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Abstract.

In this study, we employ a regional inverse modelling approach to estimate monthly carbon fluxes over the Australian

continent for 2015–2019 using the assimilation of the total column-averaged mole fractions of carbon dioxide from the Orbiting

Carbon Observatory-2 (OCO-2, version 9). Subsequently, we study the carbon cycle variations and relate their fluctuations to

anomalies in vegetation productivity and climate drivers. Our five-year regional carbon flux inversion suggests that Australia5

was a carbon sink averaging -0.46 ± 0.08 PgC yr−1 (excluding fossil fuel emissions), largely influenced by a strong carbon

uptake (-1.04 PgC yr−1) recorded in 2016. Australia semi-arid ecosystems, such as sparsely vegetated regions (in central

Australia) and savanna (in northern Australia), were the main contributors to the carbon uptake in 2016. These regions showed

relatively high vegetation productivity, high rainfall and low temperature in 2016. In contrast to the large carbon sink found

in 2016, the large carbon outgassing recorded in 2019 coincides with an unprecedented deficit of rainfall and higher than10

average temperature across Australia. Comparison of the posterior column average CO2 concentration against the Total Carbon

Column Observing Networks (TCCON) and in situ measurements offers limited insight into the fluxes assimilated with OCO-

2. However, the lack of these monitoring stations across Australia, mainly over ecosystems such as the savanna and areas with

sparse vegetation, impedes us from providing strong conclusions. Comparison of our flux inversion to
::
To

::
a

::::::
certain

::::::
extent,

::
we

::::::
found

:::
that

:::
the

::::
flux

:::::::::
anomalies

::::::
across

::::::::
Australia

:::
are

::::::::
consistent

:::::
with the ensemble mean carbon flux of the OCO-2 Multi-15

model Intercomparison Project (MIP)
::
and

:::::::::::
FLUXCOM

:
(2015-2018)agrees with our findings, and their results also suggest

that Australia was a strong carbon sink
:
,
:::::
which

::::
also

::::::::
estimates

::
an

::::::::::
anomalous

::::::
carbon

::::
sink

::
for

::::::::
Australia

:
in 2016 (-0.73 ± 0.41

::
of

:::::
-1.09

:::
and

:::::
-0.42

:
PgC yr−1 ). The analysis of the variability of the nine models that participate in the

::::::::::
respectively.

:::::
More

:::::::
accurate

::::::::
estimates

::
of

:
OCO-2 MIP also aligns with our findings, and it gives us the confidence to say that changes in rainfall

and temperature drive most of the carbon flux variability across Australia
::::::::
retrievals,

::::
with

:::
the

:::::::
addition

:::
of

:::::
ocean

::::
glint

::::
data

::::
into20
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:::
our

::::::
system,

::::
and

:
a
:::::
better

::::::::::::
understanding

:::
of

:::
the

::::
error

::
in

:::
the

:::::::::::
atmospheric

:::::::
transport

:::::::::
modelling

::::
will

::::
yield

::::::
further

:::::::
insights

::::
into

:::
the

::::::::
difference

::
in

:::::::::
magnitude

::
of

:::
our

::::::
carbon

::::
flux

::::::::
estimates.

1 Introduction

On average, each year, the global terrestrial biosphere absorbs about one-quarter of total global fossil-fuel CO2 emissions

that human activities add to the atmosphere (Friedlingstein et al., 2020). Carbon uptake by the terrestrial biosphere plays an25

important role in the Earth’s carbon cycle and in future climate projections, since they can slow down the rise in atmospheric

CO2 concentrations. Due to uncertainties in quantifying carbon fluxes by terrestrial biosphere models (Sitch et al., 2013,

2015), scientists are unsure whether the growth rate of emissions in the atmosphere is going to increase or decrease in the

future. In particular the contributions of semi-arid regional ecosystems such as Australia are uncertain and subject to high

variability (Trudinger et al., 2016). Understanding which are the main drivers behind carbon flux variability in semi-arid30

ecosystems is crucial not only for understanding the global carbon cycle but also for predicting future trends in atmospheric

CO2 concentration and consequently the future of climate change.

Australia’s contribution to inter-annual global carbon cycle variability has been a topic of interest to the carbon-cycle research

community due to an unusually large land carbon sink anomaly of about -0.70 PgC yr−1 (relative to the 2003–2012) recorded

in 2011, which alone accounted for 57% of the global terrestrial carbon uptake anomaly in this period. Poulter et al. (2014)35

suggests that the reason for this large carbon uptake in Australia was due to an increase of vegetation cover as a result of

increased precipitation in 2011, one of the wettest years on record for Australia. Another study performed by Trudinger et al.

(2016) found similar results to Poulter et al. (2014); they estimated a carbon uptake anomaly of -0.40 to -0.61 PgC yr−1 (relative

to the 1982–2013). Global atmospheric inversions based on atmospheric CO2 concentrations also support this unexpected large

sink over Australia. A study carried out by Detmers et al. (2015) based on the assimilation of the Greenhouse Gases Observing40

Satellite (GOSAT) retrievals found that the carbon sink anomaly in Australia in 2011 was about -0.23 PgC yr−1 (relative to

the period June 2009 – June 2013). All these studies agree that the main driver behind the carbon sink anomaly in 2011 was

an increase in the gross primary productivity (GPP) arising from an increase in rainfall which coincides with La Niña event

that occurred from 2010 to 2011. Haverd et al. (2016) suggested that the carbon sink anomaly recorded in 2011 was 90%

attributable to a higher than expected carbon uptake by semi-arid ecosystem such as savanna and sparsely vegetated regions,45

mostly driven by a positive response of these ecoregions to precipitation anomalies.

Ma et al. (2016) suggested that the size of the 2011 carbon sink anomaly in Australia was abruptly reduced in 2012, and

was nearly eliminated in 2013 (0.08 PgC yr−1) due to a decrease in rainfall across Australia. In this study, the authors show

that Australia’s semi-arid ecosystems’ productivity is strongly influenced by drivers such as rainfall and temperature. A recent

continental-scale inverse modelling study, utilising OCO-2 satellite data, suggests that Australia was a sink of CO2 of -0.4150

± 0.08 PgC yr−1 for 2015 (Villalobos et al., 2021). In this study the authors indicate that the stronger carbon sink estimated

in 2015 was primarily driven by an increase in productivity over the savanna and sparsely vegetated regions. In this study,
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the authors also mentioned that periods with a stronger carbon uptake were likely related to increased rainfall in Australian

semi-arid ecosystems.

The current study builds upon the work of Villalobos et al. (2021), which only performed an inversion for 2015 and focused55

on the total mean of carbon flux for that period. In this study, we assimilate the total column average retrieval from NASA’s

Orbiting Carbon Observatory−2 (OCO-2) to study the interannual variability of the Australia carbon fluxes for the period

2015–2019. An interesting question is whether the large carbon sink estimated in 2015 over semi-arid ecosystems will follow

the same patterns after this year or whether such patterns will become stronger or weaker due to changes in precipitation and

temperature. Our paper is organized as follows: Sect. 2 describes the methodology and data we used to perform the inversion,60

which also includes a description of the climate drivers and auxiliary data. Section.
:
3 presents the results of the

:::
our

:
five-year

inversion,
:::::
which

::::::::
includes

:::
the analysis of the long-term mean, and variability of the

:::::::
inversion

:::::::::::
performance

:::
and

:::
the

:::::
study

:::
of

::
the

:::::
prior

:::
and

::::::::
posterior

:
Australian carbon fluxes

:
,
:::::
along

::::
with

:::
an

:::::::::
assessment

::
of

:::
the

:::::
GPP

::::::
carbon

:::
flux

::::::::
estimate

::::::
derived

:::::
from

:::
the

:::::::
CABLE

:::::
model. In this section, we also show an

:::::
assess

:::
the

:::::::::
robustness

::
of

:::
the

::::::::
inversion

:::::::
(against

::::::::::
independent

:::::
data)

:::
and

:::::::
provide

::
the

:
analysis of inter-annual variability of rainfalland ,

:
temperature and the Enhanced Vegetation Index (EVI) variability as a65

proxy of the vegetation productivity in
:::
over

::::::::
semi-arid

::::::::::
ecosystems

:::::
across

:
Australia. Section 4 presents some discussion about

the climatological seasonal difference between the prior and posterior flux estimates, GPP variability, and a comparison of our

assimilated fluxes to the .
::
4

::::::::
discusses

::::
how

:::
well

::::
our

:::::::::
assimilated

:
OCO-2 MIP (2015–2018)

::::::
carbon

:::::
fluxes

:::::
align

::::
with

::::
other

::::::
global

:::::::
products:

:::::
MIP

::::::
OCO-2

::::::
global

::::::::
inversions

::::
and

:::::::::::
FLUXCOM,

:::
and

::::
give

:::::
some

:::::::::
directions

:::
for

:::::
future

:::::
work. Finally, in Sect. 5

:
3, we

summarize the results of this study.70

2 Method and data

We follow the same four-dimensional variational data assimilation approach used to estimate the Australia carbon fluxes

described in Villalobos et al. (2021). In this section we will give a brief description of the system and the data used in the

inversion. Further details can be found in Villalobos et al. (2020, 2021).

2.1 Inversion set-up75

Our regional inversion system optimizes monthly-mean gridded-based surface carbon emissions x using a four-dimensional

variational data assimilation method, which was configured to use the Community Multi-scale Air Quality Model (CMAQ)

(version, v5.3) and its adjoint (version 4.5.1; Hakami et al., 2007). Each year of the five-year period was run independently,

with a spin up of one month for each year. Our system optimizes CO2 surface fluxes by finding the minimum of the cost

function J(x) shown in Eq. 1. Notation in this study follows Rayner et al. (2019).80

J(x) =
1

2

[
(x−xb)TB−1(x−xb)

]
+

1

2

[
(H(x)−y)TR−1(H(x)−y)

]
(1)
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This cost function measures the mismatch between a the CMAQ forward model simulation H and OCO-2 satellite observa-

tions y and the deviation of the control vector x from its background (also termed prior) estimate xb. In our case, the control

vector x (vector of unknowns) consists not only of the gridded CO2 surface fluxes, but also incorporates initial and boundary

conditions
:::::
(BCs). These two latter variables were incorporated into the control vector to reduce any potential biases related to85

the boundary inflow that could affect our system (information of how we treat the boundary and initial condition in our system can be found in Sect. 2.2 in Villalobos et al., 2020, 2021)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(detail of how we treat the boundary and initial condition in our system can be found in Sect. 2.2 in Villalobos et al., 2020, 2021),

:::
and

::::
brief

::::::::::
description

::
of

:::
this

:::::::::
treatment

:
is
::::::

found
::
in

::::::
Section

::::
2.2. R represents the observational error covariance matrix, which

was defined as a diagonal matrix (full description of this covariance matrix is found in Sect.2.3 in Villalobos et al., 2020) and a

brief explanation of how was constructed is found in Sect. 2.4. B is the associated error covariance matrix of xb, boundary and

initial concentrations, and includes off-diagonal terms. In these off-diagonal values, we only include spatial and non-temporal90

correlations of the prior fluxes (details of the structure of the prior error covariance matrix is found in Section 2.4 in Villalobos

et al., 2020), and summary of its description is found in Sect 2.3.

The minimization procedure involves iterative calculations of J(x) and its gradient ∇xJ(x), using the CMAQ forward

model H and its adjoint HT, as is shown in Eq. 2.

∇xJ =B−1(x−xb)+HT (R−1 [H(x)−y)]) (2)95

The algorithm that our inversion system uses to minimize the J(x) is the Limited-Memory Broyden-Fletcher-Goldfarb-

Shanno (L-BFGS-B) (Byrd et al., 1995), implemented in the scipy python module. The L-BFGS-B algorithm iteratively

adjusts x until J(x) reaches a minimum. We reached a reasonable convergence for each year run after iteration 25. The ratio

between the cost function and the number of observations was close to the theoretical expected value (see details Sect. 3.1).

Posterior uncertainties in this study were assumed to be the same as Villalobos et al. (2020, Sect. 2.4). However, we increase100

their value by a factor of 1.2 to satisfy the theoretical assumption in the variational optimization (p.211, Tarantola, 1987).

2.2
:::::
Initial

:::
and

:::::::::
boundary

::::::::::
conditions

::
To

:::::
avoid

:::
the

:::::
effect

:::
of

:::::
initial

:::::::::
conditions

:::::
(ICs)

::::
and

::::::::
boundary

:::::::::
conditions

:::::
(BCs)

:::
on

:::
our

:::::::
OCO-2

::::::::::
assimilated

::::::
carbon

::::::
fluxes,

:::
we

::::::::
optimized

:::::
them

:::::
within

:::
the

::::::
control

::::::
vector

::
x.

:::::
Each

:::::
lateral

::::::::
boundary

::::::
(south,

::::
east,

::::::
north,

:::
and

:::::
west)

::
of

:::
our

:::::::
regional

::::::::::::
WRF-CMAQ

::::::
domain

::::
was

::::
split

::::
into

:::
two

:::::::
regions.

::::::
Lateral

::::
BCs

:::
at

:::::
lower

::::
layer

:::
of

:::
the

:::::::::
atmosphere

:::::
were

:::::
taken

::::
from

::::::
σ = 1

::
to

::::::::
σ = 0.96,

::::::
which105

:::::::::
correspond

:::
(on

:::::::
average)

::
to

::
a

:::::::
pressure

::
of

:::::
972.5

::::
hPa,

:::::
while

:::
the

:::::
upper

::::::::
boundary

::::
layer

::::
were

::::::
solved

::::
from

:::::
972.5

:::
up

::
to

::
50

::::
hPa.

:::::
Each

:::::
lateral

::::
BCs

:::
was

::::::
solved

::
at

:
a
:::::::
monthly

:::::
scale.

:::::::::
Boundary

:::
and

:::::
initial

:::::::::::
concentration

:::::
were

:::::
taken

::::
from

::::::
CAMS

:::::
global

::::
CO2:::::::::::

atmospheric

:::::::
inversion

:::::::
product

::::
data

::::::::
(version

::::::
v19r1)

::::::::::::::::
(Chevallier, 2019).

::::
BCs

:::::::::::
uncertainties

:::::
were

:::::::
assumed

:::
as

:::
the

::::::::
standard

::::::::
deviation

::::
(1σ

::::::::::
uncertainty)

::
in

:::
the

:::::::::
perimeter

::
of

:::::
each

::::::
region

::
of

:::
the

::::::::::
boundaries,

::::
and

:::::::::::
uncertainties

:::
for

:::
the

::::::
initial

::::::::
condition

:::::
were

:::
set

::
at
::::

1%

::::::::::::
(approximately

::
4

:::::
ppm).

:::
An

:::::::
diagram

::
of

:::
the

:::::::::::
WRF-CMAQ

:::::::
domain

::
is

::::::::
illustrated

::
in

::::
Fig.

::
1.110
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Figure 1.
::::::::
Horizontal

::::::::::
WRF-CMAQ

::::::::
modelling

::::::
domain

::::::
(shown

:
in
::::::
lighter

::::::
colours)

::::
based

:::
on

::
the

:::::::
Lambert

::::::::
conformal

::::::::
projection.

2.3 Transport model and prior fluxes

The CMAQ model was used to simulate atmospheric transport and dispersion. These simulations, which were run off-line

from the meteorological model, were conducted without atmospheric chemistry. The meteorological data used as input for the

CMAQ model were taken from the Weather Research and Forecasting (WRF) model (version V4.1.1) (Skamarock et al.). We

run the CMAQ model at hourly resolution at a grid-cell scale of 81 km. The model has 32 vertical levels using the terrain-115

following σ vertical coordinate system. Details of the parameterizations are listed in Villalobos et al. (2021, Sect. 2.4, Table 1).

We run WRF at a spatial resolution of 81 km on a single domain (i.e., non-nested). WRF initial conditions were taken from the

ERA-Interim global atmospheric reanalysis (Dee et al., 2011), which has a resolution of approximately 80 km on 60 vertical

levels from the surface up to 0.1 hPa. Sea surface temperatures were obtained from the National Centers for Environmental

Prediction/Marine Modeling and Analysis Branch (NCEP/MMAB). The WRF model was run with a spin-up period of 12120

hours.

The prior flux estimates used in our inversion consisted of four datasets: land biosphere fluxes, fossil-fuel, fires and ocean

fluxes. Biosphere carbon fluxes were simulated by the Community Atmosphere-Biosphere Land Exchange model (CABLE)

set-up in BIOS3 environment (hereafter referred to as CABLE BIOS3) (Haverd et al., 2018). The CABLE land surface model

consists of a biophysical core, a biogeochemical module including a nitrogen and phosphorous cycle (Wang et al., 2010),125

the Populations-Order-Physiology (POP) module for woody demography and disturbance-mediated landscape heterogeneity

(Haverd et al., 2013b), and a module for land use and land management (POPLUC; Haverd et al., 2018). However, the func-

tionality of POPLUC was not considered in BIOS runs, and the land-use change was held to be static at year 2000. CABLE can
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be run on global or regional scales. For our regional study case, CABLE was run at a regional scale (resolution 0.25 degree),

and it was forced with Australian regional drivers and observations (BIOS3 set-up). Biosphere fluxes from CABLE (∼NBP)130

include gross primary productivity (GPP), net ecosystem respiration (autotrophic and heterotrophic respiration). However, they

do not include carbon losses from fires disturbances, harvest, erosion, and export of carbon in river flow. We used averages of

3-hourly NBP estimates as input for CMAQ (further details of how we constructed NBP can be found in Sect.2.3 Villalobos

et al., 2021). The prior error covariance matrix of the terrestrial biosphere flux from CABLE was assumed to be an approxima-

tion of the net primary productivity (NPP) following the approach of Chevallier et al. (2010) with a ceiling of 3 gC m−2 d−1.135

We assumed that these uncertainties were spatially correlated with length-scale 500 km over land following Basu et al. (2013).

Within our inversion system, no temporal correlations were considered.

Fossil fuel emissions used here were based on two different inventory data sets: the Open-source Data Inventory for An-

thropogenic CO2 (ODIAC) (version 2019) (Oda et al., 2018) and the Emissions Database for Global Atmospheric Research

(EDGAR) (Crippa et al., 2020). We added some missing sectors from the EDGAR inventory to ODIAC (such as aviation climb-140

ing and descent, aviation cruise, and aviation landing and take-off datasets). ODIAC is a global gridded product distributed at

0.1◦ × 0.1◦ spatial resolution over land, which uses power plant profiles (emissions intensity and geographical location) and

satellite-observed nighttime lights. We used ODIAC monthly fluxes and incorporated a diurnal scale factor to estimate diurnal

CO2 emission variability (Nassar et al., 2013). Given that the ODIAC product only covers the period from 2015 to 2018, we

repeated the data from 2018 in 2019 but increased the value in each grid cell by 1.7%, which represents the mean annual growth145

rate of these emissions from 1970 to 2018. EDGAR is also gridded at 0.1◦ × 0.1◦ with monthly temporal resolution. There is

no EDGAR gridded product for 2016–2019, so we repeated the 2015 product to cover the other years. We increased EDGAR

aviation emissions by 2.5%, which represents the mean growth rate in this emissions sector from 2016 to 2019. Fossil fuel

prior uncertainties were assigned to be 0.44 times the value of the monthly fossil fuel estimates described above (see details in

Sect. 2.3. in Villalobos et al., 2021). Errors in fossil fuel emissions were assumed to be uncorrelated.150

Ocean flux estimates were selected from CAMS global data (version v19r1) (Chevallier, 2019). Ocean prior uncertainties

were assumed to be 0.2gC m−2 d−1 and uniform across the ocean, as in Chevallier et al. (2010). Similar to correlations for

biosphere prior uncertainties, uncertainties of ocean fluxes were assumed to be correlated in space with length-scale 1000 km.

Fire prior emissions were selected from the Global Fire Emission Database (GFED), version 4.1s, which includes emissions

from small fires. Fire emissions uncertainties were assumed to be 20% of the GFED emissions and correlated in space with155

length-scale 500 km, but not in time. The combination of all prior fluxes was regridded to the spatial resolution of the CMAQ

model.

2.4 OCO-2 observations and their uncertainties

Our regional inversion assimilates satellite observations derived from NASA’s Orbiting Carbon Observatory-2 (OCO-2; El-

dering, 2018). The OCO-2 satellite instrument carries a single instrument that incorporates three-channel imaging grating160

spectrometers developed to measure reflected sunlight by the Earth’s surface in three spectral bands: two CO2 spectral bands

in the shortwave infrared (SWIR) at 1.6 and 2.1 µm and one in the near-infrared (NIR) ar 0.76 µm (O2 A-band). From these

6



radiance spectra is possible to calculate the column-averaged dry-air mixing ratio of carbon dioxide. OCO-2 employs three

different sampling strategies to collect data: nadir, glint and target mode. Nadir observations provide useful information over

land because the satellite points straight down at the surface of the Earth (surface solar zenith angle is less than 85◦). In glint165

mode the instrument points to the bright glint spot on Earth where solar radiation is directly reflected off the Earth’s surface

(local solar zenith angle is less than 75◦). In Target mode, the instrument points towards a specific location on the ground.

Target mode is use for validation, where the performance of the instrument is validated against ground-based observations

from the Total Carbon Column Observation Network (TCCON) (Wunch et al., 2011).

In this study, the regional inversion was performed using the combination of both land (nadir and glint) (LNLG) OCO-2170

observations (version 9). We used the combination of both datasets because it has been demonstrated by Miller and Michalak

(2020) that combining both modes provides a stronger and better constraint of CO2 fluxes at regional scales. Also, both datasets

present negligible bias (O’Dell et al., 2018). We did not incorporate ocean glint measurements in our inversion, because ocean

observations still have undetermined biases (O’Dell et al., 2018), which might impact the Australian carbon flux estimates.

OCO-2 LNLG dataset were selected from December 2014 to December 2019. We considered OCO-2 data since December175

2014 because we run CMAQ with a spin up of one extra-month.
::
As

::
an

::::::::
example,

:
Fig. A1 to Fig. ?? in Appendix A

:::
E1

::
in

:::
the

::::::::
Appendix

:
show the spatial pattern of OCO-2 soundings (LNLG) that fall in our CMAQ domain for 2015 to 2019.

::::
2015.

:
In

these Figures, we can see that OCO-2 data provides a very good coverage over the Australian region. Such spatial coverage

offers good potential to help constrain regional biosphere CO2 fluxes.

Given that the OCO-2 spatial resolution (1.29 km × 2.25 km) is higher than the CMAQ model grid cell (81 × 81 km),180

the OCO-2 data were averaged to the CMAQ model grid-level following a two-step process described in (Sect 2.3, Villalobos

et al., 2021). The first step involves averaging all OCO-2 soundings across 1-second intervals, while the second step involves

averaging these 1-second averages into the CMAQ vertical column (approximately 11-seconds averages). The algorithm to

estimate the uncertainties across 1-second averages follows Crowell et al. (2019). Here, we considered three different forms of

uncertainty calculation. First, we assumed that uncertainties that fall within 1-second span were perfectly correlated in time and185

space (uncertainties defined as σs). Second, given that the average of OCO-2 uncertainties (σs) is relatively lower than the real

OCO-2 uncertainties (mainly because they only consider the errors from measurement noise, and not systematic errors), we

also used the spread (standard deviation) of the OCO-2 retrievals in the 1-second average (uncertainties defined as σr). Third,

we also considered a baseline uncertainty (defined as σb) for cases where the number of OCO-2 soundings was not enough

to compute a realistic spread. Our baseline uncertainties were assumed to be 0.8 ppm over land and 0.5 ppm over ocean.190

Finally, we selected the maximum value between these three uncertainties (σs, σr, and σb). For each grid-cell, we also added

(in quadrature) to this term 0.5 ppm as the contribution of the CMAQ model uncertainty (defined as σm). We also increase the

final observation uncertainty by a factor of 1.2 to satisfy the theoretical assumptions of the inversion (Villalobos et al., 2021).

We interpolated the retrieval OCO-2 profile to the CMAQ model vertical profile as described in (Sect. 2.6., Villalobos et al.,

2020). Note that we only selected OCO-2 retrievals with quality flag “0” and bias-corrected data, as described by Kiel et al.195

(2019).
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2.5 Validation data

2.5.1 TCCON

For validation of our inversion, we compared our posterior column averaged concentration simulated by CMAQ against the

TCCON sites located in Australia and New Zealand (Fig ??
:
2). TCCON is a network of ground-based Fourier Transform200

Spectrometers (FTS) recording direct solar spectra in the NIR/SWIR spectral region (Wunch et al., 2011). From these spectra,

accurate and precise total column amounts of CO2 and other trace gases are retrieved. In our study domain, there are three

TCCON stations (Darwin, Wollongong and Lauder). The Darwin and Wollongong sites are located within Australia, while

the Lauder site is located in New Zealand. The Darwin and Wollongong sites are operated by the Centre for Atmospheric

Chemistry at the University of Wollongong, Australia (Griffith et al., 2017a, b). The Lauder site is operated by New Zealand’s205

National Institute of Water and Atmospheric Research (NIWA) (Sherlock et al., 2017; Pollard et al., 2019). As is shown in

Fig ??
:
2, the Lauder monitoring station is located on the South Island of New Zealand at 2 km north from the town of Lauder.

It is sheltered from the prevailing wind direction by the Southern Alps, which increases the number of days with clear skies

and results in an air mass that is largely unmodified by regional anthropogenic sources (Pollard et al., 2017). From mid-2015,

the Darwin site has been located about 9 km east of Darwin city, approximately 4.5 km south-east of its previous location210

(Deutscher et al., 2010). The Wollongong site is a coastal site close to populated areas and industry to the north, and native

forest and less dense population to the south and west (Deutscher et al., 2014). At each site, TCCON data were selected

within one hour windows and averaged to be consistent with temporal resolution of the output of the CMAQ simulations.

Each TCCON retrieval is provided with an averaging kernel and a prior profile, which were interpolated to the CMAQ vertical

profiles. After the interpolation, we applied the averaging kernel (following Eq.15 Connor et al., 2008) to compute the TCCON215

CMAQ simulated CO2 concentrations. The residual between CMAQ and TCCON was constructed based on monthly mean

concentrations, which were calculated by taking local time averages (10:00 – 14:00 LT), where the solar radiation intensity is

most stable (Kawasaki et al., 2012).

2.5.2 Ground-based in-situ measurements

We also compared our posterior concentrations against four ground-based in-situ monitoring sites: Cape Grim, Gunn Point,220

Burncluith and Ironbark, whose geographic locations are shown in Fig. ??
:
2. These monitoring sites form part of the Global

Atmosphere Watch (GAW) Programme of the World Meteorological Organisation (WMO), and they are operated by CSIRO’s

Climate Science Centre located in Aspendale, Australia. We used hourly data from these monitoring sites, but the monthly

mean averaged data shown in Section 3.4.1 were calculated using local time averages (12:00–05:00 LT, Australian local time,

local referred to the monitoring site locations).225

Atmospheric CO2 concentration measurements at the Gunn Point, Ironbark and Burncluith sites are made continuously at

high frequency (∼0.3 Hz) using Picarro cavity ring-down spectrometers. Instruments located at the Gunn Point and Ironbark

sites use the Picarro model (G2301), while the Burncluith site uses a model G2401. All the inlets are placed at the height of 10

m. Descriptions of the Ironbark, Gunn Point and Burncluith installations can be found in Etheridge et al. (2016). Cape Grim also
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operates a Picarro G2301 analyser; however, the inlet is positioned at 70 m. The instrument precision for these spectrometers230

is better than 0.1 ppm (Etheridge et al., 2014) and all measurements are calibrated to the World Meteorological Organization

(WMO) X2007 CO2 mole fraction scale (Zhao and Tans, 2006), ensuring comparability between all measurements used. We

note that we used “baseline” and “non-baseline” data from Cape Grim. Baseline data is selected when winds blow straight off

the Southern Ocean and have not been in recent contact with land. In this study, we used both datasets because our inversion

only uses OCO-2 soundings located over land.235

3232

Gunn Point

Darwin

Ironbark

Burncluith

Cape Grim

Tropics

Savanna

Warm Temperate

Cool Temperate

Mediterranean

Sparsely vegetated

Wollongong

Lauder

Figure 2. Location of the Total Carbon Column Observing Network (TCCON) sites across Australia and New Zealand (red points) and

in-situ sites (blue points). This map also shows a classification of six bioclimatic regions for Australia.

2.6 Australian bioclimatic classification

To understand which ecosystems contributed the most to the Australian inter-annual carbon flux variability between 2015–

2019, we divided the continent into six bioclimatic classes: tropical, savanna, warm temperate, cool temperate, Mediterranean

and sparsely vegetated (Fig. ??
:
2). We used the same six bioclimatic regions at a 0.05◦ spatial resolution as in Haverd et al.

(2013a). The classes were regridded over our CMAQ grid (81 × 81 km) resolution.240

2.7 Climate data

In order to analyse the impact of climatic drivers on Australian terrestrial carbon cycle variability, we investigated the anomalies

of rainfall and temperature across Australia for the period 2015-2019. Rainfall data were selected from the Australian Water
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Availability Project (AWAP), Bureau of Meteorology (BOM) (Jones et al., 2009) for the period 2015 to 2019. AWAP is a

gridded product at 0.05◦ resolution. It is generated by spline interpolation of in situ rainfall observations. We also used air245

temperature data at 2 m above the land surface from ERA5, the fifth generation of European Centre for Medium-Range

Weather Forecasts (ECMWF) atmospheric reanalyses. The dataset selected from ERA5 was monthly and it was gridded at

0.25 degrees spatial resolution. We constructed 3-month running means of rainfall anomalies and air temperature anomalies

relative to a mean across 2015-2019. These anomalies were calculated by subtracting their long-term mean (2015–2019) for

each month from the raw time series and constructing the 3-month running mean on the resultant time series. We regridded the250

rainfall anomalies onto the grid of the CMAQ model in order to simplify the comparison with the estimated terrestrial carbon

uptake from the flux inversions.

2.8 Enhanced vegetation index (EVI) as an indicator of the vegetation greenness

Plant photosynthesis and respiration are two fundamental physiological processes in the carbon cycle. Physiological and struc-

tural changes in vegetation modulate the exchange of CO2 between the land and atmosphere. In order to understand what phys-255

iological factors drive the inter-annual variability of our posterior fluxes, we studied the anomalies of the enhanced vegetation

index (EVI). EVI provides information on vegetation state, and we used it to characterize changes in Australian vegetation

greenness and activity (e.g photosynthesis) from 2015 to 2019. The EVI product was derived from the Moderate-Resolution

Imaging Spectroradiometer (MODIS) MOD13C1 version 6 data product, which flies on board Terra, a NASA earth-observing

satellite (Didan, 2014). The MODIS EVI is a gridded product, which has a temporal resolution of 16 days composite and 0.05-260

degree spatial resolution. The EVI ranges from -0.2 to +1, where values less than 0 indicate a lack of green vegetation or arid

areas. We calculate the 3-month running mean of EVI anomalies in Australia relative to the long-term mean from 2015-2019

and subtract the mean seasonal cycle. These monthly EVI MODIS products were also regridded into the CMAQ domain to

calculate the temporal correlation between prior and posterior flux anomalies.

2.9 Gross Primary Productivity (GPP)265

To understand the difference between posterior and prior fluxes, we compared the climatological seasonal cycle of the gross

primary productivity (GPP) from the CABLE BIOS3 model against the remote-sensing based DIFFUSE model (Donohue et al.,

2014), and the latest MODIS terra GPP product (MOD17A2H version 6) (Running et al., 2015) for the period 2015–2019. We

also calculated 3-month running mean GPP anomalies for these three datasets.

The DIFFUSE GPP estimates are taken to be the product of the fraction of photosynthetically active radiation (PAR) ab-270

sorbed by vegetation and the light-use efficiency. These datasets have a temporal resolution of 16-days at 250 m resolution.

Similar to the DIFFUSE estimates, the MODIS GPP product is based on a light-use efficiency approach and provides a cumu-

lative 8-day composite product gridded at 500 m. For comparison, the CABLE BIOS3, DIFFUSE and MODIS GPP products

were averaged to a monthly resolution and regridded over the CMAQ domain.
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2.10 Global Atmospheric Inversions275

We compared our Australian assimilated fluxes against nine independent global atmospheric inversions: AMES, PCTM,

CAMS, CMS-Flux, CSU, CT, OU, TM5−4DVAR, UT (Sect. ??
:
4). These global inversions are part of the OCO-2 Model

Intercomparison Project (MIP) (Crowell et al., 2019; Peiro et al., 2021). In this study, we used the OCO-2 MIP flux version

found in Peiro et al. (2021). In Peiro et al. (2021), the global inversions were performed using the assimilation OCO-2 (version

9, bias-corrected) from 2015-2018. A summary of these nine global inversions is given in Table 1, and a complete description280

of them and their input fields can be found in Peiro et al. (2021, Appendix A: model information). We can see in Table 1 that

all global inversions were run using different inverse systems and were configured at different spatial resolutions with different

atmospheric transport models and prior fluxes. Some global inversion methods use a four-dimensional variational (4D-Var)

approach, while others utilize the technique known as ensemble Kalman filter (EnKF) or Bayesian synthesis.

Table 1. Summary of the configuration of the MIP OCO-2 (version 9) design.

Acronym
Transport Meteorological Grid spacing Prior Land Prior Inverse

Model fields (degree) Biosphere Fire System

AMES GEOS-Chem MERRA-2 4◦ × 5◦ CASA-GFED4.1s GFED4.1s 4D-Var

Baker PCTM MERRA-2 6.7◦ × 6.7◦ CASA-GFED3 GFEDv3 4D-Var

CAMS LMDz ERA-Interim 1.9◦ × 3.75◦ CMEMS GFEDv4 Variational

CMS-Flux GEOS-Chem GEOS-FP 4◦ × 5◦ CARDAMOM GFED4.1s 4D-Var

CSU GEOS-Chem MERRA-2 1◦ × 1◦ SIB4 GFED4 Bayesis syntesis

CT TM5 ERA-Interim
3◦ × 2◦ CT2019 CT2019

EnKF
1◦ × 1◦ CASA GFED4.1s CASA-GFED4.1s

OU TM5 ERA-Interim 4◦ × 6◦ CASA-GFED3 GFEDv3 4D-Var

TM5-4DVAR TM5 ERA-Interim 2◦ × 3◦ SIB-CASA GFEDv4 4D-Var

UT GEOS-Chem GEOS-FP 4◦ × 5◦ BEPS GFEDv5 4D-Var

2.11
::::::::::

FLUXCOM
::::::
carbon

::::::
fluxes285

:::
We

::::
also

::::::::
compared

::::
our

:::::::::
assimilated

::::::
fluxes

::::::
against

:::
the

:::::::::::
FLUXCOM

:::
net

:::::::::
ecosystem

::::::::
exchange

::::::
(NEE)

::::::::
ensemble

:::::
mean

::::::::
product.

:::
The

::::::::::
FLUXCOM

::::::
dataset

::
is
:::::::
created

::::
using

::::::::
machine

:::::::
learning

::::::::::
approaches,

:::::
which

:::::::
combine

::::
data

:::::
from

:::::::::
FLUXNET

:::::
eddy

:::::::::
covariance

:::::
towers

:::
(at

:::
site

::::
level

:::::::::::
observation)

::::
with

:::::::
satellite

::::::
remote

:::::::
sensing,

:::
and

:::::::::::::
meteorological

::::
data

::
to

:::::::
estimate

::::::
carbon

:::::
fluxes

::::
such

::
as

:::::
NEE

:::
and

:::::
along

::::
with

::::
their

:::::::::::
uncertainties

:::::::::::::::::::::::::::::::::::
(Jung et al., 2020; Tramontana et al., 2016).

:::
For

::::
this

:::::
study,

:::
we

::::::::::
downloaded

:::
the

:::::::
products

::
at
::
a

:::::::
monthly

:::::::
temporal

:::::::::
resolution

::::
from

:::
the

::::
data

:::::
portal

::
of

:::
the

::::
Max

::::::
Planck

:::::::
Institute

:::
for

::::::::::::::
Biogeochemistry

:
(https://www.bgc-jena.mpg.290

de
:
).
:

11

https://www.bgc-jena.mpg.de
https://www.bgc-jena.mpg.de
https://www.bgc-jena.mpg.de


3 Results

3.1 Inversion performance

In our inversion system, the L-BFGS algorithm iteratively adjusts the control vector until the cost function reaches an optimal

solution. In Bayesian inverse problems we require that the observational residuals (simulated − observed) and increments295

(posterior − background) are consistent with the assumed probability density functions (PDFs). This implies that the cost

function should be approximately half the number of observations (Tarantola, 1987, p.211). Table 2 shows the analysis of

convergence for our five-year inversion. In this table, we can see that for each year, the ratio between final cost function J(x)

and observation was about 0.5, indicating that our system is self-consistent.

Table 2. Convergence diagnostics of the inversion system using OCO-2 satellite data.

Year J0(x) ∇xJ0 Jf(x) ∇xJf N observations Theoretical J(x) Ratio (Jf(x) and N)

2015 5653.15 5177.65 4403.01 394.17 8766 4383 0.50

2016 5561.51 5371.69 4380.64 853.07 8946 4473 0.49

2017 4485.17 4794.40 3477.63 335.92 7514 3757 0.46

2018 5118.29 3825.28 4112.01 365.46 9679 4839 0.42

2019 5582.00 2719.85 4443.32 387.14 10373 5186 0.43

Fig. ??
:
3
:
shows the monthly bias

:
, and root-mean-square error (RMSE) between the prior and posterior column integrated300

concentrations simulated by CMAQ against the OCO-2 observations. In this figure, we can see thatthe posterior concentration

biases were significantly reduced from the prior ,
:::

in
:::::::
general,

::
the

::::::::
inversion

:::::::
reduces

::::
prior

::::::
biases

::::::::::
significantly

:
to values close to

zero.

In
::
As

:::
an

::::::::
indication

:::
of

:::
the

::::::
overall

::::::::
inversion

:::::::::::
performance,

:::
the

:::::::::
Australian

::::
mean

:::::
prior

::::
bias

:::
for 2015 , the prior concentrations

significantly overestimate OCO-2 observations from March to April, and from July to September, and underestimate the305

observations in November. Prior biases in these months were reduced between 60 – 90%. In March, for example, the monthly

prior mean bias
::::
2019 was reduced from 0.56 to 0.05

::::
0.23

::
to

::::
0.06 ppm, with a decrease in the root mean square error (RMSE )

from 1.11 to 0.84
:::
and

:::
the

::::::
RMSE

::::
was

:::::::
reduced

::::
from

::::
0.90

::
to

::::
0.76

:
ppm . Negligible biases in the prior concentration are seen in

January, February, May and December, showing a good agreement with OCO-2.In 2016,
:::::::::
(Appendix

::
A,

::::
Fig.

::::
A1).

:

:::::
While we see that

:::::::
inversion

::::::
reduces

:::
the

:::::
prior

:::::
biases

:::::::::::
significantly,

::::::
relative

:::::
small

:::::::
positive

::::::::::
systematical

:::::::
posterior

::::::
biases

::::::
remain310

::::
(0.05

:
ppm

:
).

:::::
These

:::::::::
systematic

:::::::
positive

:::::::
posterior

:::::
biases

::::::
across

::::::::
Australia

::::
may

:::::
likely

::
be

:::::
driven

:::
by

::::::::
sampling

:::
and

:::::::
residual

:::::::
retrieval

:::::
biases

::
in

:
the prior mainly overestimates OCO-2 observations from January to October but especially in June and August. In

June, for example, we see a bias of 0.61 (RMSE = 1.12), reduced by the inversion to 0.13 (RMSE = 0.78). For this year,

November is the only month that shows negligible prior concentration bias, 0.04 (RMSE = 1.0), indicating a good agreement

with
::::
data.

:::::
Some

:::::::
studies

::::::
suggest

::::
that

:::
the

:::::::
existing

:
OCO-2 concentration.

::::
cloud

::::::::
screening

:::::::::
algorithm

::::::::::::::::::::
(Taylor et al., 2016) has315
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:::::::
difficulty

:::::::::
identifying

::::::::
sub-field

::
of

::::
view,

::::
and

:::
that

:::::::::
unresolved

::::::
clouds

::::::::
introduce

:
a
::::
bias

::
in

::
the

::::::::
retrieved

::::::
column

::
of

::::
CO2::::::::::::

concentration.

In 2017, the prior concentrations simulated by CMAQ overestimate the observations from January to July. The highest prior

biases are seen in April and July. For these two months, the prior biases are similar (∼ 0.4 ) with RMSE of 0.91 and 0.83

, respectively. We note the data gap in August and September
:::
was

:
caused by a satellite outage. In November 2017, we see320

:::
saw

:
the prior concentration underestimates the observations significantly, with biases of about -0.56 ppm and RMSE 1.29

ppm. Reduction of the prior
::::
High

:::::
prior

:::::
biases

::
in
::::
this

:::::
month

:::::
were

:::::
found

:::::
along

:::
the

::::
east

::::
coast

:::
of

::::::::
Australia,

:::::::::
suggesting

::::
that

:::
the

:::::::
CABLE

:::::
model

::::::
might

:::::
likely

::
be

::::::::::::::
underestimating

:::
the

:::::::
carbon

:::::::::
outgassing

::
in

::::
this

::::
area

::::
and,

::::::::
therefore,

:::
the

:::::
prior

:::::::
retrieval

:::::::
column

::::
CO2 :::::::::::

concentration.
::::
The

::::::::
reduction

::
of

:::
the

:::::
prior biases in this month was about 90% (-0.06 ppm with a

::
an

:
RMSE of 0.94).

In 2018, the prior concentration overestimates OCO-2 observations from March to May and from August to September. For325

this period, the highest prior concentration biases are seen in September (0.48 ) with a RMSE of 0.87 , which were reduced by

the inversion to biases of 0.17 and RMSE of 0.72 . From October to December, 2018, prior concentration biases are negative.

In 2019, most of the prior biases were positive, except for January where biases were negative. For this period , prior

concentration biases were -0.18 , with a RMSE of 1.01 , which were reduce by the inversion to -0.01 and RMSE 0.87.Considerable

positive biases are seen in August and September, which values were around 0.48 , with a RMSE of 0.86 . December was the330

only month that prior concentrations were in a good agreement with OCO-2 observations. Prior biases in this period were

negligible (0.08 , RMSE 0.98).
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Figure 3. Bias and root mean square error (RMSE) between OCO-2 and the prior and posterior concentrations simulated by CMAQ model.

Blue and orange circles represent prior posterior concentration biases, and orange and blue lines represent the RMSE.

3.2 Australian posterior and prior monthly carbon flux estimates

3.2
:::::::

Seasonal
:::::
cycle

:::
and

:::::::
spatial

::::::::::
distribution

::
of

:::
the

::::::::::
Australian

:::::
prior

::::
and

::::::::
posterior

::::::
carbon

::::::
fluxes
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:::::
Before

::::::::
assessing

:::
the

::::::::::
interannual

:::::::::
variability

::
of

:::
the

:::::
fluxes

:::::::
derived

::
by

:::
the

::::::::::
assimilation

::
of

:::::::
OCO-2

:::::::::::
observations,

:::
we

:::
first

::::::::
examine335

::
the

::::::::
monthly,

::::::::
seasonal,

::::
and

::::::
annual

:::::
means

::::::::
between

:::
the

:::::
prior

:::
and

::::::::
posterior

::::::
fluxes.

::::
This

::::
step

::
is

:::::::
relevant

::
to

:::::::
evaluate

:::::
later

::::
how

:::
well

::::
the

:::::::
posterior

::::::::::::::
column-average

::::::::::::
concentrations

:::::::::
simulated

:::
by

:::
the

::::::
CMAQ

::::::
model

::
fit
:::::

with
::::::::::
independent

:::::
data.

:::::::::
Assessing

:::
the

::::::::
robustness

:::
of

:::
our

::::::::
inversion

::::
with

::::::::::
independent

::::
data

::::
will

:::::
allows

:::
us

::
to

:::::
better

::::::
explain

:::
the

::::::::
posterior

::::
flux

::::::::
anomalies

:::::::
derived

::
by

::::
our

::::::::
inversion.

:::::
Figure

:::
4a

:::::
shows

:::
the

::::
long

::::
term

:::::
mean

::
of

:::
the

::::
prior

::::
and

:::::::
posterior

::::::
carbon

:::::
fluxes

::::::::::
aggregated

:::::
across

::::::::
Australia

:::
for

:::
the

:::::
period

:::::
2015340

:
–
:::::
2019,

::::
and

::::
Figs.

:::
4b

::::
and

:
c
:::::

show
:::
the

:::::::
annual,

::::
and

:::::::
seasonal

:::::
cycle

::
of

:::::
these

:::::::::
estimates.

::::::::
Posterior

:::
flux

:::::::::::
uncertainties

:::::
from

:::::
2016

::
to

::::
2019

:::::
were

:::::::
assumed

::
to

:::
be

:::
the

:::::
same

::
as

:::::
those

::::::::
calculated

:::
for

:::::
2015,

::::::
which

::::
were

:::::::::
estimated

::
by

::::
five

:::::::
different

:::::::::
observing

::::::
system

::::::::
simulation

::::::
OSSE

::::::::::
experiments

:::::::::::::::::::::::::::::::::::
(see more details in Villalobos et al., 2021).

:

Our five year inversion suggests that Australia was a carbon sink of -0.46 ± 0.09 PgC yr−1 compared to the prior flux esti-

mate, which was 0.11 ± 0.17 PgC yr−1 . Within these estimates we only included the terrestrial part
::::
(Fig.

::::
4a).

::::
Here,

:::
the

:::::
prior345

:::
flux

:::::::
estimate

::::::
(fluxes

::::::
derived

:::
by

:::
the

:::::::
CABLE

::::::
model)

:::::::::
represents

::
the

:::::::
current

:::::::::
knowledge of the Australian carbon cycle, including

fires but not fossil fuel emissions. We subtracted the fossil fuel emissions from the prior and posterior estimatebecause it

only represents 25% of the total flux, and is subject to much less interannual variability than the biogenic fluxes.Figure ??a

shows the posterior and prior monthly mean terrestrial CO2 fluxes for the period 2015–2019 along with their uncertainties.

Posterior flux uncertainties from 2016 to 2019 were assumed to be the same as those calculated for
::::::
budget.

::::
Due

::
to
::::

the350

:::
size

::
of

::::
the

::::::::::
uncertainties

:::
in

:::
the

::::
prior

::::::::
estimate,

::
it

::::::
cannot

::
be

:::::::::
concluded

::::
with

:::::
high

:::::::::
confidence

:::::::
whether

::::::::
Australia

::::
was

:
a
::::

sink
:::

or

:::::
source

:::
of

::::
CO2 :::

for
:::
the

:::::
period

:
2015 , which were estimated by five different observing system simulation OSSE experiments

(see more details in Villalobos et al., 2021)
:
–
:::::
2019.

::::
The

:::::
annual

::::::::
posterior

:::::
fluxes

::::
also

::::::
suggest

:::
that

::::::::::
Australia’s

::::::::
terrestrial

::::::::
biosphere

:
is
::::
able

::
to

::::::
absorb

:::::
more

::::::
carbon

::::
from

:::
the

::::::::::
atmosphere

::::
than

:::
the

:::::::
CABLE

::::::
model

:::::::
estimate

::::
(Fig.

::::
4b).

:::
We

::::
also

:::
see

::::
that

::::
2016

::::
was

:::
the

:::
year

::::
that

::::::::::
contributed

::::
most

::
to

:::
the

::::
long

::::
term

:::::
mean

::::
sink

::::::::
estimated

::
by

:::
the

:::::::
OCO-2

::::::::
inversion.355

During the period 2015–2019,
:
In

::::::
terms

::
of

::::::::
seasonal

:::::
cycle,

:::
we

::::
can

:::
see

::::
that the posterior flux estimates show a stronger

seasonal cycle
:::::::::
seasonality

:
compared to the prior flux estimate (Fig. ??). In terms of inversion results

:::
4c).

::::
Over

:::
the

::::
five

:::::
years

::::
from

::::
2015

::
to

:::::
2019, we see that OCO-2 sees a strong seasonal biospheric carbon uptake each year between June and September

(winter and early spring in Australia), and a stronger carbon source from November to December (late spring and early summer

in Australia). As is shown
::
we

:::::::
showed in Fig. ??

:
3, the stronger carbon uptake seen in winter and early spring occurs because360

the prior
::::::
column

:::::::
average concentration simulated by CMAQ model overestimate OCO-2 observations in this period.

In August 2016, we see that the carbon uptake by Australia was about -2.92 ± 0.31 PgC yr−1 compared to the prior (-0.25

± 0.53 PgC yr−1). This uptake rate was the largest seen in the period 2015–2019. However, this uptake was rapidly reduced in

September (-1.09± 0.23 PgC yr−1) and October (-1.27± 0.39 PgC yr−1), being reversed in November (1.12± 0.31 PgC yr−1)

and December (1.10 ± 0.17 PgC yr−1). In July 2017, we again see a strong carbon uptake (-1.96 ± 0.39 PgC yr−1), which365

is rapidly reduced in September 2017 (-0.15 ± 0.23 PgC yr−1), and eliminated in October and November 2017. In 2018, the

largest difference with the prior flux is seen from June to September. For these four months, we obtain an uptake rate of (-1.11

± 0.3 PgC yr−1). This carbon uptake is rapidly released back to the atmosphere in November and December. In 2019, we see

that the largest carbon uptake observed in August (-1.77 ± 0.31 PgC yr−1) is returned to the atmosphere in December 1.50
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± 0.17 PgC yr−1.This carbon release is the largest registered for the period 2015–2019. Later, in the discussion section, we370

will show that the stronger carbon uptake is likely related to an underestimated GPP simulated by the CABLE model over the

largest ecosystem across Australia such as savanna and sparsely vegetated regions.

Time series of monthly mean prior (orange dots) and posterior (blue dots) carbon fluxes and their uncertainties in PgC yr−1

over Australia for the period 2015–2019. Uncertainties on the prior and posterior fluxes are indicated by bars.
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Figure 4.
::
(a)

::::::::
Long-term

::::
mean

::::::
carbon

::::
flux,

::
(b)

::::::
annual

::::
mean

::::::
carbon

::::
flux,

:::
and

:::
(c)

::::::
monthly

:::::
mean

::::
prior

::::::
(orange

::::
dots)

:::
and

:::::::
posterior

::::::
carbon

:::
flux

::::
(blue

::::
dots)

:::
and

::::
their

::::::::::
uncertainties

:
in
::::

PgC
::::
yr−1

::::
over

:::::::
Australia

::
for

:::
the

:::::
period

:::::::::
2015–2019.

::::::::::
Uncertainties

::
on

:::
the

::::
prior

:::
and

:::::::
posterior

:::::
fluxes

::
are

:::::::
indicated

:::
by

:::
bars.

::::
The

:::::
dashed

::::::
orange

:::
and

:::
blue

:::
line

::::::::
represents

:
a
::::::
smooth

:::
line

:::
for

:::
the

::::
prior

:::
and

:::::::
posterior

:::::
fluxes,

:::::::::
respectively.

::::::
Within

::::
these

:::::::
estimates

::
we

::::
only

:::::::
included

::
the

::::::::
terrestrial

:::
part

::
of

::
the

::::::::
Australian

::::::
carbon

::::
cycle,

::::::::
including

:::
fires

:::
but

:::
not

::::
fossil

:::
fuel

::::::::
emissions.

3.3 Spatial distribution of posterior carbon fluxes and their anomalies

The density of
::
To

::::::
identify

::::::
which

::::::
regions

:::
the OCO-2 observations allows us to localise the inferred mean uptake over 2015–2019.

We plotted the spatial patterns of the prior and
::::::
satellite

::::
sees

:
a
::::::::

stronger
::::::
carbon

:::::
uptake

:::
in

::::::::
Australia,

:::
we

::::::
plotted

:::
the

::::::
annual

::::
map375

::::::::
difference

:::::::
between

:::
the

::::::::
posterior

:::
and

:::
the

::::
prior

::::::
fluxes

::::
(Fig.

:::
5).

:::
We

:::
can

:::
see

::
in

::::
Fig.

::
5a

::::
that

::
the

::::::::
majority

::
of

:::
the posterior long-term

mean flux for the period 2015 to 2019 (Fig. ??a and Fig. ??b). We can see that the spatial pattern of the prior and posterior are

broadly different. The prior mean flux distribution across Australia is almost neutral, whereas the posterior mean flux is not

uniformly distributed . The Australian south-east corner and the northern region (with the exception of the coastal regions)are

acting as sinks of CO2.380
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Spatial distribution map of the (a) prior and (b) posterior long-term mean terrestrial flux for 2015-2019 (gC m−2 yr−1)

(including fires, but excluding fossil fuel emissions).

In order to understand which year contributed the most to the carbon uptake, we analysed the spatial distribution of the annual

mean anomalies for 2015–2019. Fig. ?? shows the spatial distribution pattern of the annual anomalies of the posterior flux

estimate in the period 2015 to 2019. A positive anomaly indicates that the amount of carbon that is released to the atmosphere385

is higher than the average, whereas a negative value indicates higher than average carbon uptake. This figure shows that 2015

and 2016 have noticeable negative anomalies
:
is
:::::::::
distributed

::
in
::::
one

:::
half

:::
of

:::
the

::::::::
continent

::
(in

:::
the

:::::::::
northeast,

::::::
central

:::
and

::::::::
southern

::::::
regions

::
of

:::
the

:::::::::
continent).

::::::::
However,

:::
we

::::
note

::::
that

:::
this

::::
was

:::
not

:::
the

::::
case

:::
for

:::
the

::::::
coastal

::::::
region

::
in

::::
these

::::::
areas,

:::::
where

:::
we

:::::::
observe

:::
that

::::::
OCO-2

::::::::
recorded

:
a
:::::::
stronger

::::::
carbon

::::::
release

:
compared to the other years. Most of the negative posterior flux anomalies seen

::::
prior

::::::::
estimate.390

:::
The

:::::::::
substantial

:::::::::
difference

:::::::
between

:::
the

::::
prior

::::
and

:::::::
posterior

::::
flux in 2015 are distributed in

:::
and

::::
2016

::::::
comes

::::
from

:
the northern

and south east
:::::::
southeast

:
of Australia (Fig. ??a), while the negative anomalies in 2016 are mostly distributed in the north east,

central and southern region
::::::::
excluding

::::::
coastal

::::
areas

::
in
::::

the
::::::::
southeast of the continent(Fig. ??b). Inter-annual variability in the

terrestrial carbon cycle is mainly dependent on climate variations that impact the growing season length, regional temperatures,

and soil moisture conditions, which largely depends on meteorological conditions).
:::
We

::::
will

::::
show

:::::
later

::
in

::::::
Section

:::
3.1

::::
that

:::
the395

:::::::
stronger

:::::
carbon

::::::
uptake

:::::::
recorded

:::
by

:::
the

:::::::
inversion

:::::::
(relative

::
to
:::
the

:::::
prior)

::
in

:::::
these

:::
two

:::::
years

:::
was

:::::
driven

:::
by

::
an

:::::::
increase

::
in

:::::::::
vegetation

::::::::::
productivity

:::
due

::
to

:
a
::::
rise

:
in
:::::::
rainfall

:::
and

:::
low

::::::::::
temperature

::::::
across

::::
these

:::::::
regions. Despite the fact that 2016 was one of the strongest

El Niño
::::
Niño events on record in the Pacific Ocean, the rainfall

:::
rain

:
over Australia was above average for most of the continent.

The annual climate report from
::
the

:
Bureau of Meteorology for 2016 indicates that the annual rainfall over Australia was 17

per cent above the 1961–1990 average. Details of the influence of these climate driver over Australia carbon sink are explored400

in Section ??.

Anomalies in
::
In 2017were mostly positive in the north-east and east region of the continent

:
,
::::
prior

::::
and

:::::::
posterior

::::::::::
differences

::::
were

::::
seen

::
in

:::
the

::::::::
northern,

::::::
central

::::
and

::::
east

::::::
coastal

::::
areas

:::
of

::::::::
Australia. Rainfall in 2017 was below average for much of east-

ern Australia , and along the west coast of Australia. The year
:::
For

:
2019was exceptional because it was ,

:::::::
OCO-2

:::::::
recorded

::
a

:::::::
stronger

::::::
carbon

::::::
release

::
in

:::::::
western

:::
and

::::::
central

:::::::::
Australia.

:::::
These

::::::
results

:::
are

:::
not

::::::::::
unexpected

:::::::
because

:::::
2019

:::
was

:::
an

::::::::::
exceptional405

:::
year

::
(the hottest and driest year on record in Australia; mean temperature

::
),

:::::
where

:::
the

:::::
mean

::::::::::
temperature

:::
was 1.52 ◦C above the

1961–1990 average average (Annual climate statement, Bureau of Meteorology, 2019). Positive posterior flux anomalies occur

all over the continent, except on the south-east and north-east corner of the region. It is likely that the higher carbon release to the

atmosphere in this period was largely affected by the drought that covered large parts of the country in 2019. These conditions

were also intensified by the wildfires, which were the worst on record.
:::::::::::::::::::::::::::::::::::::::::::::::
(Annual climate statement, Bureau of Meteorology, 2019).410

:::
We

:::
also

:::::::
noticed

:
a
:::::
large

::::::
carbon

:::::
uptake

:::::::
(relative

::
to
::::::
prior)

::
in

:::
the

:::::::
southeast

::::::
corner

::
of

::::::::
Australia

::::::::
recorded

::
in

::::
2019

::::
(Fig.

::::
5f).
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Figure 5. Spatial distribution maps
::::::
Annual

:::::
spatial

::::::
pattern of the annual

::::::::
differences

:::::::
between

:
posterior terrestrial CO2 flux anomalies

:::
and

:::
prior

::::::
carbon

:::::
fluxes

::
for

::::::::
2015-2019

:
(gC

::
m−2 yr−1)for 2015 to 2019 (panels a, b, c, d and e).Negatives anomalies correspond to a larger than

average uptake of CO2 by land ecosystem, whereas positives anomalies correspond to a larger than average release of CO2 to the atmosphere

from the land.
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3.2.1 Australia’s vegetation greenness anomalies and land carbon flux anomalies

3.3
::::::::::::

Climatological
::::::::
seasonal

::::
cycle

::
of

::::
the

:::::
prior

:::
and

:::::::::
posterior

::::::
carbon

:::::
fluxes

::::::::::
aggregated

:::
by

::::::::::
bioclimatic

:::::::
regions

Fig. ?? shows the time series of the 3-month running mean of prior and posterior flux anomalies against 3-month running mean

of EVI anomalies for the period 2015 to 2019 classified by six agro-climate ecosystems: tropics, savanna, warm temperate,415

cool temperate, Mediterranean and sparsely vegetated (Fig. ??). In general for each category, both the prior and posterior

flux anomalies were negatively correlated with EVI anomalies
::
To

::::::
further

:::::::
examine

:::::
what

:::::
might

:::::::::
potentially

::
be

:::
the

:::::
cause

:::
of

:::
the

::::::::
difference

:::::::
between

::::::::
posterior

::::
and

::::
prior

::::::
fluxes

::::::::
described

::::::
above,

:::
we

:::::::::
compared

:::
the

::::::::::::
climatological

::::::::
seasonal

:::::
cycle (Fig. ??d) ,

which indicate that an increase in vegetation productivity is associated with an increase of the carbon uptake by the terrestrial

ecosystem.420

It is evident that over the tropical ecosystem, there is not much variability of the posterior and prior fluxes throughout

2015–2019 (Fig. ??a) . In this category, we only see significant posterior negative anomalies in December 2017 (-0.21 PgC

yr−1) and January 2018 (-0.11 PgC yr−1). This larger than average uptake of carbon coincides with significant positive EVI

anomalies (>0.04) in this period. We also see significant positive EVI anomalies from November 2018 to February 2019.

However, for this whole period, the positive EVI anomalies only coincide with the posterior anomaly in February 2019. In425

this category, the temporal correlations between posterior flux anomalies and EVI anomalies were weak (R= -0.23) compared

to the prior flux anomalies (R = -0.38)
:
6)

:::::::
against

:::
the

::::::::::::
climatological

:::::::
seasonal

:::::
cycle

:::
of

:::
the

:::::
gross

:::::::
primary

::::::::::
productivity

::::::
(GPP)

:::::
fluxes

::::::
derived

:::::
from

:::::::
CABLE

::::::
BIOS3,

::::::::
MODIS

:::
and

:::
the

:::::::::
DIFFUSE

:::::
model

:::::::::
(Appendix

:::
C,

::::
Fig.

::::
C1).

:::
We

:::::
made

:::
this

::::::::::
comparison

:::
by

:::::::::
aggregating

:::
the

::::::
fluxes

::::
over

::
six

:::::::::::
bio-climatic

::::::
regions.

Over the savanna ecosystem, our posterior flux anomalies show considerable variability throughout 2015–2019
::
It

:
is
:::::::
evident430

:::
that

:::
the

::::::
largest

:::::::::
difference

::::::::
between

::::
prior

::::
and

::::::::
posterior

::::
flux

::::::::
estimates

::
is
:::::

over
:::::::
savanna

:
(Fig. ??b) . In 2015, from May to

August, we see that our positive posterior flux anomalies coincide with negative EVI anomalies in that period. These anomalies

disappear from October to November and turn negative in December 2015 (-0.4 PgC yr−1) . The anomalies seen in December

extend until February 2016. This higher than average carbon uptake, coincides with positive EVI anomalies in that period.

These posterior flux anomalies again vanish in March 2016, as a consequence of lower than average vegetation productivity435

(negative EVI anomalies). Positive EVI anomalies are again seen from April to June 2016, which coincide with negative

posterior carbon anomaly
::
6b)

::::
and

:::::::
sparsely

::::::::
vegetated

::::
(Fig.

:::
6d)

::::::::::
ecosystems.

::::
Over

:::
the

:::::::
savanna

::::::
region,

:::
the

::::
most

::::::
notable

:::::::::
difference

:
is
::::
seen

:::::
from

::::
June

::
to

:::::::::
September.

::::
The

:::::::
absolute

::::::::
difference in this period (∼ -0.35 PgC yr−1). In 2017, we see that the positive EVI

anomalies recorded from January to April do not align with the larger than average posterior carbon release
::
is

:::::
about

:::
0.4

::
to

:::
0.5

:::
PgC

:::::
yr−1.

:::::::::
According

::
to

:::::::
MODIS

:::
and

:::::::::
DIFFUSE

::::
GPP

:::::::::
estimates,

::
the

::::::::
stronger

:::::::
posterior

::::
sink

::::::::
observed in this period . We believe440

that the few OCO-2 soundings found in this period limit the potential of our inversion to constraint the surface fluxes in the

savanna ecosystem (see Appendix A, Fig ??, panels a, band c). We found similar results in September and November 2017. As

mentioned in Section 3.1, there was a long data outage of 51 days from August to September 2017. In September the number of

OCO-2 observations in Australia were only 221 and most of soundings were seen over sparsely vegetated ecosystem (in central

Australia) than the savanna ecosystem (see Appendix A, Fig ??, panels h, i). In this category, the temporal correlation between445
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the posterior anomalies and EVI anomalies was moderate (R= -0.38) compared to the prior flux anomalies and EVI anomalies

(R = -0.52). We note that the time series temporal correlation between EVI anomalies and posterior anomalies are better

represented at grid-cell scale resolution (Fig. ??a) than the time series correlations calculated within the ecosystem because

these are not influenced by high spatial variability within the ecoregion. We can see in Fig. ??a that temporal correlations at

grid-cell scale resolution in the north-east region of the savannaecosystem reach values of about 0.75.450

The warm temperate ecosystem does not show as much variability as savanna (Fig. ??c)
::::
may

::
be

::::
due

::
to

::
an

::::::::::::::
underestimation

::
of

::::
GPP

::::::::
simulated

:::
by

::
the

::::::::
CABLE

::::::
BIOS3

:::::
model

::::
(Fig.

:::::
C1b).

:::
The

::::
GPP

::::::::
estimated

:::
by

:::::::
MODIS

::::
from

::::
June

::
to

:::::::::
September

::::
was

:::::
about

::::
0.90

:::
PgC

:::::
yr−1

::::::::
compared

::
to

:::::::
CABLE

:::::::
BIOS3,

:::::
which

:::
was

::::
0.59

::::
PgC

:::::
yr−1.

:::::::::
DIFFUSE

::::
GPP

::::::::
estimates

::::
were

::::::
around

::::
0.68

::::
PgC

:::::
yr−1.

::::
Over

:::
the

:::::::
sparsely

:::::::::
vegetated

::::::
region,

:::
the

::::::::
seasonal

::::::::::
discrepancy

::::::::
between

:::
the

:::::
prior

:::
and

::::::::
posterior

::::
flux

::
is

:::::
more

:::::::
evident

::::
than455

::
for

::::::::
savanna.

::::
The

:::::::::
seasonality

::
of

:::
the

::::::::
posterior

::::
flux

::
is

:::::::
stronger

:::::::
(relative

::
to

:::
the

:::::
prior

::::::::
estimate)

::::
from

:::::
April

::
to
::::::::::
September.

:
In this

ecosystem, we only see significant negative posterior anomalies in 2016 and 2017. For 2016, the posterior anomalies spanned

August–October, with average value -0.2 PgC yr−1. This coincides with positive EVI anomalies registered in that period

(0.06). These anomalies also exist in the prior but the inversion has brought them forward in time. During 2017 we also

observe negative posterior flux anomalies but not as strong as 2016. Negative posterior anomalies span March–June, with460

value -0.1 PgC yr−1. These also coincide with positive EVI anomalies (0.04). For 2018, from June to October, we mostly see

positive posterior anomalies, which appear to be associated with the negative EVI anomalies (
:::
the

::::::
largest

:::::::
absolute

:::::::::
difference

:::::::
between

:::
the

::::
prior

:::
and

::::::::
posterior

:::::
fluxes

::
is

::::
seen

::::
from

::::
June

::
to

:::::::
August

:::
(0.5

::::
PgC

::::::
yr−1).

::
In

::::
July,

:::
for

:::::::
example,

:::
the

::::::::
inversion

:::::
shifts

:::
the

::::
prior

:::
flux

:::::
from -0.05 ). No posterior variability was seen in 2019 with the inversion reducing anomalies in the prior . Temporal

correlation between the posterior anomalies and EVI anomalies in this category were moderate (R = -0.34).465

As mentioned at the beginning of this section, we did not find correlations between posterior anomalies and EVI anomalies

over the cool temperate category. But, we did find a moderate correlation between prior anomalies and EVI anomalies (R

=-0.36) (
::
±

::::
0.09

::::
PgC

:::::
yr−1

::
to

:::::
-0.56

::
±

::::
0.06

:::::
PgC

:::::
yr−1.

::::::
Again,

:::
we

:::
can

:::
see

:::
in Fig. ??g). We believe that this discrepancy is

due to difficulty in estimating the posterior fluxes along coastal areas. We should note that this category is extended in the

south-eastern corner of Australia, which is strongly affected by strong winds that come from the southern ocean, and cloudy470

conditions that prevent to retrieve satellite observations in this area. For the majority of the months between 2016
::
6d

::::
that

:
a
:::::::
possible

::::::
reason

::
of

::::
this

::::
shift

::::
may

:::
be

:::::::::
associated

::::
with

:::
an

:::::::::::::
underestimation

::
of
::::

the
::::
GPP

:::
by

:::::::
CABLE

:::::::
BIOS3.

::
It

::
is

::::::
evident

::::
that

::::::
MODIS

::::
and

:::::::::
DIFFUSE

::::
GPP

::::
have

:
a
:::::::
stronger

::::::::::
seasonality

:::::::
compare

::
to
::::::::
CABLE

::::::
BIOS3

::::
GPP.

:::
For

::::::::
example,

:::::
from

::::
June

::
to

:::::::
August,

::
the

:::::::
CABLE

:::::::
BIOS-3

::::
GPP

::::
was

:::::
about

:::
0.4

::::
PgC

::::
yr−1

:::::::::
compared

::
to

::::::::
DIFFUSE

::::
and

:::::::
MODIS,

:::::
which

:::::
were

:::
0.9 and 2017, the number

of OCO-2 sounding in this category was relatively low compared with the other years (see Appendix A; Figs A2 and ??).475

For example, the reduced number of soundings found in period (May–December) in 2016 might explain why despite having

positive EVI anomalies, we did not see a carbon uptake in this period.

Posterior variability over the Mediterranean ecosystem is small throughout 2015 and 2019 (Fig. ??f). We only see some

variability in the posterior anomalies in 2016
:::
1.3

::::
PgC

::::
yr−1

:::::::::::
respectively.

:::
We

:::
did

:::
not

::::
find

::
a
:::::::
seasonal

:::::::::
correlation

::::::::
between

:::
the

::::
prior

:::::
fluxes

:::
and

:::::::
MODIS

::::
and

::::::::
DIFFUSE

::::
GPP

::::::
fluxes

:::
(see

:::::::::
Appendix

::
G,

:::::
Table

::::
G1),

:::
but

:::
we

:::
did

:::
find

::
a
::::::
positive

::::::::::
correlation

:::::::
between480
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::
the

::::::::
posterior

:::::
fluxes

:
and 2017. In 2016, from January to June, we note only small negative posterior anomalies of about -0.09,

which coincide with the positive EVI anomalies in that period (0.06). Note that the relative small variability in this ecosystem

is because we did not standardize the fluxes per unit area. Results recorded in 2017 show that despite having a higher than

average EVI in the period January to April, we observe a release of carbon of about 0.1 PgC yr−1 in this period. Looking at

Fig. ??, we observe that most of the positive posterior anomalies come from coastal areas in the Mediterranean ecosystem, and485

prevailing winds at the coastal zone restrict the ability of OCO-2 to constrain surface fluxes (Villalobos et al., 2020). The years

2018 and 2019 were mostly impacted by negative EVI anomalies but only small posterior flux anomalies. Over this category,

the temporal correlation between posterior flux anomalies and EVI anomalies was weak
:::
the

::::
GPP

::::::::
estimated

:::
by

:::::::
MODIS

::::
and

::::::::
DIFFUSE

:
(R = -0.21) compared to the correlation between prior flux anomalies and EVI anomalies (

:::
0.44

::::
and R = -0.33

::::
0.45

::::::::::
respectively).490

Interesting findings are seen in 2016
::::::::
Regarding

:::
the

:::::::
Tropics,

:::::
warm

:::::::::
temperate,

::::
cool

::::::::
temperate,

::::
and

::::::::::::
Mediterranean

::::::::::
ecosystems,

::
the

::::::::
seasonal

:::::::::
correlation

:::::::
MODIS

::
or

::::::::
DIFFUSE

::::
GPP

::::::::
estimates

:::::
were

:::::::
stronger

::
for

:::
the

:::::
prior

:::
than

:::
for

:::
the

::::::::
posterior

:::::
fluxes

:::::::::
(Appendix

::
G,

:::::
Table

::::
G1).

::
A

:::::::
stronger

:::::::::
correlation

:::::::
between

:::
the

::::
prior

::::
flux and 2017 over sparsely vegetated areas. From August 2016 to April

2017, we found this biome contributed enormously to the long-term mean sink estimated between 2015 and 2019. After

April 2017, the significant carbon sink anomaly disappears, and it turns into a positive carbon flux anomaly. These findings495

were also consistent with a decrease of the greenness of the vegetation. In 2018 and 2019, we only see positive carbon flux

anomalies, which again align with negative EVI anomalies.
::::::
MODIS

::::
and

:::::::::
DIFFUSE

:::::
might

::
be

::::::::::
attributable

::
to

:::
the

::::
fact

::::
that

:::
the

:::::::::
assimilated

::::::
coastal

::::::
fluxes

:::::
might

:::
be

::::::::
somehow

::::
less

::::::::
constraint

:::
by

:::
the

::::::::
inversion

::
in

:::::
these

::::::::::
ecosystems,

::::::
mainly

::::::::
because

::::
they

:::
are

:::::
mostly

:::::::::
influenced

:::
by

:::::
ocean

:::::
fluxes

::::::
where

:::
the

::::::::::
uncertainties

::::
have

::::
less

:::::::
freedom

::
to

:::
be

:::::::
modified

:::
by

:::
the

::::::::
inversion.
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Time series of 3-month running mean posterior (black line) and prior (grey line) terrestrial CO2 flux anomalies (PgC yr−1)

and 3-month running mean EVI anomalies (turquoise dashed line) between 2015 to 2019 aggregated by agro-climate regions

(a) Tropics, (b) Savanna, (c) Warm temperate, (d) Cool temperate, (e) Mediterranean and (f) Sparsely vegetated ecosystem.

The grey shaded area represent 1.0 standard deviation range around the mean for the prior and posterior flux uncertainty.

Figure 6.
:::::::::::
Climatological

::::::
seasonal

:::::
cycle

:
of
::::
prior

::::::
(orange

::::::
points)

:::
and

::::::
posterior

::::
(blue

::::::
points)

:::::::
terrestrial

:::::
carbon

:::::
fluxes

::::::::::
(2015–2019).

:::
The

::::::
dashed

:::::
orange

:::
and

:::
blue

::::
line

:::::::
represents

::
a
:::::
smooth

::::
line

::
for

:::
the

::::
prior

:::
and

:::::::
posterior

:::::
fluxes,

:::::::::
respectively.

21



3.3.1 Climate drivers of Australian land carbon flux anomalies500

3.4
:::::::::

Evaluation
::
of

:::
the

::::::::
inversion

:::::::
against

:::::::::::
independent

::::
data

We saw in the previous section that the variability of the prior and posterior flux anomalies is associated with the variability of

vegetation greenness (EVI as proxy of the vegetation productivity). A higher land productivity (i.e., positive EVI anomalies)

leads to a higher uptake of CO2, and negative EVI anomalies cause the opposite effect. Such variability is more evident in some

ecosystems than others. We observed that savanna and sparsely vegetated ecosystems account for the highest variability of our505

posterior fluxes . We also see some variability of the posterior fluxes over warm temperate, but not as strong as the categories

mentioned above. In this section, we will examine how changes in rainfall and temperature drive most of the variability in these

ecosystems, with a focus over the savanna, warm temperate and sparsely vegetated regions.

Fig ?? shows 3-month running mean of the prior , posterior flux anomalies and 3-month running means of rainfall anomalies

for the period 2015 to 2019 classified by the same six ecoregions discussed in section ??. Fig. ?? shows the flux anomalies510

along with 3-month running mean of temperature anomalies. In general, we found that rainfall and temperature anomalies are

negatively correlated, and Australia’s semi-arid ecosystems are highly responsive to these climate drivers. It is evident that

above-average rainfall and low temperatures lead to unexpectedly rapid vegetation growth over semi-arid ecosystems shown in

Fig. ?? making a significant contribution to the removal of carbon dioxide from the atmosphere.

We see in Fig. ??b that the savanna ecosystem was generally influenced by negative rainfall anomalies in 2015, which515

coincides with the positive posterior flux anomalies in that year. December was the only exception in 2015, because
::
To

:::::::
evaluate

::
the

::::::::
accuracy

::
of

:
the amount of rainfall in this month was above average (25 ), which aligns with the timing of the wet season

in northern Australia. An increase in the amount of rainfall might explain the larger than average negative posterior anomalies

in this period. We see that the posterior negative flux anomalies remain in January 2016, but its intensity decreases as the

amount of rainfall also decrease. Negative rainfall anomalies in 2016 are only seen from February to April. In the period May520

2016 to December 2017, we again notice an increase of the amount of rainfall, which coincides with the anomalous posterior

sink in that period. For this category, the temporal correlation
::::::::
posterior

:::::
fluxes

::::::::
discussed

:::
in

:::
the

:::::::
previous

:::::::
section,

:::
we

::::::
assess

::
the

:::
fit between the posterior flux anomalies and rainfall anomalies was weak (R = -0.15). However, we plotted the temporal

correlation calculated at each grid-point, and we discovered that in some areas over savanna, correlations are strongly negative,

with values of about -0.4 to -0.8 (Fig. ??b).525

In regards to temperature anomalies over savanna, we can see in Fig. ??b that they were below average by -0.5◦C in 2015.

Despite having estimated negative temperature anomalies recorded in 2015, we do not see a carbon sink anomaly in this

ecosystem as we expected. We believe that the savanna ecosystem responded strongly to the deficit of water seen in this

period compared to the relatively small changes in the air temperature. Positive temperature anomalies recorded from March

to June in 2016 (2◦C above average) lead to an increase in the amount of carbon released to the atmosphere in that period.530

Temperature in 2017 was predominantly below average from January to June. In 2018, from February to March, we mostly

found temperatures that were below average by -1◦C. In this period, negative temperature anomalies in combination with

positive rainfall anomalies align with higher posterior sink recorded in that period. Air temperature anomalies in 2019 were
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only positive. The highest temperature anomaly recorded was in June and November with values of about 2◦C, which coincided

with the positive posterior flux anomalies in this period.535

The warm temperate ecosystem was also affected by higher rainfall anomalies which were more significant in years 2016

:::::::::::
concentration

::::
CO2::::

field
:::::::
(derived

:::
by

:::::::
running

:::
the

::::::
CMAQ

::::::
model

::::
with

:::
the

:::::
fluxes

::::::::::
assimilated

::
by

:::::::
OCO-2)

::::
with

:::::::::::
independent

::::
CO2

::::::::::::
measurements:

:::::::
TCCON

::::::::
(Darwin,

:::::::::::
Wollongong,

::::
and

:::::::
Lauder) and 2017. Positive rainfall anomalies (50 above average) might

explain the stronger carbon uptake estimated by the inversion from July to December, 2016 and from May to March, 2017.

In 2018 to 2019 we only see negative rainfall anomalies in this category, which again line up with a higher than average540

carbon released by the ecosystem. Temperature anomalies in this category were mostly negative from 2015 to 2018. The air

temperature in 2019 was generally above average in this category. Positive air temperature anomalies (4 ◦C above average)

coincide with the higher than average release of carbon recorded by the ecosystem in this period.
::
in

:::
situ

::::::::::::
measurements

::::::
(Gunn

:::::
Point,

::::::::
Ironbark,

:::::::::
Burncluith

:::
and

:::::
Cape

::::::
Grim).

We also see climate relationships in 2016 and 2017 over sparsely vegetated areas (Fig. ??f) . We see that the amount of545

rainfall in this category is above average from August 2016 to April 2017. These positive rainfall anomalies (25-30 ) coincides

with the negative posterior flux anomalies estimated in that period and with negative air temperature anomalies of about -1◦C

to -2◦C. From May 2017 on-wards the positive precipitation anomalies are cancelled out and shift to being negative until the

end of 2019. This deficit of rainfall coincides with a change in air temperature anomalies in this period.

In 2018, no significant changes in temperature were observed. In 2019, positive temperature anomalies led us to expect an550

increase in the ecosystem respiration. In this ecoregion, the time series temporal correlation between posterior anomalies and

temperature anomalies was positive (R = 0.34). However, if we look at temporal correlations calculated at each grid-point in

Fig. ??, they are stronger (R = 0.5–0.9). Spatial averaging smooths grid point anomalies and so dilutes signals.

Time series of 3-month running means for anomalies of rainfall (light-blue dashed line) and terrestrial CO2 fluxes between

2015 to 2019. Details of the other components of the Figure are the same as shown in Fig. ??.555

Time series of 3-month running means for anomalies of temperature (orange dashed line) and terrestrial CO2 fluxes between

2015 to 2019. Details of the other components of the Figure are the same as shown in Fig. ??.

Spatial map of monthly temporal correlation between (a) EVI and posterior anomalies (b) rainfall anomalies and posterior

anomalies, and (c) air temperature anomalies and posterior anomalies for the period 2015–2019.

3.5 Comparison with TCCON measurements560

3.4.1
:::::::::::
Comparison

::::
with

::::::::
TCCON

::::
data

Figs. ?? and ?? show the comparison between
::
7a,

::
c
:::
and

::
e
:::::
shows

:::
the

::::
time

::::::
series

::
of the monthly mean column-averaged from

TCCON sites and the
::::
CO2::::::::::::

concentrations
::
at

:::::::
TCCON

::::
sites

::::::::
(Darwin,

::::::::::
Wollongong

:::
and

:::::::
Lauder)

:::::::::
compared

::
to

::
the

::::::::::::::
column-average

:::::::::::
concentration

::::
from

:
prior and posterior column averaged concentration simulated by CMAQ .

:::
for

::::
2015

::
–

::::
2019.

:::::
Figs.

:::
7b,

:
d
::::
and

:
f

:::::
shows

:::
the

::::
bias

:::
and

::::
root

::::
mean

::::::
square

:::::
error

:::::::
(RMSE)

::::
from

:::::
these

::::::::
averages. Monthly averages were computed using data selected565

between 10:00− 14:00 (Australia and New Zealand local time).
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We can see in Fig. ??a that the posterior column-averaged CO2 simulated by CMAQ and the observations at the TCCON

Darwin site shows seasonal differences for some periods from 2015 to 2019. Assimilating
:::
For

::
all

::::::::
TCCON

::::
sites,

:::
we

::::::
found

:::
that

::::::::::
assimilating

:
OCO-2 data only slightly reduced prior bias . An exception is in the spring and summer seasons of 2015 and

2016. For example, in November and December 2015 we found a reduction of the biases of about 20 to 90%. We could not570

compare these results with November and December in 2016 and
:::
the

::::::
RMSE.

:::
At

::::::
Darwin

:::
site

:::::
(Fig.

:::
7a),

:::
the

::
fit

:::::::
between

::::::::
posterior

:::::::::::::
column-average

:::::::::::
concentration

::::
and

:::::::
TCCON

:::::::::
notoriusly

:::::::
degrade

::
at

:::
the

::::::::
beginning

:::
of

:::::
2017, 2018 because this TCCON site did

not record data in this period.In November 2017 and 2019 the percentage of reduction of prior biases were not as significant as

2015 (26 and 16%
:::
and

::::
2019

:::::::
(mainly

::::::::
February

:::
and

::::::
March). High negative posterior biases are seen in February and March in

2018 and 2019. In February 2018, for example, we found biases of about -1.83 (RMSE = 1.95) , which are similar to the biases575

found in the same period of 2019. These negative biases
::
(2 ppm

:
)
:::
are may be related to the small number of OCO-2 soundings

located around the site (see Appendix A, Figs ?? and ??) or local biases in the OCO-2 data (Peiro et al., 2021). The small

number of OCO-2 observations around Darwin is due to the presence of cloud cover and aerosols. While in summer, Northern

Australia experiences a wet season (November to April), which is highly impacted by monsoonal rains and storms. Winter, the

dry season in this region, is affected by fires. Some studies (i.e. Taylor et al., 2016) suggest that some OCO-2 retrievals can580

be biased by clouds during the wet season and smoke aerosol plumes during the dry season, mainly because the OCO-2 cloud

screening algorithms present some difficulty in identifying clouds near the surface. With regard to correlation analysis, we also

found that the relationship between observations and the posterior simulations is improved in some periods (see AppendixA
:
F,

Table ??
::
F1).

Evaluation at the Wollongong site (Fig. ??b
:
7c) also shows systematic differences with our posterior concentrations. From585

2016 onwards, we see a persistent
:::::
slight underestimation of the prior and posterior column average simulated by CMAQ.

Similar to Darwin, the posterior estimates derived from the inversion does not help much to reduce the prior biases at this site.

In general, we see the prior and posterior remains almost the same (biases are less than 1 ppmppm), except in winter 2015,

where biases are about 1.5 ppm. Considerable reduction of the prior biases are only seen in summer 2016/2017 (November

and December), where the prior biases were reduce by 20 and 80%. As discussed in Villalobos et al. (2021), the improvement590

in bias is negligible when the wind blows from the ocean to this site or not many OCO-2 soundings were found around the

monitoring location. Improvement of correlation at Wollongong site are shown in AppendixA
::
F, (Table ??

::
F3).

Unlike Wollongong site, we see a persistent overestimation of both the prior and posterior estimates at TCCON Lauder

(Fig. ??
:
7c). Posterior biases are, however, less than 1 ppm. Prior biases at the Lauder site were mainly reduced in winter

and early spring. The reduction of the biases at this site were modest (about 10 to 25%). New Zealand is (relative to the595

Australian mainland) much smaller and narrower along the south-west to north-east direction, and thus strongly affected by

oceanic airflow. The smaller size means relatively few OCO-2 soundings are retrieved over this area. Ocean fluxes that affect

New Zealand have less freedom to be modified due to the small prior uncertainties assumed in the inversion. Analysis of the

correlation is shown in AppendixA
::
F, Table ??

::
F2.
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Figure 7. Comparison between the monthly mean column-averaged
:
,
:::
bias

::::
and

:::
root

:::::
mean

:::::
square

::::
error

:::::::
(RMSE)

:
at (a,

::
b) Darwin, (b

::
c,

:
d)

Lauder
:::::::::
Wollongong, and (c

:
e,
::

f) Wollongong
:::::
Lauder TCCON sites and the CMAQ prior and posterior modeled CO2 concentrations for 2015–

2019. Box plot diagrams represent TCCON sites (green dots indicates the mean
:::::
Orange

:
and the horizontal green line the media). The top

edge of the box represents the 75th percentile, and the bottom edge represents the 25th percentile. The top and bottom whiskers
::::
blue

:::::
circles

represent the 95th
::::
prior and the 5th percentile. Orange dots represent the prior

::::::
posterior

:
mean concentration, while the blue triangle

:::
grey

::::
dots

represents the posterior concentrations
::::::
TCCON

:::::::::
observations.

Bias and root mean square error (RMSE) between TCCON and the prior and posterior modeled concentrations at TCCON600

sites (a) Darwin, (b) Wollongong and (c) Lauder for 2015–2019. Blue and orange circles represent prior posterior concentration

biases, and orange and blue bar represent the RMSE.
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3.5 Comparison with ground-based in situ measurements

3.4.1
:::::::::::
Comparison

::::
with

::::::::::::
ground-based

::
in

::::
situ

:::::::::::::
measurements

Figs. ?? and ??
:::
8a,

:
c
:::
and

::
e show the comparison between ground-based in situ measurements (Gunn point, Burncluith, Ironbark605

and Cape Grim) and the prior and posterior simulated by the CMAQ model at the surface for 2015–2019. ,
::::
and

::::
Figs.

:::
8b,

:
d
::::
and

:
f

:::::
shows

:::
the

::::
bias

:::
and

::::
root

::::
mean

::::::
square

::::
error

::::::::
(RMSE)

::::
from

:::::
these

::::::::
averages. Averages were computed using data selected between

12:00 − 17:00 (Australia local time).

We note in Fig. ??a that there is a gap in the data
:::
that

:
at Gunn Point from June 2016 to August 2018. Our comparison

with the rest of the months shows that our posterior simulations do not represent the Gunn Point sitevery well. In general, our610

posterior concentrations are underestimating
:::
site,

::
in

:::::::
general,

:::
the

::::::::
posterior

:::::::::::::
column-average

:::::::::::::
concentrations

::::::::::::
underestimate the

observations. The prior concentration indicates a better agreement, but biases are still significant. Some possible explanations

for these results might be related to the limited vertical resolution of these retrievals and consequently the relative inability of

OCO-2 to constrain fluxes at the scale relevant to this site (total column measurements are less sensitive at the surface than

in-situ sampling). Another possible explanation is that within our model, Gunn Point is a coastal site, which is affected by615

prevailing offshore winds. If winds come from the ocean our fluxes are less constrained by OCO-2 retrievals (see plot of wind

directions Supplementary; Figs. S17 and S20
::
and

::::
S24

:
January −February).

The data for the Burncluith site spans July 2015 to May 2018 (Figs. ??b, ??b). In 2015, we see that our posterior concentrations

at the surface do not represent very well the Burncluith site. However, in 2016 and 2017, we do see some improvement of the

biases in some periods. For example, we note that prior biases are reduced in summer
:::
Fig.

:::
8b).

:::
At

::::
this

::::
site,

:::::::
posterior

::::::
biases620

:::::
seems

::
to

::::
vary

::::::::::
seasonally.

:
It
::

is
:::::

clear
:::
the

::::::::
posterior

::::
bias

:::
are

:::::
larger

:::::::
(relative

:::
to

:::
the

::::
prior

:::::
bias)

::
in

::::::
winter

::::::
season

:::::
(June,

::::
July

::::
and

:::::
Agust)

:::::::::
compared

::
to

:::::::
summer

::::::
season (e.g., January and February) and spring (e.g., September and October) . In these seasons,

improvements of the biases are greater than 50%. No improvement of the biases are seen in June, July and August (winter

season in Australia) 2016. In this period, the prior concentrations show a better agreement with the observations, with bi-

ases ranges between 0.54 to -0.46 ppm compared to the posterior biases range between -2.79 to -3.57 ppm). One possible625

explanation for these results could be associated with
::::
Large

::::::::
negative

:::::::
posterior

::::::
biases

::
at

::::
this

:::
site

:::::
could

:::
be

::::::
related

::
to
:

errors

in the transport of the CMAQ model , such as a misrepresentation of the wind flows or errors related to the vertical mixing

scheme
::::
(e.g.,

:::::::::
associated

::::
with

::::::::::::::
parameterization

::::::
scheme

::::::
within

::
the

::::::::
planetary

::::::::
boundary

:::::
layer)

:::
or

::::::::
erroneous

::::::::::::
meteorological

::::::
inputs

::::
from

:::
our

:::::
WRF

::::::::::
simulations

:::::::
(forcing

::::::
errors). Transport errors related to vertical mixing are often associated with atmospheric

turbulence near the surface where most CO2 observations are made. Therefore, correcting the prior column average simulated630

by CMAQ to match OCO-2, the correction imposed by the inversion near the surface might be wrong. For 2018, prior

biases were not reduced but they were small (range -0.16 to 0.46 ), except February (-2.31 ) compared to posterior biases.

Again, we suggest that high posterior biases might be related to the vertical transport of
::
in

:::
the

:::::::
vertical

::::::
mixing

::::
near

::::
the

::::::
surface

::::::::
associated

:::::
with

:::::::
incorrect

::::::::
treatment

::
of

:::::::::::
atmospheric

:::::::::
turbulence

:::
can

:::::
cause

:::::::::
significant

:::::
biases

::
in

:::::::::
simulated

::::::::::::
concentrations

::::::::::::::::::::::::::::::::::
(Gerbig et al., 2008; Lauvaux et al., 2012).

::::
The

::::::::::
atmospheric

::::::::
boundary

::::
layer

::::::
mixing

::::::
height

:
is
:::
an

::::::::
important

:::::::
property

::
in

::::::::::
atmospheric635

::::::::
modelling

:::::::
because

:
it
:::::
gives

:::
the

::::::
volume

::
of

:
a
:::::::
column

::
of

::
air

::
in

::::::
which

::
the

::::::
fluxes

::::::::
contribute

::
to the CMAQ model.

::::
CO2::::::::::::

concentration.

26



::
In

:::
this

::::::
study,

:
it
::

is
:::::::

difficult
:::

to
:::::::
quantify

:::
the

:::::
likely

:::::
error

::
in

:::
the

:::::::::
simulation

:::
of

::::::::
boundary

:::::
layer

:::::
height

:::::::
because

:::
the

::::
site

:::::
lacks

:::
the

::::::
relevant

::::::::
physical

::::::::::::
measurements.

:::::
More

:::::::::
discussion

::
of

:::::
these

:::::::
findings

:
is
::::::
found

::
in

::::::
Section

::
4.

:
We also did not find much improve-

ment in the correlations at this site (see AppendixA
::
G, Table ??

::
G4).

Similar to Burncluith, Ironbark also has gaps in the data (Fig. ??c). The data for the Ironbark site spans January 2015 to640

November 2016. Subsequently there was only data for January 2017 and February and March 2018. Results for the Irobark

monitoring station are similar to Burncluith. These results were not unexpected given the stations’ proximity (Fig. ??
:
2). For

2015 and 2016, validation against Ironbark site also shows that the posterior mean concentrations were in good agreement with

the observations for summer and spring season. In November 2015, for example, the prior mean bias was reduced from -2.28

(RMSE = 2.86) to -0.05 (RMSE = 1.93). In Winter 2015, the posterior biases got worse. In July 2015, for example, prior biases645

were -0.35 (RMSE = 1.66) and the posterior biases were -2.33 (RMSE = 2.77). In February 2018, we see the posterior biases

were about -11.4 (RMSE = 21.61). The difference between the posterior simulation and the observations may be related to a

single event visible to the surface station but not seen by OCO-2. On February 7th, Ironbark registered a concentration of CO2

of 459.87 ppm. It is possible that fires may have caused the high CO2 concentration registered in this period (see information

for February, 2018 at NASA Fire Information for Resource Management System (FIRM, 2020). From April 18th to 20th , we650

also see a similar event that was not captured by the inversion, causing a posterior concentration bias of -6.44 ppm (RMSE =

9.82). During these 3 days the concentrations registered at Burnlcluith was greater than 450 ppm.

Cape Grim is the only site with a complete time-series of observations during this period (Fig. ??
:
8d). Like Gunn Point,

Cape Grim is a coastal site, and it is affected by strong westerly winds that blow from the ocean into Tasmania. We can see

in Fig. ??
:
8d that there is an evident underestimation of our posterior fluxes across 2015 to 2019. However, there are some655

months in 2015, 2016 and 2017 that we see a significant reduction in the prior bias. In May 2015, for example, reduction of the

biases were 87%. For November 2016 to April, 2017 the reduction of the biases is more noticeable. In April 2017, for example,

we found a reduction of the biases of about 70%. Stable winds in the period might be associated with the improvement of

the biases (see Supplementary; Fig. S33
:::
S37). In general, all the negative large posterior biases for all the months (2−5ppm

approximately) are associated with the the strong westerly and north-westerly winds that come from the ocean to Tasmania.660

As mentioned before, Cape Grim is a coastal station, whose aim is to record clean air that blows from the southern ocean and

it is not representative of Tasmania’s air mass.

Comparison between monthly mean CO2 concentrations (ground-based stations) at (a) Gunn point, (b) Ironbark, (c) Burncluith,

and (d) Cape Grim sites and the CMAQ prior and posterior modeled CO2 concentrations for 2015–2019. For details of what

the different components of the box-plot represent, see the caption of Fig. ??.
:
A
::::
poor

:::
fit

:::::::
between

:::
the

::::::::
posterior

::::::::::::
concentrations665

:::
and

::::::
surface

::::
sites

::::::
raises

:::::
doubts

::::::
about

:::
the

::::::::
reliability

::
of

:::
the

:::::::
OCO-2

:::::::::
assimilated

::::::
fluxes

::::::::
estimated

::::
over

:::::
warm

:::::::::
temperate,

:::::::
tropics,

:::
and

::::
cool

::::::::
temperate

:::::::::::
ecosystems.

:::::::::
Therefore,

::
in

:::
the

::::::::
upcoming

:::::::
section,

:::
we

::::::
assess

:::
the

:::::::
analysis

::
of

:::
the

:::::::::
variability

::
of

:::
the

::::::::
posterior

:::::
fluxes

::::
only

::::
over

:::
the

:::::::
savanna

::::
and

:::::::
sparsely

::::::::::
ecosystems,

::::::
where

:::
our

::::::::
posterior

::::::
carbon

::::::
fluxes

::::::
derived

:::
by

::::::
OCO-2

::::
data

::::
are

:::::
likely

::::
more

::::::::::
trustworthy

::::
than

:::::
fluxes

:::::::::
assimilated

::::
over

:::::
areas

:::::::
directly

::::::::
impacted

::
by

::::::::
off-shore

:::::
ocean

::::::
fluxes.
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Bias and root mean square error (RMSE) between surface measurements and the prior and posterior modeled concentrations

at (a) Gunn point, (b) Burncluith, (c) Ironbark and (d) Cape grim for 2015–2019. Blue and orange circles represent prior

posterior concentration biases, and orange and blue bar represent the RMSE.
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Figure 8.
::::::::

Comparison
:::::::

between
::::::
monthly

:::::
mean

::::
CO2 :::::::::::

concentrations
:::::::::::
(ground-based

::::::
stations)

::
at
:::
(a)

::::
Gunn

:::::
point,

:::
(c)

::::::::
Burncluith,

:::
(e)

:::::::
Ironbark

:::
and

::
(g)

::::
Cape

:::::
Grim

::::
sites

:::
and

::
the

::::::
CMAQ

::::
prior

:::
and

:::::::
posterior

:::::::
modeled

::::
CO2:::::::::::

concentrations
:::
for

:::::::::
2015–2019.

:::
Bias

::::
and

:::
root

::::
mean

::::::
square

::::
error

::::::
(RMSE)

:::::::
between

:::::
model

:::
and

:::::::::
observations

:::
are

:::::
shown

::
in

:::::
panels

::
b,

::
d,

:
f
:::
and

::
h.

:::::
purple

:::
and

::::
violet

::::::
circles

:::::::
represent

::::
prior

::::::
posterior

:::::::::::
concentration

:::::
biases,

:::
and

:::::
purple

:::
and

:::
bar

:::::::
represent

::
the

::::::
RMSE
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4 Discussion670

Comparison between the seasonal cycle of the prior, posterior, and GPP fluxes

To further examine the difference between the prior and posterior terrestrial fluxes shown in Fig. ??, we calculated the

climatological seasonal cycle of the prior, posterior (Fig. ??) and the gross primary productivity (GPP) fluxes derived from

CABLE BIOS3, MODIS and the DIFFUSE model (Fig. ??) for the period 2015 and

3.1
:::::::::

Australia’s
::::::
carbon

::::
flux

:::::::::
anomalies675

:::
Fig

:::
9a,

:
b
:::::::::
illustrates

:::::::
3-month

:::::::
running

::::
mean

:::
of

:::
the

:::::
prior,

:::::::
posterior

::::
flux

:::::::::
anomalies

:::
and

:::::::
3-month

:::::::
running

::::::
means

::
of

::::
EVI,

:::::::
rainfall

:::
and

:::
air

::::::::::
temperature

:::::::::
anomalies

:::
for

:::
the

::::::
period

::::
2015

:::
to 2019 aggregated by the same six bio-climate ecosystemsdescribed in

Section ??.

It is evident that savanna (Fig. ??b ) and sparsely vegetated (Fig. ??d) ecosystems are the regions that show the largest

difference between priorand posterior flux estimates. Over the savanna region, the most evident difference is seen from June to680

September. The absolute difference between prior and posterior fluxes in this period is about 0.4 to 0.5 PgC yr−1. According to

MODIS and DIFFUSE GPP estimates, the stronger posterior sink observed in this period may be due to an underestimation of

GPP simulated by the CABLE BIOS3 model (
::::::::
aggregated

::::
over

:::::::
sparsely

:::::::::
vegetated

:::
and

:::::::
savanna

::::::::::
ecosystems,

::::
and Fig. ??). The

GPP estimated by MODIS from June to September was about 0.90 PgC yr−1 compared to CABLE BIOS3, which was 0.59

PgC yr−1. DIFFUSE GPP estimates were around 0.68 PgC yr−1.685

Over the sparsely vegetated region, the seasonal discrepancy between the prior and posterior flux is more evident than for

savanna. The seasonality
::
10

::::::
shows

:::
the

::::::
spatial

::::::::::
distribution

::::::
pattern

::
of

:::
the

::::::
annual

:::::::::
anomalies

:
of the posterior flux is stronger

(relative to the prior estimate ) from April to September. In this ecosystem, the largest absolute difference between the
:::::::
estimate

::
in

:::
the

::::::
period

:::::
2015

::
to

:::::
2019.

:
It
::
is
:::::
clear

:::
that

:::
the

::::::::::
anomalous prior and posterior fluxes is seen from June to August (0.5 PgC yr−1). In July, for example,690

the inversion shifts the prior flux from -0.05 ± 0.09 PgC yr−1 to -0.56 ± 0.06 PgC yr−1. Again, we can see in Fig. ??d

that a possible reason of this shift may be associated with an underestimation of the GPP by CABLE BIOS3. It is evident

that MODIS and DIFFUSE GPP have a stronger seasonality compare to CABLE BIOS3 GPP. For example, from June to

August, the CABLE BIOS-3 GPP was about 0.4 PgC yr−1 compared to DIFFUSE and MODIS, which were 0.9 and 1.3 PgC

yr−1 respectively. We did not find a seasonal correlation between the prior fluxes and MODIS and DIFFUSE GPP fluxes (see695

Appendix D, Table ??)
:::::
carbon

::::
land

::::
sink

::::::::
recorded

::::
over

:::
the

:::::::
sparsely

:::::::::
vegetated

:::::::::
ecosystem

::::
from

::::::
August

:::::
2016

::
to

:::::
April

:::::
2017

::
is

:::::
likely

:::
due

::
to

::
a
::::::::::
combination

:::
of

:
a
::::::
higher

::::
than

::::::::
average

:::::::
increase

::
in

::::
land

::::::::::
productivity

::::::::
(positive

::::
EVI

:::::::::
anomalies), but we did find

a positive correlation between the posterior fluxes and the GPP estimated by MODIS and DIFFUSE
::::::
rainfall

:::::::
(positive

:::::::
rainfall

:::::::::
anomalies)

:::
and

::
a
:::::
lower

::::
than

:::::::
average

:::::::
decrease

::
in

:::
air

::::::::::
temperature

::::::::
(negative

::::::::::
temperature

::::::::::
anomalies).

::
It

::
is

::::
also

::::::
evident

::::
that

:::
the

:::::
strong

::::::
carbon

:::::::
releases

::::::::
(positive

::::::
carbon

::::
flux

:::::::::
anomalies)

::::::::
recorded

::::
after

:::::
April

:::::
2017

:::
are

::::
due

:::::
lower

::::
than

:::::::
average

::::::::
greenness

:::
of700

::
the

:::::::::
vegetation

::::::::
(negative

::::
EVI

::::::::::
anomalies),

::::::
rainfall

::::::::
(negative

::::::
rainfall

::::::::::
anomalies),

:::
and

:::
an

:::::::
increase

::
in

:::
the

::
air

::::::::::
temperature

::::::::
(positive
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::::::::::
temperature

:::::::::
anomalies).

:::
In

:::
this

:::::::::
ecoregion,

:::
we

:::::
found

:::
that

:::
the

::::::::
temporal

:::::::::
correlation

:::::::
between

::::
EVI

:::::::::
anomalies

:::
and

:::
the

::::::
carbon

::::
flux

::::::::
anomalies

::
is

::
in

:::::
better

:::::::::
agreement

::::
with

:::
the

:::::::
posterior

:
(R= 0.44 and

::::
-0.5)

::::
than

:::
the

::::
prior

:::::::::
anomalies

:
(R= 0.45 respectively).

Regarding the Tropics, warm temperate, cool temperate, and Mediterranean ecosystems, the seasonal correlation MODIS or

DIFFUSE GPP estimates were stronger for the prior than for the posterior fluxes (Appendix D, Table ??). A stronger correlation705

between the prior flux and MODIS and DIFFUSE might be attributable to the fact that the assimilated coastal fluxes might

be somehow less constraint by the inversion in these ecosystems, mainly because they are mostly influenced by ocean fluxes

where the uncertainties have less freedom to be modified by the inversion
:::::
-0.32).

::::::::
Posterior

:::
and

::::
EVI

::::::::::
correlation

::::::
become

:::::
even

::::
more

:::::::
stronger

:::::
when

:::
we

:::
see

:::::
them

::
at

::::
each

:::::::::
grid-point

::::
Fig.

:::
11b

:::
(R

::
=

::::::::
0.5–0.9).

::::::
Spatial

::::::::
averaging

:::::::
smooths

::::
grid

:::::
point

:::::::::
anomalies

:::
and

::
so

::::::
dilutes

:::::::
signals.

::::
The

::::::
spatial

::::::::::
distribution

::
of

::::::::::
correlations

:::::::
between

:::::::
rainfall

::::::::
anomalies

:::::
(Fig.

:::::
11d),

::::::::::
temperature

:::::::::
anomalies710

::::
(Fig.

::::
11f)

:::
and

::::::::
posterior

::::::
carbon

::::::::
anomalies

::::
also

::::::::
improved

::
in

:::::
some

::::
areas

::
in
::::
this

::::
large

:::::::::
ecosystem.

Climatological seasonal cycle of prior (orange points) and posterior (blue points) terrestrial fluxes (2015–2019).

Climatological seasonal cycle of GPP (2015–2019) derived from CABLE BIOS3 model (yellow-green dashed line), MODIS

(forest-green dashed line), and DIFFUSE model (lightcoral dashed line).

Comparison between CABLE BIOS3 GPP and the GPP anomalies derived from MODIS and DIFFUSE model715

We saw in the previous section that over the sparsely vegetated and savanna ecosystems, the seasonal cycle of our posterior flux

estimate shows a larger amplitude compared to
::::::
Similar

::
to
:::
the

::::::::
sparsely

::::::::
vegetated

:::::::
findings,

:::
we

::::
also

:::
see

::
an

::::::
higher

::::
than

:::::::
average

:::::::
increase

::
of

::::
land

::::::::::
productivity

:::::::
(positive

::::
EVI

::::::::::
anomalies),

::::::
rainfall,

::::
and

:
a
:::::::
decrease

::
a

::
air

::::::::::
temperature

::::::::
recorded

::::
from

::::::
August

:::::
2016

::
to

::::
April

:::::
2017

::::
over

:::
the

:::::::
savanna

:::::::::
ecosystem.

::::
But,

:::::
unlike

:::
to

:::::::
sparsely

::::::::
vegetated

::::::
results,

:::
the

::::::
carbon

::::
sink

:::::::
anomaly

::::
only

::::::::
coincide

::::
with

:::::::
negative

:::::::
posterior

::::::
carbon

::::::::
anomaly

::
in

:::::
2016.

:::
In

:::::
2017,

:::
we

:::
see

::::
that

:::
the

:::::::
positive

::::
EVI,

::::::
rainfall

::::
and

:::::::
negative

:::::::::
anomalies

::::::::
recorded720

::::
from

:::::::
January

::
to

:::::
April

:::
do

:::
not

::::
align

:::::
with

:::
the

:::::
larger

::::
than

:::::::
average

::::::::
posterior

::::::
carbon

::::::
release

::
in
::::

this
::::::
period.

::::
We

::::::
believe

::::
that

:::
the

:::
few

:::::::
OCO-2

::::::::
soundings

::::::
found

::
in

::::
this

:::::
period

:::::
limit

:::
the

::::::::
potential

::
of

::::
our

::::::::
inversion

::
to

:::::::::
constraint

:::
the

::::::
surface

::::::
fluxes

::
in

:
the prior

estimate. We suggested that the amplitude difference between these fluxes may be due to an underestimate of GPP by the

CABLE BIOS-3 model. In this section, we investigate whether the CABLE BIOS3 model is also underestimating the GPP flux

anomalies . We did this analysis because even though the prior and posterior flux anomalies, in general, follow similar patterns725

in each bioclimatic ecosystem, the amplitudes of these two flux anomalies estimates show discrepancies. Fig. ?? shows the

time series of GPP flux anomalies for the period 2015 to 2019 classified by the same six bio-climate ecosystems described in

Section ?? against the 3-month running mean of prior and posterior flux anomalies.

Over the savanna ecosystem (Fig
:::
see

:::::::::::::
Supplementary,

::::::
Fig.S2,

::::::
panels

::
a,

::
b

:::
and

:::
c). ??b), we see that the negative posterior

flux anomaly shows alarger amplitude than the prior anomalies. We found that the stronger posterior negative flux anomaly730

recorded from August to November 2016 is not due to CABLE BIOS3 GPP flux anomaly underestimation. On the contrary,

::::::
similar

:::::
results

::
in
::::::::::
September

:::
and

:::::::::
November

:::::
2017.

:::
As

:::::::::
mentioned

::
in

::::::
Section

::::
3.1,

::::
there

::::
was

:
a
:::::

long
:::
data

::::::
outage

:::
of

::
51

::::
days

:
from

August to November 2016, we see that CABLE BIOS3 GPP (positive anomalies) overestimate MODIS and DIFFUSE GPP.

MODIS and DIFFUSE GPP values were similar (0.21 and 0.22 PgC yr−1 respectively) compared to the CABLE BIOS3 GPP

(0.30 PgC yr−1
::::::::
September

:::::
2017.

:::
In

:::::::::
September

:::
the

:::::::
number

::
of

:::::::
OCO-2

:::::::::::
observations

::
in

::::::::
Australia

::::
were

:::::
only

:::
221

::::
and

::::
most

:::
of735
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::::::::
soundings

::::
were

:::::
seen

:::
over

::::::::
sparsely

::::::::
vegetated

::::::::
ecosystem

:::
(in

::::::
central

:::::::::
Australia)

:::
than

:::
the

:::::::
savanna

:::::::::
ecosystem

::::
(see

:::::::::::::
Supplementary,

::::::
Fig.S2,

:::::
panels

::
h,
:
i). In the opposite direction, we observed negative GPP anomalies in the summer period (January to April) in

2019. We see that the CABLE BIOS3 GPP flux anomalies are even more negative than MODIS and DIFFUSE, showing a lower

greenness in vegetation than the average over this ecosystem. In March 2019, for example, the CABLE BIOS GPP anomalies

were -0.56 compared to MODIS and DIFFUSE, which were -0.32
:::::
2019,

::
we

::::
also

:::
see

::::
that

:::::
lower

::::
than

::::::
average

::::
land

:::::::::::
productivity,740

::
in

::::::::::
combination

::::
with

::
a

:::::
deficit

::
of
:::::::

rainfall,
::::
and

:::::::
increase

::
in

::::::::::
temperature

::::
lead

:
a
::::::::
stronger

::::::
carbon

::::::
release

::
to

:::
the

::::::::::
atmosphere.

::
In

::::
this

:::::::
category,

:::
the

::::::::
temporal

:::::::::
correlation

::::::::
between

:::
the

::::::::
posterior

:::::::::
anomalies and -0.27, respectively. An unanswered question in this

study is why our posterior flux anomalies show a larger carbon release from this ecosystem
:::
EVI

:::::::::
anomalies

:::
was

::::::::
moderate

::::
(R=

:::::
-0.38) compared to the prior anomaly if CABLE BIOS3 GPP flux anomaly is more negative than MODIS and DIFFUSE GPP

anomalies ? Could it be possible that due to a deficit of water and high temperatures recorded in 2019, the respiration from soils745

and vegetation is being overestimated by the CABLE model, causing low GPP in the savanna ecoregion? Further analysis of

the terrestrial ecosystem respiration is needed to understand the variability and trend of the sources and sinks of this ecosystem.

In this ecosystem,
:::
flux

:::::::::
anomalies

:::
and

::::
EVI

::::::::
anomalies

:::
(R

:
=
::::::
-0.52).

:::
We

::::
note

::::
that the correlation between prior flux anomaly and

the CABLE BIOS3 GPP is -0.73 compared to the correlation of posterior anomalies and CABLE GPP, which was -0.50.
::::
time

:::::
series

:::::::
temporal

::::::::::
correlation

:::::::
between

::::
EVI

:::::::::
anomalies

:::
and

::::::::
posterior

:::::::::
anomalies

::
at

::::::::
grid-cell

::::
scale

:::::::::
resolution

::::
(Fig.

:::::
11a)

::
is

:::::
slight750

:::::::
stronger

:::
for

:::
the

::::
prior

:::::
than

:::
the

::::::::
posterior

::::::::::
correlations

::::
(Fig.

:::::
11b).

::::::
similar

::::::
results

:::::
were

:::::
found

::::::::
between

:::
the

::::
link

::
of

:::
the

:::::::
rainfall

:::
and

::::::::
posterior

::::
flux

:::::::::
anomalies,

::::::
where

:::
the

:::::::::
correlation

:::::
tends

::
to

::::
the

:::::::
degrade

:::::::
compare

::
to
::::

the
:::::
prior.

::::::
Spatial

:::::::::
correlation

::::::::
between

::::::::::
temperature

::::::::
anomalies

::::
and

::::::::
posterior

:::::::::
correlation

:::
is

::::
more

::::::::
variable,

::::
and

:::
we

:::
see

::::
that

::
in

:::
the

::::::::::
north-west

::::
area

::
of

::::
the

::::::::
continent

:::::::::
correlation

::
for

:::
the

::::::::
posterior

::::
flux

::::::::
anomalies

:::
are

::::::::
stronger.

Over the sparsely vegetated ecosystem (Fig. ??f), we found that the GPP anomalies from CABLE BIOS3, MODIS and755

DIFFUSE show similar patterns. However, we
::
In

:::::::
general,

:::
the

:::::
better

:::::::::
agreement

:::::::
between

::::::::
posterior

:::
and

::::::
climate

::::
and

:::::::::
vegetation

:::::::::
parameters

::::
over

:::::::
regions

::::
with

::::::
sparse

:::::::::
vegetation

::
is

:::::
likely

::
to
::::

the
:::
fact

::::
that

:::
the

::::::::
CABLE

:::::
model

::
is
::::::

likely
:::::::::::::
underestimating

:::::
GPP

:::::::::
anomalies.

:::
We found that the correlation between the posterior anomalies and CABLE BIOS3, DIFFUSE and MODIS GPP

anomalies were
:::
was stronger than the one correlated with

::
the prior. For example, the correlations between the prior and CABLE

BIOS3 GPP anomalies were -0.46 compared to the posterior (R = -0.61). Correlations between the posterior anomalies and760

DIFFUSE and MODIS GPP was
::::
were

:
also stronger than the prior, which value was -0.5 compared to the prior (R = -0.3) (more

details in Appendix D, Table ??
::
D,

::::
Table

:::
D2). These findings are significant for Australia because they suggest that our OCO-2

inversion might likely be better at capturing the anomalies of this ecosystem (the largest ecosystem in Australia) compared to

the biosphere land model ecosystem.

Overall, we found that the savanna and sparsely vegetated ecosystems dominate the inter-annual variability for the period765

2015–2019. These results are consistent with Poulter et al. (2014) and Ahlström et al. (2017), who found that semi-arid ecosystems

such as Australia are highly responsive to climate drivers such as rainfall and temperature. The result supports the broader view

of carbon-cycle/climate interactions than the original focus on the wet tropics (e.g. Rayner and Law, 1999; Bousquet et al., 2000).
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Figure 9.
::::
Time

:::::
series

::
of

::::::
3-month

::::::
running

:::::
mean

::::::
posterior

:::::
(black

::::
line)

:::
and

::::
prior

::::
(grey

::::
line)

::::::::
terrestrial

:::::
carbon

:::
flux

::::::::
anomalies

::::
(PgC

:::::
yr−1)

:::
and

::::::
3-month

::::::
running

:::::
mean

:::
EVI

::::::::
anomalies

::::::::
(turquoise

:::::
dashed

::::
line)

:::::::
between

::::
2015

::
to

::::
2019

::::::::
aggregated

::
by

::::
two

:::::::::
agro-climate

:::::::
regions:

::
(a)

:::::::
Sparsely

:::::::
vegetated

:::
and

::
(b)

:::::::
Savanna

::::::::
ecosystem.

:::::::::
Anomalies

:::
over

:::::::
Tropics,

::::
Warm

::::::::
temperate,

::::
Cool

::::::::
temperate,

:::
and

:::::::::::
Mediterranean

:::::::::
ecosystems

:::
are

:::::
shown

:
in
::::::::

Appendix
:::
D,

:::
Fig.

:::
D1.

::::
The

::::
grey

:::::
shaded

::::
area

::::::::
represents

:::
1.0

::::::
standard

::::::::
deviation

::::
range

::::::
around

:::
the

::::
mean

:::
for

:::
the

::::
prior

:::
and

:::::::
posterior

::::
flux

::::::::
uncertainty.
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Figure 10. Time series
:::::
Spatial

:::::::::
distribution

::::
maps

:
of 3-running monthly mean GPP

::
the

:::::
annual

:::::::
posterior

::::::::
terrestrial

:::::
carbon

::::
flux anomalies

derived from CABLE BIOS3 model (yellow-green dashed line
::
gC

:
m

::

−2
::::
yr−1) , MODIS

::
for

:::::
2015

:
to
::::
2019

:
(forest-green dashed line)

:::::
panels

:
a,

:
b,
::
c,
:
d
:

and DIFFUSE model (orange dashed line
:
e)between 2015 and 2019..

::::::::
Negatives

::::::::
anomalies

::::::::
correspond

::
to

:
a
:::::
larger

:::
than

::::::
average

::::::
uptake

:
of
::::::

carbon
::
by

::::
land

::::::::
ecosystem,

:::::::
whereas

::::::
positives

::::::::
anomalies

:::::::::
correspond

:
to
::

a
::::
larger

::::
than

::::::
average

:::::
release

::
of
::::::
carbon

::
to

::
the

:::::::::
atmosphere

::::
from

:::
the

::::
land.
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Figure 11.
:::::
Spatial

::::
map

:
of
:::::::
monthly

:::::::
temporal

::::::::
correlation

::::::
between

::
(a,

::
b)

::::
EVI

::::::::
anomalies,

::::
prior

:::::::
anomalies

:::
and

:::::::
posterior

::::::::
anomalies.

::
(c,

::
d)

::::::
rainfall

::::::::
anomalies,

::::
prior

:::
and

:::::::
posterior

::::::::
anomalies.

::
(e,

::
c)

::
air

:::::::::
temperature

:::::::::
anomalies,

:::
prior

::::
and

::::::
posterior

::::::::
anomalies

:::
for

::
the

:::::
period

:::::::::
2015–2019.
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Comparison with the OCO-2 MIP global inversion770

4
:::::::::
Discussion

In Sect 3.1
:::
3.4, we saw that validating the posterior concentrations against the current Australian GHG monitoring system

is challenging , mainly because Australia has a
:::
due

::
to

::::
the small number of monitoring sites, especially given its large

landmass
:::::::
stations

:::::
across

:::
the

:::::::::
continent

::::::::::::
(approximately

:::::
five). In addition, the locations

::::
some

:
of these sitesare far away from

the bioclimatic ,
::::
such

:::
as

::::
Cape

::::::
Grim,

::::::
provide

:::
no

::::::::::
meaningful

::::::::
constraint

:::
on

:::::::::
Australian

:::::
fluxes

::::
and

::::::::
therefore

::::
leave

:::
the

::::::::
question775

::
of

:::::::
accuracy

::
in
:::
the

::::::::
posterior

::::::
carbon

:::::
fluxes

::::::::::
unanswered

::::
over

:::
the

:::::::
savanna

::::
and

:::::::
sparsely

::::::::
vegetated regions, where the OCO-2

:::
our

inversion suggests a larger carbon sink relative the prior flux, such as the savanna and regions with sparse vegetation
:::::::
stronger

:::::
carbon

::::
sink

:::
for

:::
the

:::::
study

:::::
period

:::::::::
compared

::
to

:::
the

::::
prior

:::::::
estimate

:::::
made

:::
by

:::
the

::::::::
biosphere

:::::
model.

We compared our results against the monthly carbon flux mean of nine independent global
::
To

:::::
assess

:::
and

:::::::
discuss

::::
how

::::
well

:::
our

:::::::
monthly

::::::::::
assimilated

::::::
OCO-2

::::::
carbon

::::::
fluxes

:::::
align

:::
the

::::::
current

::::::::::::
understanding

::
of

::::
the

:::::::::
Australian

::::::
carbon

:::::
cycle,

:::
we

::::::::
compare780

:::
our

::::::
results

::
to

::::
other

::::::
global

::::::::
products:

::::
MIP

:
OCO-2 (LNLG) global inversions (AMES, PCTM, CAMS, CMS-Flux, CSU, CT,

OU, TM5−4DVAR, UT)
:
,
:::
and

::::::::::
FLUXCOM

:
for 2015-2018 ( see Fig. ??

::
12). The annual

:::
MIP

:
OCO-2 ensemble mean of carbon

fluxes shown in Fig. ??
::
12 suggest that Australia was a carbon sink of -0.26± 0.22 for 2015–2018, similar to our posterior flux

estimate (-0.52 ± 0.08 PgC yr−1) . The MIP uncertainty is calculated from the
:::::::::
considering

:::
the

::::
MIP

:::::::::
ensemble spread of the

ensemble mean of the nine models
::::
nine

::::::
models

::
as

:::::::::::
representing

:::
the

::::::::::
uncertainty.

::::
The

:::::
annual

:::::::::::
FLUXCOM

::::::::
ensemble

:::::
mean

::::
also785

:::::::
suggests

:::
that

::::::::
Australia

::::
was

:
a
:::::
slight

::::::
carbon

::::
sink

::
of

:::::
-0.06

::
±

::::
0.04. In terms of seasonality, we can observe in Fig. ??

::
12

:
that for

several periods between 2015 and 2018, the monthly mean of our posterior carbon fluxes falls within the uncertainties of the

OCO-2 MIP ensemble mean, except for some months in winter. For example, we notice that the large carbon sink estimated

by our inversion (-2.92 ± 0.27 PgC yr−1) in August 2016 does not fall within the ensemble monthly MIP mean of that period

(-1.28 ± 0.78 PgC yr−1). However, the carbon flux estimate derived by PCTM (-2.31 PgC yr−1) and CSU (-2.66 PgC yr−1)790

global models shows similar results to our flux estimate. These findings are also found throughout 2015, 2017 and 2018, where

our posterior carbon flux estimates closely follow PCTM and CSU seasonal patterns.
:::
The

:::::::::
seasonality

:::
of

::::::::::
FLUXCOM

::::::
agrees

::::
with

:::
our

:::::::::
assimilated

:::::
fluxes

::::::
mostly

::
in
::::::::
summer,

:::
but

:::
not

::
in

::::::
winter.

We also studied the carbon flux anomalies derived by the OCO-2 MIP,
::::::::::
FLUXCOM

:
and compared them with the prior and

posterior flux anomalies (3-month running mean) that we have discussed throughout this study (Fig. ??
::
13). We see in Fig. ??795

that both prior and posterior carbon flux anomalies have similar variability to the majority of the models in MIP. Furthermore, it

is evident that all MIP global inversions
::
13

:::
that

:::
all

::::::
carbon

:::
flux

::::::::
estimates

:
agree that 2016 was the period that Australia recorded

the largest carbon uptake , relative to the 2015-2018 mean. During the
::
We

::::
saw

:::::::::
throughout

:::
this

:::::
study

::::
that

::::
2016

::::
was

:
a
::::
year

::::
that

:::::::
Australia

::::::::
recorded

::::::::::::
above-average

::::::::::
precipitation

:::
and

::::
low

:::::::::::
temperatures

:::
that

:::::::
certainly

:::::
drove

:::
the

:::::::
increase

::
in

:::::::::
vegetation

::::::::::
productivity

:::::
across

:::
the

:::::::
country.

:::::::
Similar

:::::::
findings

::::
were

::::::
found

::
by

:::::::::::::::::::
Haverd et al. (2016) in

:::::
2011,

::::::
which

::::::
results

::::::
suggest

::::
that

:::
the

::::::::
variations

:::
of800

:::::
carbon

::::::
fluxes

::::
over

:::::::::
Australia’s

::::::::
semi-arid

::::::::::
ecosystems

::::
have

::
a
:::::
direct

:::::::::::
physiological

::::::::
response

::
of

:::::::::
vegetation

:::::::::::
productivity

::
to

:::::
water

:::::::::
availability

::::::::::
fluctuations.

:::::
Other

:::::::
regional

::::::
studies

:::::
made

::
in

:::::
Africa

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Williams et al., 2008; Archibald et al., 2009; Merbold et al., 2009),

:::
also

:::::::
indicate

::::
that

::::::::::
interannual

::::::
carbon

::::::::::
fluctuations

:::
of

::::::::
semi-arid

::::::::::
ecosystems

:::::::
largely

::::::
depend

:::
on

:::::
water

::::::::::
availability

::::::
driven

:::
by
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::::::::
variations

::
in

::::::
rainfall

::::::::
between

:::::
years.

::::::
Water

:::::::::
availability

::
is

:::
the

:::::
most

::::::::
important

::::::
factor

:::
that

:::::::
controls

:::
the

:::::::::
vegetation

:::::::::::
productivity

::
of

:::::::::
ecosystems

::::::
across

::::
most

::
of

:::::::::
Australia,

::::
such

::
as

::::::::
grassland

:::
and

:::::::::::
shrub/desert

::::::::::::::::::::::::::::::::::::::
(see Figure 2 in Churkina and Running, 1998).805

::
In

:::::
terms

::
of

:::
the

::::::::
amplitude

::
of

::::::
carbon

::::
flux

:::::::::
anomalies,

:::
we

:::
can

:::
see

::::
that

:::
the

::::
prior

:::
and

:::
the

:::::::::::
FLUXCOM

::::::::
anomalies

::::::
exhibit

::
a
:::::
lower

::::::::
amplitude

::::
than

:::
the

::::
one

::::::
derived

:::
by

:::
our

::::::::
inversion

:::
and

::::
the

:::::::
majority

::
of

:::
the

:::::::
models

::
in

::::
MIP.

::::::::
Australia

:::::::::::
FLUXCOM

::::::::
estimates

:::
are

:::::
likely

:::
not

:
a
:::::

good
::::::::::::
representation

::
of

:::
the

:::::::
carbon

:::
flux

:::::::::
estimates

::
in

:::
the

:::::::::
continent,

:::::
given

:::
the

:::::::
sparsity

::
of

:::
the

::::
flux

:::::
tower

::::::::
network.

::::::::::
FLUXCOM

::::::
carbon

:::::
fluxes

:::
use

::::::::
machine

:::::::
learning

:::::::
methods

::
to
::::::::::

empirically
:::::::
upscale

:::
flux

::::::
tower

::::
data.

::
In

:::::::::
Australia,

:::
the

::::::
number

:::
of

::::::
OzFlux

::::::::
networks

::
is

:::::
small

::::::::::::
(approximately

:::
30

:::::::
towers),

:::::
where

:::::
most

::
of

:::
the

::::
flux

::::::
towers

:::
are

::::::
located

:::
far

::::
away

:::::
from

::::::::::::
semi-arid/arid810

::::::::::
ecosystems.

::::
This

:
is
:::::::

relevant
:::
for

::::::::
Australia

:::::::
because

::::::::::::
semi-arid/arid

:::::::::
ecosystems

::::::::
represent

:::::
about

::::
70%

::
of

:::
the

:::::::::
Australian

::::
land.

:

::::::
Related

::
to

::::
MIP

:::::::
OCO-2

:::::
global

:::::::::
inversions,

:::
we

:::::::
observe

::::
that

:::::
during

:::
the

:
year 2016, five global inversions (PCTM, CMS-Flux,

CT, OU and UT) agree
:::::
agreed

:
with our findings and suggest November

::::::::
suggested

::::::
October

:
as the month of peak uptake.

:::
The

::::::::
ensemble

:::::
mean

::
of

::::::::::
FLUXCOM

::::
also

:::::
agrees

::::
with

:::
our

::::::
results

:::::
(-0.42

::::
PgC

:::::
yr−1),

:::::::
however

:::
the

::::
size

::
of

:::
the

:::::
uptake

::
is

::::
half

::
of

:::
our

:::::::
estimates

::::::
(-1.12

::::
PgC

:::::
yr−1)

:
. In terms of

:::
the

::::
peak

::
of

:
carbon release, we

::::
there

::
is

::
no

:::::::::
agreement

:::::::
between

:::::
MIP,

::::::::::
FLUXCOM,

:::::
prior815

:::
and

:::::::
posterior

::::::
carbon

:::::::::
estimates.

:::
We observe that almost all OCO-2 MIP inversions agree that the largest outgassing occurred in

November 2015. Our inversion places the maximum outgassing during the MIP study
::
in

:::::::
October

:::::
2017,

::::
while

:::
the

:::::::::::
FLUXCOM

:::
and

:::
the

::::
prior

::::
have

:::
the

:::::::::
maximum

:::::::::
outgassing

:
period in October 2017.

:::
and

::::
July

:::::
2018,

::::::::::
respectively.

:

In summary, In summary,
:::
The

:
analysis of the inter-annual (peak-to-peak) variability shows that PCTM (3.05 PgC yr−1)

and CSU (2.46 PgC yr−1) produce the largest amplitude of variability compared to our prior (0.70 PgC yr−1) and posterior820

anomalies (1.89 PgC yr−1). We also note that UO and AMES exhibit the lowest carbon amplitude of the variability, which

values are 1.06 and 1.86 respectively. The disagreement between the global inversion and our study might also be driven by

transport differences (Basu et al., 2018; Schuh et al., 2019).

:::
The

:::::
larger

::::::::
seasonal

:::::
cycle

::::::::
amplitude

:::
of

:::
the

:::::::::
anomalies

::::::::
suggested

:::
by

:::
our

::::::::
regional

::::::::
inversion

:::
and

:::::::
OCO-2

::::
MIP

::::::::
compared

:::
to

::
the

::::
flux

:::::::::
anomalies

:::::::
derived

::
by

:::
the

::::::::
CABLE

:::::
model

::::
and

::::::::::
FLUXCOM

::::::
raises

::::
some

:::::::::
questions.

::::
For

::::::::
example,

::::
why

::
do

::::::::::
Australia’s825

::::::::
semi-arid

:::::::::
ecosystems

:::::::
capture

::::
more

:::::::
carbon

::::::
dioxide

::::::
(based

:::
on

:::
our

::::::
OCO-2

:::::::::
inversion)

::::
than

:::
the

::::::::::::
process-based

::::::
model

::::::::
estimate?

:::::
Could

:
it
:::
be

:::::::
possible

:::
that

:::
the

:::::
larger

::::::::
posterior

:::::
carbon

::::::
uptake

:::
and

:::
its

::::::::
anomalies

::::::::
estimated

:::
by

:::
the

:::::::
inversion

:::::::
(relative

::
to

:::
the

::::
prior

::::
and

::::::::::
FLUXCOM)

::
is
:::::::
because

:::
the

:::::::
CABLE

:::::
model

::
is

:::
not

::::
well

::::::::
calibrated

::::::
against

:::
the

::::::::::
insufficient

::::::
number

::
of

::::
eddy

:::::::::
covariance

::::
flux

::::::
towers

:::::
across

:::
the

:::::::::
continent?

::::::
Could

:::
the

::::::::
remaining

:::::::
OCO-2

:::::
biases

::
in
:::::::

version
::
9

:::
and

::::::::
potential

:::::
errors

::
in

:::
the

::::::::
transport

:::::
model

:::
be

:::::::
causing

:::::::
deviation

:::::
from

:::
the

:::
true

:::::
flux?.

:::::
More

:::::
work

:::::
needs

::
to

:::
be

::::
done

::
to

::::::::
reconcile

:::
and

::::::::::
disentangle

::::
what

::
is
:::::
being

::::::
found

::
by

:::
the

:::::::::
inversions830

:::
and

:::
the

::::::::
Australia

:::::::
CABLE

:::::::
model.

::
In

::::::
future

:::::
work,

:::
we

:::::
could

::::
run

:::
this

::::::::
regional

::::::::
inversion

:::::
using

:::
the

:::::
latest

:::::::
version

::
of

:::::::
OCO-2

:::
data

:::::::
(version

::::
10)

::
in

::::::::::
combination

::::
with

::::::
ocean

::::
glint

::::
data,

:::
for

::::::
which

:::::
recent

:::::::::::
verifications

::::::
confirm

:::::::::
reductions

::
in

::::
both

:::
the

::::
bias

::::
and

:::::::
standard

::::::::
deviation

::::::::
compared

:::
to

:::
the

:::::::
TCCON

::::
data

:::::::::::::::::::::::::::::::::
(OCO-2 Data Quality Statement, 2020).

:::::::
Another

::::::::
direction

:::
for

:::::
future

:::::
work

:::::
would

::
be

::
to
:::::::
explore

:::
the

::::::
impact

::
of

:::::::
transport

::::::
model

:::::
errors

:::
on

::
the

::::::::
resulting

:::::::::
assimilated

:::::::
OCO-2

::::::
fluxes.

::::
Such

:::::::::
assessment

:::::
could

:::
be

::::
done

::
by

:::::::::
choosing,

::
for

::::::::
example,

:::::::
different

::::::::
planetary

::::::::
boundary

:::::::
schemes

::::::
within

:::
the

::::::
CMAQ

::::::
model.

:::
As

:::::::::
mentioned

::
in

::::::
section

:::::
3.4.2,835

:
a
:::::::::::::::
misrepresentation

::
of

::::::
vertical

::::::
mixing

::::
near

:::
the

::::::
surface

::
in
:::::::::::
atmospheric

:::::::
transport

::::::
models

:::::
leads

::
to

:::::::::::
uncertainties

::
in

::::::::
modelled

::::
CO2

::::::
mixing

:::::
ratios.

::::::
Mixing

::::::
within

:::
the

::::::::
planetary

::::::::
boundary

::::
layer

:::::::::
influences

:::
the

:::::::::::
redistribution

::
of

:::
the

::::::
surface

::::::
fluxes

::
to

::
the

:::::::::::
atmospheric

:::::::
column.

:::::::
Another

::::
way

::
to

:::::::
evaluate

:::
the

::::::::
transport

::::
error

::
of

:::
the

:::::
model

::::::
would

::
be

:::::::
through

:
a
::::::
model

::::::::::::::
inter-comparison.

::::
This

::::::::
approach

::
is
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::::::::::
well-known

::
in

:::
the

:::::
global

::::::::
inversion

:::::::::
TransCom

::::::
group

:::::::::
community

::::::::::::::::::::::::::::::::::::::::::::::
(Law et al., 2008; Peylin et al., 2013; Basu et al., 2018),

:::
the

:::::
recent

:::::
model

:::::::::::::::
inter-comparison

::::::
project

:::::
(MIP)

::::::::
organized

:::
by

:::
the

::::::
OCO-2

:::::::
Science

:::::
Team

:::::::::::::::::::::::::::::::::
(Crowell et al., 2019; Peiro et al., 2021),840

:::
and

:::
the

:::::
recent

::::::::
European

:::::::::::
atmospheric

:::::::
transport

::::::::
inversion

::::::::::
comparison

::::::::::::
(EUROCOM)

::::::
project

::::::::::::::::::
(Monteil et al., 2020).

::::::
Finally,

:::
we

:::::
could

:::
say

:::
that

::::::::
previous

:::::::
inversion

::::::
studies

::::
over

::::::::
Australia

::::
have

:::::
been

::::::
limited

::
by

:::
the

::::
lack

::
of

::
in

:::
situ

:::::
data.

:::
The

:::::::
OCO-2

:::
data

::::::::
certainly

::::::
allows

:
a
::::::::
quantum

::::
leap

::
in

::::::::
resolution

:::
but

::::
this

::
is

:::
still

::::::::::
reasonably

::::::
coarse,

::::::::
especially

:::::
when

::::
one

:::::::::
remembers

::::
that

:::
the

::::
prior

:::::::::
covariance

::::::::
structures

:::
we

:::
use

::::::
impose

:::::::
smooth

::::::::
variations

::
up

::
to
:::
the

:::::::::
correlation

::::::
length

::
of

::::
500 km.

::::::::::
Instruments

::::
with

::::::::
scanning

:::::::::
geometries

:::::
which

:::::
allow

::::::
higher

:::::::::
resolution

::::::::::
observations

:::::
such

::
as

:::::::
OCO-3

::::::::::::::::::::::
(Eldering et al., 2019) may

:::::::
improve

:::::::::::
significantly

:::
the845

:::::::
available

:::::::::
resolution

::
of

:::::
fluxes.

::::
This

::
is
::::::::::
particularly

::::::::
important

:::::
when

::::::::
assessing

:::
the

::::
roles

::
of

::::::
drivers

::::
such

::
as

:::::::
rainfall

:::::
which

::::
may

::::
vary

::
on

::::::
smaller

::::::
scales.

:::
We

::::
also

::::
note

:::
that

::::::::::
continuing

:::::::::::
improvement

::
in

:::
the

::::
OCO

::::::::
retrievals

::::::::::
themselves

:::::
should

:::::
allow

:::::
joint

::::::::::
assimilation

::
of

::::
land

:::
and

:::::
ocean

:::::::::::::
measurements,

::::::::
hopefully

:::::::::
improving

:::
the

::::::::
visibility

::
of

::::::
coastal

:::::
fluxes

::::
and

:::::::::
improving

:::::::::
comparison

:::::
with

::::::
coastal

::
in

:::
situ

::::::::::::
measurements

::::
such

::
as

:::::
Cape

::::
grim

:::
and

:::::
Gunn

::::::
Point,

::
as

::::::
shown

::
by

:::::::::::::::::::
Villalobos et al. (2021).
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Figure 12. Comparison between 3-month running
::::::
monthly mean posterior (black

:::
blue

:
line)and

:
, prior (grey

:::::
orange

:
line)terrestrial CO2 flux

anomalies ,
:::::::::
FLUXCOM

::::::::
ensemble

::::
mean (PgC yr−1

::::
green

:::
line),

::::
MIP

::::::
OCO-2

:::::::
ensemble

:::::
(black

::::
line)

:::::
carbon

:::::
fluxes and 3-month running mean

anomalies of six different global transport
::
the

:::::::
monthly

:::::
carbon

:::::
fluxes

::::
from

::
the

::::
nine

:
models

:::
that

::::::::
participate

::
in

::::::
OCO-2

:::
MIP: AMES, PCTM,

CAMS, CMS-Flux, CSU, CT, OU, TM5−4DVAR, UT
:::::
(units:

:::
PgC

:::::
yr−1).
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Figure 13. Comparison between 3-month running mean posterior (black line)and
:
, prior (grey line

:::::
orange)terrestrial CO2 ,

::::::::::
FLUXCOM

:::::::
ensemble,

::::::
OCO-2

::::
MIP

::::::::
ensemble

:::::
carbon

:
flux anomalies (PgC yr−1) and 3-month running mean anomalies of

::
the

:
nine different global

transport models : AMES, PCTM, CAMS, CMS-Flux, CSU, CT, OU, TM5−4DVAR, UT
::
that

::::::::
participate

::
in
::::::
OCO-2

::::
MIP.

Table 3. Summary of the peak-to-peak amplitude of 3-month running mean posterior (black line) and prior (grey line) terrestrial carbon flux

anomalies and 3-month running mean anomalies of nine different global transport models (Units PgC yr−1).

Carbon flux estimates Models Maximun Maximun Date Minimun Date Amplitud

CMAQ-OCO-2 inversion Posterior 0.78 0.73 2017-10-31 -1.12
::::
-1.16

:
2016-10-31 1.89

BIOS-CABLE3 Prior 0.20 0.20 2018-07-31 -0.50 2016-11-30 0.70

::::
MIP

::::::
OCO-2

:
AMES 0.85 0.85 2015-12-31 -1.01 2016-10-31 1.86

PCTM 1.44 1.44 2015-11-30 -1.61 2016-10-31 3.05

CAMS 1.09 1.09 2015-12-31 -1.23 2016-11-30 2.33

CMS-Flux 0.54 0.54 2015-11-30 -0.68 2016-12-31 1.23

CSU 0.95 0.95 2018-10-31 -1.51 2016-10-31 2.46

CT 0.46 0.46 2015-11-30 -0.60 2016-10-31 1.06

OU 0.83 0.83 2015-11-30 -0.60 2016-10-31 1.43

TM5-4DVAR 1.28 1.28 2015-12-31 -1.19 2016-11-30 2.47

UT 1.23 1.23 2015-11-30 -1.07 2016-12-31 2.30

::::
MIP

::::::
OCO-2

: ::::::::
Ensemble

: :::
0.82

: ::::::::::
2015-11-30

::::
-1.09

::::::::::
2016-10-31

::::
1.91

::::::::
FluxCom

::::::::
Ensemble

: :::
0.22

: ::::::::::
2018-10-31

::::
-0.42

::::::::::
2016-10-31

::::
0.64
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As a final discussion, we could say that previous inversion studies over Australia have been limited by the lack of in situ data.850

OCO-2 certainly allows a quantum leap in resolution but this is still reasonably coarse, especially when one remembers that

the prior covariance structures we use impose smooth variations up to the correlation length of 500 . Instruments with scanning

geometries which allow higher resolution observations such as OCO-3 (Eldering et al., 2019) may improve significantly the

available resolution of fluxes. This is particularly important when assessing the roles of drivers such as rainfall which may vary

on smaller scales. We also note continuing improvement in the OCO retrievals themselves which should allow joint assimilation855

of land and ocean measurements, hopefully improving the visibility of coastal fluxes and improving comparison with coastal

in situ measurements such as Cape grim and Gunn Point as shown by Villalobos et al. (2021).
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5 Conclusions

We estimated monthly carbon fluxes over Australia for 2015 to 2019, based on the assimilation of the Orbiting Carbon

Observatory-2 (OCO-2) satellite data (land nadir and glint data, version 9). We investigated the effect of vegetation produc-860

tivity (EVI anomalies as proxy) and climate driver variations such as rainfall and air temperature on the Australian terrestrial

carbon flux variability. The mean of our five-year inversion suggests that Australia was a carbon sink of -0.46± 0.08 PgC yr−1

driven partly by large carbon uptake (-1.04 PgC yr−1) recorded in 2016 over the savanna and sparsely vegetated ecosystems.

We found that negative carbon flux anomalies recorded in this period over these ecosystems coincide with an increase in the

vegetation greenness (positive EVI anomalies) driven by higher than average rainfall anomalies and lower than average air865

temperature anomalies. The 2017 sink over Australia also contributed to the 2015–2019 long term mean, but its contribution

was not as significant as 2015 and 2016. Negative carbon flux anomalies recorded in 2017 also coincided with positive rainfall

anomalies and temperatures below average in that period over areas with sparse vegetation. In 2018 we did not find significant

terrestrial flux anomalies across Australia, and 2019 mainly was affected by positive carbon flux anomalies, which also were

in line with a deficit of rainfall and positive temperature anomalies.870

Regarding validation of our inversion with independent data, we found it challenging to validate our posterior column-

averaged concentration with the current Australian monitoring sites. Despite the fact that for several periods between 2015-

2019, the posterior concentration biases at the TCCON monitoring site were less than 1.0 ppm, OCO-2 data was not able to

reduce prior biases significantly. We associate this slight or no improvement with the fact that these monitoring stations are

strongly affected by ocean fluxes, where no OCO-2 data was considered. Similar findings were found for in-situ measurements875

at coastal sites such as Cape Grim and Gunn Point. Despite the weak comparison with independent monitoring data, the

comparison to OCO-2 MIP global inversion for 2015-2018,
::::
and

::::::::::
FLUXCOM

::::::::
ensemble

:::::
mean

:
present similar results to our

regional inversion, suggesting that the year 2016 was a period in which Australia acted as a strong carbon sink of CO2.
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6 Spatial pattern of OCO-2 soundings across Australia

Appendix A:
::::::::::
Histograms:

:::::::
CMAQ

::::::
model

::::
and

::::::
OCO-2

::::::::::
differences880
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Figure A1. Spatial
::::::::
Probability

::::::
density

:
distribution of

::
the

::::::::
difference

:::::::
between

::::::
CMAQ

::::::
column

:::::::
average

::::
CO2 ::::::::::

concentration
::::

and OCO-2

soundings
:::::::::
observations (Land nadir and glint data

:::::
Units: ppm)over .

::::
The

:::::
orange

:::::::
histogram

:::::::
presents the

:::
prior CMAQ domain for 2015.

::::::
column

::::::
average

:::::::
simulated

:::::
minus

:::::::
OCO-2,

::::::
whereas

:::
the

::::
blue

::::::::
histogram

::::::
presents

:::
the

:::::::
posterior

::::::
column

::::::
average

::::::::
simulated

:::::
minus

:::
the

::::::
OCO-2.

:::::
Mean

::::::::
differences

:::
and

:::::
RMSE

:::
are

:::::::
indicated

::
in

:::
the

:::::
legend.
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Figure A2. Spatial
::::::::
Probability

::::::
density

:
distribution of

::
the

::::::::
difference

:::::::
between

::::::
CMAQ

::::::
column

:::::::
average

::::
CO2 ::::::::::

concentration
::::

and OCO-2

soundings
:::::::::
observations

:::::::::
aggregated

::
by

:::
six

::::::::
bioclimatic

:::::::::::
classifications

:
(Land nadir and glint data

:::::
Units: ppm)over

:
.
:::
The

::::::
orange

::::::::
histogram

::::::
presents

:
the

::::
prior

:
CMAQ domain for 2016.

::::::
column

::::::
average

::::::::
simulated

:::::
minus

::::::
OCO-2,

:::::::
whereas

:::
the

:::
blue

::::::::
histogram

:::::::
presents

:::
the

:::::::
posterior

:::::
column

::::::
average

::::::::
simulated

:::::
minus

::
the

:::::::
OCO-2.

::::
Mean

::::::::
differences

::::
and

:::::
RMSE

:::
are

:::::::
indicated

:
in
:::
the

::::::
legend.
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Appendix B:
::::::
Spatial

::::::::::
distribution

:::
of

:::
the

:::::
prior

:::
and

:::::::::
posterior

::::::
annual

:::::
mean

:::::::::::
(2015-2019)
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Figure B1. Spatial distribution of
:::::::
Posterior

:::::
fluxes

:::::::::
assimilated

::::
using

::::::
LNLG OCO-2 soundings

::::::
satellite

:::::::::
observations

:::::::
averaged

:::
for

::::
2015

::
–

::::
2019 (Land nadir and glint data

::::
fossil

:::
fuel

:::::::
emissions

:::
are

:::::::
excluded)over the CMAQ domain for 2017.

:
.

43



40°S

30°S

20°S

10°S

105°E 120°E 135°E 150°E 165°E

(a) 2015

40°S

30°S

20°S

10°S

105°E 120°E 135°E 150°E 165°E

(b) 2016

40°S

30°S

20°S

10°S

105°E 120°E 135°E 150°E 165°E

(c) 2017

40°S

30°S

20°S

10°S

105°E 120°E 135°E 150°E 165°E

(d) 2018

40°S

30°S

20°S

10°S

105°E 120°E 135°E 150°E 165°E

(e) 2019

40°S

30°S

20°S

10°S

105°E 120°E 135°E 150°E 165°E

(f) 2015-2019

600 450 300 150 0 150 300 450 600
Prior terrestrial flux 

(gC m 2 y 1)

Figure B2. Spatial distribution of OCO-2 soundings (Land nadir and glint data) over
::::
Prior

::::
fluxes

::::::
derived

:::
by the CMAQ domain

::::::
CABLE

:::::
model

::
in
:::
the

::::::
BIOS3

::::
set-up

::
in
::::::::::
combination

::::
with

:::
fires

::::::::
emissions

::::::
selected

::
by

::::::
GFED

:::::::
averaged for 2018.

::::::::
2015–2019

:::::
(Fossil

:::
fuel

::::::::
emissions

:::
are

::::::::
excluded).
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Appendix C:
::::::::::::
Climatological

::::::::
seasonal

:::::
cycle

:::
and

:::::
GPP

:::::::::
anomalies

:::::::::::
(2015–2019)
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Figure C1. Spatial distribution
::::::::::
Climatological

:::::::
seasonal

::::
cycle

:
of OCO-2 soundings

:::
GPP

:
(Land nadir

:::::::::
2015–2019)

::::::
derived

::::
from

:::::::
CABLE

:::::
BIOS3

:::::
model

::::::::::
(yellow-green

::::::
dashed

::::
line),

::::::
MODIS

::::::::::
(forest-green

:::::
dashed

:::::
line), and glint data

:::::::
DIFFUSE

:::::
model

::::::::
(lightcoral

:::::
dashed

:::
line)over the

CMAQ domain for 2019.
:
.
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Figure C2.
:::

Time
:::::
series

::
of

:::::::
3-running

:::::::
monthly

::::
mean

::::
GPP

:::::::
anomalies

::::::
derived

::::
from

::::::
CABLE

::::::
BIOS3

:::::
model

::::::::::
(yellow-green

:::::
dashed

:::::
line),

::::::
MODIS

:::::::::
(forest-green

::::::
dashed

::::
line),

:::
and

::::::::
DIFFUSE

:::::
model

::::::
(orange

:::::
dashed

::::
line)

::::::
between

::::
2015

:::
and

:::::
2019.
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Appendix D:
::::::
Carbon

::::
flux

:::::::::
anomalies

::::::::::
aggregated

:::
by

::::::::::
bio-climatic

:::::::
regions

:
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Figure D1.
:::
Time

:::::
series

::
of

:::::::
3-month

::::::
running

::::
mean

:::::::
posterior

:::::
(black

::::
line)

:::
and

::::
prior

::::
(grey

::::
line)

:::::::
terrestrial

::::
CO2 :::

flux
::::::::
anomalies

::::
(PgC

:::::
yr−1)

:::
and

::::::
3-month

::::::
running

:::::
mean

:::
EVI

::::::::
anomalies

::::::::
(turquoise

:::::
dashed

::::
line)

:::::::
between

::::
2015

::
to

::::
2019

::::::::
aggregated

::
by

::::
four

::::::::::
agro-climate

::::::
regions:

::
(a)

:::::::
Tropics,

::
(b)

:::::
warm

::::::::
temperate,

::
(c)

:::::
Cool

::::::::
temperate,

:::
and

:::
(d)

:::::::::::
Mediterranean

:::::::::
ecosystems.

:::
The

::::
grey

::::::
shaded

:::
area

:::::::
represent

:::
1.0

:::::::
standard

:::::::
deviation

:::::
range

:::::
around

:::
the

::::
mean

:::
for

::
the

::::
prior

:::
and

:::::::
posterior

:::
flux

:::::::::
uncertainty.
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Appendix E:
::::::
Spatial

::::::::::
distribution

:::
of

::::::
OCO-2

:::::::::
soundings

::::::
(Land

:::::
nadir

::::
and

::::
glint

:::::
data)

::::
over

::::
the

::::::
CMAQ

:::::::
domain

:::
for

:::::
2015

Figure E1.
:::::

Spatial
::::::::
distribution

::
of

::::::
OCO-2

::::::::
soundings

::::
(Land

:::::
nadir

:::
and

:::
glint

::::
data)

::::
over

:::
the

:::::
CMAQ

::::::
domain

:::
for

::::
2015.
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Appendix F: Analysis of the residual TCCON885

Table F1. Analysis of the residual between CMAQ prior and posterior simulation and TCCON Darwin site for 2015–2019. Averaged bias

(Bias), Root-mean-square error (RMSE) and Pearson’s coefficient (R).

Darwin

months Prior Posterior months Prior Posterior months Prior Posterior

yyyy-mm Bias RMSE R Bias RMSE R yyyy-mm Bias RMSE R Bias RMSE R yyyy-mm Bias RMSE R Bias RMSE R

2015-01 0.12 0.51 0.81 -0.04 0.82 0.75 2017-01 - - - - - - 2019-01 - - - - -

2015-02 0.69 0.85 0.78 0.38 0.63 0.78 2017-02 - - - - - - 2019-02 -1.31 1.34 -0.49 -1.40 1.43 -0.61

2015-03 0.93 1.10 0.14 0.18 0.59 0.29 2017-03 0.32 0.58 0.60 -1.34 1.45 0.59 2019-03 -0.78 0.87 0.60 -1.42 1.55 0.39

2015-04 0.85 0.94 0.38 0.60 0.74 0.42 2017-04 - - - - - - 2019-04 - - - - - -

2015-05 0.97 1.05 0.37 0.90 0.99 0.52 2017-05 - - - - - - 2019-05 - - - - - -

2015-06 0.90 0.97 0.21 1.24 1.27 0.23 2017-06 -0.12 0.44 -0.02 0.24 0.46 0.25 2019-06 - - - - - -

2015-07 1.51 1.55 -0.18 1.07 1.10 0.22 2017-07 -0.13 0.74 0.07 0.04 0.69 0.16 2019-07 - - - - - -

2015-08 1.44 1.46 0.34 1.06 1.10 0.35 2017-08 0.19 0.39 0.09 0.28 0.49 0.15 2019-08 - - - - - -

2015-09 1.12 1.16 0.02 0.81 0.86 0.10 2017-09 -0.15 0.32 0.14 -0.16 0.31 0.13 2019-09 -0.30 0.66 0.25 -0.40 0.73 0.18

2015-10 0.55 0.63 0.53 0.63 0.69 0.62 2017-10 -0.92 1.05 0.42 -0.51 0.72 0.46 2019-10 -0.91 1.01 0.72 -0.87 0.95 0.78

2015-11 -0.25 0.51 0.66 0.11 0.42 0.75 2017-11 -1.12 1.21 0.06 -0.76 0.99 -0.20 2019-11 -1.31 1.37 0.70 -0.96 1.06 0.61

2015-12 -0.34 0.48 0.18 -0.02 0.31 0.26 2017-12 -0.67 0.79 0.37 -0.74 0.97 0.26 2019-12 -1.37 1.43 0.35 -1.22 1.32 0.26

2016-01 0.27 0.55 0.39 0.09 0.60 0.28 2018-01 -0.57 0.85 0.08 -1.15 1.30 -0.08

2016-02 0.34 0.63 0.34 -0.25 0.66 0.29 2018-02 -0.90 1.04 0.08 -1.98 2.11 -0.13

2016-03 0.44 0.63 0.36 -0.09 0.58 0.30 2018-03 -0.62 1.06 -0.65 -1.46 1.67 -0.59

2016-04 0.80 0.93 0.34 0.86 0.95 0.48 2018-04 - - - - - -

2016-05 0.26 0.41 0.58 0.41 0.53 0.54 2018-05 - - - - - -

2016-06 0.37 0.45 0.16 0.21 0.38 0.18 2018-06 -0.27 0.51 -0.08 -0.09 0.40 0.22

2016-07 0.18 0.42 0.17 0.07 0.38 0.34 2018-07 -0.34 0.52 -0.16 -0.34 0.48 0.04

2016-08 0.09 0.33 0.04 -0.07 0.33 0.27 2018-08 -0.34 0.49 0.05 -0.94 0.99 0.07

2016-09 -0.17 0.40 0.25 -0.20 0.40 0.26 2018-09 -0.57 0.69 0.09 -0.90 0.99 0.09

2016-10 -0.31 0.42 0.01 -0.30 0.47 0.27 2018-10 - - - - - -

2016-11 -0.40 0.42 0.75 -0.43 0.47 0.67 2018-11 - - - - - -

2016-12 - - - - - - 2018-12 - - - - - -
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Table F2. Analysis of the residual between CMAQ prior and posterior simulation and TCCON Lauder site for 2015–2019. Averaged bias

(Bias), Root-mean-square error (RMSE) and Pearson’s coefficient (R).

Lauder

Months Prior Posterior Months Prior Posterior Months Prior Posterior

yyyy-mm Bias RMSE R Bias RMSE R yyyy-mm Bias RMSE R Bias RMSE R yyyy-mm Bias RMSE R Bias RMSE R

2015-01 0.48 0.58 0.31 0.71 0.85 0.06 2017-01 0.571 0.71 0.39 0.60 0.79 0.39 2019-01 0.89 1.01 0.53 1.10 1.38 0.55

2015-02 0.61 0.74 0.22 1.03 1.17 0.34 2017-02 0.187 0.41 0.24 0.65 1.03 0.07 2019-02 0.94 1.02 0.21 1.10 1.40 0.12

2015-03 0.54 0.62 0.51 0.73 0.84 0.53 2017-03 0.16 0.41 0.35 0.27 0.48 0.35 2019-03 0.64 0.75 0.53 0.95 1.25 0.69

2015-04 0.50 0.59 0.77 0.51 0.60 0.79 2017-04 0.35 0.52 0.22 0.20 0.32 0.21 2019-04 0.83 0.88 0.58 0.80 0.94 0.54

2015-05 0.82 0.89 0.30 0.83 0.90 0.23 2017-05 0.191 0.40 0.54 0.16 0.24 0.59 2019-05 0.73 0.81 0.65 0.62 0.75 0.67

2015-06 0.65 0.86 0.60 0.61 0.82 0.56 2017-06 0.44 0.58 0.77 0.32 0.46 0.76 2019-06 0.63 0.76 0.85 0.46 0.68 0.82

2015-07 0.69 0.82 0.79 0.64 0.79 0.76 2017-07 0.44 0.56 0.30 0.26 0.39 0.38 2019-07 0.81 0.88 0.73 0.65 0.80 0.69

2015-08 0.57 0.64 0.64 0.57 0.64 0.66 2017-08 0.71 0.81 0.64 0.63 0.87 0.63 2019-08 1.14 1.22 0.75 1.15 1.42 0.74

2015-09 0.71 0.73 0.83 0.63 0.67 0.83 2017-09 1.30 1.35 0.73 1.58 1.76 0.71 2019-09 0.96 1.07 0.60 0.97 1.24 0.63

2015-10 0.75 0.82 0.65 0.74 0.82 0.59 2017-10 1.01 1.08 0.72 1.28 1.51 0.76 2019-10 1.09 1.13 0.72 1.23 1.42 0.62

2015-11 0.52 0.72 0.36 0.43 0.65 0.37 2017-11 0.74 0.90 0.50 0.79 0.97 0.50 2019-11 0.99 1.06 0.79 1.09 1.33 0.78

2015-12 0.71 0.76 0.79 0.77 0.81 0.81 2017-12 0.83 0.91 0.63 1.37 1.65 0.67 2019-12 1.03 1.10 0.70 0.82 1.11 0.52

2016-01 0.43 0.51 0.81 0.40 0.51 0.78 2018-01 0.64 0.73 0.33 1.04 1.43 0.16

2016-02 0.23 0.40 0.54 0.18 0.33 0.49 2018-02 0.52 0.61 0.62 0.46 0.62 0.63

2016-03 0.24 0.45 0.57 0.23 0.32 0.53 2018-03 0.59 0.74 0.35 0.52 0.83 0.33

2016-04 0.17 0.45 0.72 0.19 0.25 0.71 2018-04 0.63 0.74 0.44 0.53 0.71 0.42

2016-05 0.39 0.54 0.61 0.29 0.46 0.55 2018-05 0.91 1.04 0.40 0.99 1.46 0.39

2016-06 0.21 0.50 0.44 0.22 0.38 0.48 2018-06 0.70 0.89 -0.42 0.68 0.98 -0.44

2016-07 0.59 0.78 0.74 0.58 0.82 0.74 2018-07 0.99 1.03 0.69 0.88 1.13 0.43

2016-08 0.32 0.55 0.55 0.30 0.41 0.55 2018-08 0.75 0.79 0.77 0.60 0.72 0.78

2016-09 0.31 0.62 0.11 0.34 0.62 0.16 2018-09 0.96 1.03 0.41 0.94 1.16 0.45

2016-10 0.30 0.55 0.10 0.58 0.75 0.37 2018-10 1.011 1.11 0.48 1.34 1.58 0.55

2016-11 0.93 0.97 0.68 1.30 1.47 0.66 2018-11 1.25 1.30 0.63 2.10 2.31 0.65

2016-12 0.576 0.7823 0.22 1.16 1.78 0.16 2018-12 1.35 1.40 0.33 2.897 3.15 0.33
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Table F3. Analysis of the residual between CMAQ prior and posterior simulation and TCCON Wollongong site for 2015–2019. Averaged

bias (Bias), Root-mean-square error (RMSE) and Pearson’s coefficient (R).

Wollongong

Months Prior Posterior Months Prior Posterior Months Prior Posterior

yyyy-mm Bias RMSE R Bias RMSE R yyyy-mm Bias RMSE R Bias RMSE R yyyy-mm Bias RMSE R Bias RMSE R

2015-01 -0.04 0.72 0.21 0.07 0.75 0.23 2017-01 -0.76 0.99 0.25 -0.35 0.84 0.16 2019-01 -2.20 2.55 0.07 -2.23 2.51 0.20

2015-02 -0.21 0.56 0.48 0.16 0.63 0.51 2017-02 -0.79 1.08 0.37 -0.82 1.13 0.14 2019-02 -0.47 0.84 0.28 -0.65 0.93 0.32

2015-03 0.66 0.94 0.19 0.51 0.88 0.16 2017-03 -0.83 1.26 -0.07 -0.82 1.32 0.01 2019-03 -0.33 0.65 0.48 -0.51 0.78 0.45

2015-04 0.72 0.96 0.07 0.82 1.06 0.15 2017-04 -0.52 1.11 0.03 -0.55 1.13 -0.09 2019-04 -0.50 0.83 0.16 -0.65 0.95 0.16

2015-05 1.26 1.40 0.12 1.54 1.72 0.02 2017-05 -0.42 0.66 0.31 -0.50 0.74 0.26 2019-05 0.03 0.67 0.26 -0.06 0.71 0.21

2015-06 1.41 1.53 0.68 1.61 1.72 0.68 2017-06 -0.24 0.53 0.67 -0.24 0.53 0.68 2019-06 0.20 0.75 0.17 -0.14 0.60 0.40

2015-07 1.37 1.56 0.32 1.14 1.38 0.28 2017-07 -0.01 0.55 0.42 -0.11 0.59 0.37 2019-07 0.17 0.70 0.17 -0.04 0.62 0.17

2015-08 1.42 1.57 0.25 1.61 1.76 0.28 2017-08 0.17 0.89 -0.19 0.16 0.91 -0.19 2019-08 -0.29 0.52 0.82 -0.77 0.87 0.79

2015-09 1.19 1.44 0.16 1.11 1.42 0.19 2017-09 0.31 0.86 -0.06 0.17 0.68 0.12 2019-09 -0.05 0.67 -0.10 -0.67 0.98 -0.18

2015-10 0.07 0.72 0.03 0.29 0.83 0.00 2017-10 - - - - - - 2019-10 -0.36 0.64 0.38 -0.74 0.97 0.22

2015-11 -0.74 1.22 -0.08 -0.40 1.13 -0.05 2017-11 - - - - - - 2019-11 -0.14 0.80 0.62 -0.63 0.95 0.69

2015-12 -0.45 0.69 0.14 -0.60 0.85 -0.03 2017-12 - - - - - - 2019-12 0.99 1.77 0.67 -1.31 1.44 0.69

2016-01 -0.29 0.51 0.58 -0.19 0.42 0.50 2018-01 - - - - - -

2016-02 -0.93 1.09 0.24 -1.00 1.18 -0.13 2018-02 - - - - - -

2016-03 -0.18 0.56 0.59 -0.36 0.69 0.54 2018-03 -0.72 0.94 0.47 -0.98 1.15 0.30

2016-04 0.10 0.69 -0.20 0.07 0.57 -0.19 2018-04 -0.221 0.66 0.52 -0.59 0.78 0.55

2016-05 -0.07 0.65 0.31 -0.12 0.71 0.17 2018-05 -0.011 0.59 0.20 -0.17 0.58 0.11

2016-06 -0.21 0.71 -0.13 -0.52 0.87 -0.16 2018-06 -0.03 0.39 0.72 -0.11 0.45 0.66

2016-07 0.04 0.66 0.52 -0.05 0.71 0.49 2018-07 -0.15 0.65 0.21 -0.33 0.68 0.19

2016-08 0.48 0.80 0.17 0.07 0.70 0.22 2018-08 0.08 0.51 0.42 0.23 0.57 0.37

2016-09 -0.05 0.89 0.40 -0.37 1.05 0.36 2018-09 -0.25 0.78 0.13 -0.49 0.91 0.03

2016-10 -0.14 0.78 0.17 -0.16 0.86 0.16 2018-10 -0.352 0.78 -0.08 -0.64 1.00 -0.22

2016-11 -0.53 0.93 0.30 0.41 0.87 0.32 2018-11 -0.808 1.05 0.64 -0.29 0.93 0.52

2016-12 -0.77 1.1305 0.06 -0.13 0.87 0.07 2018-12 -1.10 1.31 0.66 -0.81 1.10 0.75
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Appendix G: Analysis of the residual in-situ data

Table G1. Analysis of the residual between CMAQ prior and posterior simulation and Cape Grim site for 2015–2019. Averaged bias (Bias),

Root-mean-square error (RMSE) and Pearson’s coefficient (R).

Cape Grim

months Prior Posterior months Prior Posterior months Prior Posterior

yyyy-mm Bias RMSE R Bias RMSE R yyyy-mm Bias RMSE R Bias RMSE R yyyy-mm Bias RMSE R Bias RMSE R

2015-01 -2.31 3.38 0.28 -2.33 3.22 0.28 2017-01 -2.27 3.15 0.01 -2.04 2.48 0.59 2019-01 -1.81 3.15 -0.11 -2.99 3.65 0.07

2015-02 -2.65 3.68 0.57 -2.59 3.91 0.53 2017-02 -2.08 2.93 -0.11 -1.99 2.53 0.40 2019-02 -1.13 3.06 -0.14 -2.22 2.98 0.31

2015-03 -1.25 2.02 0.53 -2.70 3.07 0.29 2017-03 -1.70 4.22 0.17 -2.60 4.57 0.24 2019-03 -1.67 3.33 0.37 -2.51 3.22 0.60

2015-04 -2.33 3.22 0.41 -2.16 3.54 0.19 2017-04 -2.23 3.21 0.58 -1.95 3.25 0.45 2019-04 -1.60 3.46 -0.24 -2.79 3.41 0.49

2015-05 -1.85 3.27 0.36 -0.60 2.82 0.46 2017-05 -2.22 4.21 0.06 -2.71 3.95 0.30 2019-05 -2.46 3.64 0.22 -2.60 3.46 0.46

2015-06 -1.77 2.79 0.14 -0.88 2.28 0.20 2017-06 -1.77 2.81 -0.01 -2.17 2.88 0.21 2019-06 -2.31 3.81 -0.07 -6.70 8.35 -0.59

2015-07 -0.96 2.05 0.10 -2.18 3.20 -0.03 2017-07 -1.64 2.71 -0.06 -3.01 3.65 0.30 2019-07 -1.50 2.37 -0.15 -2.80 3.18 0.30

2015-08 -1.91 2.93 -0.05 -2.12 3.22 0.02 2017-08 -1.66 2.37 0.09 -1.82 2.46 0.01 2019-08 -1.64 2.45 -0.17 -4.35 4.98 0.21

2015-09 -2.29 3.63 -0.02 -4.18 4.94 0.16 2017-09 -1.08 2.02 -0.02 -1.55 2.17 0.10 2019-09 -2.23 2.95 0.19 -4.35 4.97 -0.31

2015-10 -2.34 3.44 0.08 -2.52 3.75 0.00 2017-10 -2.03 2.93 0.03 -3.26 4.07 -0.14 2019-10 -2.58 4.07 0.13 -4.71 6.14 -0.18

2015-11 -2.35 3.32 0.34 -3.07 4.28 -0.06 2017-11 -1.60 3.09 0.09 0.76 3.38 0.52 2019-11 -1.81 2.94 0.52 -2.14 3.61 -0.05

2015-12 -1.86 2.51 0.58 -2.34 2.89 0.49 2017-12 -1.88 2.51 0.07 -1.77 2.44 0.38 2019-12 -1.31 3.86 -0.07 -5.14 5.76 0.05

2016-01 -1.53 2.44 0.60 -2.40 3.01 0.55 2018-01 -2.23 3.96 0.05 -2.88 3.66 0.46

2016-02 -2.28 3.49 0.35 -3.65 4.78 0.06 2018-02 -1.72 3.92 -0.08 -3.52 4.20 0.48

2016-03 -1.64 2.79 0.43 -3.54 4.25 0.19 2018-03 -1.80 2.88 0.05 -2.95 3.38 0.16

2016-04 -2.15 3.22 0.57 -3.26 4.20 0.40 2018-04 -1.85 3.71 0.05 -3.48 4.36 0.20

2016-05 -1.62 2.51 0.68 -1.56 2.60 0.61 2018-05 -1.55 2.74 0.22 -3.14 3.91 0.01

2016-06 -2.26 3.23 0.28 -2.96 3.80 0.28 2018-06 -1.89 3.18 0.07 -2.03 3.04 0.27

2016-07 -1.22 2.07 0.52 -1.64 2.32 0.55 2018-07 -1.38 2.28 -0.06 -2.59 3.19 0.01

2016-08 -1.42 2.74 0.31 -3.24 3.90 0.60 2018-08 -1.35 2.11 0.05 -1.37 2.23 0.29

2016-09 -1.43 2.61 0.24 -1.60 2.77 0.22 2018-09 -1.69 2.79 -0.16 -2.44 3.08 0.15

2016-10 -2.36 2.82 0.48 -2.22 2.79 0.48 2018-10 -1.61 2.70 0.13 -2.94 3.46 0.31

2016-11 -2.79 3.47 0.03 -1.89 2.50 0.56 2018-11 -1.97 3.35 0.15 -0.85 3.17 0.30

2016-12 -2.22 3.26 0.30 -1.15 2.96 0.38 2018-12 -2.05 3.53 -0.20 -1.17 2.78 0.36
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Table G2. Analysis of the residual between CMAQ prior and posterior simulation and Gunn Point site for 2015–2019. Averaged bias (Bias),

Root-mean-square error (RMSE) and Pearson’s coefficient (R).

Gunn Point

months Prior Posterior months Prior Posterior months Prior Posterior

yyyy-mm Bias RMSE R Bias RMSE R yyyy-mm Bias RMSE R Bias RMSE R yyyy-mm Bias RMSE R Bias RMSE R

2015-01 -1.16 4.83 0.37 -2.11 4.87 0.26 2017-01 - - - - - - 2019-01 -3.19 5.56 -0.20 -7.19 9.22 -0.07

2015-02 -2.88 4.73 0.41 -3.55 4.07 0.47 2017-02 - - - - - - 2019-02 -5.04 5.80 0.24 -6.25 7.12 0.28

2015-03 -1.93 4.21 -0.06 -3.36 4.84 -0.06 2017-03 - - - - - - 2019-03 -2.99 4.37 0.37 -6.36 7.13 0.30

2015-04 -1.07 2.92 0.33 -2.74 3.44 0.28 2017-04 - - - - - - 2019-04 -0.27 4.03 0.27 2.12 5.48 0.29

2015-05 -1.76 2.78 0.35 -3.65 3.38 0.53 2017-05 - - - - - - 2019-05 -1.40 3.42 0.45 0.11 4.24 0.60

2015-06 -0.96 1.68 0.29 1.90 4.07 0.31 2017-06 - - - - - - 2019-06 -0.23 1.75 0.45 -4.04 3.70 0.57

2015-07 -2.53 16.46 0.00 -7.71 17.67 0.06 2017-07 - - - - - - 2019-07 1.69 2.65 0.01 -2.12 3.78 0.20

2015-08 1.70 2.43 0.41 -2.88 4.21 0.25 2017-08 - - - - - - 2019-08 1.17 4.47 -0.03 -1.75 4.59 -0.12

2015-09 1.81 2.13 0.28 -0.32 1.54 0.04 2017-09 - - - - - - 2019-09 2.69 3.02 0.23 1.08 1.42 0.47

2015-10 2.19 2.44 0.15 3.24 3.84 -0.03 2017-10 - - - - - - 2019-10 2.31 3.25 -0.30 3.51 4.28 -0.01

2015-11 -0.52 2.30 -0.67 0.66 2.63 -0.63 2017-11 - - - - - - 2019-11 -0.63 1.99 -0.04 2.21 2.52 0.18

2015-12 -2.69 3.34 0.38 -4.03 4.45 0.36 2017-12 - - - - - - 2019-12 -1.36 2.11 0.15 -0.42 3.96 0.03

2016-01 -3.70 4.66 0.16 -3.74 3.95 0.16 2018-01 - - - - - -

2016-02 -3.40 4.71 0.33 -5.19 6.22 0.36 2018-02 - - - - - -

2016-03 -2.74 4.03 -0.02 -3.30 4.30 0.02 2018-03 - - - - - -

2016-04 1.21 3.14 -0.38 1.92 3.12 -0.03 2018-04 - - - - - -

2016-05 -1.69 4.84 -0.27 -0.50 4.45 0.02 2018-05 - - - - - -

2016-06 -2.91 3.12 0.68 -4.28 4.02 0.79 2018-06 - - - - - -

2016-07 - - - - - - 2018-07 - - - - - -

2016-08 - - - - - - 2018-08 0.51 1.61 0.47 -6.16 5.70 -0.29

2016-09 - - - - - - 2018-09 0.83 1.37 0.15 -1.95 1.65 0.01

2016-10 - - - - - - 2018-10 0.09 0.76 0.39 0.89 0.92 0.77

2016-11 - - - - - - 2018-11 -4.24 4.63 -0.11 -4.08 5.45 0.05

2016-12 - - - - - - 2018-12 -3.63 4.60 0.02 -4.70 5.88 0.31
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Table G3. Analysis of the residual between CMAQ prior and posterior simulation and Iron bark site for 2015–2019. Averaged bias (Bias),

Root-mean-square error (RMSE) and Pearson’s coefficient (R).

Iron Bark

months Prior Posterior months Prior Posterior months Prior Posterior

yyyy-mm Bias RMSE R Bias RMSE R yyyy-mm Bias RMSE R Bias RMSE R yyyy-mm Bias RMSE R Bias RMSE R

2015-01 -1.61 2.28 0.32 0.43 2.33 0.23 2017-01 -1.02 1.09 0.77 0.82 0.90 0.01 2019-01 - - - - - -

2015-02 -1.07 1.30 0.44 0.71 1.14 0.06 2017-02 - - - - - - 2019-02 - - - - - -

2015-03 -0.34 2.85 0.35 -1.32 3.61 0.49 2017-03 - - - - - - 2019-03 - - - - - -

2015-04 -1.11 2.13 0.50 -1.48 2.52 0.00 2017-04 - - - - - - 2019-04 - - - - - -

2015-05 -2.15 2.77 0.37 -1.56 2.45 0.00 2017-05 - - - - - - 2019-05 - - - - - -

2015-06 -2.12 2.63 0.46 -2.29 3.26 0.83 2017-06 - - - - - - 2019-06 - - - - - -

2015-07 -0.35 1.66 0.49 -2.33 2.77 0.00 2017-07 - - - - - - 2019-07 - - - - - -

2015-08 1.44 2.55 0.26 0.92 2.84 0.87 2017-08 - - - - - - 2019-08 - - - - - -

2015-09 1.27 1.83 0.55 1.58 2.40 0.00 2017-09 - - - - - - 2019-09 - - - - - -

2015-10 -0.81 2.04 0.28 -0.90 2.04 0.00 2017-10 - - - - - - 2019-10 - - - - - -

2015-11 -2.28 2.86 0.53 0.05 1.93 0.00 2017-11 - - - - - - 2019-11 - - - - - -

2015-12 -1.50 2.77 0.50 -3.33 4.34 0.00 2017-12 - - - - - - 2019-12 - - - - - -

2016-01 -1.05 1.97 0.62 -1.61 2.83 0.00 2018-01 - - - - - -

2016-02 -1.60 2.99 0.24 -1.04 3.49 0.04 2018-02 -12.94 20.86 0.99 -11.41 21.61 0.18

2016-03 -1.27 2.10 0.42 -1.50 2.20 0.00 2018-03 - - - - - -

2016-04 0.37 1.58 0.53 0.91 2.21 0.00 2018-04 -5.00 9.30 0.20 -6.95 10.66 0.72

2016-05 -0.09 1.71 0.40 -2.02 2.52 0.00 2018-05 - - - - - -

2016-06 -2.12 2.87 0.16 -4.22 4.99 0.64 2018-06 - - - - - -

2016-07 -0.43 2.34 0.34 -3.83 4.47 0.00 2018-07 - - - - - -

2016-08 1.10 2.44 0.21 -2.25 3.59 0.02 2018-08 - - - - - -

2016-09 1.63 3.86 0.23 0.68 3.39 0.00 2018-09 - - - - - -

2016-10 -0.04 1.53 -0.51 -0.26 2.00 0.00 2018-10 - - - - - -

2016-11 -0.96 1.60 0.66 1.65 3.03 0.11 2018-11 - - - - - -

2016-12 - - - - - - 2018-12 - - - - - -
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Table G4. Analysis of the residual between CMAQ prior and posterior simulation and Burncluith site for 2015–2019. Averaged bias (Bias),

Root-mean-square error (RMSE) and Pearson’s coefficient (R).

Burncluith

months Prior Posterior months Prior Posterior months Prior Posterior

yyyy-mm Bias RMSE R Bias RMSE R yyyy-mm Bias RMSE R Bias RMSE R yyyy-mm Bias RMSE R Bias RMSE R

2015-01 - - - - - - 2017-01 -0.44 2.74 0.34 0.21 2.68 0.28 2019-01 - - - - - -

2015-02 - - - - - - 2017-02 0.368 1.77 0.34 1.39 1.97 0.68 2019-02 - - - - - -

2015-03 - - - - - - 2017-03 -1.06 2.24 0.21 0.58 2.61 0.12 2019-03 - - - - - -

2015-04 - - - - - - 2017-04 -0.77 2.02 0.36 0.31 1.60 0.65 2019-04 - - - - - -

2015-05 - - - - - - 2017-05 -1.77 2.55 0.33 -1.28 2.02 0.56 2019-05 - - - - - -

2015-06 - - - - - - 2017-06 -0.7 1.82 0.16 -1.79 2.49 0.14 2019-06 - - - - - -

2015-07 0.86 2.12 0.41 -1.03 2.33 0.29 2017-07 -0.75 2.46 0.23 -2.58 3.60 -0.07 2019-07 - - - - - -

2015-08 2.20 3.06 0.38 1.57 3.10 0.09 2017-08 1.133 1.79 0.25 0.90 1.54 0.47 2019-08 - - - - - -

2015-09 2.03 2.69 0.44 2.08 3.16 0.27 2017-09 1.226 1.72 0.50 0.83 1.07 0.84 2019-09 - - - - - -

2015-10 0.21 1.84 0.26 0.01 1.87 0.20 2017-10 -1.24 3.07 0.48 0.94 2.44 0.72 2019-10 - - - - - -

2015-11 -1.24 2.23 0.73 1.21 2.30 0.69 2017-11 -0.37 1.98 -0.10 2.80 3.28 0.20 2019-11 - - - - - -

2015-12 0.33 2.52 0.45 -1.32 3.23 0.21 2017-12 -1 1.94 0.28 0.41 1.51 0.50 2019-12 - - - - - -

2016-01 0.92 2.78 0.46 0.01 3.30 -0.11 2018-01 -0.16 1.99 0.60 -0.93 2.17 0.63

2016-02 -0.35 2.88 0.14 0.16 3.50 -0.22 2018-02 -2.31 3.11 0.38 -2.47 3.40 0.17

2016-03 -0.50 2.06 0.58 -0.58 2.04 0.59 2018-03 -0.27 2.77 0.37 -0.23 3.08 0.09

2016-04 1.78 2.90 0.30 2.13 3.20 0.27 2018-04 -0.32 1.84 0.49 -1.58 2.11 0.51

2016-05 0.92 2.05 0.30 -1.04 2.05 0.14 2018-05 -0.46 3.01 0.04 -1.47 3.35 -0.08

2016-06 -1.46 2.59 0.12 -3.57 4.68 -0.13 2018-06 - - - - - -

2016-07 -0.482 1.99 0.38 -3.90 4.45 0.40 2018-07 - - - - - -

2016-08 0.5448 2.52 0.07 -2.79 4.26 -0.02 2018-08 - - - - - -

2016-09 1.1873 2.70 0.58 0.36 2.37 0.62 2018-09 - - - - - -

2016-10 0.8141 1.79 0.48 0.43 2.06 0.13 2018-10 - - - - - -

2016-11 -0.308 1.96 0.55 1.63 3.75 -0.08 2018-11 - - - - - -

2016-12 -0.548 1.34 0.78 0.62 1.44 0.77 2018-12 - - - - - -
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Appendix H: Prior, posterior and GPP flux anomaly correlation analysis

Table H1. Pearson’s R correlations between prior and posterior climatological seasonal fluxes, and GPP fluxes derived from CABLE BIOS3,

MODIS and DIFFUSE model.

Bioclimate regions

Climatological seasonal cycle (2015-2019)

Prior and Posterior Prior and CABLE BIOS3 GPP Prior and DIFUSSE GPP Prior and MODIS Post and CABLE BIOS3 GPP Post and DIFFUSE GPP Post and MODIS

Tropics 0.73 -0.66 -0.50 -0.51 -0.46 -0.32 -0.33

Savanna 0.67 -0.58 -0.40 -0.40 -0.40 -0.25 -0.32

Warm Temperate 0.57 0.19 0.35 0.28 0.26 0.42 0.30

Cool Temperate 0.76 -0.28 -0.17 -0.27 -0.11 -0.03 -0.15

Meditarranean 0.83 -0.27 -0.15 -0.19 -0.30 -0.19 -0.26

Sparsely vegetated 0.33 -0.23 0.01 0.00 -0.21 -0.12 -0.30

Table H2. Pearson’s R correlations between prior and posterior flux anomalies, and GPP anomalies derived from CABLE BIOS3, MODIS

and DIFFUSE model.

Bioclimate regions

Anomalies correlations ( 2015-2019)

Prior and Posterior Prior and CABLE BIOS3 GPP Prior and DIFUSSE GPP Prior and MODIS Post and CABLE BIOS3 GPP Post and DIFFUSE GPP Post and MODIS

Tropics 0.59 -0.63 -0.20 -0.38 -0.34 -0.02 -0.15

Savanna 0.59 -0.73 -0.61 -0.63 -0.50 -0.45 -0.38

Warm Temperate 0.43 -0.64 -0.52 -0.52 -0.32 -0.32 -0.29

Cool Temperate 0.20 -0.65 -0.50 -0.52 0.10 -0.03 -0.09

Meditarranean 0.35 -0.71 -0.50 -0.45 -0.18 -0.16 -0.02

Sparsely vegetated 0.49 -0.46 -0.31 -0.34 -0.61 -0.49 -0.48
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