
We would like to thank Kevin Trenberth for his constructive and detailed review, which 

helped us to identify several shortcomings in our manuscript. Below we reply to the issues 

raised by the referee, where 

blue repeats the reviewer's comments, 

black is used for our reply, 

and green italics is used for modified text and new text added to the manuscript. 

 

 

General comments 

  

1. On all maps: better to use a Robinson Projection to account for convergence of 

meridians. 

We changed the projection of all world maps to Robinson-like (“Equal Earth”) projection. 

 

2. The goals of this paper are mostly fine. Not so sure about some of the focus on trends 

when they are not significant!  There is a lot of useful information in this paper but 

also some procedures and results that do not make much sense.  Often the description 

of what was done is not very clear.  Many relevant studies have preceded this, and 

some are referred to.  A list of some others that may be of value is appended. 

We regret that in some places we have not explained our procedure in a precise or 

comprehensible way and will remedy this in the revised version. Furthermore, we will focus 

on the statistically significant trends in the revised version. 

 

3. Our understanding of TCWV is that it varies enormously with weather systems, with 

seasons, from land to ocean, and from year to year with ENSO. Accordingly, there is 

very strong natural variability, especially with phenomena such as ENSO. This is 

recognized in the appendix, and apparently accounted for? The local trends are often 

not meaningful because they simply show the phenomenological and related 

circulation changes.  Error bars and uncertainties in trends are not always properly 

accounted for. 

In fact, we take the effect of ENSO into account in all time series analyses in our manuscript 

(see also the term E in equation (4) in the discussion paper). In the revised manuscript, we 

also include an additional ENSO related index (TNI) and the PMM SST index in the trend 

analysis. In Appendix A in the discussion paper we only show how trends would look like if 

ENSO was not taken into account. In the revised manuscript we will move these figures into 

the main text and compare trends accounting and not accounting for any teleconnections 

along with the following text: 

To highlight the influence of teleconnections on the trend results for the OMI TCWV data set, 

we also perform the trend analysis not accounting for them. The resulting trends and their  

difference are shown in Figure 3. While overall the spatial distributions of the relative trends 

(Fig.3a & b) look quite similar, distinct patterns emerge when looking at the trend difference 

Fig.3c): for instance the typical PMM and ENSO teleconnection patterns are clearly visible 

(e.g. dipole structure over the maritime continent in the case of ENSO). Consequently, the 

resulting deviations are particularly strong in the tropical and subtropical Pacific and can 

reach values as high as the relative trends themselves. 

While we agree that local trends are affected by changes in dynamical processes, we do not 

find that they are not meaningful, as they can also give us an insight, albeit to be judged with 

caution, into the spatial distribution of changes.  

We added the following text at the beginning of Section 3: 



Moreover, when investigating climatological trends of TCWV on local scale, these are also 

influenced by changes in atmospheric dynamics and should therefore be judged with caution. 

Nevertheless, they can still provide us information about changes of the large-scale TCWV 

distribution. 

Regarding the error bars and uncertainties of the trends, we think that the significant trends 

provide the clearest picture of changes in TCWV. However, we also believe that the 

occurrence of non-significant trends is also important information, as in many cases the non-

significant trends have values close to zero, showing that the TCWV distribution and 

magnitude have changed only slightly or not at all on a long time scale. However, for the 

comparison of trends from different TCWV datasets, we will mainly focus on the significant 

trends after applying a Z and FDR test. 

 

Over the ocean, there is a very strong relationship between SSTs and TCWV, and TCWV and 

precipitation, especially throughout the Tropics, see Trenberth et al 2005 and Trenberth 2011. 

It is never fully clear whether results include ENSO or not, or whether it was partly regressed 

out.  It used one index to do the latter, but it is well established that at least 2 indices of 

ENSO are required to statistically remove ENSO (e.g. Trenberth and Stepaniak 2001).  But 

even then, remnants will remain, and the pattern of trends shown here certainly include 

ENSO aspects.  

 

Moreover, anything to do with trends should include ENSO because ENSO is part of the 

climate.  Even if ENSO SSTs are not changing, the impacts on precipitation certainly are, and 

ENSO is the biggest source of droughts around the world.  ENSO is part of the system, not 

external.  It would be fine to analyze the ENSO signal separately, but this is not done. It may 

mean that with ENSO included the interpretation of trends in many places may change? 

As mentioned above, we did not communicate clearly enough that we consider ENSO via the 

ONI index in our analysis. Nevertheless, we would like to thank the referee for pointing out 

that 2 ENSO indices should be considered in a time series analysis. We have therefore added 

the TNI index to our fit in addition to the ONI index  and evaluated all time series once again. 

In addition, we tried other indices and found that the PMM SST index leads to a significant 

reduction in the autocorrelation of the noise in the North Pacific.  

In our first analysis we did not take into account that the teleconnection indices are also 

subject to trends or are detrended over other time periods than ours. Therefore, we have now 

explicitly detrended each index again for our time period and then used these in the TCWV 

trend analysis. 

In the revised manuscript, we added: 

To account for the influence of teleconnections we include several teleconnection indices Ω 

in the trend analysis. For the case of ENSO, we include the NOAA Oceanic Niño Index (ONI) 

which according to Wagner et al. (2021) has the strongest impact on the TCWV time series 

distribution. Moreover, we follow the recommendations from Trenberth and Stepaniak (2001) 

and include a second ENSO index. In our case we apply the Trans-Niño Index (TNI; 

Trenberth and Stepaniak, 2001). Furthermore, we investigated the influence of several other 

teleconnection indices and found that the Pacific Meridional Mode (PMM) sea surface 

temperature index (Chiang and Vimont, 2004) has a particularly strong influence on the 

autocorrelation of the noise in the Pacific Ocean. Typically, trends are already removed from 

teleconnection indices. However, since the time series of the indices cover several decades, 

the detrending is optimised for this large time period. Accordingly, we have detrended the 

indices again for our chosen time period (2005-2020). 

Overall, the consideration of TNI and PMM index as well as detrending lead to a significant 

reduction of TCWV trends. 



 

4. The paper finds very little in the way of trends that are significant (Fig 2 c,d) by their 

tests, but their tests may be overly stringent. Given the usefulness of the dataset, it is 

perhaps unfortunate they chose to focus on local trends.  See below.  

In our significance analysis, we have tried to work as statistically "correct" as possible and 

avoid overstating our results, and thus also to take into account effects that are often 

overlooked (e.g. spatial correlation and field significance). Although this limits the amount of 

significant results, we can be sure that our (trend) results are highly trustworthy.  

 

5. The issues are compounded when they analyse relative humidity involving large 

assumptions. The findings of changes in rh and links to precipitation are not 

surprising though (see Trenberth 2011).  However, on land, water availability comes 

into play. 

Following the comments about the land-ocean contrast below, we have added the following 

text in the section: 

The reduction in relative RH over land is likely related to marked land-ocean contrast in 

warming, (besides various local factors such as changes in vegetation cover) (Simmons et al., 

2010; Fasullo 2012): Over ocean, due to the direct link with sea surface temperature, the 

water vapour content can increase adequately to keep RH constant. Over land, this is usually 

only possible with a delay due to limited water availability, as water must first be transported 

there from the ocean. Since the temperature also increases much more over land than over 

the ocean, the decrease in RH might be due to the lack of an increased water supply from the 

ocean (Simmons et al., 2010). 

 

6. L 223 on: This is mostly not correct, see Trenberth et al 2003 and Trenberth 2011, to 

properly account for changes in frequency and intensity, as well as amounts of 

precipitation. CC relates to saturation specific humidity not actual specific humidity, 

and one expects big differences between land and ocean.  It therefore makes no sense 

to average globally for this and it matters how this is done.  Computing relationships 

over land and ocean separately and then averaging (area weighting) will give different 

results than averaging over both land and ocean first.  Also over land, it is far from 

clear that winter (with snow and ice) should be combined with summer.  

We agree that this section is too vague. In the revised manuscript we removed this section. 

 

Moreover, there are important differences between SST and air temperature that greatly 

affect these results.  ERA5 has surface temperatures that would be compatible with the 

TCWV and surface relative humidity, but this is unlikely when a different temperature 

analysis (Berkeley) is introduced. 

As mentioned above, this section was removed in the revised manuscript. 

 

It is not clear what is in Fig. 7.  What is the % of?  Fig. 7 should be redone.   L 243-244 

suggests these results are flawed.  

As mentioned above, the corresponding section is removed in the revised manuscript. 

Nevertheless, in Figure 7 we show the relative TCWV response to temperature changes (% / 

K), which we have determined from the relative TCWV trends (% / year) and the temperature 

trends (K / year):  

TCWV Response = rel. TCWV trend / temperature trend. 

 

 



L 260-270 and Table 1: This is very unclear, and it makes no sense to compute trends in these 

quantities in this way.  Is ENSO included? It should be.  One can compute TUT at various 

points and examine changes.  But Table 1 makes no sense other than to say the result depends 

on the method. 

As mentioned above, ENSO is taken into account. We followed the suggestion and calculated 

the TUT trends also on a local scale. Thus, we completely revised this section. 

The new section is as follows: 

Another key diagnostic of the hydrological cycle is the atmospheric water vapour residence 

time (WVRT). The WVRT can help to better understand changes in dynamic and 

thermodynamic processes within a changing climate (Trenberth, 1998; Gimeno et al., 2021): 

for instance, an increase in WVRT suggests that the length of the atmospheric moisture 

transport increases, i.e. the distance between moisture sink and source regions (Singh et al., 

2016). Several different metrics exist for quantifying the WVRT (van der Ent and Tuinenburg, 

2017; Gimeno et al., 2021), bearing in mind that the WVRT distribution or the lifetime 

distribution (LTD) is exponential on local scale and thus the mean value is strongly 

influenced by a few high values (van der Ent and Tuinenburg, 2017; Sodemann, 2020). 

Ideally, one would determine the LTD for each grid cell for each month from backward 

trajectories and then examine their changes or trends. However, this would be well beyond 

the scope of this paper.  

Thus, for our purpose and for the sake of simplicity we focus on the so-called depletion time 

constant (DTC) and the turnover time (TUT). The TUT describes the global average mean 

age of precipitation and can be calculated as the ratio of TCWV to precipitation P: 

𝑇𝑈𝑇 =
𝑇𝐶𝑊𝑉̅̅ ̅̅ ̅̅ ̅̅ ̅

�̅�
 

  

where the bar indicates global average. Typically, the TUT varies between values of 8 to 10 

days and is expected to increase by 3–6% K-1 (Gimeno et al., 2021, and references therein). 

Analogously, the DTC is defined as the local ratio of TCWV to precipitation (e.g. Trenberth, 

1998): 

𝐷𝑇𝐶 =
𝑇𝐶𝑊𝑉

𝑃
 

 

The DTC values might vary substantially from TUT, but the global precipitation weighted 

average is equal to TUT (Gimeno et al., 2021). 

For our investigations of trends in DTC we combine the regridded GPCP data set from Sect. 

4 and the OMI TCWV data set and perform the trend analysis scheme from Sect. 2.2 to the 

monthly DTC values for the time range 2005 to 2020. To ensure numerical stability, we only 

consider monthly rain rates greater than 0.25mm d-1. As a result, large parts of the 

subtropical oceans and deserts are excluded from the analysis. 

The results of the DTC trend analyses are depicted in Figure 8. On average, we typically 

obtain mean DTC values between 5-10 days in the areas where rain occurs (Fig. 8a). In the 

subtropical dry zones, values of around 30 days and well above are found. In terms of 

absolute DTC trends, the most striking patterns are in the northern subtropical Atlantic with 

strong increases and in the northern subtropical western Pacific with strong decreases. In 

comparison, the distribution of relative DTC trends is much spottier, but overall, in addition 

to the patterns already mentioned, we obtain distinctive increases in DTC on the US west 

coast, in Europe, Russia and in the eastern Pacific. 

For our investigations of trends in TUT we first calculate global averages of the regridded 

GPCP data set from Sect. 4 and the OMI and ERA5 TCWV data sets between 60°S and 60°N 



for each month, then combine the time series of global averages, and finally perform the 

trend analysis for the TUT time series for the time range from 2005 to 2020. 

Altogether, we find an increase in the global TUT for OMI and ERA5 of approximately 

+0.02d y-1 with TUT mean values of around 9.7d for OMI and 8.8d for ERA5. Combining the 

long-term relative trends in TUT and trends in surface air temperature, we can estimate the 

sensitivity of TUT to global warming r, i.e. 𝑟 =
𝛥𝑇𝑈𝑇

𝑇𝑈𝑇
/𝛥𝑇. For the case of OMI and Berkeley 

Earth, we find a TUT sensitivity of around 8.4%K-1 and for ERA5 of around 8.8%K-1 which is 

higher than the results of 3–6% K-1 pooled in Gimeno et al. (2021). 

 

 
Figure 8. Global distribution of DTC trends for the time range January 2005 to December 

2020. Panel (a) depicts the distribution of the mean DTC. Panels (b) and (c) depict the 

absolute and relative DTC trends. Grid cells for which no valid trend has been calculated are 

coloured grey. 

 

Some detailed comments 

  

L 22: The equation deals with the saturated water vapour, not just water vapour. 

We added “saturated” to the sentence. 

 

L 35-40: Wentz (2015) gives an excellent analysis of TCWV observations to that point 

(2015). 



We added a reference to Wentz (2015). 

 

L 48: the slowdown terminated in 2014. 

We added that the slowdown terminated in 2014. 

 

L 51: This assumption is only evoked at the surface, it clearly does not apply in the free 

atmosphere, e.g., where subsidence warms and dries the air. 

We reformulated the sentence and explicitly mentioned that this assumption is only valid 

close to the surface: 

[Typically, it is assumed that relative humidity] close to the surface […] 

 

L 53 also Fasullo 2011; Simmons et al 2010. 

We added the suggested references. 

 

L 90 to 114: the accounting for persistence is not quite right or unclear.  It seems a reasonable 

attempt though, but some rewording is warranted. 

 

The formula in l 91 is for an AR1 process only.   However, a time series with a trend will 

feature a strong autocorrelation at lag 1 (and 2 and 3…)  In computing the AR1 value one 

must first remove the trend; or properly account for the higher order AR values (see 

Trenberth 1984).  Is this what the term “residuals” means on l 97 and 107?  So, the AR1 

value is from Nt?  ENSO also introduces persistence.  In addition, the analysis assumes the 

variance is stationary, but this is not true because of the seasons: very different in wet vs dry 

seasons. 

Exactly, the word "residuals" is meant to make clear that the autocorrelation used here is not 

that of TCWV, but of the fit "noise" or the fit "residuals" Nt. In this way, they are determined 

from the fit, in which the trend, seasonal components and ENSO are also taken into account.  

We also tested different AR processes (with lag=2, 3, 6, 12) and found only minor 

differences between the trend results. 

In fact, the assumption of stationary variance is a limitation that could possibly be overcome 

by ARMA/ARIMA processes. However, the transformation of the linear equation system of 

the fit into this ARMA/ARIMA system is highly non-trivial (especially for unevenly spaced 

time series) although in the case of ARMA it is possible if the lag-1 and lag-2 coefficients of 

the autocorrelation function have the same sign (see e.g. Foster and Rahmstorf, 2011). 

However, this is not always fulfilled in our case. 

Regarding the AR-model choice, we added the following text: 

One limitation of the AR-model is the assumption of stationarity of the variance. Although 

this limitation can be overcome by using ARMA (auto-regressive moving average) or ARIMA 

(auto-regressive integrated moving average) processes, the determination and application of 

these models (for example in the transformation of the linear equation system of the fit 

function) is highly non-trivial, especially for the case of unevenly spaced time series. 

Although an ARMA(1,1) process would be possible in the case that the lag-1 and lag-2 

coefficients of the autocorrelation function have the same sign (e.g. Forster and Rahmstorf, 

2011), this condition is not always given in our case. Thus, we have decided to stay with the 

AR(1) process. 

[…] 

We have also tested other AR-models with lag=2, 3, 6, and 12 and found that the trend 

results differ only slightly from those using an AR(1) model. The corresponding trend results 

and the difference to the trends with the AR(1) model can be found in the supplement. 

 



L 116 should refer to the residuals not the total fields? 

Yes, this should actually refer to the residuals / "noise". We changed the sentence as follows:  

... global distribution of the lag-1 autocorrelation coefficients of the fit residuals or fit noise. 

  

The criterion used for significance in Fig. 2c, d was 5% (line 143).  It may be too harsh. The 

latter recognizes the spatial autocorrelation (Fig. B1) and does not take advantage of it.  Line 

144 and appendix B are likely misleading.  L 343-4 should instead take advantage of spatial 

coherency to area average and remove small scale noise thereby improving signal to noise – 

e.g., use of 5° instead of 1° squares. Or one could lower the significance level to 10%? 

We have taken up the idea of Reviewer 2 and now show all trends, significant trends (after Z-

test) and "filtered" significant trends (after Z- and FDR-test) in Figure 2 in the paper (and 

Fig.1 in this review). Overall, a lot of trends are significant at 5%, so we do not think that our 

criteria are too strict (see Fig. 1c and 1d). Regarding 5° vs. 1° resolution, we found almost no 

differences in the distribution of significant trends, but obviously some information is lost 

due to the poorer resolution (compare Fig.1 vs. Fig.2). Therefore, we continue to stick with 

1° x 1° resolution. 

 
Fig.1: Global distribution of TCWV trends derived from the MPIC OMI TCWV data set. 

Panels (a) and (b) depict the calculated absolute and relative TCWV trends, respectively. 

Panels (c) and (d) depict the remaining significant trends after the application of the Z-test. 

Panels (e) and (f) depicts the remaining significant trends after the application of the Z-test 

and the FDR test. 



 

 

  

 
 

Fig.2: Same as Fig.1, but with 5° x 5° resolution. 

  

 L 137-8: the overall pattern of change is one that surely aliases ENSO to some degree (the 

coherence of the SPCZ and ITCZ changes), see Fig, A1.  Removal of ENSO should use at 

least 2 indices.  However, ENSO is real, and changes in humidity and precipitation with 

ENSO are also a climate signal (one expects larger values for same index value). 

We followed your recommendations and included 2 (detrended) ENSO indices (ONI & TNI) 

as well as the PMM SST index in the new analysis. But since “ENSO is real and changes … 

with ENSO are also a climate signal”, we also include trends on the actual measurements 

without including ENSO indices in the trend analysis. 

  

L 156: Given the lack of significant trends in Fig. 2, why is there a focus on trends now? 

The comparison between Figs 3 and 4 highlights the dependence on data period. 

As we work as statistically cleanly as possible (and thereby avoid overinterpreting irrelevant 

or insignificant trends) we consider the remaining significant trends to be real and worth 

reporting. Actual numbers of course depend on the considered data period, and of course the 



trend results become more meaningful for longer time periods. Thus, we make use of our new 

H2O product for OMI, which provides the longest single-instrument time series for this type 

of measurements. Hence, we are confident that – in spite of all limitations – showing trends is 

an important information for the reader. 

 

  

L 177: section 4 should refer to Simmons et al. (2010) and Fasullo (2011).  Land vs ocean 

must be better recognized. 

We incorporated the papers by Fasullo (2011) and Simmons et al. (2010) (see comment 

above). 

 

L 201-214 should account for above studies and also changes in salinity, which better deals 

with the DDWW aspects: Cheng et al 2020. 

We added the following text: 

In addition, other studies show that changes in precipitation correlate very well with changes 

in ocean salinity, suggesting a "fresh gets fresher, salty gets saltier" pattern (Cheng et al., 

2020, and references therein). 

 

L 220-220: the discussion related to Fig 6, needs to better account for the changes in SSTs, 

see Trenberth 2011. 

We  added the following text: 

Trenberth (2011) and Trenberth and Shea (2005) analysed local correlations between 

precipitation and surface temperature for cold and warm seasons and reported mainly 

positive correlations over ocean and negative correlations year round over land throughout 

the tropics. However, over ocean the correlations also depend on whether the (sea) surface 

temperature is driven by the ocean or by the atmosphere (Trenberth and Shea, 2005). While 

in some regions of the subtropics we can also find this high correlation in the trend patterns 

of precipitation and surface temperature (e.g. increase in precipitation in the northern 

subtropics in the eastern Pacific or decrease in the subtropical Atlantic over ocean; decrease 

in Brazil or South Africa over land), we cannot find a direct link for the striking negative 

precipitation trends in the equatorial Pacific. However, it should also be taken into account 

that a large part of the precipitation trends are not statistically significant. 

  

L 223 on:  This is mostly not correct, see Trenberth et al 2003 and Trenberth 2011, to 

properly account for changes in frequency and intensity, as well as amounts of precipitation. 

CC relates to saturation specific humidity not actual specific humidity, and one expects big 

differences between land and ocean because of water availability.  It makes little sense to 

average globally for this.  Moreover, there are important differences between SST and air 

temperature that greatly affect these results.  It is not clear what is in Fig. 7?  What is the % 

of?  Also over land, it is far from clear that winter (with snow and ice) should be combined 

with summer.  Fig. 7 should perhaps be redone.   L 243-244 suggests these results are 

flawed? 

The corresponding section has been removed in the revised manuscript. 

  

L 245:  The residence time is a reasonable concept and relates to the amount vs flux out.  

 

L 260-270: Table 1.  What are T trends here: not 0.02: has to be 0.02 per year?  Same for all 

here: per year?  There are no error bars on any of these estimates; for instance, global 

precipitation trends are not significant.   The main precipitation fluctuations are associated 

with ENSO. There also remain uncertainties in precipitation (e.g. Prat et al. 2021) – and 



several other papers in same issue.  It would be better for most readers to see the values of 

TUT, not the trends.  TUT trends in % make no sense.  It is also not clear why global 

temperatures enter this discussion.  Suggest the authors focus more on the actual values 

instead of uncertain trends, although decadal changes may warrant mention? 

We have revised the TUT section and now distinguish between local trends in the residence 

time (more precisely the depletion time constant) and trends in the globally averaged 

residence time (TUT). 

In addition, we addressed the uncertainties in the rainfall data sets. According to Prat et al. 

(2021), however, "For accumulation periods greater than the day (i.e., week, month, years), 

all SPPs perform satisfyingly, which makes them suitable for long term hydro-logical and 

hydroclimatological applications." However, it should also be taken into account that Prat et 

al. (2021) used GPCPv2, whereas we use the latest GPCP version (v3.2). 

Although precipitation climate data records (CDRs) allow a global analysis, they are subject 

to large uncertainties, as satellite and rain-gauge observations do not have good spatio-

temporal coverage, weak and short rain events are not well detected or even missed and 

satellite retrievals can determine the rain rate only indirectly. Thus, deviations of about 50% 

in the daily rain rate can occur compared to in situ measurements (e.g. Prat et al., 2021). 

Nevertheless, Prat et al. (2021) show that over accumulation periods of month or years, 

precipitation CDRs perform satisfactorily. Moreover, Prat et al. (2021) used an older GPCP 

version (v2) than ours in their evaluation study. 

 

  

Similarly in Fig D1, no errors bars are included or areas where trends are not significant 

indicated. 

We have revised figure D1 and now added the maps of significant trends. 
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