Supplement of:

Measurement report: Large contribution of biomass burning and aqueous-phase processes to the wintertime secondary organic aerosol formation in Xi'an, Northwest China

Jing Duan¹, Ru-Jin Huang^{1,2}, Yifang Gu^{1,2}, Chunshui Lin¹, Haobin Zhong^{1,2}, Wei Xu¹, Quan Liu³, Yan You⁴, Jurgita Ovadnevaite⁵, Darius Ceburnis⁵, Thorsten Hoffmann⁶, Colin O'Dowd⁵

¹State Key Laboratory of Loess and Quaternary Geology (SKLLQG), CAS Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China

²University of Chinese Academy of Sciences, Beijing 100049, China

³China State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China

⁴National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Macao SAR 999078, China

⁵School of Physics and Centre for Climate and Air Pollution Studies, Ryan Institute, National University of Ireland Galway, University Road, Galway, H91CF50, Ireland

⁶Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10–14, Mainz 55128, Germany

Correspondence: Ru-Jin Huang (rujin.huang@ieecas.cn) or Quan Liu (liuq@cma.gov.cn)

Table S1 Summary of mass concentrations of NR-PM_{2.5} species ($\mu g m^{-3}$), OA sources ($\mu g m^{-3}$), gaseous pollutants ($\mu g m^{-3}$ for SO₂, NO₂, O₃, and mg m⁻³ for CO), ALWC ($\mu g m^{-3}$), meteorological parameters (RH, Temperature (T)) and elemental ratios (H/C, O/C) during different periods according to this study.

Species	Entire study	reference	SIA-P1	SIA-P2
NR-PM _{2.5}	68.0±42.8	44.1±25.5	131.0±49.6	84.9±30.7
OA	37.1±19.2	28.7±16.4	68.0±20.7	37.7±11.7
SO4 ²⁻	8.7±8.5	3.5±2.8	18.4±10.2	14.7±7.2
NO ₃ -	13.3±11.4	6.8±4.9	27.4±13.4	19.9±9.3
$\mathrm{NH_{4}^{+}}$	6.8±5.7	3.3±2.2	13.3±6.5	10.8±4.6
Cl	2.1±1.8	$1.8{\pm}1.8$	3.9±1.9	1.8±0.7
HOA	3.0±3.9	3.3±4.2	4.6±4.2	1.3 ± 1.3
COA	4.8±4.2	4.8 ± 4.4	$7.0{\pm}4.8$	3.5±2.3
CCOA	3.2±2.5	3.0±2.3	5.8 ± 2.8	2.0±1.5
BBOA	4.3±5.9	3.9±5.6	9.6±7.7	2.1±2.6
OOA-BB	9.0±7.3	8.8±7.8	14.8 ± 6.4	6.1±3.9
aq-OOA	12.8±12.6	4.9±3.7	26.2±14.6	22.7±10.7
SO_2	16.9±8.9	19.5±9.8	17.2±5.2	10.6±4.1
NO_2	64.4±25.4	64.8±26.2	82.8 ± 18.9	52.2±19.5
O ₃	30.0±26.7	28.6 ± 25.8	16.3±12.4	41.9±30.1
CO	1.5±0.6	1.3±0.5	2.2±0.5	1.4±0.3
ALWC	38.8±69.7	12.8±66.8	90.4±104.5	73.7±84.3
RH (%)	58.1±22.0	50.3±20.4	67.9±19.6	70.4±18.7
T (°C)	1.4 ± 5.9	1.7±6.0	-2.8±4.8	3.1±4.9
H/C	1.71 ± 0.07	1.74±0.06	1.72±0.05	1.65 ± 0.04
O/C	0.50±0.15	0.41±0.10	0.52±0.10	0.67±0.11

Table S2 Summary of elemental ratios (H/C and O/C) of the bulk OA and specific OA factors resolved from PMF based on HR-AMS measurements in recent years in China as well as some European or American sites.

Site	Site type	Sampling period	OA	НОА	СОА	BBOA	ССОА	LO-OOA	МО-ООА	reference
Beijing, China	urban	Jul-Sep,	O/C=0.41 H/C=1.67	O/C=0.21 H/C=1.72	O/C=0.14 H/C=1.89			OOA O/C=0.60		Huang et al., 2010
								H/C=1.47		,
Beijing, China	urban	Nov-Dec, 2010	O/C=0.32 H/C=1.65	O/C=0.15 H/C=1.75	O/C=0.14 H/C=1.75	O/C=0.22 H/C=1.55	O/C=0.16 H/C=1.56	O/C=0.47 H/C=1.65	O/C=0.58 H/C=1.47	Hu WW et al., 2016
Beijing,		Dec 2010-	O/C=0.17							Liu et al.,
China	urban	Jan 2011	H/C=1.70							2012
Beijing,	1	Aug-Sep,	O/C=0.56	O/C=0.22	O/C=0.17			O/C=0.62	O/C=0.82	Hu WW et
China	urban	2011	H/C=1.61	H/C=1.78	H/C=1.80			H/C=1.45	H/C=1.24	al., 2016
Beijing				0/C = 0.18	O/C = 0.24			OOA		Zhang et
China	urban	Aug, 2012		H/C=1.81	H/C=1.82			O/C=1.09		al., 2015
				11/0-1.01	11/0-1.02			H/C=1.32		ul., 2015
Beijing,	urban	Oct. 2012		O/C=0.23	O/C=0.09			O/C=0.44	O/C=1.01	Zhang et
China	urbuit	000, 2012		H/C=1.81	H/C=1.91			H/C=1.61	H/C=1.32	al., 2015
Beijing		Mar-May	$\Omega/C=0.49$	O/C=0.18	O/C=0.13	O/C=0.31		OOA		Hu et al
China	urban	2012	H/C=1.63	H/C=1.81	H/C=1 89	H/C=1.67		O/C=1.00		2017
		2012	11/0-1.00	11/0-1.01	11/0-1109	11/0-1107		H/C=1.38		2017
Beijing,	urhan	Jul-Aug,	O/C=0.53	O/C=0.19	O/C=0.17			O/C=0.67	O/C=0.91	Hu et al.,
China	urban	2012	H/C=1.61	H/C=1.71	H/C=1.85			H/C=1.51	H/C=1.40	2017
Beijing		Oct-Nov	$\Omega/C = 0.46$	O/C = 0.07	0/C = 0.13	0/C = 0.24		OOA		Hu et al
China	urban	2012	U/C=1.58	H/C-1.94	H/C-1 82	H/C-1 53		O/C=0.88		2017
Cillia		2012	11/C=1.56	11/C=1.94	11/C=1.02	11/C=1.55		H/C=1.32		2017
Beijing,	urban	Jan-Mar,	O/C=0.47	O/C=0.36	O/C=0.23		O/C=0.14	O/C=0.77	O/C=0.84	Hu et al.,
China	urban	2013	H/C=1.52	H/C=1.66	H/C=1.73		H/C=1.45	H/C=1.72	H/C=1.34	2017
Beijing,	urban	Ian 2013	O/C=0.43	O/C=0.14	O/C=0.14		O/C=0.35	O/C=0.50	O/C=1.05	Zhang et
China	urban	Juli, 2013	H/C=1.57	H/C=1.69	H/C=1.86		H/C=1.75	H/C=1.47	H/C=1.32	al., 2014
Beijing,	urban	Dec 2013-	O/C=0.37							Sun et al.,
China	urban	Jan 2014	H/C=1.73							2016
Beijing,	urban	Oct-Nov,	O/C=0.51	O/C=0.19	O/C=0.16	O/C=0.63		O/C=0.59	O/C=1.24	Xu et al.,
China	urban	2014	H/C=1.69	H/C=1.93	H/C=1.92	H/C=1.77		H/C=1.49	H/C=1.40	2015
Beijing,	urban	Oct 2014		O/C=0.07	O/C=0.13	O/C=0.20		O/C=0.54	O/C=0.84	Zhang et
China	urban	000, 2014		H/C=1.75	H/C=1.61	H/C=1.53		H/C=1.46	H/C=1.13	al., 2016
Beijing,	urban	Dec. 2014		O/C=0.08	O/C=0.10		O/C=0.25	O/C=0.56		Zhang et
China	urban	Dec, 2014		H/C=1.66	H/C=1.68		H/C=1.19	H/C=1.42		al., 2016
Beijing,	urban	Dec 2013-	O/C=0.37	O/C=0.11	O/C=0.14	O/C=0.14	O/C=0.36	O/C=0.75	O/C=0.81	Xu et al.,
China	urball	Jan 2014	H/C=1.75	H/C=2.08	H/C=1.88	H/C=1.67	H/C=1.67	H/C=1.51	H/C=1.75	2017
Beijing,	urban	Jun-Jul,	O/C=0.57	O/C=0.30	O/C=0.15			O/C=0.78	O/C=1.15	Xu et al.,
China	uivall	2014	H/C=1.70	H/C=1.80	H/C=1.88			H/C=1.55	H/C=1.45	2017
Beijing,	urban	Oct-Nov,	O/C=0.51	O/C=0.19	O/C=0.13	O/C=0.65		O/C=0.58	O/C=1.23	Xu et al.,

China		2014	H/C=1.69	H/C=1.95	H/C=1.87	H/C=1.81		H/C=1.50	H/C=1.44	2017
D		ND	0/0 0 40		0/0.016	0/0 0 22		OOA	aq-OOA	X (1
China	urban	Nov-Dec,	U/C = 0.40	U/C = 0.22	U/C = 0.10	0/C=0.32		O/C=1.09	O/C=0.82	Au et al.,
China		2014	H/C=1.09	H/C=1.09	H/C=1.82	H/C=1.98		H/C=1.27	H/C=1.75	2019a
Delline		New Dee	0/0 0 45	0/0 0 1/	0/0 0 10	0/0 0 20		OOA	aq-OOA	Ver et el
Beijing,	urban	Nov-Dec,	0/C=0.45	0/C=0.16	0/C=0.19	0/C=0.39		O/C=1.09	O/C=0.65	Xu et al.,
China		2016	H/C=1.68	H/C=1.83	H/C=1.83	H/C=1.75		H/C=1.59	H/C=1.82	2019a
Beijing,		Aug-Sep,		O/C=0.23	O/C=0.13			O/C=0.84	O/C=1.00	Zhao et al.,
China	urban	2015		H/C=1.89	H/C=1.85			H/C=1.55	H/C=1.39	2017
Beijing,	,	G 2015	O/C=0.47	O/C=0.16	O/C=0.09			O/C=0.45	O/C=0.88	Li et al.,
China	urban	Sep, 2015	H/C=1.60	H/C=1.62	H/C=1.71			H/C=1.40	H/C=1.11	2020
Beijing,		L., 2017	O/C=0.57	O/C=0.10	O/C=0.23			O/C=0.62		Xu et al.,
China	urban	Jun, 2017	H/C=1.64	H/C=1.89	H/C=1.82			H/C=1.62		2019b
Beijing,	,	May-Jun,	O/C=0.68	O/C=0.17	O/C=0.27			O/C=0.76	O/C=1.3	Xu et al.,
China	urban	2018	H/C=1.50	H/C=1.83	H/C=1.76			H/C=1.44	H/C=1.13	2019b
									MO-OOA	
								LO-OOA	O/C=0.78	
Xi'an,		Jun-Jul,	O/C=0.58	O/C=0.15	O/C=0.18			O/C=0.55	H/C=1.38	Duan et al.,
China	urban	2019	H/C=1.64	H/C=1.91	H/C=1.79			H/C=1.56	aq-OOA	2021
									O/C=0.85	
									H/C=1.54	
V .,		Dec. 2018			0/0 0 12	0/0 0 20	0/0.001	OOA-BB	aq-OOA	
Al'an,	urban	Dec 2018-	0/C=0.50	0/C=0.09	0/C=0.13	0/C=0.30	0/C=0.21	O/C=0.57	O/C=0.82	This study
Cnina		Mar 2019	H/C=1./1	H/C=2.04	H/C=1.81	H/C=1./4	H/C=1.04	H/C=1.59	H/C=1.47	
Lanzhou,	valen	Jul-Aug,	O/C=0.41	O/C=0.13	O/C=0.13			O/C=0.35	O/C=0.85	Xu et al.,
China	urban	2012	H/C=1.62	H/C=2.02	H/C=2.07			H/C=1.45	H/C=1.42	2014
Lanzhou,	urbon	Jan-Feb,	O/C=0.35	O/C=0.13	O/C=0.09	O/C=0.30	O/C=0.25	O/C=0.41	O/C=1.00	Xu et al.,
China	urban	2014	H/C=1.69	H/C=2.03	H/C=1.89	H/C=1.69	H/C=1.68	H/C=1.60	H/C=1.24	2016
Shanghai,	urbon	May-Jun,	O/C=0.40	O/C=0.20				O/C=0.44	O/C=0.81	Huang et
China	urban	2010	H/C=1.92	H/C=1.93				H/C=1.61	H/C=1.62	al., 2012
Nanjing,	urbon	Apr. 2015	O/C=0.27	O/C=0.13	O/C=0.20			O/C=0.40	O/C=0.69	Wang et al.,
China	urban	Арі, 2015	H/C=1.52	H/C=1.91	H/C=1.82			H/C=1.6	H/C=1.38	2016
			Before							
			O/C=0.39							
			H/C=1.78							
			during		0/0 0 10			0/0 0 40	0/0.070	.
Hangzhou,	urban	Aug-Sep,	O/C=0.58	0/C=0.07	0/C=0.18			0/C=0.49	0/C=0.78	Li et al.,
China		2016(G20)	H/C=1.65	H/C=2.17	H/C=1.83			H/C=1.67	H/C=1.54	2018
			after							
			O/C=0.51							
			H/C=1.69							
Shenzhen,		Oct-Dec,	O/C=0.39	O/C=0.14		O/C=0.40		O/C=0.56	O/C=0.74	He et al.,
China	urban	2009	H/C=1.83	H/C=1.85		H/C=1.60		H/C=1.58	H/C=1.37	2011
Shenzhen,	urban	Dec 2014-	O/C=0.52	O/C=0.10	O/C=0.18	O/C=0.33		O/C=0.76	O/C=0.95	Cao et al.,

China		Jan 2015	H/C=1.61	H/C=2.00	H/C=1.77	H/C=1.52		H/C=1.54	H/C=1.18	2018
Nao'Ao		Dag. 2015		0/0-0.06		0/C = 0.60			0/0-0.06	Cas at al
island,	urban	Dec 2013-		U/C=0.00		U/C=0.00			U/C=0.90	Cao et al.,
China		Jan, 2010		п/С=1.81		п/С=1.75			п/С=1.24	2019
Beijing,	suburb	Aug-Sep,	O/C=0.54	O/C=0.15				O/C=0.33	O/C=0.42	Chen et al.,
China	an	2018	H/C=1.67	H/C=1.41				H/C=1.19	H/C=1.15	2020
liaving	auburb	Iun Iul	0/C = 0.36	0/C = 0.16				OOA		Uuong of
China	suburb	2010	U/C = 0.50	U/C = 0.10				O/C=0.51		al 2012
China	an	2010	п/С=1.94	п/С=1.95				H/C=1.60		al., 2015
liaving	auburb		O/C = 0.43	0/C = 0.14		O/C = 0.34		OOA		Uuong of
China	subuib	Dec, 2010	U/C = 0.43	U/C = 0.14		U/C = 0.34		O/C=0.74		al 2012
Cinna	ali		11/C=1.75	11/C=2.02		11/C=1.05		H/C=1.41		al., 2013
Ziyang,	suburb	Dec 2012-	O/C=0.65	O/C=0.10		O/C=0.32		O/C=0.73	O/C=1.02	Hu W. et
China	an	Jan 2013	H/C=1.56	H/C=1.81		H/C=1.67		H/C=1.48	H/C=1.46	al., 2016
Kaiping,	suburb	Oct-Nov,	O/C=0.60			O/C=0.33		O/C=0.49	O/C=0.80	Huang et
China	an	2008	H/C=1.64			H/C=1.77		H/C=1.61	H/C=1.42	al., 2011
Heshan,	suburb	Nov-Dec,	O/C=0.50	O/C=0.11		O/C=0.24		O/C=0.46	O/C=0.69	Gong et al.,
China	an	2011	H/C=1.63	H/C=1.96		H/C=1.54		H/C=1.45	H/C=1.42	2012
Panyu,	suburb	Nov-Dec,	O/C=0.53	O/C=0.22	O/C=0.12	O/C=0.51		O/C=0.69	O/C=0.92	Qin et al.,
China	an	2014	H/C=1.64	H/C=1.91	H/C=1.83	H/C=1.92		H/C=1.68	H/C=1.37	2017
Hongkong,	suburb	Apr-Jun,	O/C=0.40							Li et al.,
China	an	2011	H/C=1.33							2013
Hongkong,	suburb	May 2011	O/C=0.48	O/C=0.11	O/C=0.10			O/C=0.29	O/C=0.85	Li et al.,
China	an	Widy, 2011	H/C=1.50	H/C=1.82	H/C=1.90			H/C=1.59	H/C=1.23	2015
Hongkong,	suburb	Sop. 2011	O/C=0.66	O/C=0.31	O/C=0.14			O/C=0.53	O/C=0.99	Li et al.,
China	an	Sep, 2011	H/C=1.51	H/C=1.82	H/C=1.84			H/C=1.50	H/C=1.42	2015
Hongkong,	suburb	Nov. 2011	O/C=0.53	O/C=0.10	O/C=0.13			O/C=0.45	O/C=0.75	Li et al.,
China	an	1000, 2011	H/C=1.54	H/C=1.92	H/C=1.84			H/C=1.57	H/C=1.38	2015
Hongkong,	suburb	Feb 2012	O/C=0.55	O/C=0.11	O/C=0.15			O/C=0.34	O/C=0.79	Li et al.,
China	an	160, 2012	H/C=1.55	H/C=1.93	H/C=1.81			H/C=1.61	H/C=1.36	2015
Hongkong,	suburb	Oct 2016	O/C=0.68	O/C=0.21				O/C=0.75	O/C=1.04	Li et al.,
China	an	000, 2010	H/C=1.57	H/C=1.85				H/C=1.52	H/C=1.38	2019
Changping,	suburb	Jun 2016	O/C=0.52	O/C=0.05	O/C=0.22	O/C=0.46		O/C=0.48	O/C=0.79	Li et al.,
China	an	Juli, 2010	H/C=1.64	H/C=2.06	H/C=1.81	H/C=1.76		H/C=1.53	H/C=1.51	2019
Changdao,	ramota	Mar-Apr,	O/C=0.75	O/C=0.43			O/C=0.21	O/C=0.78	O/C=0.98	Hu et al.,
China	Temote	2011	H/C=1.48	H/C=1.66			H/C=1.53	H/C=1.45	H/C=1.38	2013
Lake,	haalson	Mon Ann	0/0-0.67	0/0-0.28				OOA		7 hu at al
Hongze,	Dackgr	Mar-Apr,	U/C=0.07	U/C=0.28				O/C=0.87		2016
China	ound	2011	n/C=1.32	п/С–1./3				H/C=1.46		2010
Mount	hoolean	Mor Arr	0/0-0.09					0/0-0.55	0/C = 1.25	Zhu et el
Wuzhi,	ound	2015	U/C=0.98					U/C=0.55	U/C=1.35	2016
China	ouna	2015	п/С=1.31					n/C=1.3/	п/С=1.08	2010
Waliguan,	backgr	Jul 2017	O/C=0.99	O/C=0.11		O/C=0.36		OOA		Zhang et
China	ound	Jui, 2017	H/C=1.43	H/C=1.93		H/C=1.88		O/C=1.00		al., 2019

							H/C=1.57		
								MO-OOA	
							LO-OOA	O/C=0.87	
Taizhou,	backgr	May-Jun,	O/C=0.57	O/C=0.23		O/C=0.29	O/C=0.64	H/C=1.49	Huang et
China	ound	2018(BB	H/C=1.66	H/C=1.88		H/C=1.81	H/C=1.60	aq-OOA	al., 2020
		period)						O/C=0.80	
								H/C=1.55	
								MO-OOA	
							LO-OOA	O/C=0.92	
Taizhou,	backgr	May-Jun,	O/C=0.62	O/C=0.17		O/C=0.31	O/C=0.47	H/C=1.45	Huang et
China	ound	2018(clean	H/C=1.59	H/C=1.88		H/C=1.68	H/C=1.67	aq-OOA	al., 2020
		period)						O/C=1.08	
								H/C=1.35	
Xinglong,	backgr		O/C=0.71	O/C=0.15			O/C=0.69	O/C=0.93	Li et al.,
China	ound	May, 2019	H/C=1.44	H/C=1.76			H/C=1.75	H/C=1.26	2021
Xinglong,	backgr	Jun-Jul,	O/C=0.75	O/C=0.12			O/C=0.63	O/C=0.94	Li et al.,
China	ound	2019	H/C=1.41	H/C=1.83			H/C=1.44	H/C=1.36	2021
Xinglong,	backgr	Oct-Nov,	O/C=0.61	O/C=0.15			O/C=0.67	O/C=0.84	Li et al.,
China	ound	2019	H/C=1.47	H/C=1.76			H/C=1.58	H/C=1.36	2021
Xinglong,	backgr	D 2010	O/C=0.54	O/C=0.11			O/C=0.57	O/C=0.80	Li et al.,
China	ound	Dec, 2019	H/C=1.53	H/C=1.84			H/C=0.80	H/C=1.40	2021
Mt.	h 1	Man Ann	0/0 1 11			0/0 0 27	OOA	OOA-BB	71
Yulong,	Dackgr	Mar-Apr,	U/C=1.11			U/C=0.37	O/C=1.45	O/C=0.85	zheng et
China	ouna	2013	п/С=1.40			п/С=1.87	H/C=1.26	H/C=1.57	al., 2017
Nam Co,	bookar		0/0-0.88				0/C = 0.40	0/C = 0.96	Vu at al
Tibet,	ound	Jun, 2015	U/C = 0.00				U/C = 0.49	U/C = 0.90	2019
China	ouna		II/C=1.55				11/C=1.54	11/C=1.04	2018
Qomolang	backar	Apr-May	$\Omega/C = 1.07$			0/C=0.85		MO-OOA	Zhang et
ma, Tibet,	ound	2016	H/C = 1.07			H/C = 1.42		O/C=1.34	al 2018
China	ound	2010	11/C-1.27			11/C-1.42		H/C=1.17	al., 2010
Riverside,	urban	Jul-Aug,	O/C=0.44						Docherty et
CA, US	urban	2005	H/C=1.71						al., 2011
Queens		Iul-Aug	$\Omega/C=0.46$	$\Omega/C=0.06$	$\Omega/C=0.18$		$\Omega/C=0.38$	$\Omega/C=0.63$	Sun et al
College,	urban	2009	H/C=1.65	H/C=1.83	H/C=1.58		H/C=1.40	H/C=1.29	2011
NYC, US		2009	11/C=1.05	11/C=1.05	11/C=1.50		11/C=1.40	11/C=1.27	2011
Fresno, CA			$\Omega/C = 0.35$	$\Omega/C = 0.09$	0/C = 0.11	0/C = 0.33	OOA		Ge et al
US	urban	Jan, 2010	H/C-1 75	H/C = 1.80	H/C = 1.72	H/C-1 56	O/C=0.42		2012
05			11/C=1.75	11/C-1.00	11/C-1.72	11/C=1.50	H/C=1.43		2012
Pasadena,	urban	May-Jun,	O/C=0.52	O/C=0.14			O/C=0.38	O/C=0.80	Hayes et al.,
CA, US	urban	2010	H/C=1.58	H/C=1.60			H/C=1.40	H/C=1.20	2013
Houston,	urban	May 2015	O/C=0.72	O/C=0.06			O/C=0.61	O/C=1.24	Al-Naiema
Texas, US	urodii	wiay, 2015	H/C=1.50	H/C=1.26			H/C=1.57	H/C=1.21	et al., 2018
Mexico	urbar	Mar 2006	O/C=0.53						Aiken et al.,
City, MX	urball	iviai, 2000	H/C=1.82						2009

Barcelona,		Feb-Mar,	O/C=0.41						Mohr et al.,
ES	urban	2009	H/C=1.77						2012
SIRTA,									
Paris,	urban	Jul, 2009	O/C=0.48	O/C=0.16	O/C=0.13		O/C=0.39	O/C=0.73	Crippa et
Franch			H/C=1.62	H/C=1.84	H/C=1.74		H/C=1.52	H/C=1.33	al., 2013
Patras,		Feb-Mar,	O/C=0.42	O/C=0.10	O/C=0.14	O/C=0.30	O/C=0.65		Florou et
Greece	urban	2012	H/C=1.71	H/C=1.83	H/C=1.71	H/C=1.59	H/C=1.37		al., 2017
Athens,		Jan-Feb,	O/C=0.32	O/C=0.13	O/C=0.11	O/C=0.27	O/C=0.46		Florou et
Greece	urban	2013	H/C=1.72	H/C=1.74	H/C=1.68	H/C=1.47	H/C=1.45		al., 2017
			O/C=0.58						Brege et al.,
SPC, Italy	urban	Jan, 2013	H/C=1.37						2018
			O/C=0.80						Brege et al.,
SPC, Italy	urban	Feb, 2013	H/C=1.29						2018
Bologna.		Feb. 2013	O/C=0.24						Brege et al
Italy	urban	(BB fresh)	H/C=1.65						2018
Bologna		Feb 2013	O/C=0.56						Brege et al.
Italy	urban	(BB aged)	H/C=1.60						2018
SPC Po		(== -8)							
Valley	suburb	Mar-Apr,	O/C=0.59						Saarikoski
Italy	an	2008	H/C=1.64						et al., 2012
Montseny	suburb	Feb-Mar	O/C=0.74						Chen et al.
ES	an	2009	H/C=1.60						2015
Cool CA	suburb	2007	0/C=0.56						Setvan et
	an	Jun, 2010	H/C-1 53						al 2012
Upton NY	suburb	Iul-Aug	0/C=0.61						Chen et al
	an	2011	H/C = 1.63						2015
Davia CA	an	2011	0/C=0.51						Chap at al
Davis, CA,	suburb	Jan, 2011	U/C=0.51						2015
	an		H/C=1.50						2015
Southern	1		O/C=0.69						Martin et
Great	rural	Jun, 2007	H/C=1.40						al., 2008
Plains, US			0/0.050						D 1
Melpitz,	rural	May-Jun,	0/C=0.52						Poulain et
DE		2008	H/C=1.51						al., 2011
Melpitz,	rural	Sep-Nov,	0/C=0.54						Poulain et
DE		2008	H/C=1.48						al., 2011
Melpitz,	backgr	Feb-Mar,	0/C=0.53						Poulain et
DE	ound	2009	H/C=1.48						al., 2011
Douai,		Feb-Mar,	O/C=0.40	O/C=0.13		OOA-BB	LO-OOA		Rodelas et
France	rural	2016	H/C=1.69	H/C=2.03		O/C=0.58	O/C=0.61		al., 2019
						H/C=1.54	H/C=1.55		
north-		April-May,	O/C=0.84						Liu et al.,
central	rural	2016	H/C=1.39						2021
Oklahoma									
north-	rural	Aug-Sep,	O/C=0.59						Liu et al.,

central		2016	H/C=1.52						2021
Oklahoma									
Whistler	backgr	Apr-May.	O/C=0.83						Sun et al
Mountain,	ound	2006	H/C=1.66						2009
CA	ound	2000	120 1100						2007
Amazon,	backgr	Feb-Mar,	O/C=0.58						Chen et al.,
BR	ound	2008	H/C=1.60						2015
Borneo,	backgr	Jun-Jul,	O/C=0.71						Robinson et
MY	ound	2008	H/C=1.62						al., 2011
Mace Head	hackor		$\Omega/C = 0.60$						Ovadnevait
IE	ound	Aug, 2009	H/C=1.25						e et al.,
	ound		11/0-1.25						2011
Whistler	hackor	Iun-Iul	$\Omega/C=0.60$						Chen et al
Mountain,	ound	2010	H/C=1.49						2015
CA	ound	2010	11/0-1119						2013
Manitou	backgr	Jul-Aug,	O/C=0.61						Chen et al.,
Forest, US	ound	2011	H/C=1.49						2015
Mt.	hackor	Iun_Iul	$\Omega/C = 0.71$			OOA1	OOA2	OOA3	Rinaldi et
Cimone,	ound	2012	H/C = 1.45			O/C=0.67	O/C=0.75	O/C=1.02	al 2015
Italy	ound	2012	11/C=1.45			H/C=1.51	H/C=1.44	H/C=1.07	al., 2015
Mt.	backar	յոլ Հոգ	0/C = 0.84		O/C=0.35	OOA-BB1	OOA-BB2	MO-OOA	Zhou et al
Bachelor,	ound	2012	U/C = 0.04		H/C=1.76	O/C=0.60	O/C=1.06	O/C=1.09	2017
US	oulia	2013	П/C=1.40			H/C=1.72	H/C=1.21	H/C=1.31	2017
BO, Po	urban			0/C=0.07	0/C-0.28		OOA-BB	Aq-OOA-BB	Decliona at
Valley,	backgr	Fall, 2011		U/C = 0.07	U/C = 0.38		O/C=0.65	O/C=0.69	
Italy	ound			H/C=2.02	п/С=1.09		H/C=1.52	H/C=1.74	al., 2020
BO, Po	urban	Summer		O/C = 0.16			OOA1	000A2	Decliona at
Valley,	backgr	2012		U/C = 0.10			O/C=0.071	O/C=0.65	
Italy	ound	2012		п/С=1.91			H/C=1.62	H/C=1.56	al., 2020
BO, Po	urban			0/0-0.15	O/C=0.35	OOA-BB	OOA	aq-OOA-BB	Declices at
Valley,	backgr	Fall, 2012		0/C=0.15	H/C=1.76	O/C=0.73	O/C=0.57	O/C=0.72	Pagnone et
Italy	ound			H/C=2.00		H/C=1.55	H/C=1.50	H/C=1.80	al., 2020
BO, Po	urban	N 7. 4		0/0 0 10	O/C=0.30	OOA-BB	OOA	aq-OOA-BB	
Valley,	backgr	Winter,		0/C=0.10	H/C=1.76	O/C=0.54	O/C=0.84	O/C=0.77	Paglione et
Italy	ound	2013		H/C=2.01		H/C=1.53	H/C=1.53	H/C=1.79	al., 2020
BO, Po	urban				O/C=0.35	OOA-BB	OOA	aq-OOA-BB	
Valley,	backgr	Spring,		O/C=0.05	H/C=1.63	O/C=0.44	O/C=0.75	O/C=0.88	Paglione et
Italy	ound	2013		H/C=1.94		H/C=1.65	H/C=1.41	H/C=1.77	al., 2020
BO, Po	urban			0/0 000	O/C=0.34	OOA1	OOA2	aq-OOA-BB	D 11
Valley,	backgr	Fall, 2013		O/C=0.03	H/C=1.72	O/C=0.52	O/C=0.78	O/C=0.96	Paglione et
Italy	ound			H/C=1.97		H/C=1.67	H/C=1.35	H/C=1.83	al., 2020
BO, Po	urban				O/C=0.47	OOA-BB	OOA	aq-OOA-BB	
Valley,	backgr	Winter,		O/C=0.04	H/C=1.76	O/C=0.55	O/C=0.97	O/C=0.90	Paglione et
Italy	ound	2014		H/C=2.01		H/C=1.93	H/C=1.43	H/C=1.57	al., 2020

-											
BO Val Ital), lley, ly	Ро	urban backgr ound	Spring, 2014	O/C=0.03 H/C=1.97	O/C=0.26 H/C=1.75	O/C=0.31 H/C=1.63	OOA1 O/C=0.61 H/C=1.68	OOA2 O/C=0.80 H/C=1.42	OOA3 O/C=0.98 H/C=1.43	Paglione et al., 2020
SP0 Val Ital	C, lley, ly	Ро	rural backgr ound	Fall, 2011	O/C=0.29 H/C=1.80		O/C=0.33 H/C=1.79			aq-OOA-BB O/C=0.85 H/C=1.48	Paglione et al., 2020
SP0 Val Ital	C, lley, ly	Ро	rural backgr ound	Summer, 2012	O/C=0.12 H/C=1.90			OOA1 O/C=0.34 H/C=1.66	OOA2 O/C=0.43 H/C=1.88	OOA3 O/C=0.50 H/C=1.48	Paglione et al., 2020
SP0 Val Ital	C, lley, ly	Ро	rural backgr ound	Spring, 2013	O/C=0.14 H/C=1.90		O/C=0.33 H/C=1.63	OOA1 O/C=0.64 H/C=1.61	OOA2 O/C=0.91 H/C=1.46	OOA3 O/C=0.96 H/C=1.37	Paglione et al., 2020
SP0 Val Ital	C, lley, ly	Po	rural backgr ound	Fall, 2013	O/C=0.05 H/C=2.05		O/C=0.54 H/C=1.64	OOA1 O/C=0.70 H/C=1.54	OOA2 O/C=1.00 H/C=1.30	aq-OOA-BB O/C=0.82 H/C=1.74	Paglione et al., 2020

Fig. S1 Diurnal cycles of OA sources (a), and the time series of each source and their tracers during the winter campaign (b).

Fig. S2 Comparisons of frequencies of temperature(a), Ox concentration(b), WS(c), WD(d), RH(e) and ALWC(f) between reference days and SIA-enhanced periods (SIA_P1 and SIA_P2), and variation of NO₃⁻/SO₄²⁻ ratio as a function of PM_{2.5} mass, colored by RH during winter campaign (g).

Fig. S3 Correlation between RH and SOR (a) or NOR (b) during the winter campaign in Xi'an.

Fig. S4 Correlation between the concentration ($\mu g m^{-3}$) of OOA-BB and HOA (a), COA (b), CCOA (c) and BBOA (d).

Fig. S5 Correlations between the concentration of aq-OOA and aqueous-phase processing fragment ions including $CH_2O_2^+$, CH_3SO^+ , and $CH_3SO_2^+$ (a), and the correlation between the aq-OOA profile resolved in the winter campaign and the aq-OOA profile resolved in the summer of 2019 in Xi'an (b).

Fig. S6 Correlation between the concentration of aq-OOA and SIA during the entire winter campaign in Xi'an.

Fig. S7 Correlation between the concentration of aq-OOA and sulfate or nitrate during summer (a), and winter (b) in Xi'an.

Reference

- Aiken, A. C., Salcedo, D., Cubison, M. J., Huffman, J. A., DeCarlo, P. F., Ulbrich, I. M., Docherty, K. S., Sueper, D., Kimmel, J. R., Worsnop, D. R., Trimborn, A., Northway, M., Stone, E. A., Schauer, J. J., Volkamer, R. M., Fortner, E., de Foy, B., Wang, J., Laskin, A., Shutthanandan, V., Zheng, J., Zhang, R., Gaffney, J., Marley, N. A., Paredes-Miranda, G., Arnott, W. P., Molina, L. T., Sosa, G., and Jimenez, J. L.: Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) Part 1: Fine particle composition and organic source apportionment, Atmos. Chem. Phys., 9, 6633–6653, https://doi.org/10.5194/acp-9-6633-2009, 2009.
- Al-Naiema, I. M., Hettiyadura, A. P. S., Wallace, H. W., Sanchez, N. P., Madler, C. J., Cevik, B. K., Bui, A. A. T., Kettler, J., Griffin, R. J., and Stone, E. A.: Source apportionment of fine particulate matter in Houston, Texas: insights to secondary organic aerosols, Atmos. Chem. Phys., 18, 15601–15622, https://doi.org/10.5194/acp-18-15601-2018, 2018.
- Brege, M., Paglione, M., Gilardoni, S., Decesari, S., Facchini, M. C., and Mazzoleni, L. R.: Molecular insights on aging and aqueous-phase processing from ambient biomass burning emissions-influenced Po Valley fog and aerosol, Atmos. Chem. Phys., 18, 13197–13214,

https://doi.org/10.5194/acp-18-13197-2018, 2018.

- Cao, L.-M., Huang, X.-F., Li, Y.-Y., Hu, M., and He, L.-Y.: Volatility measurement of atmospheric submicron aerosols in an urban atmosphere in southern China, Atmos. Chem. Phys., 18, 1729– 1743, https://doi.org/10.5194/acp-18-1729-2018, 2018.
- Cao, L.-M., Huang, X.-F., Wang, C., Zhu, Q., and He, L.-Y.: Characterization of submicron aerosol volatility in the regional atmosphere in Southern China, Chemosphere, 236, 124383, https://doi.org/10.1016/j.chemosphere.2019.124383, 2019.
- Chen, Q., Heald, C. L., Jimenez, J. L., Canagaratna, M. R., Zhang, Q., He, L.-Y., Huang, X.-F., Campuzano-Jost, P., Palm, B. B., Poulain, L., Kuwata, M., Martin, S.T., Abbatt, J.P. D., Lee, A. K. Y., and Liggio, J.: Elemental Composition of Organic Aerosol: The Gap Between Ambient and Laboratory Measurements, Geophys. Res. Lett., 42, 4182–4189, https://doi.org/10.1002/2015GL063693, 2015.
- Chen, T., Liu, J., Liu, Y., Ma, Q., Ge, Y., Zhong, C., Jiang, H., Chu, B., Zhang, P., Ma, J., Liu, P., Wang, Y., Mu, Y., and He, H.: Chemical characterization of submicron aerosol in summertime Beijing: A case study in southern suburbs in 2018, Chemosphere, 247, 125918, https://doi.org/10.1016/j.chemosphere.2020.125918, 2020.
- Crippa, M., El Haddad, I., Slowik, J. G., DeCarlo, P. F., Mohr, C., Heringa, M. F., Chirico, R., Marchand, N., Sciare, J., Baltensperger, U., and Prévôt A. S. H.: Identification of marine and continental aerosol sources in Paris using high resolution aerosol mass spectrometry, J. Geophys. Res., 118, 1950–1963, https://doi.org/10.1002/jgrd.50151, 2013.
- Docherty, K. S., Aiken, A. C., Huffman, J. A., Ulbrich, I. M., DeCarlo, P. F., Sueper, D., Worsnop, D. R., Snyder, D. C., Peltier, R. E., Weber, R. J., Grover, B. D., Eatough, D. J., Williams, B. J., Goldstein, A. H., Ziemann, P. J., and Jimenez, J. L.: The 2005 Study of Organic Aerosols at Riverside (SOAR-1): instrumental intercomparisons and fine particle composition, Atmos. Chem. Phys., 11, 12387–12420, https://doi.org/10.5194/acp-11-12387-2011, 2011.
- Duan, J., Huang, R. J., Gu, Y., Lin, C., Zhong, H., Wang, Y., Yuan, W., Ni, H.Y., Yang, L., Chen, Y., Worsnop, D.R., and O'Dowd, C.: The formation and evolution of secondary organic aerosol during summer in Xi'an: Aqueous phase processing in fog-rain days, Sci. Total. Environ., 756, 144077, https://doi.org/10.1016/j.scitotenv.2020.144077, 2021.
- Florou, K., Papanastasiou, D. K., Pikridas, M., Kaltsonoudis, C., Louvaris, E., Gkatzelis, G. I., Patoulias, D., Mihalopoulos, N., and Pandis, S. N.: The contribution of wood burning and other pollution sources to wintertime organic aerosol levels in two Greek cities, Atmos. Chem. Phys., 17, 3145–3163, https://doi.org/10.5194/acp-17-3145-2017, 2017.
- Ge, X. L., Setyan, A., Sun, Y. L., and Zhang, Q.: Primary and secondary organic aerosols in Fresno, California during wintertime: Results from high resolution aerosol mass spectrometry, J. Geophys. Res., 117, D19301, https://doi.org/10.1029/2012JD018026, 2012.
- Gong, Z., Lan, Z., Xue, L., Zeng, L., He, L., and Huang, X.: Characterization of submicron aerosols in the urban outflow of the central Pearl River Delta region of China, Front. Env. Sci. Eng., 6, 725-733, https://doi.org/10.1007/s11783-012-0441-8, 2012.
- Hayes, P. L., Ortega, A. M., Cubison, M. J., Froyd, K. D., Zhao, Y., Cliff, S. S., Hu, W. W., Toohey,
 D. W., Flynn, J. H., Lefer, B. L., Grossberg, N., Alvarez, S., Rappenglück, B., Taylor, J. W.,
 Allan, J. D., Holloway, J. S., Gilman, J. B., Kuster, W. C., de Gouw, J. A., Massoli, P., Zhang,
 X., Liu, J., Weber, R. J., Corrigan, A. L., Russell, L. M., Isaacman, G., Worton, D. R., Kreisberg,
 N. M., Goldstein, A. H., Thalman, R., Waxman, E. M., Volkamer, R., Lin, Y. H., Surratt, J. D.,

Kleindienst, T. E., Offenberg, J. H., Dusanter, S., Griffith, S., Stevens, P. S., Brioude, J., Angevine, W. M., and Jimenez, J. L.: Organic aerosol composition and sources in Pasadena, California, during the 2010 CalNex campaign, J. Geophys. Res.-Atmos., 118, 9233–9257, https://doi.org/10.1002/jgrd.50530, 2013.

- He, L. Y., Huang, X. F., Xue, L., Hu, M., Lin, Y., Zheng, J., Zhang, R. Y., and Zhang, Y. H.: Submicron aerosol analysis and organic source apportionment in an urban atmosphere in Pearl River Delta of China using high-resolution aerosol mass spectrometry, J. Geophys. Res., 116, D12304, https://doi.org/10.1029/2010JD014566, 2011.
- Hu, W., Hu, M., Hu, W.-W., Niu, H., Zheng, J., Wu, Y., Chen, W., Chen, C., Li, L., Shao, M., Xie, S., and Zhang, Y.: Characterization of submicron aerosols influenced by biomass burning at a site in the Sichuan Basin, southwestern China, Atmos. Chem. Phys., 16, 13213–13230, https://doi.org/10.5194/acp-16-13213-2016, 2016.
- Hu, W., Hu, M., Hu, W.-W., Zheng, J., Chen, C., Wu, Y., and Guo, S.: Seasonal variations in high time-resolved chemical compositions, sources, and evolution of atmospheric submicron aerosols in the megacity Beijing, Atmos. Chem. Phys., 17, 9979–10000, https://doi.org/10.5194/acp-17-9979-2017, 2017.
- Hu, W. W., Hu, M., Yuan, B., Jimenez, J. L., Tang, Q., Peng, J. F., Hu, W., Shao, M., Wang, M., Zeng, L. M., Wu, Y. S., Gong, Z. H., Huang, X. F., and He, L. Y.: Insights on organic aerosol aging and the influence of coal combustion at a regional receptor site of central eastern China, Atmos. Chem. Phys., 13, 10095–10112, https://doi.org/10.5194/acp-13-10095-2013, 2013.
- Hu, W. W., Hu, M., Hu, W., Jimenez, J. L., Yuan, B., Chen, W., Wang, M., Wu, Y., Chen, C., Wang, Z., Peng, J., Zeng, L., and Shao, M.: Chemical composition, sources, and aging process of submicron aerosols in Beijing: Contrast between summer and winter, J. Geophys. Res.-Atmos., 121, 1955–1977, https://doi.org/10.1002/2015JD024020, 2016.
- Huang, D. D., Kong, L., Gao, J., Lou, S., Qiao, L., Zhou, M., Ma, Y., Zhu, S., Wang, H., and Chen, S.: Insights into the formation and properties of secondary organic aerosol at a background site in Yangtze River Delta region of China: aqueous-phase processing vs. photochemical oxidation, Atmos. Environ., 239, 117716, https://doi.org/10.1016/j.atmosenv.2020.117716, 2020.
- Huang, X.-F., He, L.-Y., Hu, M., Canagaratna, M. R., Sun, Y., Zhang, Q., Zhu, T., Xue, L., Zeng, L.-W., Liu, X.-G., Zhang, Y.-H., Jayne, J. T., Ng, N. L., and Worsnop, D. R.: Highly timeresolved chemical characterization of atmospheric submicron particles during 2008 Beijing Olympic Games using an Aerodyne High-Resolution Aerosol Mass Spectrometer, Atmos. Chem. Phys., 10, 8933–8945, https://doi.org/10.5194/acp-10-8933-2010, 2010.
- Huang, X.-F., He, L.-Y., Hu, M., Canagaratna, M. R., Kroll, J. H., Ng, N. L., Zhang, Y. H., Lin, Y., Xue, L., Sun, T. L., Liu, X. G., Shao, M., Jayne, J. T., and Worsnop, D. R.: Characterization of submicron aerosols at a rural site in Pearl River Delta of China using an Aerodyne High-Resolution Aerosol Mass Spectrometer, Atmos. Chem. Phys., 11, 1865-1877, https://doi.org/10.5194/acp-11-1865-2011, 2011.
- Huang, X.-F., He, L.-Y., Xue, L., Sun, T.-L., Zeng, L.-W., Gong, Z.-H., Hu, M., and Zhu, T.: Highly time-resolved chemical characterization of atmospheric fine particles during 2010 Shanghai World Expo, Atmos. Chem. Phys., 12, 4897–4907, https://doi.org/10.5194/acp-12-4897-2012, 2012.
- Huang, X.-F., Xue, L., Tian, X. D., Shao, W. W., Sun, T. L., Gong, Z. H., Ju, W. W., Jiang, B., Hu, M., and He, L. Y.: Highly time-resolved carbonaceous aerosol characterization in Yangtze

River Delta of China: Composition, mixing state and secondary formation, Atmos. Environ., 64, 200–207, https://doi.org/10.1016/j.atmosenv.2012.09.059, 2013.

- Li, K., Chen, L., White, S. J., Zheng, X., Lv, B., Lin, C., Bao, Z., Wu, X., Gao, X., Ying, F., Shen, J., Azzi, M., and Cen, K.: Chemical characteristics and sources of PM1 during the 2016 summer in Hangzhou, Environ. Pollut., 232, 42-54, https://doi.org/10.1016/j.envpol.2017.09.016, 2018.
- Li, J., Liu, Q., Li, Y., Liu, T., Huang, D., Zheng, J., Zhu, W., Hu, M., Wu, Y., Lou, S., Hallquist, A. M., Hallquist, M., Chan, C. K., Canonaco, F., Prevot, A. S. H., Fung, J. C. H., Lau, A. K. H., and Yu, J. Z.: Characterization of Aerosol Aging Potentials at Suburban Sites in Northern and Southern China Utilizing a Potential Aerosol Mass (Go:PAM) Reactor and an Aerosol Mass Spectrometer, J. Geophys. Res. Atmos., 124, 5629-5649, https://doi.org/10.1029/2018JD029904, 2019.
- Li, J., Liu, Z., Gao, W., Tang, G., Hu, B., Ma, Z., and Wang, Y.: Insight into the formation and evolution of secondary organic aerosol in the megacity of Beijing, China, Atmos. Environ., 220, 117070, https://doi.org/10.1016/j.atmosenv.2019.117070, 2020.
- Li, J., Cao, L., Gao, W., He, L., Yan, Y., He, Y., Pan, Y., Ji, D., Liu, Z., and Wang, Y.: Seasonal variations in the highly time-resolved aerosol composition, sources and chemical processes of background submicron particles in the North China Plain, Atmos. Chem. Phys., 21, 4521–4539, https://doi.org/10.5194/acp-21-4521-2021, 2021.
- Li, Y. J., Lee, B. Y. L., Yu, J. Z., Ng, N. L., and Chan, C. K.: Evaluating the degree of oxygenation of organic aerosol during foggy and hazy days in Hong Kong using high-resolution time-offlight aerosol mass spectrometry (HR-ToF-AMS), Atmos. Chem. Phys., 13, 8739–8753, https://doi.org/10.5194/acp-13-8739-2013, 2013.
- Li, Y. J., Lee, B. P., Su, L., Fung, J. C. H., and Chan, C. K.: Seasonal characteristics of fine particulate matter (PM) based on high-resolution time-of-flight aerosol mass spectrometric (HR-ToF-AMS) measurements at the HKUST Supersite in Hong Kong, Atmos. Chem. Phys., 15, 37-53, https://doi.org/10.5194/acp-15-37-2015, 2015.
- Liu, J., Alexander, L., Fast, J. D., Lindenmaier, R., and Shilling, J. E.: Aerosol characteristics at the Southern Great Plains site during the HI-SCALE campaign, Atmos. Chem. Phys., 21, 5101– 5116, https://doi.org/10.5194/acp-21-5101-2021, 2021.
- Liu, Q., Sun, Y., Hu, B., Liu, Z., Akio, S., and Wang, Y.: In situ measurement of pm1 organic aerosol in beijing winter using a high-resolution aerosol mass spectrometer, Chinese Sci. Bull., 57, 819–826, https://doi.org/10.1007/s11434-011-4886-0, 2012.
- Martin, S. T., Rosenoern, T., Chen, Q., and Collins, D. R.: Phase changes of ambient particles in the Southern Great Plains of Oklahoma, Geophys. Res. Lett., 35(22), L22801, 2008.
- Mohr, C., DeCarlo, P. F., Heringa, M. F., Chirico, R., Slowik, J. G., Richter, R., Reche, C., Alastuey, A., Querol, X., Seco, R., Peñuelas, J., Jiménez, J. L., Crippa, M., Zimmermann, R., Baltensperger, U., and Prévôt, A. S. H.: Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data, Atmos. Chem. Phys., 12, 1649–1665, https://doi.org/10.5194/acp-12-1649-2012, 2012.
- Ovadnevaite, J., O'Dowd, C., Dall'Osto, M., Ceburnis, D., Worsnop, D. R., and Berresheim, H.: Detecting high contributions of primary organic matter to marine aerosol: A case study, Geophys. Res. Lett., 38, L02807, https://doi.org/10.1029/2010GL046083, 2011.
- Paglione, M., Gilardoni, S., Rinaldi, M., Decesari, S., Zanca, N., Sandrini, S., Giulianelli, L., Bacco,

D., Ferrari, S., Poluzzi, V., Scotto, F., Trentini, A., Poulain, L., Herrmann, H., Wiedensohler, A., Canonaco, F., Prévôt, A. S. H., Massoli, P., Carbone, C., Facchini, M. C., and Fuzzi, S.: The impact of biomass burning and aqueous-phase processing on air quality: a multi-year source apportionment study in the Po Valley, Italy, Atmos. Chem. Phys., 20, 1233–1254, https://doi.org/10.5194/acp-20-1233-2020, 2020.

- Poulain, L., Spindler, G., Birmili, W., Plass-Dülmer, C., Wiedensohler, A., and Herrmann, H.: Seasonal and diurnal variations of particulate nitrate and organic matter at the IfT research station Melpitz, Atmos. Chem. Phys., 11, 12579–12599, https://doi.org/10.5194/acp-11-12579-2011, 2011.
- Qin, Y. M., Tan, H. B., Li, Y. J., Schurman, M. I., Li, F., Canonaco, F., Prévôt, A. S. H., and Chan, C. K.: Impacts of traffic emissions on atmospheric particulate nitrate and organics at a downwind site on the periphery of Guangzhou, China, Atmos. Chem. Phys., 17, 10245–10258, https://doi.org/10.5194/acp-17-10245-2017, 2017.
- Rinaldi, M., Gilardoni, S., Paglione, M., Sandrini, S., Fuzzi, S., Massoli, P., Bonasoni, P., Cristofanelli, P., Marinoni, A., Poluzzi, V., and Decesari, S.: Organic aerosol evolution and transport observed at Mt. Cimone (2165 m a.s.l.), Italy, during the PEGASOS campaign, Atmos. Chem. Phys., 15, 11327–11340, https://doi.org/10.5194/acp-15-11327-2015, 2015.
- Robinson, N. H., Hamilton, J. F., Allan, J. D., Langford, B., Oram, D. E., Chen, Q., Docherty, K., Farmer, D. K., Jimenez, J. L., Ward, M. W., Hewitt, C. N., Barley, M. H., Jenkin, M. E., Rickard, A. R., Martin, S. T., McFiggans, G., and Coe, H.: Evidence for a significant proportion of Secondary Organic Aerosol from isoprene above a maritime tropical forest, Atmos. Chem. Phys., 11, 1039–1050, https://doi.org/10.5194/acp-11-1039-2011, 2011.
- Rodelas, R. R., Chakraborty, A., Perdrix, E., Tison, E., and Riffault, V.: Real-time assessment of wintertime organic aerosol characteristics and sources at a suburban site in northern France, Atmos. Environ., 203, 48–61, https://doi.org/10.1016/j.atmosenv.2019.01.035, 2019.
- Saarikoski, S., Carbone, S., Decesari, S., Giulianelli, L., Angelini, F., Canagaratna, M., Ng, N. L., Trimborn, A., Facchini, M. C., Fuzzi, S., Hillamo, R., and Worsnop, D.: Chemical characterization of springtime submicrometer aerosol in Po Valley, Italy, Atmos. Chem. Phys., 12, 8401–8421, https://doi.org/10.5194/acp-12-8633-2012, 2012.
- Setyan, A., Zhang, Q., Merkel, M., Knighton, W. B., Sun, Y., Song, C., Shilling, J. E., Onasch, T. B., Herndon, S. C., Worsnop, D. R., Fast, J. D., Zaveri, R. A., Berg, L. K., Wiedensohler, A., Flowers, B. A., Dubey, M. K., and Subramanian, R.: Characterization of submicron particles influenced by mixed biogenic and anthropogenic emissions using high-resolution aerosol mass spectrometry: results from CARES, Atmos. Chem. Phys., 12, 8131–8156, https://doi.org/10.5194/acp-12-8131-2012, 2012.
- Sun, Y., Zhang, Q., Macdonald, A. M., Hayden, K., Li, S. M., Liggio, J., Liu, P. S. K., Anlauf, K. G., Leaitch, W. R., Steffen, A., Cubison, M., Worsnop, D. R., van Donkelaar, A., and Martin, R. V.: Size-resolved aerosol chemistry on Whistler Mountain, Canada with a high-resolution aerosol mass spectrometer during INTEX-B, Atmos. Chem. Phys., 9, 3095–3111, https://doi.org/10.5194/acp-9-3095-2009, 2009.
- Sun, Y.-L., Zhang, Q., Schwab, J. J., Demerjian, K. L., Chen, W.-N., Bae, M.-S., Hung, H.-M., Hogrefe, O., Frank, B., Rattigan, O. V., and Lin, Y.-C.: Characterization of the sources and processes of organic and inorganic aerosols in New York city with a high-resolution time-offlight aerosol mass spectrometer, Atmos. Chem. Phys., 11, 1581–1602,

https://doi.org/10.5194/acp-11-1581-2011, 2011.

- Sun, Y. L., Du, W., Fu, P., Wang, Q., Li, J., Ge, X., Zhang, Q., Zhu, C., Ren, L., Xu, W., Zhao, J., Han, T., Worsnop, D. R., and Wang, Z.: Primary and secondary aerosols in Beijing in winter: sources, variations and processes, Atmos. Chem. Phys., 16, 8309–8329, https://doi.org/10.5194/acp-16-8309-2016, 2016.
- Wang, J., Ge, X., Chen, Y., Shen, Y., Zhang, Q., Sun, Y., Xu, J., Ge, S., Yu, H., and Chen, M.: Highly time-resolved urban aerosol characteristics during springtime in Yangtze River Delta, China: insights from soot particle aerosol mass spectrometry, Atmos. Chem. Phys., 16, 9109–9127, https://doi.org/10.5194/acp-16-9109-2016, 2016.
- Xu, J., Zhang, Q., Chen, M., Ge, X., Ren, J., and Qin, D.: Chemical composition, sources, and processes of urban aerosols during summertime in northwest China: insights from highresolution aerosol mass spectrometry, Atmos. Chem. Phys., 14, 12593–12611, https://doi.org/10.5194/acp-14-12593-2014, 2014.
- Xu, J., Shi, J., Zhang, Q., Ge, X., Canonaco, F., Prévôt, A. S. H., Vonwiller, M., Szidat, S., Ge, J., Ma, J., An, Y., Kang, S., and Qin, D.: Wintertime organic and inorganic aerosols in Lanzhou, China: sources, processes, and comparison with the results during summer, Atmos. Chem. Phys., 16, 14937–14957, https://doi.org/10.5194/acp-16-14937-2016, 2016.
- Xu, J., Zhang, Q., Shi, J., Ge, X., Xie, C., Wang, J., Kang, S., Zhang, R., and Wang, Y.: Chemical characteristics of submicron particles at the central Tibetan Plateau: insights from aerosol mass spectrometry, Atmos. Chem. Phys., 18, 427–443, https://doi.org/10.5194/acp-18-427-2018, 2018.
- Xu, W. Q., Han, T. T., Du, W., Wang, Q. Q., Chen, C., Zhao, J., Zhang, Y. J., Li, J., Fu, P. Q., Wang, Z. F., Worsnop, D. R., and Sun, Y. L.: Effects of Aqueous-Phase and Photochemical Processing on Secondary Organic Aerosol Formation and Evolution in Beijing, China, Environ. Sci. Technol., 51, 762–770, https://doi.org/10.1021/acs.est.6b04498, 2017.
- Xu, W. Q., Sun, Y. L., Chen, C., Du, W., Han, T. T., Wang, Q. Q., Fu, P. Q., Wang, Z. F., Zhao, X. J., Zhou, L. B., Ji, D. S., Wang, P. C., and Worsnop, D. R.: Aerosol composition, oxidation properties, and sources in Beijing: results from the 2014 Asia-Pacific Economic Cooperation summit study, Atmos. Chem. Phys., 15, 13681–13698, https://doi.org/10.5194/acp-15-13681-2015, 2015.
- Xu, W., Sun, Y., Wang, Q., Zhao, J., Wang, J., Ge, X., Xie, C., Zhou, W., Du, W., Li, J., Fu, P., Wang, Z., Worsnop, D. R., and Coe, H.: Changes in aerosol chemistry from 2014 to 2016 in winter in Beijing: Insights from high-resolution aerosol mass spectrometry, J. Geophys. Res.-Atmos., 124, 1132-1147, https://doi.org/10.1029/2018JD029245, 2019a.
- Xu, W., Xie, C., Karnezi, E., Zhang, Q., Wang, J., Pandis, S. N., Ge, X., Zhang, J., An, J., Wang, Q., Zhao, J., Du, W., Qiu, Y., Zhou, W., He, Y., Li, Y., Li, J., Fu, P., Wang, Z., Worsnop, D. R., and Sun, Y.: Summertime aerosol volatility measurements in Beijing, China, Atmos. Chem. Phys., 19, 10205–10216, https://doi.org/10.5194/acp-19-10205-2019, 2019b.
- Zhang, J. K., Sun, Y., Liu, Z. R., Ji, D. S., Hu, B., Liu, Q., and Wang, Y. S.: Characterization of submicron aerosols during a month of serious pollution in Beijing, 2013, Atmos. Chem. Phys., 14, 2887–2903, https://doi.org/10.5194/acp-14-2887-2014, 2014.
- Zhang, J. K., Wang, Y. S., Huang, X. J., Liu, Z. R., Ji, D. S., and Sun, Y.: Characterization of organic aerosols in Beijing using an aerodyne high-resolution aerosol mass spectrometer, Adv. Atmos. Sci., 32, 877–888, https://doi.org/10.1007/s00376-014-4153-9, 2015.

- Zhang, J. K., Cheng, M. T., Ji, D. S., Liu, Z. R., Hu, B., Sun, Y., and Wang, Y. S.: Characterization of submicron particles during biomass burning and coal combustion periods in Beijing, China, Sci. Total. Environ., 562, 812-821, https://doi.org/10.1016/j.scitotenv.2016.04.015, 2016.
- Zhang, X., Xu, J., Kang, S., Liu, Y., and Zhang, Q.: Chemical characterization of long-range transport biomass burning emissions to the Himalayas: insights from high-resolution aerosol mass spectrometry, Atmos. Chem. Phys., 18, 4617–4638, https://doi.org/10.5194/acp-18-4617-2018, 2018.
- Zhang, X., Xu, J., Kang, S., Zhang, Q., and Sun, J.: Chemical characterization and sources of submicron aerosols in the northeastern Qinghai–Tibet Plateau: insights from high-resolution mass spectrometry, Atmos. Chem. Phys., 19, 7897–7911, https://doi.org/10.5194/acp-19-7897-2019, 2019.
- Zhao, J., Du, W., Zhang, Y., Wang, Q., Chen, C., Xu, W., Han, T., Wang, Y., Fu, P., Wang, Z., Li, Z., and Sun, Y.: Insights into aerosol chemistry during the 2015 China Victory Day parade: results from simultaneous measurements at ground level and 260 m in Beijing, Atmos. Chem. Phys., 17, 3215–3232, https://doi.org/10.5194/acp-17-3215-2017, 2017.
- Zheng, J., Hu, M., Du, Z., Shang, D., Gong, Z., Qin, Y., Fang, J., Gu, F., Li, M., Peng, J., Li, J., Zhang, Y., Huang, X., He, L., Wu, Y., and Guo, S.: Influence of biomass burning from South Asia at a high-altitude mountain receptor site in China, Atmos. Chem. Phys., 17, 6853–6864, https://doi.org/10.5194/acp-17-6853-2017, 2017.
- Zhou, S., Collier, S., Jaffe, D. A., Briggs, N. L., Hee, J., Sedlacek III, A. J., Kleinman, L., Onasch, T. B., and Zhang, Q.: Regional influence of wildfires on aerosol chemistry in the western US and insights into atmospheric aging of biomass burning organic aerosol, Atmos. Chem. Phys., 17, 2477–2493, https://doi.org/10.5194/acp-17-2477-2017, 2017.
- Zhu, Q., He, L.-Y., Huang, X.-F., Cao, L.-M., Gong, Z.-H., Wang, C., Zhuang, X., and Hu, M.: Atmospheric aerosol compositions and sources at two national background sites in northern and southern China, Atmos. Chem. Phys., 16, 10283–10297, https://doi.org/10.5194/acp-16-10283-2016, 2016.