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Abstract 

Atmospheric aerosol particle concentrations are strongly affected by various wet processes, including wet scavenging (below 

and in-cloud wet scavenging) and in-cloud aqueous phase oxidation in-cloud. This study employs airmass history analysis 20 

and observational data to investigateWe studied how wet scavenging and cloud processes affect particle concentrations and 

composition during transport to a rural boreal forest site in northern Europe. For this investigation, we employed airmass 

history analysis and observational data. Long- term particle number size distribution (~ 15 years) and composition 

measurements (~ 8 years) were utilized in combinationcombined with airmass trajectories with relevant variables (e.g. 

rainfall rate, relative humidity, mixing layer height) from reanalysis data. Some such variables were rainfall rate, relative 25 

humidity, and mixing layer height. Additional observational data sets (e.g, such as. temperature and, trace gases,) were used 

tohelped further evaluate the wet processes along trajectories with mixed effects models.  

All investigated chemical species investigated (sulfate, black carbon and organics) showed an exponentially decreased in the 

particle mass concentration as a function of accumulated precipitation along the airmass route. Clear seasonal differences in 
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wet removal were observed for In sulfate (SO4) aerosols, clear seasonal differences in wet removal emerged, whereas 30 

organics (Org) and black carbon (eBC) showed moreexhibited only minor differences. The removal efficiency varied slightly 

among the different reanalysis datasets (ERA-Interim and GDAS) used for the trajectory calculations, due to the difference 

in the average occurrence of precipitation events along the airmass trajectories between the reanalysis datasets.  

Aqueous phase processes were investigated by using a proxy for airmasses travelling inside clouds. We compared airmasses 

with no experience of approximated in-cloud conditions or precipitation during the past 24 hours to airmasses recently inside 35 

non-precipitating clouds, before they entered SMEAR II. Significant increases in total SO4 mass concentration were 

observed for for the latter airmasses (recently experienced non-precipitating clouds). airmasses recently been inside non-

precipitating clouds when compared to airmasses that had no experience of clouds or precipitation during the last 24 hours 

before arrival to SMEAR II.  

Our Mmixed effects model considered, in which other contributing factors affecting particle mass concentrations in SMEAR 40 

II; examples were(e.g. trace gases, local meteorology, and, diurnal variation.) affecting particle mass concentrations in 

SMEAR II were considered, This model also indicated in-cloud SO4 production of SO4. Despite the reanalysis dataset used 

in the trajectory calculations, aAqueous phase SO4 formation of SO4 was observed despite the reanalysis dataset used in the 

trajectory calculations. Investigation of the Pparticle number size distribution measurements revealed that most of the in-

cloud SO4 formed in-cloud can be attributed to particle sizes larger than 200 nm (electrical mobility diameter). No significant 45 

formation of aAqueous phase secondary organic aerosol (aqSOA) formation was observednon-significant. 
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1 Introduction 

Atmospheric aerosol particle concentrations are governed by their sources and sinks. Scavenging of aerosol particles by 

cloud droplets, ice crystals and precipitation i.e. wet scavenging, is one of the most essential aerosol particle removal 

processes in the atmosphere. Therefore, a detailed understanding of wet scavenging is necessary e.g. for atmospheric models 50 

to better simulate particle number size distribution, aerosol burden and long-range transport, especially to remote (e.g. arctic) 

areas. Aerosol wet scavenging can be distinguished into in-cloud scavenging, where the particles activate to cloud droplets 

or ice crystals (nucleation scavenging) which can further collide with interstitial aerosol (impaction scavenging) and are then 

removed by precipitation, and below-cloud scavenging, where aerosol particles are collected through collisions with falling 

raindrops and removed from the air (e.g. Ohata et al., 2016). Below-cloud scavenging is an efficient removal process for 55 

ultrafine and coarse particles, whereas in-cloud scavenging is the most important sink for accumulation mode particles (e.g. 

Andronache, 2003; Textor et al., 2006; Croft et al., 2009; Ohata et al., 2016).  

The below-cloud scavenging rate is affected by the rainfall intensity as well as the collection efficiency which is controlled 

by both the particle and droplet size (e.g. Leong et al., 1983; Andronache, 2003; Chate et al., 2003) as well as the type of 

precipitation (Andronache et al., 2006; Paramonov et al., 2011). The below-cloud collection efficiency is the fraction of 60 

collected particles of diameter dp contained within a collision volume of a drop having diameter Dp. The collision between 

aerosol particles and rain droplet is defined by Brownian diffusion, interception and impaction processes (e.g. Bae et al., 

2012). The efficiency of below-cloud wet scavenging is often described by the scavenging coefficient. It is defined as the 

fraction of aerosol particles captured by raindrops per unit of time and is typically calculated from ambient observations 

before and after a precipitation event. A number of studies have determined aerosol scavenging coefficients for various 65 

particle sizes under various rainfall rates (e.g. Nicholson et al., 1991; Andronache, 2003; Laakso et al., 2003; Blanco-Alegre 

et al., 2018).  

The in-cloud scavenging efficiency is controlled by nucleation (i.e. aerosol activation) and impaction scavenging. It is 

dominated by activation of aerosol particles into cloud droplets (e.g. Ohata et al., 2016), from which a fraction precipitate. 

Hand hence, it depends strongly on the updraft velocities at cloud base which along with the properties of the aerosol size 70 

distribution and the growing cloud droplet population governs the supersaturation conditions realised close to cloud base 

(Dusek et al., 2006; Partridge et al., 2012). If supersaturation conditions are well constrained from in-situ observations, the 

process of particles activating into cloud droplets can be relatively well described by current droplet activation 

parameterisations (e.g. Abdul-Razzak and Ghan, 2000; Nenes and Seinfeld, 2003; Fountoukis and Nenes, 2005) especially 

for a basic inorganic chemical species, e.g. sea salt. However, still large uncertainties exist regarding the role of chemical 75 

composition in droplet formation (e.g. Lowe et al., 2019), and further constraining is needed as particle chemical 

composition is also one of the key factors in droplet formation (Duplissy et al., 2011; Wu et al., 2013; Pajunoja et al., 2015; 

Väisänen et al., 2016). After the activation, impaction scavenging between the interstitial particles and cloud droplets is also 

occurring within clouds but it influences sub-micrometer particle concentrations relatively little (Croft et al., 2010). 
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Scavenging of aerosol particles is not only affecting their number, but also their mass and other microphysical properties can 80 

change. Aerosol particles are not only scavenged by clouds but also their mass and properties can change due to aqueous 

phase processes. Sulfate production caused by aqueous phase oxidation of gaseous sulfur dioxide which condenses onto 

particles (e.g. Barth et al., 2000; Ervens, 2015) is considered to be one of the most important mass addition pathways inside 

clouds (e.g. Harris et al., 2014; Ervens, 2015 and references therein). It has been estimated that in-cloud oxidation of sulfur 

might contribute significantly (∼60−90 %) to the global sulfate budget (Ervens, 2015). The production of secondary organic 85 

aerosol through aqueous phase processes (aqSOA) has been also reported (e.g. Ervens et al., 2011; El-Sayed et al., 2015; 

Ervens et al., 2018; Mandariya et al., 2019; Lamkaddam et al., 2021)., and Iit has been suggested that aqSOA formation is 

comparable in magnitude with SOA formation through gas phase oxidation processes (Ervens et al., 2011). The observations 

of in-cloud (or fog) formation of new aerosol mass exist (e.g. Sorooshian et al., 2006; Sorooshian et al., 2007; Wonaschuetz 

et al., 2012; Xie et al., 2015; Gilardoni et al., 2016; Xue et al., 2016) but they are scarce especially in areas with relatively 90 

low pollution levels.  

Few experimental studies have combined the information of chemical composition or hygroscopicity (i.e. ability of a particle 

to take up water) with both in-cloud and below-cloud wet scavenging to investigate if differences in composition cause 

variation in the wet scavenging efficiency of the particles. Chate et al. (2003) obtained the washout coefficients for heavy 

rain for 0.02-10 µm particles having different chemical composition with a theoretical approach following the presentation 95 

given by Slinn (1983). In addition, Chate and Devara (2005), observed order of magnitude differences for the collision 

efficiencies between the particles and raindrops of various sizes for selected chemical compositions during thunderstorm and 

non-thunderstorm precipitation events. Wang et al. (2021) continued with the topic in a modelling study by investigating the 

effect of rainfall intensity and type for different aerosol species. They observed no differences in the wet scavenging 

efficiency between different rainfall intensities for different aerosol species, but noted that higher rainfall intensities were 100 

needed for larger particles to acquire the same removal efficiency over the tropics. Xu et al. (2020) included airmass origins 

into their study of hygroscopicity and chemical composition of aerosols in Mace Head, on the coast of Ireland, and found out 

that wintertime aerosols were usually externally mixed for both continental and marine airmasses. 

The estimation of the scavenging coefficients is often Eulerian (see e.g. Zhang and Chen, 2007 for definitions of Eulerian 

and Lagrangian approaches), as e.g. in Wang et al. (2021), Chate and Devara (2005) and Chate et al. (2003), and based on 105 

the local precipitation measurements or modelled quantities. An Eulerian approach does not consider that the airmasses 

arriving atto the measurement site have most likely experienced rain during their transport history, thus altering the particle 

population during en-route. In addition, particle composition and number- and mass concentration may be highly dependent 

on the airmass source area. Alternatively, a Lagrangian approach has a key advantage compared toover Eulerian 

methodologies in that individual particle trajectories are employed to allow for a consideration of the effects of airmass 110 

history on the aerosol. Relatively few Lagrangian aerosol-precipitation history studies have been performed. Tunved et al. 

(2013) reported that airmasses arriving from central Europe and Russia atinto the arctic measurement site (Zeppelin station, 
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Ny Ålesund, Norway) had a relatively high particle mass concentration in all seasons when compared to airmasses from 

other regions. They also investigated how precipitation during transport to Zeppelin influenced the local particle population 

and exhibited an exponential decrease in submicron particle mass as a function of accumulated precipitation along the 115 

airmass trajectories. They suggested that in-cloud scavenging, which is more efficient for larger particles, was the dominant 

removal process, and thus the largest particles, which have the largest mass, are first removed, followed by smaller particles. 

Kesti et al. (2020) investigated the effect of precipitation on the particle number size distribution along airmass trajectories 

as they travel over the Indian ocean to the Maldives. They observed that a greater reduction in the accumulation mode 

particle concentration usually coincided with precipitation along the trajectory. A recent study investigated how precipitation 120 

along airmasses affects aerosol mass and volume observed in Bermuda (Dadashazar et al., 2021). They concluded that 

remote marine boundary layer aerosol characteristics are relatively sensitive to the precipitation along the airmass 

trajectories. All these studies observed clear changes in the aerosol population (either mass or number concentration) due to 

the precipitation along the airmass route. Both Tunved et al. (2013) and Kesti et al. (2020) concluded that the particles in the 

accumulation mode size range show strongest sensitivity to the precipitation along the airmass trajectories. Dadashazar et al. 125 

(2021) observed strongest sensitivity of the PM2.5 mass to accumulated precipitation of up to 5 mm, while accumulated 

precipitation exceeding this limit had only minor effects to the PM2.5 mass. Similar behaviour was described by Tunved et al. 

(2013) –  the particle number size distribution was clearly affected by up to 10 mm of accumulated precipitation and a 

horizontal asymptote was achieved beyond that.  

To explore the influence of below-cloud scavenging during transport on observed aerosol size distribution and chemical 130 

composition in biogenically dominated environments, we utilize here nearly a 15-year long aerosol dataset from the boreal 

forest station, SMEAR II, including continuous particle number size distribution observations, and almost 8 years of particle 

composition measurements. These in-situ observations are combined with airmass trajectories calculated from the HYSPLIT 

trajectory model (Stein et al., 2015) driven by various reanalysis datasets to investigate how the local aerosol population is 

affected by various wet processes the aerosols experience during their route to SMEAR II. Our main objectives can be 135 

summarized into the following three research questions:  

1. How efficiently are different chemical species removed from the atmosphere by precipitation? 

2. How does the aqueous phase processing taking place in clouds alter the particle mass concentration and composition? 

3. If in-cloud formation of new particle mass is observed, what is the size range this mass is distributed in? 

 140 
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2 Data and methods 

2.1 Observations at SMEAR II, Hyytiälä, Finland 

Our observational data includes long-term measurements of various aerosols, gases and meteorological variables collected in 

the SMEAR II (Station for Measuring Ecosystem–Atmosphere Relations: Hari and Kulmala, 2005) station in Hyytiälä, 

southern Finland. The majority of the data measured in SMEAR II is publicly available at an online database (Junninen et 145 

al., 2009, https://smear.avaa.csc.fi/). The station is classified as a rural measurement station surrounded by mostly 

homogeneous Scots pine (Pinus Sylvestris) forest as there are no significant pollution sources nearby. The closest larger city 

is Tampere which has  238,140 inhabitants  (Statistics Finland, 2019), located ca. 50 km southwest from SMEAR II. 

The particle number size distributions were measured with a Differential Mobility Particle Sizer (e.g., Aalto et al., 2001), and 

our study covers the years from January 2005 to August 2019. The observations cover the size distribution between 3 and 150 

1000 nm (electrical mobility equivalent particle diameter). Mass concentrations for the various size classes were calculated 

by assuming the particles were spherical and had a constant density of ρ = 1.6 g cm-3 (see e.g. Häkkinen et al., 2012). 

Sensitivity analysis was conducted with unit density, 1 g cm-3, following the approach used in Tunved et al. (2013), but same 

conclusions could be drawn. 

The chemical composition of the particulate matter at SMEAR II waswere acquired with aethalometer (e.g. Drinovec et al., 155 

2015) and Aerosol Chemical Speciation Monitor (ACSM:  Ng et al., 2011).  The equivalent black carbon (eBC, Petzold et 

al., 2013) mass concentration data were calculated for the time between July 2006 to August 2019 from aethalometer (AE31 

for 2006 – 2017 and AE33 for 2018 – 2019) measurements, which provide absorption coefficients for various wavelengths. 

The eBC utilized here was derived from the absorption coefficient measured at λ = 880 nm (as e.g. in Singh et al., 2014; 

Helin et al., 2018).  160 

AE31 data, that is not automatically corrected for filter loading effects like AE33 data, was corrected with the algorithm 

suggested by Virkkula et al. (2007). The cut-off diameter for the eBC measurements was 10 µm. However, as most of the 

absorbing particulate matter at SMEAR II falls in the submicron range, the eBC measured for PM10 is only 10 % higher 

compared to PM1 measurements (Luoma et al., 2019). Measurements from the ACSM instrument provided the bulk 

chemical composition of sub-micron particulate matter, being most efficient at measuring between ~75-650 nm (vacuum 165 

aerodynamic diameter), allowing particles up to 1 µm through with less efficient transmission (Liu et al., 2007).  Previous 

studies, e.g. Chen et al. (2018) have highlighted that hygroscopic growth leads to a shift in the size of dry particles cut off by 

impactors during sampling. However, this issue is not relevant for these measurements as the cut size of the virtual impactor 

used at the inlet for ambient air was clearly larger (2.5 µm) than the upper limit of the ACSM measurement range, and after 

the virtual impactor, the aerosol was dried before entering the ACSM  (Heikkinen et al., 2020). The data from the ACSM in 170 

this study extends from March 2012 to August 2019, including the mass concentrations (µg m-3) of total organic (Org), 

https://smear.avaa.csc.fi/
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ammonium, (NH4), sulfate (SO4), nitrate (NO3), and chloride (Chl). More details from the ACSM measurements and data 

treatment can be found from Heikkinen et al. (2020).  

Other investigated gas phase variables included concentrations of gaseous nitrogen oxide (NOx, in a unit of ppb), sulfur 

dioxide (SO2, ppb), ozone (O3, ppb) and carbon monoxide (CO, ppb). Variables describing the local meteorological 175 

conditions measured were air temperature (T, °C), atmospheric pressure at ground level (p, hPa), relative humidity (RH, %), 

precipitation (liquid water equivalent, rainlocal, mm h-1) solar radiation (SolR, W m-2), wind speed (WS, m s-1) and wind 

direction (WD, °). Data coverage, summary statistics and list of the measurement instruments are shown in Tables S1-S3. All 

investigated variables are measured near ground level, below the tree canopy. 

The original time resolution for each observational variable varies depending on the measurement instrument. Thus, each 180 

investigated variable was averaged into one hour means. All available observational data overlapping with the trajectories 

released every hour was investigated (January 2005-August 2019). Data points coinciding with reported wind direction 

between 120° and 140° were removed from the data set to exclude the influence from two nearby sawmills reported as major 

sources of VOCs and Org (e.g. Liao et al., 2011; Heikkinen et al., 2020). In addition, data rows for which the airmass back-

trajectory crossed the Kola peninsula (for the sake of data-analysis, we used a rectangular box with coordinates of 31-42° of 185 

longitude and 66-70° of latitude to estimate the geographical area of Kola Peninsula), were excluded from the analysis due to 

high pollution caused by industry in that area (e.g. Kulmala et al., 2000; Riuttanen et al., 2013; Heikkinen et al., 2020) as this 

strong SO4 source could cause significant biases to our analysis. Further data-analysis was conducted in R Statistical 

Software and Python, and colour maps for the figures considering colour vision deficiencies were inspired by Crameri et al. 

(2020). 190 

2.2 Trajectory calculations and airmass source analysis 

4-day (96 h) back trajectories were obtained using version 5.1.0 of the HYSPLIT (Hybrid Single-Particle Lagrangian 

Integrated Trajectory, Stein et al., 2015) model for the period from January 2005 to August 2019. 4-day long trajectories 

were selected, as that is typically long enough period so that even the slow moving airmasses have enough time to travel 

from Atlantic and marine areas over to the boreal environment. The arrival height of the trajectories was set to 100 metres 195 

above ground level at the measurement station in SMEAR II. ERA-Interim reanalysis meteorology at 1 degree resolution 

was used as the input for calculating the trajectories which were released every hour leading to 24 trajectories per day 

(128,520 in total). In addition, reanalysis dataset of GDAS (1 degree resolution, https://www.ready.noaa.gov/archives.php) 

was used to further validate our conclusions obtained with the trajectories based on ERA-Interim reanalysis data.  

The observational data has been temporally collocated with the airmass trajectory release times. Any measured variable 200 

extending past August 2019 has not been used in this study even if available as ERA-Interim reanalysis meteorological input 

has been superseded with ERA5 after that. Variables provided by HYSPLIT along each trajectory are also used in this study 

(in addition to the airmass route coordinates), namely the height of the airmass, rainfall rate at the surface (used as a proxy 

https://www.ready.noaa.gov/archives.php
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for the experienced precipitation by the airmass), relative humidity in the airmass and mixing layer height (MLH) for the 

current horizontal location of the air mass. The MLH provided from HYSPLIT at SMEAR II was used to estimate the actual 205 

MLH due to absence of local long-term measurements of MLH at the site. Precipitation events along the trajectory are 

relatively evenly distributed along the 96 hours (Figure S1), having slightly lower occurrence 12-18 hours before the 

airmasses reach SMEAR II. Locally measured (surface) precipitation values agree relatively well with the estimate from 

HYSPLIT (Figure S2).  

The relative humidity at the altitude of the airmasses was used as a proxy for in-cloud cases. We selected a limit of RH > 94 210 

% (as in Tunved et al., 2004) for which we assume the airmass is inside a cloud or fog (we do not separate these cases). We 

would like to note that even if the approximation for the in-cloud cases is not very accurate based on the RH values only, the 

humidity in these cases is high enough for the particles to have taken up significant amounts of water. Strong hygroscopic 

growth can be observed before activation, and e.g. for inorganic salts the deliquescence RH is well below 94 % (e.g. Cruz 

and Pandis, 2000; Zieger et al., 2017; Lei et al., 2018). Thus, it is safe to assume the aqueous phase processes, whether in 215 

cloud or inside fogs, are taking place when RH of 94 % is exceeded. The selected limit for the in-cloud cases is relatively 

close to the values used for critical RH for cloud formation in reanalysis data and large-scale models. For example, in ERA-

Interim values between 80 % to 100 % with increasing values towards the surface are used (Tiedtke, 1993; Dee et al., 2011). 

In MPI-ESM model (ECHAM6.3), the limit has been given values between 90 % to 96.8 % close to the surface (Mauritsen 

et al., 2019). Sensitivity analysis was conducted with RH limits of 85 %, 90 % and 98 %, but same conclusions could be 220 

drawn. 

The air parcel trajectories we have obtained from HYSPLIT simulate the large-scale airmass transport. As trajectories are 

derived from the reanalysis data with 1 degree resolution (~100 km x 100 km), they do not resolve any sub-grid scale 

processes. Therefore, they will not capture transport through individual clouds, which could be in the order of hundreds of 

meters. The airmass transport routes, and the clouds/precipitation in our study, can thus be tied to the average meteorological 225 

properties of reanalysis grid box that the trajectories cross. In addition, since the precipitation data is not vertically resolved, 

it is possible that the air parcel is above the precipitating cloud, and thus not affected by the precipitation. Other possible 

scenario would be a case where our airmass is below the precipitating cloud, but precipitation evaporated before influencing 

our air parcel. This is an unfortunate limitation in this type or analysis and may contribute to the variability of the results. 

Despite, successful analyses have been conducted recently (Kesti et al., 2020; Dadashazar et al., 2021). 230 

For the statistical model analysis used to support our findings, the airmass trajectories were clustered into source areas by 

kmeans-clustering, in which the trajectories are partitioned into k clusters and for each cluster a centroid is defined (e.g. 

Kaufman and Rousseeuw, 1990). Each trajectory is then allocated to the nearest cluster, providing us with geographical 

source areas for the airmasses to be used as random effects in the mixed effects model (Section 2.3). Clustering was 

performed using the R Statistical software with the help of the cluster-package (Maechler et al., 2019; R Core Team, 2019) 235 

using the Hartigan-Wong algorithm (Hartigan and Wong, 1979). Other clustering techniques were tested (e.g. partitioning 

around medoids with different distance metrics), but kmeans provided distinct enough clusters for our purposes. The 
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appropriate number of clusters was determined by evaluating the interpretability of the clusters and inspecting the total 

within sum of squares (WSS) for different number of clusters in which the “knee” of the WSS curve (indicating smallest 

dissimilarities within clusters) could indicate the number of clusters (3 to 6 in our case). The final clusters, i.e. source areas 240 

are show in Figures S3 and S4. The statistical model showed no strong sensitivity towards the number of clusters, i.e. same 

conclusions could be drawn with 4, 5 and 6 clusters. 

2.3 Statistical mixed effects model 

2.3.1 General description of the multivariate mixed effect model 

Multivariate mixed effects models were used to investigate the significance of various processes affecting the particle 245 

concentrations at the SMEAR II site. Mixed effects models were used as they estimate the variance-covariance structure of 

the data in addition to the mean of the response variable, and are better justified for grouped data sets with possible 

hierarchical structures (as e.g. in this study, by airmass sources, months, hour of the day etc.) than fixed effect models 

(Mehtätalo and Lappi, 2020).  In addition, statistical mixed effects models are an effective tool when interactions between 

variables are investigated (see e.g. Mikkonen et al., 2011). For example, a study from Yli-Juuti et al. (2021) used a linear 250 

mixed effects model to distinguish the direct/real effect of temperature from other variables affecting the concentration of 

organic aerosols when investigating the organic aerosol driven climate feedback in the same boreal area. Linear mixed 

effects model can be presented in general form as 

𝒚 = 𝐗𝜷 + 𝐙𝒃 + 𝝐,                                                                                                                                                                (1) 

where y is the vector of the response variable, 𝜷 and b are the vectors of fixed and random effects, respectively and X and Z 255 

are the related design/coefficient matrices (McCulloch et al., 2008). Vector 𝝐 includes the random errors. Depending on the 

structure of the random effects (crossed or nested effects), the relationship between X and Z varies (McCulloch et al., 2008).  

In our study, we also needed to consider the observed exponential dependency between the response variables and the 

accumulated precipitation (see Section 3.1) and thus we used a nonlinear mixed effects model. The nonlinear mixed effects 

models (separate model for each chemical species) were applied with R statistical software (R Core Team, 2019) with nlmer-260 

function provided by the package lme4 (Bates et al., 2015). The formulation of the final fitted equation and the variables 

used in the regression are presented in Appendix A. Regression coefficients and more details on the variable selection are 

presented in the supplementary material in Section S3. The formulation of the final fitted equation is expressed as 

[VARi] = 𝛽0 + {𝒃𝒉 + 𝒃𝒎 + 𝒃𝒚} + {𝛽1[NO𝑥𝑖] + 𝛽2[SO2,𝑖] + 𝛽3[O3,𝑖] + 𝛽4[CO𝑖]} + {𝛽5T𝑖 + 𝛽6[MLH𝑖]} +

                  {exp (𝛽7accum. precip𝑖) + 𝛽8time. in. cloud𝑖} + {𝛽9emission. col. time𝑖 + 𝛽10time. in. land𝑖 + 𝒃𝒂},             (2)     265 

where [VAR] is now the mass concentration of either Org, SO4 or eBC,  𝛽0 is a model intercept, 𝒃𝒉, 𝒃𝒎, 𝒃𝒚 and 𝒃𝒂 are the 

vectors of random intercepts for hour of the day, month, year and airmass source area, respectively, and 𝛽1- 𝛽10 are the fixed 
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regression coefficients. Subscript i denotes the time point i.e. one observation. Thus the predictor variables (see Section 2.1 

for the abbreviations) include concentrations of SO2, CO, NOx and O3 (trace gases); air T and MLH (at SMEAR II derived 

from the back-trajectory data) describing the local meteorology and following trajectory-derived variables: accumulated 270 

precipitation along the trajectory (mm), time spent in high humidity conditions without simultaneous rain (“in non-

precipitating cloud”, h), emission collection time (time in mixed layer until rain event, h) and total time the airmass has spent 

over land (h). In addition, the airmass source areas (obtained by clustering as explained in Section 2.2, visualised in Figures 

S3 and S4) and observation year, month and hour of the day were included, as shown in Eq. (2). Summary of the used 

predictor variables in the regression is shown in Table 1 and each predictor variable group is separated with curly brackets in 275 

Eq. (2). The process leading to the selection of the response variables is explained in the Section 2.3.2.  

 

Table 1 Predictor variables used in regression. 

Group Name Variables included 

1 Base variability (diurnal, seasonal, 

random) 

Observation year and month, hour of the day 

2 Trace gases NOx, SO2, O3, CO  

3 Local meteorology T, MLH 

4 Wet processing along the trajectory Accumulated precipitation, time spent in non-precipitating cloud  

4a Wet scavenging Accumulated precipitation 

4b In-cloud aqueous phase processing Time spent in non-precipitating cloud 

5 Long-range transport Airmass source area, emission collection time, time spent above 

land 

 

2.3.2 Selection of relevant variables and determining the relative contribution of variable groups 280 

In this section we justify our decision to leave out some of the variables, that could be considered relevant for the response 

variables (Org, eBC, SO4) we investigated. Variables that were investigated but were excluded from the final model were 

RH, SolR, WS, WD, rainlocal and p. RH has strong correlation coefficient (> 0.5) with MLH and having both in the model 

violates the assumption of the model on relatively independent predictors and causes collinearity issues on the computation 

(e.g. Dormann et al., 2013). When comparing models with either RH or MLH, the models with MLH had better predictive 285 

capability, thus MLH was selected. MLH also has high correlation coefficient SolR, but again the model with MLH had 

better predictive capability and thus SolR was discarded from further analysis. In addition, including both, RH and SolR, had 

negligible effect on goodness-of-fit indicators or did not change the other regression coefficients significantly indicating 

their presence in the model does not improve the overall fit. WS, WD, rainlocal and p were not significant predictors for the 
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models based on a likelihood ratio test (Wilks, 1938) made between different model versions. Simultaneous observations of 290 

the selected variables were used in the final regression, including 22,778 observations in total from the period between 

March 2012 and August 2019. The division into two seasons based on monthly median temperature Tm (discussed in detail in 

Section 3.1) led to 14,501 observations for warm months (Tm > 10 °C) and 8,277 observations for the cold months (Tm < 10 

°C). 

To investigate how strong and/or significant an effect each predictor group shown in Table 1 has for the observed variable 295 

(Org, eBC, SO4) relative to all other predictor groups, we applied Bayesian Information Criterion (BIC, Schwarz, 1978) 

derived for each of the fitted models. BIC is a criterion which can be used in model selection as models with lower BIC are 

preferred (Schwarz, 1978). It is based on likelihood-function and includes a penalty term for the number of variables in a 

model to avoid overfitting (Schwarz, 1978; Stoica and Selen, 2004). Each variable group was removed in turn from the full 

model (separate models for each species) presented in Eq. (2), and the BIC for the reduced model was compared to the BIC 300 

of the full model. With this approach, we were able to determine the relative contribution of each variable group for the 

investigated species (response variable). Regression coefficients and relative contributions are reported in Section S3. 
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3 Results and discussion 

3.1 Effect of wet scavenging on the aerosol concentrations  

The evolution of the total aerosol mass (assuming unit density, 1 µg m-3) and number concentration derived from the DMPS 305 

size distribution as a function of accumulated precipitation along the airmass trajectories are shown in Figure 1. The hourly 

rainfall values at the surface (mm h-1) provided by the HYSPLIT trajectory data were integrated over the 96-hour period for 

each trajectory to acquire the total accumulated precipitation during each trajectory at SMEAR II. The accumulated 

precipitation was then grouped into 0.5 mm bins, and for each bin median particle mass was calculated. Bins which had less 

than 10 data points were discarded due to low statistics (and thus not shown in Figure 1). The sample size for each bin 310 

corresponding to Figure 1 is demonstrated in Figure S5. The particle mass derived from both DMPS and ACSM 

measurements (Figure S6, corresponding sample size in Figure S7) show exponential decrease (as a function of accumulated 

precipitation) similarly to the results reported by Tunved et al. (2013) for arctic aerosols. Particle mass decrease reaches 

asymptote after ~10 mm of accumulated precipitation. This could be due to local sources producing significant amounts of 

particles even though arrived airmasses have experienced large amounts of precipitation during travel. Similar behaviour has 315 

been observed for Arctic location and in tropics (Tunved et al., 2013; Dadashazar et al., 2021). The total particle number 

(Figure 1b) also shows a decrease in the concentration, but not as clear exponential decrease as shown for the particle mass 

concentration. The behaviours of the particle mass and number as a function of accumulated precipitation do not depend on 

the choice of reanalysis data used to drive the HYSPLIT trajectory model (Figure S220). 

It should be noted here that this type of approach to air mass history analysis in which the vertical trajectory position with 320 

respect to precipitating cloud is not considered, does not allow us to explicitly separate the in-cloud (particles activate to 

cloud droplets and collide with interstitial aerosol and then precipitate) and below-cloud (falling droplets collide with 

particles) precipitation scavenging (see Section 2.2). Instead, it gives us an estimate of the overall effect of precipitation on 

aerosol concentrations by using the surface precipitation provided by the airmass trajectories as a proxy for the precipitation 

experienced by each single particle trajectory. In addition, as we investigate aerosol scavenging in a Lagrangian framework 325 

(visualized in Figure 2) in which the temporal and spatial scales of the reanalysis data used in the trajectory calculations are 

much larger than dynamic cloud processes, we cannot directly probe sub-grid scale processes, e.g. in-cloud aerosol 

scavenging. Lagrangian analysis demonstrates in-cloud scavenging occurring via the removal of activated aerosol particles 

from the atmosphere due to precipitation scavenging. However, this is the case only if the trajectory of the air parcel 

coincides with the conditions we define as “precipitating cloud”. Accordingly, the Lagrangian analysis demonstrates in-330 

cloud scavenging occurring via the removal of activated aerosol particles from the atmosphere due to precipitation 

scavenging, only if the clouds precipitate while the air parcel is passing them. Therefore, wWhen we investigate how the size 

distribution changes with accumulated precipitation as demonstrated in Figure 3, some qualitative conclusions can, however, 

be drawn. The strong exponential decay of particle number size distribution is visible in sizes larger than 100 nm while the 



 

13 

 

changes in size range around 10-50 nm are small or negligible. This indicates that the large particles (dp > 100 nm) are 335 

removed most efficiently with the first 10 mm of accumulated precipitation while smaller particles remain unaffected by any 

amount of accumulated precipitation. Hence, the in-cloud scavenging in our investigation is greatly dependent on the 

activation of aerosol particles to cloud droplets, which in turn is strongly dependent on the particle size. The number 

concentration of particles with diameter larger than 100 nm has been widely used as a proxy for aerosol able to activate to 

cloud droplets. This is also the size range where we see the largest decrease in number concentrations (Figure 3, especially 340 

Fig. 3b) as a function of accumulated precipitation. We can qualitatively explain the observed behaviour in Figure 3 

according to a simplistic view of the complex and highly dynamical process of activation. Assuming relatively constant 

meteorological conditions over our trajectory transport region, we can describe the precipitation cycle followingly in which 

the available supersaturation varies temporally and spatially during the cloud precipitation cycle: after the larger particles are 

removed through activation into cloud droplets, of which a subset will precipitate, the size of the smallest activated particles 345 

decreases in the consecutive cloud cycle, because of less competition for the available supersaturation. On the other hand, 

the 

The lowest scavenging efficiency values for below-cloud scavenging are typically in the size range of some hundreds of 

nanometres in diameter depending on the precipitation type (e.g. Wang et al., 2010). However,and at size range below 100 

nm, the scavenging efficiency increases strongly with decreasing particle size so that at 10 nm size range, it is significantly 350 

higher. Hence, if the below-cloud scavenging would play a major role at sub-micron size range considered here, we should 

see a decrease in the number concentration with accumulated precipitation in the smallest particle sizes where the below-

cloud scavenging efficiencies are the highest. As shown in Figure 3, the aerosol concentrations in size range of 10-50 nm 

show no clear sensitivity (decrease) to accumulated precipitation and the largest decrease in concentrations are shown in size 

range of dp >~ 100 nm and above suggesting that the in-cloud scavenging is the dominating removal mechanism in the 355 

submicron particle size range in the studied environment. Inspection of selected size ranges (Figure S8) confirms that only 

larger sizes start exhibiting the decrease as a function of the accumulated precipitation. This has further support from earlier 

studies suggesting below-cloud scavenging to be a less important scavenging mechanism than in-cloud scavenging for 

accumulation mode sized particles (e.g. Tunved et al., 2013; Wang et al., 2021). Similar changes in the size distribution can 

be observed when the analysis was repeated using GDAS reanalysis meteorology instead of ERA-Interim (Figure S231). 360 

Assuming now in-cloud scavenging to be dominating and referring back to Figure 1, the difference in the decreasing trends 

between particle mass and number concentration arises likely from the fact that the aerosol mass is dominated by large (dp > 

100 nm) particles, which are more efficiently removed by in-cloud wet scavenging when compared to particles with smaller 

size. The aerosol number concentration, however, is dominated by particles with dp < 100 nm which are not activated to 

cloud droplets as efficiently as particles with larger size, and thus not removed when the cloud precipitates. Hence the in-365 

cloud scavenging affects the removal much less when the total particle number is inspected than in the case of large particles 

dominating the mass loading.  
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Figure 1 Total particle (dp = 3-1000 nm) mass (a) and number (b) concentration as a function of 0-50 mm accumulated precipitation 370 

along the 96-hour HYSPLIT airmass trajectories. The black dots show the median values and bars highlight the 25th-75th percentiles 

for each 0.5 mm bin of accumulated precipitation. The figure includes DMPS data between January 2005 and August 2019. 
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Figure 2 Schematic visualizing the wet processes along airmass trajectories in the Lagrangian framework. Travelling particles 375 

experience different conditions en-route thus alternating the observed particle concentrations (through scavenging) and 

composition (through cloud processing) at the SMEAR II. 
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Figure 3 The aerosol size distribution (dp = 3-1000 nm) as a function of the  0-50 mm of accumulated precipitation. Data is shown as 

medians for binned accumulated precipitation (bin size 0.5 mm). The figure includes DMPS data between January 2005 and August 380 
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2019. 

 

Figure 3 The aerosol size distribution (dp = 3-1000 nm) as a function of the 0-50 mm of accumulated precipitation along 96-hour 

airmass trajectories is shown in a). Data is shown as medians for binned accumulated precipitation (bin size 0.5 mm).  Median size 

distributions are presented for selected values of accumulated precipitation in b). Figure includes DMPS data between January 385 

2005 and August 2019.  

3.2 Effect of wet scavenging on the aerosol composition 

The effect of accumulated precipitation on the different chemical components (organics, sulfate, black carbon, nitrate, 

ammonium and chloride hereafter Org, SO4, eBC, NO3, NH4 and Chl, respectively) can be investigated using the long-term 

observational data (see Section 2.1 for details). In this study, our focus is on SO4, Org and eBC and the other chemical 390 

species obtained with ACSM are included in the supplementary material as their mass concentrations are generally relatively 

low at SMEAR II (Heikkinen et al., 2020). To investigate possible seasonal differences in the wet scavenging of the 

particles, we divided the data based on monthly median temperatures (Tm). Months which have Tm <  10 °C (calculated from 

data between 2005-2019) include January, February, March, April, October, November, and December and hereafter 

referred as “cold” months. Months that have Tm > 10 °C include May, June, July, August, and September and are referred as 395 

“warm” months. This division into two seasons is used to ensure enough data points for each bin, as the chemical 

composition measurements are more limited than the particle number size distributions. Each of the studied chemical 
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components shows exponential decrease as a function of accumulated precipitation (Figure 4a-c), and similar decreases is 

also seen if the reanalysis data is changed (Figure S242a-c).  

To investigate the possible differences in the removal efficiency for different species, we normalized the median mass 400 

concentration values with the median mass concentration value when the accumulated precipitation is zero (Figure 4d-e). 

The median mass concentrations (and 25th-75th percentiles) for non-precipitating trajectories for Org, eBC and SO4 were 3.77 

(2.18-5.49), 0.28 (0.17-0.45) and 0.52 (0.34-0.88) µg m-3 for warm months and 2.03 (1.22-3.37), 0.48 (0.26-0.85) and 1.01 

(0.51-1.53) µg m-3 for cold months, respectively. Org mass concentration, for example, is much higher during warm months 

due to strong local biogenic activity whereas SO4 mass concentration in warm months is ~50 % of that in cold months, 405 

suggesting the two seasons introduced here capture the typical seasonal characteristics in this region reasonably well. 

SO4 seems to be is removed less efficiently than Org and eBC during warmer months during the arrival of the airmasses to 

SMEAR II, as can be seen from Figure 4d. During the first 10 mm of accumulated precipitation, the normalized particle 

mass has decreases from 1 to 0.62 for SO4, whereas Org and eBC have reached 0.37 and 0.32, respectively. This is 

surprising as sulfate is more hygroscopic than Org and eBC. There are two possible explanations for the observed 410 

differences. First, tThis could indicate that more of the SO4, compared to Org and eBC, is distributed to smaller particles 

during warmer months. Thiswhich reduces both CCN activation potential and thus removal of activated particles by rainfall. 

The observed differences cannot be explained by below-cloud scavenging, as the composition measurements are 

representative for particle sizes above 70 nm (up to 1 µm), which are not efficiently scavenged below-cloud (e.g. Croft et al., 

2009). Second, Also,the stronger contribution of local sources of SO4 during warm months could distort our analysis and 415 

result in lower derived removal efficiency.  

Conversely, during the colder months (Figure 4e), SO4 is removed slightly more efficiently than Org and BC (decreases from 

1 to 0.39, 0.34 and 0.28 for Org, eBC and SO4, respectively, with the first 10 mm of accumulated precipitation). The 

differences of the removal efficiency between the investigated components are smaller during colder months when compared 

to warmer months, suggesting the species are internally mixed during colder months (as SO4 and eBC, for example, have 420 

very different hygroscopicity, but still are removed almost as efficiently). The trajectories derived with the GDAS 

meteorology precipitate, on average, less (Figure S2119) than those derived with the ERA-Interim meteorology (Figure S1). 

This explains the less efficient derived removal of the standardized particle masses in Figure S242d-e. It is also possible that 

the seasonal differences in cloud types and cloud cover fractions within one grid box in the reanalysis dataset could have an 

effect to the observed differences between the wet scavenging efficiencies. The relative contribution of wet scavenging is 5-425 

10 times smaller during the warmer months (Tables S4-S6), which show less defined removal by accumulated precipitation 

compared to warmer months. Regression coefficients indicate more efficient removal during colder months for all species. 

Comparing Figure 4d and e, we see that the data points are much more scattered during the warmer months for all three 

species. This could indicate a larger contribution from local production and thus we can observe relatively large mass 

concentrations in SMEAR II even with high accumulated precipitation values along the airmass route. Based on the mixed 430 

effects model, the relative contribution of wet scavenging is 5-10 times smaller during the warmer months (Tables S7-S9), 
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which show less defined removal by accumulated precipitation compared to warmer months. Regression coefficients 

indicate more efficient removal during colder months for all species (Tables S10-S12). Figure S98 shows the particle number 

size distribution for dp = 50-700 nm (electrical mobility diameter), roughly representative for the sizes measured by ACSM 

(ca. 75-1000 nm in vacuum aerodynamic diameter) as a function of the accumulated precipitation (like Figure 3a) for the two 435 

temperature regimes. We clearly observe a relatively high number of particles, especially smaller ones, during warmer 

months despite the high values of accumulated precipitation along the trajectory. The decreases seen in the number size 

distribution for the different particle sizes during the first 10 mm of precipitation are steeper during the colder months. 

Similar behaviour (steeper decrease during colder months) is observed for SO4 mass concentration in Figure 4e. Based on 

the statistical modelling, the contribution of local meteorology to the organic mass concentration, for example, is an order of 440 

magnitude larger during warmer months (group 3 in Table S74). For SO4 and eBC, large difference between the seasons is 

seen in terms of long-range transport (group 5 in Table S85 and S96). Long-range transport has relatively small contribution 

(Section S3.22.3.2) in the mixed effects models during the warm months compared to colder months (i.e. the variable group 

is less crucial for the model with data from warmer months), and as the wet scavenging discussed here takes place along the 

airmass route, defined removal is not observed (as seen in Figure 4d). Conversely, during cold months the relative 445 

contribution of long-range transport (and wet scavenging, group 4a) for SO2 is much larger, thus we see more defined 

removal (i.e. less scattering of the data points) during the colder months in Figure 4e for eBC and SO4. 
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Figure 4 Particle mass concentration of a) Org, b) eBC and c) SO4 as a function of accumulated precipitation along the 96-hour 

HYSPLIT airmass trajectories from all seasons. The black dots in the top row show the median values and bars highlight the 25th-

75th percentiles for each 0.5 mm bin of accumulated precipitation. Bottom row shows normalized particle masses (calculated from 

the medians) with temperature separation. Medians and normalized medians are shown for each bin having 10 or more data points. 455 

The figure includes data between 2006-2019 for eBC and 2012-2019 for Org and SO4. 

3.3 Effect of in-cloud processing on aerosol concentrations and composition 

To investigate the possible effects of in-cloud processing on aerosol composition, we took advantage of the relative humidity 

(RH) provided by the HYSPLIT model along the airmass trajectories as described in Section 2.2. We selected a limit of RH 

> 94 % (similar to Tunved et al., 2004) to identify cases that we assume the airmass is inside a cloud (or fog, as we do not 460 

separate these cases) as visualized in Figure 2. We would like to note that even if the approximation for the in-cloud cases is 

not very accurate based on the RH values only, the humidity in these cases is high enough for the particles to have taken up 

significant amounts of water. Strong hygroscopic growth can be observed before activation, and e.g. for inorganic salts the 

deliquescence RH is well below 94 % (e.g. Cruz and Pandis, 2000; Zieger et al., 2017; Lei et al., 2018). Thus, it is safe to 

assume the aqueous phase processes, whether in cloud or inside figs, are taking place when RH of 94 % is exceeded.  465 

The observations were divided into 3 groups based on the conditions (precipitation and clouds) the arriving airmasses have 

experienced during the last 24 hours to investigate if precipitation and in-cloud aqueous phase processing affect the particles 
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differently. Group 1 represents the cases where the arriving airmasses have not experienced precipitation or clouds (i.e. RH < 

94 %) within the last 24 hours before arriving at SMEAR II. Group 2 represents cases where airmasses have experienced 

precipitation within the last 24 hours. Group 3 represents cases where the airmass has experienced RH > 94 % (i.e. in-cloud 470 

conditions) but no precipitation within the last 24 hours. These definitions are summarized in Table 1Table 2. We restrict 

trajectories to the 24 hours prior to arrival to ensure enough observations corresponding to the trajectories in each group, 

especially in gGroup 3 which has the strictest criteria. With longer trajectories, more of the trajectories would contain 

precipitating clouds, which would lead to a reduction of observations in group 3. Sensitivity analysis was conducted by 

limiting airmass experience to 36 and 48 hours, but same conclusions were achieved. 475 

Figure 5 shows the median mass (a) and number (b) concentration of the accumulation mode (dp = 100-1000 nm) particles 

based on their experiences of precipitation and high humidity conditions (RH > 94 %) during the last day before arrival to 

SMEAR II, as described in Table 1Table 2. Mann-Whitney U test (Mann and Whitney, 1947) was applied to assess the 

statistical significance of the differences between the groups. Figure 5b shows that the accumulation mode number 

concentration is lower if the airmass has experienced precipitation (group 2) or high humidity conditions (i.e. clouds) 480 

without precipitation (group 3), compared to the case when the airmass has not experienced precipitation or in-cloud 

conditions (group 1). When the mass concentration (Figure 5a) is investigated, we see higher mass concentration for group 3 

compared to group 1, suggesting that in non-precipitating, high RH conditions the aerosol mass increases due to aqueous 

phase processes. The observed differences between the wet processing groups for both mass and number concentration were 

statistically significant (Table S4). Identical observations can be made if the GDAS reanalysis meteorology is used in the 485 

calculation of the trajectories (Figure S253). 

To investigate further the observed increase in accumulation mode mass concentration (Figure 5a) when the airmass had 

experienced high humidity conditions, we investigated the bulk aerosol composition. We focus on group 1 (no wet 

processing at all) and group 3 (high humidity conditions, but no precipitation) as we are now interested in the increase in 

mass concentration between those groups, as shown in Figure 5a. Here, we concentrate on the mass concentrations of 490 

organics (Org) and sulfate (SO4), and black carbon (eBC) measurement data. Figure 6 shows the median particle mass 

concentrations (see Fig. S109 for mass fractions) for each of these chemical species for clean and more polluted airmasses 

with the temperature division for the wet processing groups 1 and 3. The division of the trajectories into “clean” and 

“polluted” sectors was made by assigning any trajectories that visited latitudes below 60 degrees North into polluted sector, 

and rest to the clean. Thus, our final subgroups are WC (warm, clean), WP (warm, polluted), CC (cold, clean) and CP (cold, 495 

polluted). This approach was applied to make sure the observed changes in the concentration of species are indeed related to 

the aqueous phase processing and to exclude the influence of artefacts arising from possible association of different source 

areas to different meteorological conditions (i.e. group 1 vs group 3). This type of source area artefact could take place, for 

example, if cloud occurrence would be more frequent for airmasses arriving from certain directions, which could (randomly) 

coincide with higher SO4 observations. Further justification for our choice of these sectors can be found in the chapter 500 

below. Statistically significant (Table S5) iIncreases exceeding the error limits (except subgroup WC, which shows a small 
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decrease) in SO4 concentration (Figure 6) are observed between wet processing groups 1 and 3, suggesting SO4 formation in 

the aqueous phase, while no significant changes are observed for Org.  Black carbon shows both increases and decreases in 

mass, depending on the subgroup. and eBC, except for CP subgroup (Figure 6d) where Org shows a decrease. The patterns 

in the mass concentrations for each species between the groups 1 and 3 showed similar behaviour when we increase the time 505 

(0-24 h into e.g. 0-36 h or 0-48 h) used to determine the classes.  

 

Table 12  Definitions for the wet processing groups. Availability shows the percentage of trajectories relative to total number of 

trajectories belonging to the wet processing groups. 

Group History during the last 0-24 hours before 

arrival to SMEAR II 

Quick summary Availability 

(%) 

1 
Airmass has not experienced precipitation or 

RH > 94% 
No precipitation or in-cloud processing  

24.5 

2 Airmass has experienced precipitation  Wet scavenging 62.2 

3 
Airmass has experienced RH > 94 % but not 

precipitation  

Only non-precipitating clouds (in-cloud 

processing) 

13.3 

*Definitions are according to description of explained quantities in Sect. 2.2 510 

 

Figure  Median and mean accumulation mode (dp = 100-1000 nm) particle mass (a) and number (b) concentration for wet processing 

groups described in Table 2. The figure includes DMPS data between January 2005 and August 2019. The whiskers show the 99%  

confidence intervals from 1000 bootstrap replicates. 
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 515 

Figure 5 Median (black horizontal lines), mean (black crosses) and 25th-75th percentiles (boxes) for accumulation mode (dp = 100-

1000 nm) particle mass (a) and number (b) concentration for wet processing groups described in Table 1. The figure includes DMPS 

data between January 2005 and August 2019.  

 

Two sectors were used to distinguish the more polluted and mostly clean airmasses, as more detailed division on air mass 520 

source areas is not possible because of the limited amount of data available especially for the group 3 cases. Even though the 

division is relatively rough, it does separate the airmasses quite well, especially as we have already excluded the highly 

polluted airmasses arriving from the Kola peninsula and emissions arriving from the nearby sawmills. For example, in a 

former study from Kulmala et al. (2000), trajectories arriving from the Arctic ocean coincide with a low number of 

accumulation mode particles and low SO2 concentration and, therefore, airmasses arriving from that sector are classified as 525 

“clean”. Sogacheva et al. (2005) also presented similar sources for accumulation mode particles. The same classification is 

used in this study. Sectors from Kulmala et al. (2000) including the southeast of Russia and Central Europe showed highest 

accumulation mode number and SO2 concentrations and are classified as “polluted” also in our study. We selected two 

sectors to maintain high enough statistics for the composition measurements to achieve reliable results. In addition, the 

temperature-based division, discussed in section 3.1, gives additional insight when separating the airmasses. Riuttanen et al. 530 

(2013), conducted trajectory analysis to investigate trace gases observed in SMEAR II, and our temperature-based division 

coincides well with the seasonality of SO2 concentration. They concluded, for example, that combustion related SO2 is 

mainly transported to SMEAR II from Eastern Europe during winter months. In addition, for high particle concentrations 

arriving to SMEAR II, they observed the airmass origins to be dependent on particle size. 

To further confirm that the seasonal patterns of trace gases like SO2 and aerosols shown in Riuttanen et al. (2013) also hold 535 

for our study period, source contribution analysis was conducted. No major changes in the source areas are observed (Figure 
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S175 and Figure S186 as examples for accumulation mode particle number concentration and SO2 mixing ratio, respectively) 

when compared to the study from Riuttanen et al. (2013). We can observe a clear difference in the total mass concentration 

between clean and more polluted airmasses in Figure 6, indicating our sector division into mainly clean and more polluted is 

suitable. The average particle number size distribution with these sector- and temperature-based divisions is shown in Figure 540 

S110, but reader should be aware that the composition measurements do not represent particles with dp < 70 nm. There is no 

clear difference in the geographical distribution of air mass trajectories between the wet processing groups 1 and 3 shown in 

Figure 7, thus we can conclude that the observed differences in SO4 are not associated to different source areas of airmasses 

between the groups 1 and 3. Group 3 includes fewerless trajectories due to our strict definitions of the airmass history 

groups, but the trajectories are arriving from similar areas in both group 1 and group 3. Further, to show that the increase in 545 

sulfate concentrations is driven by sulfate formed mostly in the clouds and not just directly above the sea surface derived for 

example, from dimethyl sulfide emissions exclude possible influence caused by transport of SO4 from the oceans into our 

results (e.g. dimethyl sulfide derived sulfate aerosols, which could show up as high SO4 concentrations coinciding with high 

humidity conditions if the airmass trajectory passes close to the sea surface, (e.g. Barnes et al., 2006), we investigated the 

vertical transport of the airmasses. This analysis showed no evidence (see Section S4) that this type of transport is 550 

significantly influencing the results presented here.  

Thus, based on the airmass history analysis presented above and conclusions drawn regarding SO4 transport from oceans, we 

can state that the observed increase in SO4 is likely due to aqueous phase chemistry, where SO2 is oxidized in the aqueous 

phase to form SO4 (e.g. Barth et al., 2000; Ervens, 2015; McVay and Ervens, 2017). A relative increase of 45-63 % is 

observed between groups 1 and 3 in Figure 6b-d (airmass histories WP, CC, CP), and the largest increase is observed for 555 

more polluted airmasses during colder months (CP). The increase in SO4 concentration is not seen for clean airmasses during 

the warmer months (Figure 6a, WP) as e.g. SO2 concentration, an important precursor for SO4 formation in-cloud, are lower 

in cases for airmasses coming from northern areas and for the warm season (Kulmala et al., 2000; Riuttanen et al., 2013). For 

the colder months and more polluted airmasses (Figure 6b-d), the increase in SO4 is more pronounced due to more precursor 

SO2 available for SO4 production in-cloud (e.g. Paulot et al., 2017). The increasing trends in SO4 mass concentration and 560 

mass fraction are similar to what is shown in Figure 6, when all chemical species measured by the ACSM are considered 

(mass concentrations in Figure S121, mass fractions in Figure S132). In addition, small increases in the mass concentration 

of  NH4 can be observed for group 3. This is likely because of the enhanced uptake of ammonia from the gas phase with 

increasing sulfate fraction (Harris et al., 2014). Changes in the SO4 concentration due to aqueous phase processing are 

similar also when the GDAS reanalysis meteorology is used. In-cloud formation of SO4 is also supported by the statistical 565 

model in which we consider the other factors also affecting the local particle concentrations (Table S118). 

The median mass concentration of Org shows no differencea decrease when comparing case 1 to case 3 in Figure 6a, b and 

d, but no change -c but shows a decrease in the cold and cleanpolluted subgroup (Figure 6cd, CCP, relative decrease 32 %). 

However, the observed decreases were not statistically significant (Table S5) at the α = 0.01 limit. With trajectories using 

GDAS reanalysis meteorology, decreases in the median mass are also observed for the same subgroupsdecrease in Org 570 
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exceeding the error limits is also seen, but for the warm and clean airmasses (Figure S24a, WC). Previous studies have 

shown an increase of organic mass through aqueous phase production of SOA (Blando and Turpin, 2000; Ervens and 

Volkamer, 2010; Ervens et al., 2018). For example, Ervens et al. (2018) investigated the formation of aqSOA with parcel 

models from gas-phase precursors of toluene, xylene, and ethylene. In SMEAR II, the gas phase precursors from biogenic 

sources are dominated by monoterpenes specially during warm months (e.g. Hakola et al., 2012; Patokoski et al., 2015; 575 

Barreira et al., 2017; Heikkinen et al., 2021). 

During the colder months (Figure 6c-d), the airmasses are likely to have more anthropogenic influences and thus a different 

VOC profile (e.g. Patokoski et al., 2015), but the formation of aqSOA is still negligible when the total Org mass is 

investigated in this area of northern Europe. It has also been suggested that water soluble SOA (originating from other 

sources than aqueous phase processing) in the cloud droplets can become oxidized and become moreto form more volatile 580 

compounds leading to evaporation. This could lead to a decrease in total SOA mass, even though additionalthe aqueous 

phase SOA mass is formed (Ervens et al., 2018). In addition, the increase in SO4 can increase the acidity of the droplets 

which might increase the evaporation of organic acids leading to a decrease in the organic mass (Ervens et al., 2018). Our 

data suggests that the local photochemically driven SOA production at SMEAR II (and surrounding areas) dominates over 

the aqueous phase SOA formation especially during the warm months. This is supported by the solar radiation values 585 

measured at SMEAR II (not shown), as they are much lower for group 3 than for group 1 for all cases. Hence, decreased 

SOA formation due to the decreased photochemical activity could compensate for the in-cloud aqueous phase SOA 

formation resulting in comparable total organic mass when groups 1 and 3 are compared. Our results indicate, that in the 

boreal forest dominated Northern Europe the photochemical SOA formation in the gas phase dominates over SOA formation 

in the aqueous phase, in-cloud aqueous phase SOA production has negligible impact on total observed when the total organic 590 

mass is considered. This applies for both during warmer and colder seasons, and in the case of clean and polluted airmasses. 

The Org mass concentration also shows no increase due to clouds when the other factors affecting the local concentrations 

are considered with the mixed effects model (Table S107). 

When investigating the composition of the particles as a function of time in RH > 94 % (Figure 8) when no distinction 

relative to precipitation is applied (i.e. time in cloud can also include precipitating clouds), we observe an increase in sulfate 595 

mass fraction with time spent under the high humidity conditions. This is most clear , especially for the more polluted 

airmasses which also have more SO2 available for the in-cloud production of SO4 (Figure 8a). This trend is not seen when 

looking at the time the airmass was influenced by precipitation (Figure 8b) indicating precipitation acts mainly as a sink for 

the particles, whereas high humidity conditions, i.e. in-cloud aqueous phase processing, also alters the particle chemical 

composition. Inspection of the absolute mass of the species (Figure S14) also shows an increase in SO4 mass with longer 600 

exposure times in RH>94 %, whereas decreases in mass of all species is seen with increasing time of experienced 

precipitation. Again, tThe increasing trend in SO4 fraction when the airmasses arrive from cleaner areas is more subtle 

(Figure 8c). Same trends are observed when all species from the composition measurements are investigated (Figure S153). 

These results suggest that not only the experience of in-cloud aqueous phase processing (Figure 6) affects the particle 
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composition, but also the time spent in cloud has an effect. Unfortunately, with this type of analysis of the time dimension, 605 

we were not able to apply the temperature-based division in addition to the sector division as it would limit the number of 

observations for the long exposure times too much to obtain statistically reliable results. Results obtained with the GDAS 

reanalysis meteorology (Figure S286) agree well with those from Figure 8. The very long exposure times (> 60 hours) of 

precipitation are missing from the GDAS derived trajectories due to lower occurrence of precipitation events compared to 

the ERA-Interim derived trajectories (see Figures S1 and S2119). 610 

To investigate which particle sizes are most affected by the increasing mass of SO4, the DMPS size distribution was divided 

into 7 classes with particle dry diameter ranges (in nm) of [3, 30], (30, 50], (50, 100], (100, 200], (200,350], (350, 600] and 

(600, 1000]. Using the airmass history groups presented in Table 1Table 2, the mass concentrations for these size classes are 

shown in Figure 9 corresponding to the sector and temperature divisions first shown in Figure 6. The mass concentration is 

larger if the airmass has experienced high humidity conditions (group 3) for particle with diameters between 200-1000 nm, 615 

when compared to group 1 where there have not been any wet processes in the last 24 hours. Same observation can be made 

with the trajectories using GDAS meteorology (Figure S297). The increase is clearest in size ranges (200, 350] and (350, 

600] and the size range (600, 1000] shows a very minor increase in mass for some subgroups. The changes in mass are also 

statistically significant except for sector CP for size range (200, 350] and (600, 1000] (Table S6). The same changes are also 

seen when the particle mass data is strictly limited to simultaneous observations with the composition (Org, SO4, BC) 620 

measurements (Figure S164). These results suggest that the SO4 formed via in-cloud aqueous phase processes is mainly 

distributed to particles having a dry diameter between 200 - 1000 nm. 
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Figure  Median particle mass concentration for Org, eBC and SO4 for wet processing groups 1 and 3 as described in Table 2. Subplots 625 

show the airmass sectors (clean and polluted) with the seasonal (warm and cold) division followingly: a) warm and clean, b) warm 

and polluted, c) cold and clean and b) cold and polluted. The figure is based on simultaneous observations of these three species 

between March 2012 and August 2019. The whiskers show the 99 % confidence intervals from 1000 bootstrap replicates. Note the 

different y-axis limits in each subplot. 
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 630 

Figure 6 Median (black horizontal lines and numerical values) particle mass concentration with 25th-75th percentiles (boxes) for Org, 

eBC and SO4 for wet processing groups 1 and 3 as described in Table 1. Subplots show the airmass sectors (clean and polluted) with 

the seasonal (warm and cold) division: a) warm and clean, b) warm and polluted, c) cold and clean and b) cold and polluted. The 

figure is based on simultaneous observations of these three species between March 2012 and August 2019. Note the different y-axis 

limits in each subplot. 635 
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Figure  96-hour airmass history for the wet processing groups (1 and 3) with the sector (clean and polluted) and temperature (warm 

and cold) division. Subplots show a)-b) warm and clean, c)-d) warm and polluted, e)-f) cold and clean and g)-h) cold and polluted. 

Colour scale shows the frequency (crossings in each 1° x 1° grid point divided by total number of crossings in each group) of 640 

trajectories crossing a grid point. The groups 1 and 3 correspond to the airmass history groups presented in Table 2. The red dot 

shows the location for SMEAR II. 
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Figure 7 96-hour airmass history for the wet processing groups (1 and 3) with the sector (clean and polluted) and temperature (warm 

and cold) division. Subplots show a)-b) warm and clean, c)-d) warm and polluted, e)-f) cold and clean and g)-h) cold and polluted. 645 

Colour scale shows the frequency (crossings in each 1° x 1° grid point divided by total number of crossings in each group) of 

trajectories crossing a grid point. The groups 1 and 3 correspond to the airmass history groups presented in Table 1. The red cross 

shows the location for SMEAR II. 
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 650 

Figure 8 The mass fractions of Org, SO4 and eBC for clean and more polluted airmasses as a function of time spent in RH > 94 % 

(a and c) and in precipitation (b and d): Figure shows median values for each 1-hour bin, if 10 or more data points were available in 

the bin. The figure is based on observations between March 2012 and August 2019. 

 

 655 
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Figure  Median particle mass concentration for size bins derived from the DMPS measurements for wet processing groups 1 and 3 

as described in Table 2. Subplots show the airmass sectors (clean and polluted) with the seasonal (warm and cold) division 

followingly: a) warm and clean, b) warm and polluted, c) cold and clean and b) cold and polluted. The figure includes all available 

data between January 2005 and August 2019. The whiskers show the 99 % confidence intervals from 1000 bootstrap replicates. Note 660 

the different y-axis scale in each subplot. 
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Figure 9 Median (black horizontal lines and numerical values) particle mass concentration with 25th-75th percentiles (boxes) for size 

bins derived from the DMPS measurements for wet processing groups 1 and 3 as described in Table 1. Subplots show the airmass 

sectors (clean and polluted) with the seasonal (warm and cold) division: a) warm and clean, b) warm and polluted, c) cold and clean 665 

and b) cold and polluted. The figure includes all available data between January 2005 and August 2019. Note the different y-axis 

scale in each subplot. 
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4 Conclusions 

In this study, we investigated how wet processes taking place in clouds including aerosol wet scavenging and aqueous phase 670 

oxidation along airmass trajectories. We examined how they affect to the observed sub-micron aerosol population in 

SMEAR II station, Hyytiälä, Finland which represents the boreal environment.  

Our first objective was to investigate  how efficiently different chemical species are removed from the atmosphere by 

precipitation. We observed, bBased on a timeseries over a decade long timeseries, we observed an exponential decrease in 

particle mass as a function of accumulated precipitation along the trajectory, similar to what has beenthat reported in earlier 675 

studies. We concluded that the in-cloud wet scavenging dominateds over below-cloud precipitation scavenging, especially 

for particles of the accumulation- mode size (100 nm < dp < 1 µm) sized particles. Scavenging of  particle massParticle mass 

scavenging was more effective during colder months especially for sulfate aerosol, whereas the behaviour of other 

investigated  aerosol chemical species investigatedbehaviour was more alike. Statistical mixed effects models also showed 

exhibited removal by accumulated precipitation for all species, suggesting more efficient removal in colder months. In 680 

addition, the scavenging efficiencies were relatively similar between the species in colder months, suggesting thate particles 

wereare internally mixed and the different species wereare distributed to similar-ly sized particles. During warmer months, it 

is likely that strong local particle production atin SMEAR II likely effectively masks the wet scavenging along the 

trajectory., Tthus, despite high values of accumulated precipitation, relatively high particle mass concentrations are 

observedexist. despite high values of accumulated precipitation.  This finding was supported by the statistical modelling, 685 

wherein, for example, in which e.g. the relative contribution of local meteorology on organic aerosol production was much 

larger during the warmer months. Seasonal differences in cloud types and cloud cover fractions within one grid box in the 

reanalysis dataset may also have an effect influence to the observed differences observed between seasons in wet scavenging 

efficiencies between the seasons.  

Our second objective was to investigate how aqueous phase processing occurringtaking place in clouds alters the particle 690 

mass concentration and composition. Our study revealeds a significant in-cloud formation of sulfate mass, but aqueous phase 

SOA formation could not be identified by the analysis. In-cloud processing was separated by using relative humidity as a 

proxy for the airmass with cloud experienceto have experienced clouds. and Tthe precipitation data along the airmasses was 

used to separate non-precipitating clouds. An increase in accumulation mode particle mass was observed for airmasses that 

had recently been in-cloud when compared to clear sky airmasses which had(airmasses with no experience of clouds or rain 695 

during the last 24 hours). In tThe chemical composition of accumulation mode particles,  was studied and the increase 

observed increase in particle mass can be mostly attributed to in-cloud SO4 production of SO4. Our analysis showeds that, 

due to in-cloud sulfate formation, sulfate mass concentrations increased 45 %-63 %, depending on season and airmass origin, 

due to in-cloud sulfate formation. Furthermore, the increase in sulfate mass fraction was higher when the air mass had spent 

more time in high humidity conditions. We considered, in the sStatistical mixed effects model, in which additional factors 700 
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affecting local SO4 concentrations. are considered, This model also supported in-cloud SO4 formation whereas no formation 

of Org or eBC mass was observed.  

Airmass history analysis was applied to separate airmasses originating from different sources (more polluted and mostly 

clean) in addition to the temperature-based seasonal division. Thus, we to investigated how different conditions along the 

airmass trajectories affected the observed increase observed in SO4 mass concentration due to in-cloud processes. When 705 

airmasses originated from areas with more pollution sources producing gaseous SO2, we observed a greater increase in SO4 

mass. This increase was observed due to more SO2 being available in the gas phase to be oxidized in-cloud to form SO4. 

Increases in the total organic mass due to aqueous phase processing was not observed. Aqueous phase production of organic 

mass was not observed during the warm months since monoterpenes dominate both the biogenic VOCs and total VOCs in 

this region. In wintertime anthropogenic emissions dominate over biogenic emissions, thus aqueous phase production of 710 

organic mass was not observed during the cold months either. We were also interested whetherif the effects of aqueous phase 

processes wereare different for particles of different size. Therefore, we investigated changes in the particle number size 

distribution, were investigated to determine into which particle sizes the observed mass increase observed in SO4 wasis 

mostly distributed. Increases in particle mass occurredwere observed for sizes larger than 200 nm, whereas smaller sizes 

displayedshowed a decrease in some cases.  715 

Finally, as an additional robustness test for our results, we also compared the trajectories based on different reanalysis 

meteorologies,  (ERA-Interim and GDAS) as an additional robustness test for our results. Both approaches yieldedgave 

nearly identical results, supporting and thus the same conclusions could be drawn. Trajectories obtained with the GDAS 

reanalysis meteorology had, in general, fewerless precipitation events., Thusand thus, compared to that in ERA-Interim-

based trajectory results, the scavenging efficiency of the investigated species investigated was lower. compared to the results 720 

obtained with ERA-Interim based trajectories.  With both approached, aqueous-phase SO4 formation in the aqueous phase 

was observed to significantly contributed to the total SO4 mass with both approaches whereas aqSOA formation of aqSOA 

was unnot detected. Precipitation values derived from the trajectory model at SMEAR II agreed also well with the locally 

measured precipitation. The results from this study offer an interesting insights into using air mass history analysis to study 

aerosol-cloud interactions. These findingsand facilitates the comparison of observed aerosol wet scavenging and in-cloud 725 

processing with outcomes of larger scale models. This study highlights that the ability of Gglobal models canto simulate 

aerosol composition and size distribution, especially away from source regions., This study highlights that this ability can be 

improved enhanced by improving the description of size- dependent wet removal of different aerosol compounds. Our 

analysis also provides a good platform for evaluating the ability of models to simulate in-cloud chemical formation of 

aerosol. RegardingFurther analysis is needed to investigate in more detailed the effect of clouds and precipitation on aerosol 730 

dynamics and detailed changes in size distributions, further, in-depth investigations are imperative.  

 

Appendix A 

The formulation of the final fitted equation can be expressed as 
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[VARi] = 𝛽0 + {𝒃𝒉 + 𝒃𝒎 + 𝒃𝒚} + {𝛽1[NO𝑥𝑖] + 𝛽2[SO2,𝑖] + 𝛽3[O3,𝑖] + 𝛽4[CO𝑖]} + {𝛽5T𝑖 + 𝛽6[MLH𝑖]} +735 

                  {exp (𝛽7accum. precip𝑖) + 𝛽8time. in. cloud𝑖} + {𝛽9emission. col. time𝑖 + 𝛽10time. in. land𝑖 + 𝒃𝒂},          (A1)     

where [VAR] is now the mass concentration of either Org, SO4 or eBC,  𝛽0 is a model intercept, 𝒃𝒉, 𝒃𝒎, 𝑏𝑦 and 𝒃𝒂 are the 

vectors of random intercepts for hour of the day, month, year and airmass source area, respectively, and 𝛽1- 𝛽10 are the fixed 

regression coefficients. Subscript i denotes the time point i.e. one observation. Thus the predictor variables (see Section 2.1 

for the abbreviations) include concentrations of SO2, CO, NOx and O3 (trace gases); air T and MLH (at SMEAR II derived 740 

from the back-trajectory data) describing the local meteorology and following trajectory-derived variables: accumulated 

precipitation along the trajectory (mm), time spent in high humidity conditions without simultaneous rain (“in non-

precipitating cloud”, h), emission collection time (time in mixed layer until rain event, h) and total time the airmass has spent 

over land (h). In addition, the airmass source areas (obtained by clustering as explained in Section 2.2, visualised in Figure 

S3 and Figure S4) and observation year, month and hour of the day were included, as shown in Eq. (A1). Summary of the 745 

used predictor variables in the regression is shown in Table A1 and each predictor variable group is separated with curly 

brackets in Eq. (A1). The process leading to the selection of the response variables is explained in detail the Section S3.1.  

 

Table A1 Predictor variables used in regression. 

Group Name Variables included 

1 Base variability (diurnal, seasonal, 

random) 

Observation year and month, hour of the day 

2 Trace gases NOx, SO2, O3, CO  

3 Local meteorology T, MLH 

4 Wet processing along the trajectory Accumulated precipitation, time spent in non-precipitating cloud  

4a Wet scavenging Accumulated precipitation 

4b In-cloud aqueous phase processing Time spent in non-precipitating cloud 

5 Long-range transport Airmass source area, emission collection time, time spent above 

land 

 750 
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Data availability 755 
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composition is available at EBAS data base at http://ebas.nilu.no/. The pre-processed HYSPLIT trajectory data can be 
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