Tramontana et al., 2016). For this study, we downloaded the products at a

monthly temporal resolution from the data portal of the Max Planck Institute for Biogeochemistry (https://www.bgc-jena.mpg.285

de).
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3 Results

3.1 Inversion performance

In our inversion system, the L-BFGS algorithm iteratively adjusts the control vector until the cost function reaches an optimal

solution. In Bayesian inverse problems we require that the observational residuals (simulated − observed) and increments290

(posterior − background) are consistent with the assumed probability density functions (PDFs). This implies that the cost

function should be approximately half the number of observations (Tarantola, 1987, p.211). Table 2 shows the analysis of

convergence for our five-year inversion. In this table, we can see that for each year, the ratio between final cost function J(x)

and observation was about 0.5, indicating that our system is self-consistent.

Table 2. Convergence diagnostics of the inversion system using OCO-2 satellite data.

Year J0(x) ∇xJ0 Jf(x) ∇xJf N observations Theoretical J(x) Ratio (Jf(x) and N)

2015 5653.15 5177.65 4403.01 394.17 8766 4383 0.50

2016 5561.51 5371.69 4380.64 853.07 8946 4473 0.49

2017 4485.17 4794.40 3477.63 335.92 7514 3757 0.46

2018 5118.29 3825.28 4112.01 365.46 9679 4839 0.42

2019 5582.00 2719.85 4443.32 387.14 10373 5186 0.43

Fig. 3 shows the monthly bias, and root-mean-square error (RMSE) between the prior and posterior column integrated295

concentrations simulated by CMAQ against the OCO-2 observations. In this figure, we can see that, in general, the inversion

reduces prior biases significantly to values close to zero. As an indication of the overall inversion performance, the Australian

mean prior bias for 2015 – 2019 was reduced from 0.23 to 0.06 ppm, and the RMSE was reduced from 0.90 to 0.76 ppm

(Appendix A, Fig. A1).

While we see that inversion reduces the prior biases significantly, relative small positive systematical posterior biases re-300

main (0.05 ppm). These systematic positive posterior biases across Australia may likely be driven by sampling and residual

retrieval biases in the OCO-2 data. Some studies suggest that the existing OCO-2 cloud screening algorithm (Taylor et al.,

2016) has difficulty identifying sub-field of view, and that unresolved clouds introduce a bias in the retrieved column of CO2

concentration.

We note the data gap in August and September was caused by a satellite outage. In November 2017, we saw the prior concen-305

tration underestimates the observations significantly, with biases of about -0.56 ppm and RMSE 1.29 ppm. High prior biases

in this month were found along the east coast of Australia, suggesting that the CABLE model might likely be underestimating

the carbon outgassing in this area and, therefore, the prior retrieval column CO2 concentration. The reduction of the prior biases

in this month was about 90% (-0.06 ppm with an RMSE of 0.94).
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Figure 3. Bias and root mean square error (RMSE) between OCO-2 and the prior and posterior concentrations simulated by CMAQ model.

Blue and orange lines represent prior posterior concentration biases, and orange and blue lines represent the RMSE.

3.2 Seasonal cycle and spatial distribution of the Australian prior and posterior carbon fluxes310

Before assessing the interannual variability of the fluxes derived by the assimilation of OCO-2 observations, we first examine

the monthly, seasonal, and annual means between the prior and posterior fluxes. This step is relevant to evaluate later how

well the posterior column-average concentrations simulated by the CMAQ model fit with independent data. Assessing the

robustness of our inversion with independent data will allows us to better explain the posterior flux anomalies derived by our

inversion.315

Figure 4a shows the long term mean of the prior and posterior carbon fluxes aggregated across Australia for the period 2015

– 2019, and Figs. 4b and c show the annual, and seasonal cycle of these estimates. Posterior flux uncertainties from 2016

to 2019 were assumed to be the same as those calculated for 2015, which were estimated by five different observing system

simulation OSSE experiments (see more details in Villalobos et al., 2021).

Our five year inversion suggests that Australia was a carbon sink of -0.46 ± 0.09 PgC yr−1 compared to the prior flux320

estimate, which was 0.11 ± 0.17 PgC yr−1 (Fig. 4a). Here, the prior flux estimate (fluxes derived by the CABLE model)

represents the current knowledge of the Australian carbon budget. Due to the size of the uncertainties in the prior estimate,

it cannot be concluded with high confidence whether Australia was a sink or source of CO2 for the period 2015 – 2019. The

annual posterior fluxes also suggest that Australia’s terrestrial biosphere is able to absorb more carbon from the atmosphere

than the CABLE model estimate (Fig. 4b). We also see that 2016 was the year that contributed most to the long term mean sink325

estimated by the OCO-2 inversion.

In terms of seasonal cycle, we can see that the posterior flux estimates show a stronger seasonality compared to the prior flux

estimate (Fig. 4c). Over the five years from 2015 to 2019, we see that OCO-2 sees a strong seasonal biospheric carbon uptake

each year between June and September (winter and early spring in Australia), and a stronger carbon source from November

to December (late spring and early summer in Australia). As we showed in Fig. 3, the stronger carbon uptake seen in winter330
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and early spring occurs because the prior column average concentration simulated by CMAQ model overestimate OCO-2

observations in this period.
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(c) Australian monthly carbon fluxes for the period 2015-2019
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Figure 4. (a) Long-term mean carbon flux, (b) annual mean carbon flux, and (c) monthly mean prior (orange dots) and posterior carbon

flux (blue dots) and their uncertainties in PgC yr−1 over Australia for the period 2015–2019. Uncertainties on the prior and posterior fluxes

are indicated by bars. The dashed orange and blue line represents a smooth line for the prior and posterior fluxes, respectively. Within these

estimates we only included the terrestrial part of the Australian carbon cycle, including fires but not fossil fuel emissions.

To identify which regions the OCO-2 satellite sees a stronger carbon uptake in Australia, we plotted the annual map differ-

ence between the posterior and the prior fluxes (Fig. 5). We can see in Fig. 5a that the majority of the posterior long-term mean

flux for the period 2015 to 2019 is distributed in one half of the continent (in the northeast, central and southern regions of the335

continent). However, we note that this was not the case for the coastal region in these areas, where we observe that OCO-2

recorded a stronger carbon release compared to the prior estimate.

The substantial difference between the prior and posterior flux in 2015 and 2016 comes from the northern and southeast of

Australia (excluding coastal areas in the southeast of the continent). We will show later in Section 3.5 that the stronger carbon

uptake recorded by the inversion (relative to the prior) in these two years was driven by an increase in vegetation productivity340

due to a rise in rainfall and low temperature across these regions. Despite the fact that 2016 was one of the strongest El

Niño events on record in the Pacific Ocean, the rain over Australia was above average for most of the continent. The annual

climate report from the Bureau of Meteorology for 2016 indicates that the annual rainfall over Australia was 17 per cent above

the 1961–1990 average. In 2017, prior and posterior differences were seen in the northern, central and east coastal areas of
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Australia. Rainfall in 2017 was below average for much of eastern Australia and along the west coast of Australia. For 2019,345

OCO-2 recorded a stronger carbon release in western and central Australia. These results are not unexpected because 2019 was

an exceptional year (the hottest and driest year on record in Australia), where the mean temperature was 1.52 ◦C above the

1961–1990 average (Annual climate statement, Bureau of Meteorology, 2019). We also noticed a large carbon uptake (relative

to prior) in the southeast corner of Australia recorded in 2019 (Fig. 5f).
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Figure 5. Annual spatial pattern of the differences between posterior and prior carbon fluxes for 2015-2019 (gC m−2 yr−1).
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3.3 Climatological seasonal cycle of the prior and posterior carbon fluxes aggregated by bioclimatic regions350

To further examine what might potentially be the cause of the difference between posterior and prior fluxes described above, we

compared the climatological seasonal cycle (Fig. 6) against the climatological seasonal cycle of the gross primary productivity

(GPP) fluxes derived from CABLE BIOS3, MODIS and the DIFFUSE model (Appendix C, Fig. C1). We made this comparison

by aggregating the fluxes over six bio-climatic regions.

It is evident that the largest difference between prior and posterior flux estimates is over savanna (Fig. 6b) and sparsely355

vegetated (Fig. 6d) ecosystems. Over the savanna region, the most notable difference is seen from June to September. The

absolute difference in this period is about 0.4 to 0.5 PgC yr−1. According to MODIS and DIFFUSE GPP estimates, the

stronger posterior sink observed in this period may be due to an underestimation of GPP simulated by the CABLE BIOS3

model (Fig. C1b). The GPP estimated by MODIS from June to September was about 0.90 PgC yr−1 compared to CABLE

BIOS3, which was 0.59 PgC yr−1. DIFFUSE GPP estimates were around 0.68 PgC yr−1.360

Over the sparsely vegetated region, the seasonal discrepancy between the prior and posterior flux is more evident than

for savanna. The seasonality of the posterior flux is stronger (relative to the prior estimate) from April to September. In this

ecosystem, the largest absolute difference between the prior and posterior fluxes is seen from June to August (0.5 PgC yr−1).

In July, for example, the inversion shifts the prior flux from -0.05 ± 0.09 PgC yr−1 to -0.56 ± 0.06 PgC yr−1. Again, we can

see in Fig. 6d that a possible reason of this shift may be associated with an underestimation of the GPP by CABLE BIOS3. It365

is evident that MODIS and DIFFUSE GPP have a stronger seasonality compare to CABLE BIOS3 GPP. For example, from

June to August, the CABLE BIOS-3 GPP was about 0.4 PgC yr−1 compared to DIFFUSE and MODIS, which were 0.9 and

1.3 PgC yr−1 respectively. We did not find a seasonal correlation between the prior fluxes and MODIS and DIFFUSE GPP

fluxes (see Appendix G, Table G1), but we did find a positive correlation between the posterior fluxes and the GPP estimated

by MODIS and DIFFUSE (R = 0.44 and R = 0.45 respectively).370

Regarding the tropics, warm temperate, cool temperate, and Mediterranean ecosystems, the seasonal correlation MODIS

or DIFFUSE GPP estimates were stronger for the prior than for the posterior fluxes (Appendix G, Table G1). A stronger

correlation between the prior flux and MODIS and DIFFUSE might be attributable to the fact that the assimilated coastal

fluxes might be somehow less constraint by the inversion in these ecosystems, mainly because they are mostly influenced by

ocean fluxes where the uncertainties have less freedom to be modified by the inversion.375
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Figure 6. Climatological seasonal cycle of prior (orange points) and posterior (blue points) terrestrial carbon fluxes (2015–2019). The dashed

orange and blue line represents a smooth line for the prior and posterior fluxes, respectively.

3.4 Evaluation of the inversion against independent data

To evaluate the accuracy of the posterior fluxes discussed in the previous section, we assess the fit between the posterior

concentration CO2 field (derived by running the CMAQ model with the fluxes assimilated by OCO-2) with independent CO2
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measurements: TCCON (Darwin, Wollongong, and Lauder) and in situ measurements (Gunn Point, Ironbark, Burncluith and

Cape Grim).380

3.4.1 Comparison with TCCON data

Figs. 7a, c and e show the time series of the monthly mean column-averaged CO2 concentrations at TCCON sites (Darwin,

Wollongong and Lauder) compared to the column-average concentration from prior and posterior simulated by CMAQ for

2015 – 2019. Figs. 7b, d and f show the bias and root mean square error (RMSE) from these averages. Monthly averages were

computed using data selected between 10:00− 14:00 (Australia and New Zealand local time).385

For all TCCON sites, we found that assimilating OCO-2 data only slightly reduced prior bias and the RMSE. At Darwin site

(Fig. 7a), the fit between posterior column-average concentration and TCCON notoriusly degrade at the beginning of 2017,

2018 and 2019 (mainly February and March). High negative posterior biases (2 ppm) are may be related to the small number

of OCO-2 soundings located around the site or local biases in the OCO-2 data (Peiro et al., 2021). The small number of

OCO-2 observations around Darwin is due to the presence of cloud cover and aerosols. While in summer, Northern Australia390

experiences a wet season (November to April), which is highly impacted by monsoonal rains and storms. Winter, the dry season

in this region, is affected by fires. Some studies (i.e. Taylor et al., 2016) suggest that some OCO-2 retrievals can be biased by

clouds during the wet season and smoke aerosol plumes during the dry season, mainly because the OCO-2 cloud screening

algorithms present some difficulty in identifying clouds near the surface. With regard to correlation analysis, we also found that

the relationship between observations and the posterior simulations is improved in some periods (see Appendix F, Table F1).395

Evaluation at the Wollongong site (Fig. 7c) also shows systematic differences with our posterior concentrations. From 2016

onwards, we see a persistent slight underestimation of the prior and posterior column average simulated by CMAQ. Similar to

Darwin, the posterior estimates derived from the inversion do not help much to reduce the prior biases at this site. In general,

we see the prior, and posterior biases remain almost the same (biases are less than 1 ppm), except in winter 2015, where

biases are about 1.5 ppm. Considerable reduction of the prior biases are only seen in summer 2016/2017 (November and400

December), where the prior biases were reduce by 20 and 80%. As discussed in Villalobos et al. (2021), the improvement

in bias is negligible when the wind blows from the ocean to this site or not many OCO-2 soundings were found around the

monitoring location. Improvements in correlation at Wollongong site are shown in Appendix F, (Table F3).

Unlike Wollongong site, we see a persistent overestimation of both the prior and posterior estimates at TCCON Lauder

(Fig. 7c). However, posterior biases are less than 1 ppm. Prior biases at the Lauder site were mainly reduced in winter and405

early spring. The reduction of the biases at this site was modest (about 10 to 25%). New Zealand is (relative to the Australian

mainland) much smaller and narrower along the south-west to north-east direction, and thus strongly affected by oceanic

airflow. The smaller size means relatively few OCO-2 soundings are retrieved over this area. Ocean fluxes that affect New

Zealand have less freedom to be modified due to the small prior uncertainties assumed in the inversion. Analysis of the

correlation is shown in Appendix F, Table F2.410
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Figure 7. Comparison between the monthly mean column-averaged, bias and root mean square error (RMSE) at (a, b) Darwin, (c, d)

Wollongong, and (e, f) Lauder TCCON sites and the CMAQ prior and posterior modeled CO2 concentrations for 2015–2019. Orange and

blue circles represent the prior and the posterior mean concentration, while the grey dots represents TCCON observations.

3.4.2 Comparison with ground-based in situ measurements

Figs. 8a, c and e show the comparison between ground-based in situ measurements (Gunn point, Burncluith, Ironbark and Cape

Grim) and the prior and posterior simulated by the CMAQ model at the surface for 2015–2019, and Figs. 8b, d and f show the

bias and root mean square error (RMSE) from these averages. Averages were computed using data selected between 12:00 −
17:00 (Australia local time).415

We note that at Gunn Point site, in general, the posterior column-average concentrations underestimate the observations.

The prior concentration indicates a better agreement, but biases are still significant. Some possible explanations for these
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results might be related to the limited vertical resolution of these retrievals and, consequently, the relative inability of OCO-2

to constrain fluxes at the scale relevant to this site (total column measurements are less sensitive at the surface than in-situ

sampling). Another possible explanation is that within our model, Gunn Point is a coastal site which is affected by prevailing420

offshore winds. If winds come from the ocean, our fluxes are less constrained by OCO-2 retrievals (see plot of wind directions

Supplementary; Figs. S20 and S24 January −February).

The data for the Burncluith site spans July 2015 to May 2018 (Fig. 8b). At this site, posterior biases seem to vary seasonally.

It is clear the posterior biases are larger (relative to the prior bias) in the winter season (June, July and August) compared to the

summer season (e.g., January and February) and spring (e.g., September and October). In this period, the prior concentrations425

show a better agreement with the observations, with biases (range between 0.54 to -0.46 ppm) compared to the posterior biases

(range between -2.79 to -3.57 ppm). Large negative posterior biases at this site could be related to errors in the transport of the

CMAQ model (e.g., associated with parameterization scheme within the planetary boundary layer) or erroneous meteorological

inputs from our WRF simulations (forcing errors). Transport errors in the vertical mixing near the surface associated with

incorrect treatment of atmospheric turbulence can cause significant biases in simulated concentrations (Gerbig et al., 2008;430

Lauvaux et al., 2012). The atmospheric boundary layer mixing height is an important property in atmospheric modelling

because it gives the volume of a column of air in which the fluxes contribute to the CO2 concentration. In this study, it is difficult

to quantify the likely error in the simulation of boundary layer height because the site lacks the relevant physical measurements.

More discussion of these findings is found in Section 4. We also did not find much improvement in the correlations at this site

(see Appendix G, Table G4).435

Results for the Ironbark monitoring station are similar to Burncluith. These results were not unexpected given the stations’

proximity (Fig. 2). For 2015 and 2016, validation against the Ironbark site also shows that the posterior mean concentrations

were in good agreement with the observations for the summer and spring seasons. In February 2018, we see the posterior biases

were about -11.4 (RMSE = 21.61). The difference between the posterior simulation and the observations may be related to a

single event visible to the surface station but not seen by OCO-2. On February 7th, Ironbark registered a concentration of CO2440

of 459.87 ppm. It is possible that fires may have caused the high CO2 concentration registered in this period (see information

for February 2018 at NASA Fire Information for Resource Management System (FIRM, 2020). From April 18th to 20th, we

also see a similar event that was not captured by the inversion, causing a posterior concentration bias of -6.44 ppm (RMSE =

9.82). During these 3 days, the concentrations registered at Burnlcluith were greater than 450 ppm.

Cape Grim is the only site with a complete time-series of observations during this period (Fig. 8d). Like Gunn Point, Cape445

Grim is a coastal site affected by strong westerly winds that blow from the ocean into Tasmania. We can see in Fig. 8d that

there is an evident underestimation of our posterior fluxes from 2015 to 2019. However, there are some months in 2015, 2016

and 2017 that we see a significant reduction in the prior bias. In May 2015, for example, the reduction of the biases was 87%.

For November 2016 to April 2017, the reduction of the biases was more noticeable. In April 2017, for example, we found a

reduction of the biases of about 70%. Stable winds in the period might be associated with the improvement of the biases (see450

Supplementary; Fig. S37). In general, all the negative large posterior biases for all the months (2−5ppm approximately) are

associated with the strong westerly and north-westerly winds that come from the ocean to Tasmania. As mentioned before,
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Cape Grim is a coastal station whose aim is to record clean air that blows from the southern ocean, and it is not representative

of Tasmania’s air mass.

A poor fit between the posterior concentrations and surface sites raises doubts about the reliability of the OCO-2 assimilated455

fluxes estimated over warm temperate, tropics, and cool temperate ecosystems. Therefore, in the upcoming section, we assess

the analysis of the variability of the posterior fluxes only over the savanna and sparsely ecosystems, where our posterior carbon

fluxes derived by OCO-2 data are likely more trustworthy than fluxes assimilated over areas directly impacted by off-shore

ocean fluxes.
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(b) Bias and RMSE Gunn Point
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(d) Bias and RMSE Burncluith
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(f) Bias and RMSE Ironbark
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(h) Bias and RMSE Cape Grim
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Figure 8. Comparison between monthly mean CO2 concentrations (ground-based stations) at (a) Gunn point, (c) Burncluith, (e) Ironbark

and (g) Cape Grim sites and the CMAQ prior and posterior modeled CO2 concentrations for 2015–2019. Bias and root mean square error

(RMSE) between model and observations are shown in panels b, d, f and h. purple and violet circles represent prior posterior concentration

biases, and purple and bar represent the RMSE
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3.5 Australia’s carbon flux anomalies460

Fig 9a, and b illustrate 3-month running mean of the prior, posterior flux anomalies and 3-month running means of EVI, rainfall

and air temperature anomalies for the period 2015 to 2019 aggregated over sparsely vegetated and savanna ecosystems, and

Fig. 10 shows the spatial distribution pattern of the annual anomalies of the posterior flux estimate in the period 2015 to 2019.

It is clear that the anomalous prior and posterior carbon land sink recorded over the sparsely vegetated ecosystem from

August 2016 to April 2017 is likely due to a combination of a higher than average increase in land productivity (positive EVI465

anomalies), rainfall (positive rainfall anomalies) and a lower than average decrease in air temperature (negative temperature

anomalies). It is also evident that the strong carbon release (positive carbon flux anomalies) recorded after April 2017 are

due to a lower than average greenness of the vegetation (negative EVI anomalies), rainfall (negative rainfall anomalies), and

an increase in the air temperature (positive temperature anomalies). In this ecoregion, we found that the temporal correlation

between EVI anomalies and the carbon flux anomalies is in better agreement with the posterior (R= -0.5) than the prior470

anomalies (R= -0.32). Posterior and EVI correlation become even more stronger when we see them at each grid-point Fig. 11b

(R = 0.5–0.9). Spatial averaging smooths grid point anomalies and so dilutes signals. The spatial distribution of correlations

between rainfall anomalies (Fig. 11d), temperature anomalies (Fig. 11f) and posterior carbon anomalies also improved in some

areas in this large ecosystem.

Similar to the sparsely vegetated findings, we also see a higher than average increase in land productivity (positive EVI475

anomalies), rainfall, and a decrease in air temperature recorded from August 2016 to April 2017 over the savanna ecosystem.

But, unlike sparsely vegetated results, the carbon sink anomaly only coincides with the negative posterior carbon anomaly in

2016. In 2017, we see that the positive EVI, rainfall and negative anomalies recorded from January to April do not align with the

larger than average posterior carbon release in this period. We believe that the few OCO-2 soundings found in this period limit

the potential of our inversion to constrain the surface fluxes in the savanna ecosystem (see Supplementary, Fig.S2, panels a, b480

and c). We found similar results in September and November 2017. As mentioned in Section 3.1, there was a long data outage

of 51 days from August to September 2017. In September, the number of OCO-2 observations in Australia was only 221, and

most of the soundings were seen over sparsely vegetated (in central Australia) than the savanna ecosystem (see Supplementary,

Fig.S2, panels h, i). In 2019, we also see that a lower than average land productivity, in combination with a deficit of rainfall

and an increase in temperature, led to a stronger carbon release into the atmosphere. In this category, the temporal correlation485

between the posterior anomalies and EVI anomalies was moderate (R= -0.38) compared to the prior flux anomalies and EVI

anomalies (R = -0.52). We note that the time series temporal correlation between EVI anomalies and posterior anomalies at

grid-cell scale resolution (Fig. 11a) is slightly stronger for the prior than the posterior correlations (Fig. 11b). Similar results

were found between the link of the rainfall and posterior flux anomalies, where the correlation tends to degrade compared to

the prior. Spatial correlation between temperature anomalies and posterior correlation is more variable, and we see that in the490

north-west area of the continent, correlations for the posterior flux anomalies are stronger.

In general, the better agreement between posterior, climate and vegetation parameters over regions with sparse vegetation

is because the CABLE model likely underestimates GPP anomalies. We found that the correlation between the posterior
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anomalies and CABLE BIOS3, DIFFUSE and MODIS GPP anomalies was stronger than the one correlated with the prior. For

example, the correlations between the prior and CABLE BIOS3 GPP anomalies were -0.46 compared to the posterior (R =495

-0.61). Correlations between the posterior anomalies and DIFFUSE and MODIS GPP were also stronger than the prior, which

value was -0.5 compared to the prior (R = -0.3) (more details in Appendix D, Table D2). These findings are significant for

Australia because they suggest that our OCO-2 inversion might likely be better at capturing the anomalies of this ecosystem

(the largest ecosystem in Australia) compared to the biosphere land model.
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Figure 9. Time series of 3-month running mean posterior (black line) and prior (grey line) terrestrial carbon flux anomalies (PgC yr−1) and

3-month running mean EVI anomalies (turquoise dashed line) between 2015 to 2019 aggregated by two agro-climate regions: (a) Sparsely

vegetated and (b) Savanna ecosystem. Anomalies over Tropics, Warm temperate, Cool temperate, and Mediterranean ecosystems are shown

in Appendix D, Fig. D1. The grey shaded area represents 1.0 standard deviation range around the mean for the prior and posterior flux

uncertainty.
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Figure 10. Spatial distribution maps of the annual posterior terrestrial carbon flux anomalies (gC m−2 yr−1) for 2015 to 2019 (panels a,

b, c, d and e). Negatives anomalies correspond to a larger than average uptake of carbon by land ecosystem, whereas positives anomalies

correspond to a larger than average release of carbon to the atmosphere from the land.
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Figure 11. Spatial map of monthly temporal correlation between (a, b) EVI anomalies, prior anomalies and posterior anomalies. (c, d) rainfall

anomalies, prior and posterior anomalies. (e, c) air temperature anomalies, prior and posterior anomalies for the period 2015–2019.
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4 Discussion500

In Sect 3.4, we saw that validating the posterior concentrations against the current Australian GHG monitoring system is

challenging due to the small number of stations across the continent (approximately five). In addition, some of these sites,

such as Cape Grim, provide no meaningful constraint on Australian fluxes and therefore leave the question of accuracy in the

posterior carbon fluxes unanswered over the savanna and sparsely vegetated regions, where our inversion suggests a stronger

carbon sink for the study period compared to the prior estimate made by the biosphere model.505

To assess and discuss how well our monthly assimilated OCO-2 carbon fluxes align the current understanding of the Aus-

tralian carbon cycle, we compare our results to other global products: MIP OCO-2 global inversions (AMES, PCTM, CAMS,

CMS-Flux, CSU, CT, OU, TM5−4DVAR, UT), and FLUXCOM for 2015-2018 (Fig. 12). The annual MIP OCO-2 ensemble

mean of carbon fluxes shown in Fig. 12 suggests that Australia was a carbon sink of -0.26 ± 0.22 for 2015–2018, similar to

our posterior flux estimate (-0.52 ± 0.08 PgC yr−1) considering the MIP ensemble spread of the nine models as representing510

the uncertainty. The annual FLUXCOM ensemble mean also suggests that Australia was a slight carbon sink of -0.06 ± 0.04.

In terms of seasonality, we can observe in Fig. 12 that for several periods between 2015 and 2018, the monthly mean of our

posterior carbon fluxes falls within the uncertainties of the OCO-2 MIP ensemble mean, except for some months in winter. For

example, we notice that the large carbon sink estimated by our inversion (-2.92 ± 0.27 PgC yr−1) in August 2016 does not fall

within the ensemble monthly MIP mean of that period (-1.28 ± 0.78 PgC yr−1). However, the carbon flux estimate derived by515

PCTM (-2.31 PgC yr−1) and CSU (-2.66 PgC yr−1) global models shows similar results to our flux estimate. These findings

are also found throughout 2015, 2017 and 2018, where our posterior carbon flux estimates closely follow PCTM and CSU

seasonal patterns. The seasonality of FLUXCOM agrees with our assimilated fluxes, mostly in summer but not in winter.

We also studied the carbon flux anomalies derived by the OCO-2 MIP, FLUXCOM and compared them with the prior and

posterior flux anomalies (3-month running mean) that we have discussed throughout this study (Fig. 13). We see in Fig. 13520

that all carbon flux estimates agree that 2016 was the period that Australia recorded the largest carbon uptake relative to the

2015-2018 mean. We saw throughout this study that 2016 was a year that Australia recorded above-average precipitation

and low temperatures that certainly drove the increase in vegetation productivity across the country. Similar findings were

found by Haverd et al. (2016) in 2011, which results suggest that the variations of carbon fluxes over Australia’s semi-arid

ecosystems have a direct physiological response of vegetation productivity to water availability fluctuations. Other regional525

studies made in Africa (e.g., Williams et al., 2008; Archibald et al., 2009; Merbold et al., 2009), also indicate that interannual

carbon fluctuations of semi-arid ecosystems largely depend on water availability driven by variations in rainfall between years.

Water availability is the most important factor that controls the vegetation productivity of ecosystems across most of Australia,

such as grassland and shrub/desert (see Figure 2 in Churkina and Running, 1998).

In terms of the amplitude of carbon flux anomalies, we can see that the prior and the FLUXCOM anomalies exhibit a lower530

amplitude than the one derived by our inversion and the majority of the models in MIP. Australia FLUXCOM estimates are

likely not a good representation of the carbon flux estimates in the continent, given the sparsity of the flux tower network.

FLUXCOM carbon fluxes use machine learning methods to empirically upscale flux tower data. In Australia, the number of
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OzFlux networks is small (approximately 30 towers), where most of the flux towers are located far away from semi-arid/arid

ecosystems. This is relevant for Australia because semi-arid/arid ecosystems represent about 70% of the Australian land.535

Related to MIP OCO-2 global inversions, we observe that during the year 2016, five global inversions (PCTM, CMS-

Flux, CT, OU and UT) agreed with our findings and suggested October as the month of peak uptake. The ensemble mean of

FLUXCOM also agrees with our results (-0.42 PgC yr−1), however, the size of the uptake is half of our estimates (-1.12 PgC

yr−1). In terms of the peak of carbon release, there is no agreement between MIP, FLUXCOM, prior and posterior carbon

estimates. We observe that almost all OCO-2 MIP inversions agree that the largest outgassing occurred in November 2015. Our540

inversion places the maximum outgassing in October 2017, while the FLUXCOM and the prior have the maximum outgassing

period in October and July 2018, respectively.

The analysis of the inter-annual (peak-to-peak) variability shows that PCTM (3.05 PgC yr−1) and CSU (2.46 PgC yr−1)

produce the largest amplitude of variability compared to our prior (0.70 PgC yr−1) and posterior anomalies (1.89 PgC yr−1).

We also note that UO and AMES exhibit the lowest carbon amplitude of the variability, which values are 1.06 and 1.86545

respectively. The disagreement between the global inversion and our study might also be driven by transport differences (Basu

et al., 2018; Schuh et al., 2019).

The larger seasonal cycle amplitude of the anomalies suggested by our regional inversion and OCO-2 MIP compared to

the flux anomalies derived by the CABLE model and FLUXCOM raises some questions. For example, why do Australia’s

semi-arid ecosystems capture more carbon dioxide (based on our OCO-2 inversion) than the process-based model estimate?550

Could it be possible that the larger posterior carbon uptake and its anomalies estimated by the inversion (relative to the prior

and FLUXCOM) is because the CABLE model is not well calibrated against the insufficient number of eddy covariance flux

towers across the continent? Could the remaining OCO-2 biases in version 9 and potential errors in the transport model be

causing deviation from the true flux?. More work needs to be done to reconcile and disentangle what is being found by the

inversions and the Australia CABLE model. In future work, we could run this regional inversion using the latest version of555

OCO-2 data (version 10) in combination with ocean glint data, for which recent verifications confirm reductions in both the

bias and standard deviation compared to the TCCON data (OCO-2 Data Quality Statement, 2020). Another direction for future

work would be to explore the impact of transport model errors on the resulting assimilated OCO-2 fluxes. Such assessment

could be done by choosing, for example, different planetary boundary schemes within the CMAQ model. As mentioned in

section 3.4.2, a misrepresentation of vertical mixing near the surface in atmospheric transport models leads to uncertainties in560

modelled CO2 mixing ratios. Mixing within the planetary boundary layer influences the redistribution of the surface fluxes to

the atmospheric column. Another way to evaluate the transport error of the model would be through a model inter-comparison.

This approach is well-known in the global inversion TransCom group community (Law et al., 2008; Peylin et al., 2013; Basu

et al., 2018), the recent model inter-comparison project (MIP) organized by the OCO-2 Science Team (Crowell et al., 2019;

Peiro et al., 2021), and the recent European atmospheric transport inversion comparison (EUROCOM) project (Monteil et al.,565

2020).

Finally, we could say that previous inversion studies over Australia have been limited by the lack of in situ data. The OCO-2

data certainly allows a quantum leap in resolution, but this is still reasonably coarse, especially when one remembers that the
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prior covariance structures we use impose smooth variations up to the correlation length of 500 km. Instruments with scanning

geometries which allow higher resolution observations, such as OCO-3 (Eldering et al., 2019) may improve significantly the570

available resolution of fluxes. This is particularly important when assessing the roles of drivers such as rainfall which may vary

on smaller scales. We also note that continuing improvement in the OCO retrievals themselves should allow joint assimilation

of land and ocean measurements, hopefully improving the visibility of coastal fluxes and improving comparison with coastal

in situ measurements such as Cape grim and Gunn Point, as shown by Villalobos et al. (2021).
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Figure 12. Comparison between monthly mean posterior (blue line), prior (orange line), FLUXCOM ensemble mean (green line), MIP

OCO-2 ensemble (black line) carbon fluxes and the monthly carbon fluxes from the nine models that participate in OCO-2 MIP: AMES,

PCTM, CAMS, CMS-Flux, CSU, CT, OU, TM5−4DVAR, UT (units: PgC yr−1).
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ensemble carbon flux anomalies and 3-month running mean anomalies of the nine models that participate in OCO-2 MIP.
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Table 3. Summary of the peak-to-peak amplitude of 3-month running mean posterior (black line) and prior (grey line) terrestrial carbon flux

anomalies and 3-month running mean anomalies of nine different global transport models (Units PgC yr−1).

Carbon flux estimates Models Maximun Date Minimun Date Amplitud

CMAQ-OCO-2 inversion Posterior 0.73 2017-10-31 -1.16 2016-10-31 1.89

BIOS-CABLE3 Prior 0.20 2018-07-31 -0.50 2016-11-30 0.70

MIP OCO-2 AMES 0.85 2015-12-31 -1.01 2016-10-31 1.86

PCTM 1.44 2015-11-30 -1.61 2016-10-31 3.05

CAMS 1.09 2015-12-31 -1.23 2016-11-30 2.33

CMS-Flux 0.54 2015-11-30 -0.68 2016-12-31 1.23

CSU 0.95 2018-10-31 -1.51 2016-10-31 2.46

CT 0.46 2015-11-30 -0.60 2016-10-31 1.06

OU 0.83 2015-11-30 -0.60 2016-10-31 1.43

TM5-4DVAR 1.28 2015-12-31 -1.19 2016-11-30 2.47

UT 1.23 2015-11-30 -1.07 2016-12-31 2.30

MIP OCO-2 Ensemble 0.82 2015-11-30 -1.09 2016-10-31 1.91

FluxCom Ensemble 0.22 2018-10-31 -0.42 2016-10-31 0.64
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5 Conclusions575

We estimated monthly carbon fluxes over Australia for 2015 to 2019, based on the assimilation of the Orbiting Carbon

Observatory-2 (OCO-2) satellite data (land nadir and glint data, version 9). We investigated the effect of vegetation produc-

tivity (EVI anomalies as proxy) and climate driver variations such as rainfall and air temperature on the Australian terrestrial

carbon flux variability. The mean of our five-year inversion suggests that Australia was a carbon sink of -0.46± 0.08 PgC yr−1

driven partly by large carbon uptake (-1.04 PgC yr−1) recorded in 2016 over the savanna and sparsely vegetated ecosystems.580

We found that negative carbon flux anomalies recorded in this period over these ecosystems coincide with an increase in the

vegetation greenness (positive EVI anomalies) driven by higher than average rainfall anomalies and lower than average air

temperature anomalies. The 2017 sink over Australia also contributed to the 2015–2019 long term mean, but its contribution

was not as significant as 2015 and 2016. Negative carbon flux anomalies recorded in 2017 also coincided with positive rainfall

anomalies and temperatures below average in that period over areas with sparse vegetation. In 2018 we did not find significant585

terrestrial flux anomalies across Australia, and 2019 mainly was affected by positive carbon flux anomalies, which also were

in line with a deficit of rainfall and positive temperature anomalies.

Regarding validation of our inversion with independent data, we found it challenging to validate our posterior column-

averaged concentration with the current Australian monitoring sites. Despite the fact that for several periods between 2015-

2019, the posterior concentration biases at the TCCON monitoring site were less than 1.0 ppm, OCO-2 data was not able to590

reduce prior biases significantly. We associate this slight or no improvement with the fact that these monitoring stations are

strongly affected by ocean fluxes, where no OCO-2 data was considered. Similar findings were found for in-situ measurements

at coastal sites such as Cape Grim and Gunn Point. Despite the weak comparison with independent monitoring data, the

comparison to OCO-2 MIP global inversion for 2015-2018 and the FLUXCOM ensemble mean present similar results to our

regional inversion, suggesting that the year 2016 was a period in which Australia acted as a strong carbon sink of CO2.595
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Appendix A: Histograms: CMAQ model and OCO-2 differences
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Figure A1. Probability density distribution of the difference between CMAQ column average CO2 concentration and OCO-2 observations

(Units: ppm). The orange histogram presents the prior CMAQ column average simulated minus OCO-2, whereas the blue histogram presents

the posterior column average simulated minus the OCO-2. Mean differences and RMSE are indicated in the legend.
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Figure A2. Probability density distribution of the difference between CMAQ column average CO2 concentration and OCO-2 observations

aggregated by six bioclimatic classifications (Units: ppm). The orange histogram presents the prior CMAQ column average simulated minus

OCO-2, whereas the blue histogram presents the posterior column average simulated minus the OCO-2. Mean differences and RMSE are

indicated in the legend.
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Appendix B: Spatial distribution of the prior and posterior annual mean (2015-2019)
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Figure B1. Posterior fluxes assimilated using LNLG OCO-2 satellite observations averaged for 2015 – 2019 (fossil fuel emissions are

excluded).
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Figure B2. Prior fluxes derived by the CABLE model in the BIOS3 set-up in combination with fires emissions selected by GFED averaged

for 2015–2019 (Fossil fuel emissions are excluded).
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Appendix C: Climatological seasonal cycle and GPP anomalies (2015–2019)
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Figure C1. Climatological seasonal cycle of GPP (2015–2019) derived from CABLE BIOS3 model (yellow-green dashed line), MODIS

(forest-green dashed line), and DIFFUSE model (lightcoral dashed line).
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Figure C2. Time series of 3-running monthly mean GPP anomalies derived from CABLE BIOS3 model (yellow-green dashed line), MODIS

(forest-green dashed line), and DIFFUSE model (orange dashed line) between 2015 and 2019.
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Appendix D: Carbon flux anomalies aggregated by bio-climatic regions
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Figure D1. Time series of 3-month running mean posterior (black line) and prior (grey line) terrestrial CO2 flux anomalies (PgC yr−1) and

3-month running mean EVI anomalies (turquoise dashed line) between 2015 to 2019 aggregated by four agro-climate regions: (a) Tropics,

(b) warm temperate, (c) Cool temperate, and (d) Mediterranean ecosystems. The grey shaded area represent 1.0 standard deviation range

around the mean for the prior and posterior flux uncertainty.
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Appendix E: Spatial distribution of OCO-2 soundings (Land nadir and glint data) over the CMAQ domain for 2015600

Figure E1. Spatial distribution of OCO-2 soundings (Land nadir and glint data) over the CMAQ domain for 2015.
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Appendix F: Analysis of the residual TCCON

Table F1. Analysis of the residual between CMAQ prior and posterior simulation and TCCON Darwin site for 2015–2019. Averaged bias

(Bias), Root-mean-square error (RMSE) and Pearson’s coefficient (R).

Darwin

months Prior Posterior months Prior Posterior months Prior Posterior

yyyy-mm Bias RMSE R Bias RMSE R yyyy-mm Bias RMSE R Bias RMSE R yyyy-mm Bias RMSE R Bias RMSE R

2015-01 0.12 0.51 0.81 -0.04 0.82 0.75 2017-01 - - - - - - 2019-01 - - - - -

2015-02 0.69 0.85 0.78 0.38 0.63 0.78 2017-02 - - - - - - 2019-02 -1.31 1.34 -0.49 -1.40 1.43 -0.61

2015-03 0.93 1.10 0.14 0.18 0.59 0.29 2017-03 0.32 0.58 0.60 -1.34 1.45 0.59 2019-03 -0.78 0.87 0.60 -1.42 1.55 0.39

2015-04 0.85 0.94 0.38 0.60 0.74 0.42 2017-04 - - - - - - 2019-04 - - - - - -

2015-05 0.97 1.05 0.37 0.90 0.99 0.52 2017-05 - - - - - - 2019-05 - - - - - -

2015-06 0.90 0.97 0.21 1.24 1.27 0.23 2017-06 -0.12 0.44 -0.02 0.24 0.46 0.25 2019-06 - - - - - -

2015-07 1.51 1.55 -0.18 1.07 1.10 0.22 2017-07 -0.13 0.74 0.07 0.04 0.69 0.16 2019-07 - - - - - -

2015-08 1.44 1.46 0.34 1.06 1.10 0.35 2017-08 0.19 0.39 0.09 0.28 0.49 0.15 2019-08 - - - - - -

2015-09 1.12 1.16 0.02 0.81 0.86 0.10 2017-09 -0.15 0.32 0.14 -0.16 0.31 0.13 2019-09 -0.30 0.66 0.25 -0.40 0.73 0.18

2015-10 0.55 0.63 0.53 0.63 0.69 0.62 2017-10 -0.92 1.05 0.42 -0.51 0.72 0.46 2019-10 -0.91 1.01 0.72 -0.87 0.95 0.78

2015-11 -0.25 0.51 0.66 0.11 0.42 0.75 2017-11 -1.12 1.21 0.06 -0.76 0.99 -0.20 2019-11 -1.31 1.37 0.70 -0.96 1.06 0.61

2015-12 -0.34 0.48 0.18 -0.02 0.31 0.26 2017-12 -0.67 0.79 0.37 -0.74 0.97 0.26 2019-12 -1.37 1.43 0.35 -1.22 1.32 0.26

2016-01 0.27 0.55 0.39 0.09 0.60 0.28 2018-01 -0.57 0.85 0.08 -1.15 1.30 -0.08

2016-02 0.34 0.63 0.34 -0.25 0.66 0.29 2018-02 -0.90 1.04 0.08 -1.98 2.11 -0.13

2016-03 0.44 0.63 0.36 -0.09 0.58 0.30 2018-03 -0.62 1.06 -0.65 -1.46 1.67 -0.59

2016-04 0.80 0.93 0.34 0.86 0.95 0.48 2018-04 - - - - - -

2016-05 0.26 0.41 0.58 0.41 0.53 0.54 2018-05 - - - - - -

2016-06 0.37 0.45 0.16 0.21 0.38 0.18 2018-06 -0.27 0.51 -0.08 -0.09 0.40 0.22

2016-07 0.18 0.42 0.17 0.07 0.38 0.34 2018-07 -0.34 0.52 -0.16 -0.34 0.48 0.04

2016-08 0.09 0.33 0.04 -0.07 0.33 0.27 2018-08 -0.34 0.49 0.05 -0.94 0.99 0.07

2016-09 -0.17 0.40 0.25 -0.20 0.40 0.26 2018-09 -0.57 0.69 0.09 -0.90 0.99 0.09

2016-10 -0.31 0.42 0.01 -0.30 0.47 0.27 2018-10 - - - - - -

2016-11 -0.40 0.42 0.75 -0.43 0.47 0.67 2018-11 - - - - - -

2016-12 - - - - - - 2018-12 - - - - - -
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Table F2. Analysis of the residual between CMAQ prior and posterior simulation and TCCON Lauder site for 2015–2019. Averaged bias

(Bias), Root-mean-square error (RMSE) and Pearson’s coefficient (R).

Lauder

Months Prior Posterior Months Prior Posterior Months Prior Posterior

yyyy-mm Bias RMSE R Bias RMSE R yyyy-mm Bias RMSE R Bias RMSE R yyyy-mm Bias RMSE R Bias RMSE R

2015-01 0.48 0.58 0.31 0.71 0.85 0.06 2017-01 0.571 0.71 0.39 0.60 0.79 0.39 2019-01 0.89 1.01 0.53 1.10 1.38 0.55

2015-02 0.61 0.74 0.22 1.03 1.17 0.34 2017-02 0.187 0.41 0.24 0.65 1.03 0.07 2019-02 0.94 1.02 0.21 1.10 1.40 0.12

2015-03 0.54 0.62 0.51 0.73 0.84 0.53 2017-03 0.16 0.41 0.35 0.27 0.48 0.35 2019-03 0.64 0.75 0.53 0.95 1.25 0.69

2015-04 0.50 0.59 0.77 0.51 0.60 0.79 2017-04 0.35 0.52 0.22 0.20 0.32 0.21 2019-04 0.83 0.88 0.58 0.80 0.94 0.54

2015-05 0.82 0.89 0.30 0.83 0.90 0.23 2017-05 0.191 0.40 0.54 0.16 0.24 0.59 2019-05 0.73 0.81 0.65 0.62 0.75 0.67

2015-06 0.65 0.86 0.60 0.61 0.82 0.56 2017-06 0.44 0.58 0.77 0.32 0.46 0.76 2019-06 0.63 0.76 0.85 0.46 0.68 0.82

2015-07 0.69 0.82 0.79 0.64 0.79 0.76 2017-07 0.44 0.56 0.30 0.26 0.39 0.38 2019-07 0.81 0.88 0.73 0.65 0.80 0.69

2015-08 0.57 0.64 0.64 0.57 0.64 0.66 2017-08 0.71 0.81 0.64 0.63 0.87 0.63 2019-08 1.14 1.22 0.75 1.15 1.42 0.74

2015-09 0.71 0.73 0.83 0.63 0.67 0.83 2017-09 1.30 1.35 0.73 1.58 1.76 0.71 2019-09 0.96 1.07 0.60 0.97 1.24 0.63

2015-10 0.75 0.82 0.65 0.74 0.82 0.59 2017-10 1.01 1.08 0.72 1.28 1.51 0.76 2019-10 1.09 1.13 0.72 1.23 1.42 0.62

2015-11 0.52 0.72 0.36 0.43 0.65 0.37 2017-11 0.74 0.90 0.50 0.79 0.97 0.50 2019-11 0.99 1.06 0.79 1.09 1.33 0.78

2015-12 0.71 0.76 0.79 0.77 0.81 0.81 2017-12 0.83 0.91 0.63 1.37 1.65 0.67 2019-12 1.03 1.10 0.70 0.82 1.11 0.52

2016-01 0.43 0.51 0.81 0.40 0.51 0.78 2018-01 0.64 0.73 0.33 1.04 1.43 0.16

2016-02 0.23 0.40 0.54 0.18 0.33 0.49 2018-02 0.52 0.61 0.62 0.46 0.62 0.63

2016-03 0.24 0.45 0.57 0.23 0.32 0.53 2018-03 0.59 0.74 0.35 0.52 0.83 0.33

2016-04 0.17 0.45 0.72 0.19 0.25 0.71 2018-04 0.63 0.74 0.44 0.53 0.71 0.42

2016-05 0.39 0.54 0.61 0.29 0.46 0.55 2018-05 0.91 1.04 0.40 0.99 1.46 0.39

2016-06 0.21 0.50 0.44 0.22 0.38 0.48 2018-06 0.70 0.89 -0.42 0.68 0.98 -0.44

2016-07 0.59 0.78 0.74 0.58 0.82 0.74 2018-07 0.99 1.03 0.69 0.88 1.13 0.43

2016-08 0.32 0.55 0.55 0.30 0.41 0.55 2018-08 0.75 0.79 0.77 0.60 0.72 0.78

2016-09 0.31 0.62 0.11 0.34 0.62 0.16 2018-09 0.96 1.03 0.41 0.94 1.16 0.45

2016-10 0.30 0.55 0.10 0.58 0.75 0.37 2018-10 1.011 1.11 0.48 1.34 1.58 0.55

2016-11 0.93 0.97 0.68 1.30 1.47 0.66 2018-11 1.25 1.30 0.63 2.10 2.31 0.65

2016-12 0.576 0.7823 0.22 1.16 1.78 0.16 2018-12 1.35 1.40 0.33 2.897 3.15 0.33
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Table F3. Analysis of the residual between CMAQ prior and posterior simulation and TCCON Wollongong site for 2015–2019. Averaged

bias (Bias), Root-mean-square error (RMSE) and Pearson’s coefficient (R).

Wollongong

Months Prior Posterior Months Prior Posterior Months Prior Posterior

yyyy-mm Bias RMSE R Bias RMSE R yyyy-mm Bias RMSE R Bias RMSE R yyyy-mm Bias RMSE R Bias RMSE R

2015-01 -0.04 0.72 0.21 0.07 0.75 0.23 2017-01 -0.76 0.99 0.25 -0.35 0.84 0.16 2019-01 -2.20 2.55 0.07 -2.23 2.51 0.20

2015-02 -0.21 0.56 0.48 0.16 0.63 0.51 2017-02 -0.79 1.08 0.37 -0.82 1.13 0.14 2019-02 -0.47 0.84 0.28 -0.65 0.93 0.32

2015-03 0.66 0.94 0.19 0.51 0.88 0.16 2017-03 -0.83 1.26 -0.07 -0.82 1.32 0.01 2019-03 -0.33 0.65 0.48 -0.51 0.78 0.45

2015-04 0.72 0.96 0.07 0.82 1.06 0.15 2017-04 -0.52 1.11 0.03 -0.55 1.13 -0.09 2019-04 -0.50 0.83 0.16 -0.65 0.95 0.16

2015-05 1.26 1.40 0.12 1.54 1.72 0.02 2017-05 -0.42 0.66 0.31 -0.50 0.74 0.26 2019-05 0.03 0.67 0.26 -0.06 0.71 0.21

2015-06 1.41 1.53 0.68 1.61 1.72 0.68 2017-06 -0.24 0.53 0.67 -0.24 0.53 0.68 2019-06 0.20 0.75 0.17 -0.14 0.60 0.40

2015-07 1.37 1.56 0.32 1.14 1.38 0.28 2017-07 -0.01 0.55 0.42 -0.11 0.59 0.37 2019-07 0.17 0.70 0.17 -0.04 0.62 0.17

2015-08 1.42 1.57 0.25 1.61 1.76 0.28 2017-08 0.17 0.89 -0.19 0.16 0.91 -0.19 2019-08 -0.29 0.52 0.82 -0.77 0.87 0.79

2015-09 1.19 1.44 0.16 1.11 1.42 0.19 2017-09 0.31 0.86 -0.06 0.17 0.68 0.12 2019-09 -0.05 0.67 -0.10 -0.67 0.98 -0.18

2015-10 0.07 0.72 0.03 0.29 0.83 0.00 2017-10 - - - - - - 2019-10 -0.36 0.64 0.38 -0.74 0.97 0.22

2015-11 -0.74 1.22 -0.08 -0.40 1.13 -0.05 2017-11 - - - - - - 2019-11 -0.14 0.80 0.62 -0.63 0.95 0.69

2015-12 -0.45 0.69 0.14 -0.60 0.85 -0.03 2017-12 - - - - - - 2019-12 0.99 1.77 0.67 -1.31 1.44 0.69

2016-01 -0.29 0.51 0.58 -0.19 0.42 0.50 2018-01 - - - - - -

2016-02 -0.93 1.09 0.24 -1.00 1.18 -0.13 2018-02 - - - - - -

2016-03 -0.18 0.56 0.59 -0.36 0.69 0.54 2018-03 -0.72 0.94 0.47 -0.98 1.15 0.30

2016-04 0.10 0.69 -0.20 0.07 0.57 -0.19 2018-04 -0.221 0.66 0.52 -0.59 0.78 0.55

2016-05 -0.07 0.65 0.31 -0.12 0.71 0.17 2018-05 -0.011 0.59 0.20 -0.17 0.58 0.11

2016-06 -0.21 0.71 -0.13 -0.52 0.87 -0.16 2018-06 -0.03 0.39 0.72 -0.11 0.45 0.66

2016-07 0.04 0.66 0.52 -0.05 0.71 0.49 2018-07 -0.15 0.65 0.21 -0.33 0.68 0.19

2016-08 0.48 0.80 0.17 0.07 0.70 0.22 2018-08 0.08 0.51 0.42 0.23 0.57 0.37

2016-09 -0.05 0.89 0.40 -0.37 1.05 0.36 2018-09 -0.25 0.78 0.13 -0.49 0.91 0.03

2016-10 -0.14 0.78 0.17 -0.16 0.86 0.16 2018-10 -0.352 0.78 -0.08 -0.64 1.00 -0.22

2016-11 -0.53 0.93 0.30 0.41 0.87 0.32 2018-11 -0.808 1.05 0.64 -0.29 0.93 0.52

2016-12 -0.77 1.1305 0.06 -0.13 0.87 0.07 2018-12 -1.10 1.31 0.66 -0.81 1.10 0.75
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Appendix G: Analysis of the residual in-situ data

Table G1. Analysis of the residual between CMAQ prior and posterior simulation and Cape Grim site for 2015–2019. Averaged bias (Bias),

Root-mean-square error (RMSE) and Pearson’s coefficient (R).

Cape Grim

months Prior Posterior months Prior Posterior months Prior Posterior

yyyy-mm Bias RMSE R Bias RMSE R yyyy-mm Bias RMSE R Bias RMSE R yyyy-mm Bias RMSE R Bias RMSE R

2015-01 -2.31 3.38 0.28 -2.33 3.22 0.28 2017-01 -2.27 3.15 0.01 -2.04 2.48 0.59 2019-01 -1.81 3.15 -0.11 -2.99 3.65 0.07

2015-02 -2.65 3.68 0.57 -2.59 3.91 0.53 2017-02 -2.08 2.93 -0.11 -1.99 2.53 0.40 2019-02 -1.13 3.06 -0.14 -2.22 2.98 0.31

2015-03 -1.25 2.02 0.53 -2.70 3.07 0.29 2017-03 -1.70 4.22 0.17 -2.60 4.57 0.24 2019-03 -1.67 3.33 0.37 -2.51 3.22 0.60

2015-04 -2.33 3.22 0.41 -2.16 3.54 0.19 2017-04 -2.23 3.21 0.58 -1.95 3.25 0.45 2019-04 -1.60 3.46 -0.24 -2.79 3.41 0.49

2015-05 -1.85 3.27 0.36 -0.60 2.82 0.46 2017-05 -2.22 4.21 0.06 -2.71 3.95 0.30 2019-05 -2.46 3.64 0.22 -2.60 3.46 0.46

2015-06 -1.77 2.79 0.14 -0.88 2.28 0.20 2017-06 -1.77 2.81 -0.01 -2.17 2.88 0.21 2019-06 -2.31 3.81 -0.07 -6.70 8.35 -0.59

2015-07 -0.96 2.05 0.10 -2.18 3.20 -0.03 2017-07 -1.64 2.71 -0.06 -3.01 3.65 0.30 2019-07 -1.50 2.37 -0.15 -2.80 3.18 0.30

2015-08 -1.91 2.93 -0.05 -2.12 3.22 0.02 2017-08 -1.66 2.37 0.09 -1.82 2.46 0.01 2019-08 -1.64 2.45 -0.17 -4.35 4.98 0.21

2015-09 -2.29 3.63 -0.02 -4.18 4.94 0.16 2017-09 -1.08 2.02 -0.02 -1.55 2.17 0.10 2019-09 -2.23 2.95 0.19 -4.35 4.97 -0.31

2015-10 -2.34 3.44 0.08 -2.52 3.75 0.00 2017-10 -2.03 2.93 0.03 -3.26 4.07 -0.14 2019-10 -2.58 4.07 0.13 -4.71 6.14 -0.18

2015-11 -2.35 3.32 0.34 -3.07 4.28 -0.06 2017-11 -1.60 3.09 0.09 0.76 3.38 0.52 2019-11 -1.81 2.94 0.52 -2.14 3.61 -0.05

2015-12 -1.86 2.51 0.58 -2.34 2.89 0.49 2017-12 -1.88 2.51 0.07 -1.77 2.44 0.38 2019-12 -1.31 3.86 -0.07 -5.14 5.76 0.05

2016-01 -1.53 2.44 0.60 -2.40 3.01 0.55 2018-01 -2.23 3.96 0.05 -2.88 3.66 0.46

2016-02 -2.28 3.49 0.35 -3.65 4.78 0.06 2018-02 -1.72 3.92 -0.08 -3.52 4.20 0.48

2016-03 -1.64 2.79 0.43 -3.54 4.25 0.19 2018-03 -1.80 2.88 0.05 -2.95 3.38 0.16

2016-04 -2.15 3.22 0.57 -3.26 4.20 0.40 2018-04 -1.85 3.71 0.05 -3.48 4.36 0.20

2016-05 -1.62 2.51 0.68 -1.56 2.60 0.61 2018-05 -1.55 2.74 0.22 -3.14 3.91 0.01

2016-06 -2.26 3.23 0.28 -2.96 3.80 0.28 2018-06 -1.89 3.18 0.07 -2.03 3.04 0.27

2016-07 -1.22 2.07 0.52 -1.64 2.32 0.55 2018-07 -1.38 2.28 -0.06 -2.59 3.19 0.01

2016-08 -1.42 2.74 0.31 -3.24 3.90 0.60 2018-08 -1.35 2.11 0.05 -1.37 2.23 0.29

2016-09 -1.43 2.61 0.24 -1.60 2.77 0.22 2018-09 -1.69 2.79 -0.16 -2.44 3.08 0.15

2016-10 -2.36 2.82 0.48 -2.22 2.79 0.48 2018-10 -1.61 2.70 0.13 -2.94 3.46 0.31

2016-11 -2.79 3.47 0.03 -1.89 2.50 0.56 2018-11 -1.97 3.35 0.15 -0.85 3.17 0.30

2016-12 -2.22 3.26 0.30 -1.15 2.96 0.38 2018-12 -2.05 3.53 -0.20 -1.17 2.78 0.36
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Table G2. Analysis of the residual between CMAQ prior and posterior simulation and Gunn Point site for 2015–2019. Averaged bias (Bias),

Root-mean-square error (RMSE) and Pearson’s coefficient (R).

Gunn Point

months Prior Posterior months Prior Posterior months Prior Posterior

yyyy-mm Bias RMSE R Bias RMSE R yyyy-mm Bias RMSE R Bias RMSE R yyyy-mm Bias RMSE R Bias RMSE R

2015-01 -1.16 4.83 0.37 -2.11 4.87 0.26 2017-01 - - - - - - 2019-01 -3.19 5.56 -0.20 -7.19 9.22 -0.07

2015-02 -2.88 4.73 0.41 -3.55 4.07 0.47 2017-02 - - - - - - 2019-02 -5.04 5.80 0.24 -6.25 7.12 0.28

2015-03 -1.93 4.21 -0.06 -3.36 4.84 -0.06 2017-03 - - - - - - 2019-03 -2.99 4.37 0.37 -6.36 7.13 0.30

2015-04 -1.07 2.92 0.33 -2.74 3.44 0.28 2017-04 - - - - - - 2019-04 -0.27 4.03 0.27 2.12 5.48 0.29

2015-05 -1.76 2.78 0.35 -3.65 3.38 0.53 2017-05 - - - - - - 2019-05 -1.40 3.42 0.45 0.11 4.24 0.60

2015-06 -0.96 1.68 0.29 1.90 4.07 0.31 2017-06 - - - - - - 2019-06 -0.23 1.75 0.45 -4.04 3.70 0.57

2015-07 -2.53 16.46 0.00 -7.71 17.67 0.06 2017-07 - - - - - - 2019-07 1.69 2.65 0.01 -2.12 3.78 0.20

2015-08 1.70 2.43 0.41 -2.88 4.21 0.25 2017-08 - - - - - - 2019-08 1.17 4.47 -0.03 -1.75 4.59 -0.12

2015-09 1.81 2.13 0.28 -0.32 1.54 0.04 2017-09 - - - - - - 2019-09 2.69 3.02 0.23 1.08 1.42 0.47

2015-10 2.19 2.44 0.15 3.24 3.84 -0.03 2017-10 - - - - - - 2019-10 2.31 3.25 -0.30 3.51 4.28 -0.01

2015-11 -0.52 2.30 -0.67 0.66 2.63 -0.63 2017-11 - - - - - - 2019-11 -0.63 1.99 -0.04 2.21 2.52 0.18

2015-12 -2.69 3.34 0.38 -4.03 4.45 0.36 2017-12 - - - - - - 2019-12 -1.36 2.11 0.15 -0.42 3.96 0.03

2016-01 -3.70 4.66 0.16 -3.74 3.95 0.16 2018-01 - - - - - -

2016-02 -3.40 4.71 0.33 -5.19 6.22 0.36 2018-02 - - - - - -

2016-03 -2.74 4.03 -0.02 -3.30 4.30 0.02 2018-03 - - - - - -

2016-04 1.21 3.14 -0.38 1.92 3.12 -0.03 2018-04 - - - - - -

2016-05 -1.69 4.84 -0.27 -0.50 4.45 0.02 2018-05 - - - - - -

2016-06 -2.91 3.12 0.68 -4.28 4.02 0.79 2018-06 - - - - - -

2016-07 - - - - - - 2018-07 - - - - - -

2016-08 - - - - - - 2018-08 0.51 1.61 0.47 -6.16 5.70 -0.29

2016-09 - - - - - - 2018-09 0.83 1.37 0.15 -1.95 1.65 0.01

2016-10 - - - - - - 2018-10 0.09 0.76 0.39 0.89 0.92 0.77

2016-11 - - - - - - 2018-11 -4.24 4.63 -0.11 -4.08 5.45 0.05

2016-12 - - - - - - 2018-12 -3.63 4.60 0.02 -4.70 5.88 0.31
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Table G3. Analysis of the residual between CMAQ prior and posterior simulation and Iron bark site for 2015–2019. Averaged bias (Bias),

Root-mean-square error (RMSE) and Pearson’s coefficient (R).

Iron Bark

months Prior Posterior months Prior Posterior months Prior Posterior

yyyy-mm Bias RMSE R Bias RMSE R yyyy-mm Bias RMSE R Bias RMSE R yyyy-mm Bias RMSE R Bias RMSE R

2015-01 -1.61 2.28 0.32 0.43 2.33 0.23 2017-01 -1.02 1.09 0.77 0.82 0.90 0.01 2019-01 - - - - - -

2015-02 -1.07 1.30 0.44 0.71 1.14 0.06 2017-02 - - - - - - 2019-02 - - - - - -

2015-03 -0.34 2.85 0.35 -1.32 3.61 0.49 2017-03 - - - - - - 2019-03 - - - - - -

2015-04 -1.11 2.13 0.50 -1.48 2.52 0.00 2017-04 - - - - - - 2019-04 - - - - - -

2015-05 -2.15 2.77 0.37 -1.56 2.45 0.00 2017-05 - - - - - - 2019-05 - - - - - -

2015-06 -2.12 2.63 0.46 -2.29 3.26 0.83 2017-06 - - - - - - 2019-06 - - - - - -

2015-07 -0.35 1.66 0.49 -2.33 2.77 0.00 2017-07 - - - - - - 2019-07 - - - - - -

2015-08 1.44 2.55 0.26 0.92 2.84 0.87 2017-08 - - - - - - 2019-08 - - - - - -

2015-09 1.27 1.83 0.55 1.58 2.40 0.00 2017-09 - - - - - - 2019-09 - - - - - -

2015-10 -0.81 2.04 0.28 -0.90 2.04 0.00 2017-10 - - - - - - 2019-10 - - - - - -

2015-11 -2.28 2.86 0.53 0.05 1.93 0.00 2017-11 - - - - - - 2019-11 - - - - - -

2015-12 -1.50 2.77 0.50 -3.33 4.34 0.00 2017-12 - - - - - - 2019-12 - - - - - -

2016-01 -1.05 1.97 0.62 -1.61 2.83 0.00 2018-01 - - - - - -

2016-02 -1.60 2.99 0.24 -1.04 3.49 0.04 2018-02 -12.94 20.86 0.99 -11.41 21.61 0.18

2016-03 -1.27 2.10 0.42 -1.50 2.20 0.00 2018-03 - - - - - -

2016-04 0.37 1.58 0.53 0.91 2.21 0.00 2018-04 -5.00 9.30 0.20 -6.95 10.66 0.72

2016-05 -0.09 1.71 0.40 -2.02 2.52 0.00 2018-05 - - - - - -

2016-06 -2.12 2.87 0.16 -4.22 4.99 0.64 2018-06 - - - - - -

2016-07 -0.43 2.34 0.34 -3.83 4.47 0.00 2018-07 - - - - - -

2016-08 1.10 2.44 0.21 -2.25 3.59 0.02 2018-08 - - - - - -

2016-09 1.63 3.86 0.23 0.68 3.39 0.00 2018-09 - - - - - -

2016-10 -0.04 1.53 -0.51 -0.26 2.00 0.00 2018-10 - - - - - -

2016-11 -0.96 1.60 0.66 1.65 3.03 0.11 2018-11 - - - - - -

2016-12 - - - - - - 2018-12 - - - - - -
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Table G4. Analysis of the residual between CMAQ prior and posterior simulation and Burncluith site for 2015–2019. Averaged bias (Bias),

Root-mean-square error (RMSE) and Pearson’s coefficient (R).

Burncluith

months Prior Posterior months Prior Posterior months Prior Posterior

yyyy-mm Bias RMSE R Bias RMSE R yyyy-mm Bias RMSE R Bias RMSE R yyyy-mm Bias RMSE R Bias RMSE R

2015-01 - - - - - - 2017-01 -0.44 2.74 0.34 0.21 2.68 0.28 2019-01 - - - - - -

2015-02 - - - - - - 2017-02 0.368 1.77 0.34 1.39 1.97 0.68 2019-02 - - - - - -

2015-03 - - - - - - 2017-03 -1.06 2.24 0.21 0.58 2.61 0.12 2019-03 - - - - - -

2015-04 - - - - - - 2017-04 -0.77 2.02 0.36 0.31 1.60 0.65 2019-04 - - - - - -

2015-05 - - - - - - 2017-05 -1.77 2.55 0.33 -1.28 2.02 0.56 2019-05 - - - - - -

2015-06 - - - - - - 2017-06 -0.7 1.82 0.16 -1.79 2.49 0.14 2019-06 - - - - - -

2015-07 0.86 2.12 0.41 -1.03 2.33 0.29 2017-07 -0.75 2.46 0.23 -2.58 3.60 -0.07 2019-07 - - - - - -

2015-08 2.20 3.06 0.38 1.57 3.10 0.09 2017-08 1.133 1.79 0.25 0.90 1.54 0.47 2019-08 - - - - - -

2015-09 2.03 2.69 0.44 2.08 3.16 0.27 2017-09 1.226 1.72 0.50 0.83 1.07 0.84 2019-09 - - - - - -

2015-10 0.21 1.84 0.26 0.01 1.87 0.20 2017-10 -1.24 3.07 0.48 0.94 2.44 0.72 2019-10 - - - - - -

2015-11 -1.24 2.23 0.73 1.21 2.30 0.69 2017-11 -0.37 1.98 -0.10 2.80 3.28 0.20 2019-11 - - - - - -

2015-12 0.33 2.52 0.45 -1.32 3.23 0.21 2017-12 -1 1.94 0.28 0.41 1.51 0.50 2019-12 - - - - - -

2016-01 0.92 2.78 0.46 0.01 3.30 -0.11 2018-01 -0.16 1.99 0.60 -0.93 2.17 0.63

2016-02 -0.35 2.88 0.14 0.16 3.50 -0.22 2018-02 -2.31 3.11 0.38 -2.47 3.40 0.17

2016-03 -0.50 2.06 0.58 -0.58 2.04 0.59 2018-03 -0.27 2.77 0.37 -0.23 3.08 0.09

2016-04 1.78 2.90 0.30 2.13 3.20 0.27 2018-04 -0.32 1.84 0.49 -1.58 2.11 0.51

2016-05 0.92 2.05 0.30 -1.04 2.05 0.14 2018-05 -0.46 3.01 0.04 -1.47 3.35 -0.08

2016-06 -1.46 2.59 0.12 -3.57 4.68 -0.13 2018-06 - - - - - -

2016-07 -0.482 1.99 0.38 -3.90 4.45 0.40 2018-07 - - - - - -

2016-08 0.5448 2.52 0.07 -2.79 4.26 -0.02 2018-08 - - - - - -

2016-09 1.1873 2.70 0.58 0.36 2.37 0.62 2018-09 - - - - - -

2016-10 0.8141 1.79 0.48 0.43 2.06 0.13 2018-10 - - - - - -

2016-11 -0.308 1.96 0.55 1.63 3.75 -0.08 2018-11 - - - - - -

2016-12 -0.548 1.34 0.78 0.62 1.44 0.77 2018-12 - - - - - -

47



Appendix H: Prior, posterior and GPP flux anomaly correlation analysis

Table H1. Pearson’s R correlations between prior and posterior climatological seasonal fluxes, and GPP fluxes derived from CABLE BIOS3,

MODIS and DIFFUSE model.

Bioclimate regions

Climatological seasonal cycle (2015-2019)

Prior and Posterior Prior and CABLE BIOS3 GPP Prior and DIFUSSE GPP Prior and MODIS Post and CABLE BIOS3 GPP Post and DIFFUSE GPP Post and MODIS

Tropics 0.73 -0.66 -0.50 -0.51 -0.46 -0.32 -0.33

Savanna 0.67 -0.58 -0.40 -0.40 -0.40 -0.25 -0.32

Warm Temperate 0.57 0.19 0.35 0.28 0.26 0.42 0.30

Cool Temperate 0.76 -0.28 -0.17 -0.27 -0.11 -0.03 -0.15

Meditarranean 0.83 -0.27 -0.15 -0.19 -0.30 -0.19 -0.26

Sparsely vegetated 0.33 -0.23 0.01 0.00 -0.21 -0.12 -0.30

Table H2. Pearson’s R correlations between prior and posterior flux anomalies, and GPP anomalies derived from CABLE BIOS3, MODIS

and DIFFUSE model.

Bioclimate regions

Anomalies correlations ( 2015-2019)

Prior and Posterior Prior and CABLE BIOS3 GPP Prior and DIFUSSE GPP Prior and MODIS Post and CABLE BIOS3 GPP Post and DIFFUSE GPP Post and MODIS

Tropics 0.59 -0.63 -0.20 -0.38 -0.34 -0.02 -0.15

Savanna 0.59 -0.73 -0.61 -0.63 -0.50 -0.45 -0.38

Warm Temperate 0.43 -0.64 -0.52 -0.52 -0.32 -0.32 -0.29

Cool Temperate 0.20 -0.65 -0.50 -0.52 0.10 -0.03 -0.09

Meditarranean 0.35 -0.71 -0.50 -0.45 -0.18 -0.16 -0.02

Sparsely vegetated 0.49 -0.46 -0.31 -0.34 -0.61 -0.49 -0.48
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