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Abstract.  Wildfires and the resulting smoke are an increasing problem in many regions of the world.  However, identifying 

the contribution of smoke to pollutant loadings in urban regions can be challenging at low concentrations due to the presence 10 

of the usual array of anthropogenic pollutants.  Here we propose a method using the difference in PM2.5 to CO emission ratios 

between smoke and typical urban pollution.   For temperate wildfires, the mean emission ratio of PM2.5 to CO is in the range 

of 0.14-0.18 g/g, whereas typical urban emissions have a PM2.5 to CO emissions ratio that is lower by a factor of 2-20.   This 

gives rise to the possibility of using this ratio as an indicator of wildfire smoke..  We use observations at a regulatory surface 

monitoring site in Sparks, NV, for the period of May-September 2018-2021.  There were many smoke-influenced periods from 15 

numerous California wildfires that burned during this period.  Using a PM2.5/CO threshold  of 30.0 µg m-3 ppm−1 , we can split 

the observations into smoke-influenced and no-smoke periods.  We then develop a Monte Carlo simulation, tuned to local 

conditions, to derive a set of PM2.5 /CO values that can be used to identify smoke influence in urban areas.   From the simulation, 

we find that a smoke enhancement ratio of 140 µg m-3 ppm−1 best fits the observations, which is significantly lower than the 

ratio observed in fresh smoke plumes (e.g. 200-300 µg m-3 ppm-1).   The most likely explanation for this difference is loss of 20 

PM2.5 during dilution and transport to warmer surface layers.    We find that the PM2.5/CO ratio in urban areas is an excellent 

indicator of smoke and should prove to be useful to identify biomass burning influence on the policy relevant concentrations 

of both PM2.5 and O3.  Using the results of our Monte Carlo simulation, this ratio can also quantify the influence of smoke on 

urban PM2.5. 

1. Introduction 25 

In the U.S., smoke has become an increasingly challenging problem due to a significant increase in the area burned by wildfires 

(Zhuang et al 2021; Kalashnikov et al 2022; McClure and Jaffe 2018).   Data from the National Interagency Fire Center 

(www.nifc.gov) showed that between the early 1980s and 2021, the decadal average annual area burned by wildfires in the 

U.S. increased by almost a factor of 3, from 1.1 to 3.0 million ha per year.  Multiple factors were responsible for this increase, 

including climate change, increasing human ignitions and past forest management (Jaffe et al 2020).  30 
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Primary emissions from fires include fine particulate matter with diameter of less than 2.5 µm (PM2.5), carbon monoxide (CO), 

nitrogen oxides (NOx=NO+NO2), and hundreds of volatile organic compounds (VOCs), which include many toxic and 

hazardous air pollutants (Akagi et al 2011; Permar et al 2021).  Furthermore, atmospheric  chemistry leads to O3 and other 

secondary products.   The cumulative impact of these emissions has substantial health implications (e.g., Ebi et al 2021; O'Dell 

et al 2020; 2021; Gan et al 2020; Doubleday 2020; Sorenson et al 2021).    35 

Smoke at the surface can originate from nearby or distant fires (e.g., DeBell et al 2004;  Jaffe et al 2004; Teakles et al 2017; 

Rogers et al 2020).  Satellites can provide an exceptional geospatial view of fires and the occurrence and transport of smoke 

(e.g., Duncan et al 2014; Jaffe et al 2020; Kahn 2020; O'Neill et al 2021; Holloway et al 2021).  But with very few exceptions, 

satellite data provide little to no vertical information directly.   Modeling of smoke transport and exposure is challenging for a 

number of reasons, including uncertainties in emissions, plume injection heights and model resolution (Lu et al 2016; O'Neill 40 

et al 2021; Ye et al 2021).   It is possible to measure unique smoke tracers , such as acetonitrile (CH3CN) (Singh et al 2012; 

Chandra et al 2020), but these measurements are not routinely performed at surface sites and also have some anthropogenic 

sources (Huangfu et al 2021). 

Wildfire emissions are chemically distinct from industrial and  vehicle emissions in having very high PM2.5 emissions per unit 

of fuel burned.   Table 1 shows emissions ratios (ERs) of PM2.5/CO, expressed on a g/g basis along with observed and calculated 45 

NERs normalized enhancement ratios (NERs, ΔPM2.5/ΔCO),  for smoke and non-smoke sources.  The PM2.5/CO ERs from 

temperate wildfires are at least a factor of 1.9 greater than the same ER for anthropogenic emissions.   Comparing the PM2.5/CO 

ERs from wildfires with vehicle emissions, we see that wildfires emit 15-19 times the amount of PM2.5 per unit of CO emitted.    

Using these ERs we can estimate normalized enhancement ratios (NER, ΔPM2.5/ΔCO), assuming no chemical or physical loss 

of either species (also shown in Table 1).  Observed NERs will reflect not only the emissions, but also chemical and physical 50 

processing, plus any background contribution.   The observed NERs in urban areas with no smoke (21-66, mean of 37 µg m-3 

ppm-1) are much closer to the estimated NERs for vehicle emissions, which is reasonable given these are usually the largest 

source of both PM2.5 and CO in urban areas.  

The observed smoke NERs appear to fall into two groups.    At the surface, mean smoke NERs are in the range of 103-128 µg 

m-3 ppm-1, whereas in fresh plumes aloft, the mean values are 201-339 µg m-3 ppm-1.  The values aloft are much closer to the 55 

mean NER (220 µg m-3 ppm-1) calculated from the most recent compilation of ERs for temperate forests (Andreae et al 2019).  

Selimovic et al (2019; 2020) noted that the PM2.5/CO NER in ground-level smoke is about half of that observed from aircraft 

or free tropospheric observations. This was most likely caused by a reduction in aerosol mass from evaporation of organic 

aerosols due to higher surface temperatures and greater downstream dilution.  These past observations present a fairly 

consistent picture showing that PM2.5/CO NER for surface smoke is about 3-4 times greater than the NER for typical urban 60 

observations in the absence of smoke, based on the values given in Laing et al (2017). 
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Table 1.   Emission ratios (ERs) and observed NERs for non-smoke and smoke conditions.   ERs are converted into NERs using a 

pressure of 1 atmosphere and temperature of 273K (STP).  This calculation assumes no loss of either PM2.5 or CO.   For observed 

ERs and NERs, the study mean is given and the range (if reported) is shown in parentheses. 

 PM2.5/CO E.R. (g/g) 
PM2.5/CO NER (µg m-3 

ppm-1) 

Non-smoke emissions and observed NERs   

US industrial and mobile emissions (excludes wildfires and 

residential wood combustion)1 0.076 95 

U.S. Mobile sources only1 0.009 11 

Observed NERs in urban areas with no smoke2  37 (21-66) 

Smoke emissions and observed NERs   

Temperate wildfires ERs3 .142 177 

Temperate wildfires ERs4 .176 (.07-.57) 220  (87-712) 

Observed smoke NERs in urban areas2  128 (57-228) 

Observed smoke NERs, surface sites5  103 (120-156) 

Fresh plumes, high elevation site6  258 (66-377) 

Fresh plumes, high elevation site and aircraft data7  299 (170-630) 

Fresh plumes, aircraft data8  201 (80-400) 

Fresh plumes, aircraft data9  339 (21—492) 

1Data from the EPA's 2017 National Emission Inventory (EPA 2022).    65 
2Data from Laing et al 2017. 
3Data from Akagi et al 2011. 

4Data from Anderea 2019. 

5Data from Selimovic et al 2020. 
6Data from Briggs et al 2016.    Scattering values are reported at STP and converted to PM2.5 using a dry mass scattering 70 

coefficient of 3.5 m2g-2 
7Data from Collier et al 2016.   This value includes refractory PM1. Values are adjusted to STP. 
8Data from Garofolo et al 2019.  This value includes only the organic, non-refractory PM1  fraction, however this is likely 

more than 90% of total PM2.5 mass.  Values are adjusted to STP. 
9Data from Kleinman et al 2020.  This value includes only the non-refractory PM1 mass.  Values are adjusted to STP. 75 

 

The very different PM2.5 to CO NERs for typical urban air and smoke events suggest that the observed ratios can be used to 

derive the smoke contribution to surface PM2.5 concentrations. (Laing et al 2017; Xiu et al 2022).   To examine this hypothesis, 

we used data from a monitoring site in Sparks, NV, near Reno, a region that has been heavily influenced by smoke in the past 

several years due to the large number and extent of California wildfires.   Data from this region were used to examine the role 80 

of high PM2.5 exposure from smoke on COVID-19 incidence (Kiser et al 2021).  From the Sparks, NV, observations, we 

developed a quantitative model using a Monte Carlo simulation (Baez and Tweed 2013) that provides a range of probabilistic 

results that can be compared to observations.   We found that this method appears to reasonably quantify the smoke contribution 

in an urban area.   
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2. Methods and data sources 85 

For this analysis, we use daily mean PM2.5 and CO concentrations for May-September 2018-2021 from the Sparks, NV, air 

quality monitoring site (EPA AQS identification  #320311005) near Reno, NV, that is operated by the Washoe (NV) County 

Health District, Air Quality Management Division.  The site uses instruments and standards that are consistent with the national 

EPA requirements (40 CFR Part 58)  and report data into the EPA's national Air Quality System (AQS).  The Sparks site has 

near-continuous measurements of PM2.5, CO and O3.  We used data for May–September 2018–2021 to avoid complications 90 

with sources from residential wood combustion.  Data were obtained from the EPA AirData site (https://www.epa.gov/outdoor-

air-quality-data), except for 2021 data, which were obtained from AirNow-Tech, a web-based data resource operated for the 

U.S. EPA (https://www.airnowtech.org/).    Instrumentation at the Sparks site included a MetOne model 1020 Beta Attenuation 

Monitor (BAM) for PM2.5, a Teledyne API model 300 EU non-dispersive IR monitor for CO and a Teledyne API model T400 

UV O3 analyser.   These instruments have stated detection limits (DLs) of 1 µg m-3, 20 ppb and 0.4 ppb, respectively.  Because 95 

there were some zero and very low values, PM2.5 concentrations less than the DL were set to 1 µg m-3.  This impacted less than 

2% of the dataset.   No below DL values were reported for the CO or O3 data.  As an indication of overhead smoke, we used 

the daily smoke polygon product from the NOAA Hazard Mapping System-Fire and Smoke Product (hereafter simply HMS). 

The smoke polygon product is created by expert image analysts that digitize smoke plume extent a few times per day based 

on analysis of GOES-16 and GOES-17 ABI True Color Imagery available during daylight hours.  More details on HMS are in 100 

Rolph et al (2009) and Kaulfus et al (2017).    We note that HMS can sometimes miss thin smoke plumes, especially in the 

presence of clouds (Buysse et al 2019).  Buysse et al (2019) found that there is enhanced surface PM2.5 on 30-70% of the days 

with overhead HMS smoke, depending on the location. 

3.  Results 

 105 

Figure 1 shows one example of the HMS smoke product for the Loyalton fire on Aug. 16, 2020, which was about 35-45 km 

from the Sparks monitoring site.  This fire started on 8/14/2020 and burned for approximately one month.  In total, this fire 

burned approximately 20,000 ha in the Tahoe and Humboldt-Toiyabe National Forests.    On 8/16/2020, the daily mean PM2.5 

and CO concentrations were 38 µg m-3 and 0.43 ppm at the Sparks, NV monitoring site.  Washoe County is located due east 

of the California-Nevada border, so smoke from many fires in California is often transported to the Sparks monitor.  Table 2 110 

shows data for the number of days that exceeded the U.S. National Ambient Air Quality Standards (NAAQS) for PM2.5 (2006 

24-hour standard, daily mean of 35 µg m-3) and O3 (2015 8-hour O3 standard, maximum daily 8-hour mean of 0.070 ppm) for 

the Sparks monitoring site, along with the annual area burned in California.  While 2020 was the highest year on record for 

the area burned in CA for the past 2 decades, 2021 was the second highest year and had a greater number of days in Reno that 

exceeded the NAAQS.   Note that 2019 was a particularly low fire year in CA, and there were no exceedances of either the 115 

daily PM2.5 or O3 NAAQS at the Sparks monitoring site.   Overall, for this time period (May-September 2018-2021), 200 out 

about:blank
about:blank
about:blank
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of 612 days had overhead HMS smoke at the Sparks monitoring location.   The PM2.5/CO smoke criteria is discussed later in 

this section. 

Table 2: California area burned, overhead HMS smoke days, and days over the U.S. National Ambient Air Quality Standard at 

Sparks, NV, for PM2.5 (daily mean of 35 µg m-3 ) and O3 (70 ppb, 8 hour average).   The smoke criteria (indicated by *)  uses a PM2.5 120 
/CO ratio of 30.0 µg m-3 ppm-1, as discussed later in text. 

 2018 2019 2020 2021 

California area burned (Ha) 7.4E5 1.0E5 1.7E6 1.1E6 

Sparks Overhead HMS smoke (days) 51 11 52 86 

Sparks smoke days* 42 30 81 67 

Identified smoke days with no HMS 

identification 
13 25 20 15 

PM2.5 exceedance days 6 0 19 22 

PM2.5 exceedance days with smoke* 6 0 19 22 

O3 exceedance days 10 0 5 13 

O3 exceedance days with smoke* 8 0 5 11 

 

Figure 2 shows the daily PM2.5 vs CO concentrations for May-Sept 2018-2021, segregated for smoke vs non-smoke conditions.  

The data are segregated using (1) the HMS smoke product and (2) a PM2.5/CO ratio ≥ 30.0 .  The value of 30.0 was chosen 

based, in part, on the work of Laing et al (2017) and on evaluation of likely smoke influence.   We found the slopes and 125 

correlations were not strongly influenced by the choice of PM2.5/CO ratio.   For example, using a ratio of <20, <30, <40 and 

<50 we get slopes of 16.5, 18.0, 23.4 and 33.9 µg m-3 per ppm, an increasing pattern as would be expected.  We found that 

smoke influence can be observed on some days at a PM2.5/CO ratio as low as 32.  An example of this is 8/5/2018, when 

extensive and heavy smoke blanketed most of California, Nevada and other western states.   PM2.5 and CO concentrations at 

Sparks were 22 µg m-3 and 0.68 ppm, respectively, for a PM2.5/CO ratio of 32.    The relatively low ratio implies significant 130 

mixing of this smoke event with air containing a lower ratio, but the high PM2.5 concentrations and widespread smoke are 

consistent with a significant smoke influence on that day.   Using the PM2.5/CO ratio to segregate the data, we found an 

improved correlation of PM2.5 and CO in the lower range of ratios, compared with using the HMS as an indicator (Figure 2).    

Table 3 summarizes the results.  There are 612 days in the analysis.  200 have a positive HMS smoke identification and 220 

have PM2.5/CO ratios≥30.   There are 73 days with PM2.5/CO ratios≥30 but without a positive HMS smoke identification and 135 

53 days that have a positive HMS smoke identification, but a low PM2.5/CO ratio (<30).   The first category (high PM2.5/CO 

ratio, but no HMS smoke) can be considered a false negative (smoke is present but not detected by HMS), whereas the second 

category (HMS smoke present, but low PM2.5/CO ratios) can be considered a false positive. While there is relatively little 

difference between the mean and SD of the smoke-influenced and non-smoke data, the improved correlation suggests that the 

PM2.5/CO ratio is a better way to segregate the dataset.  The exact choice of PM2.5/CO ratio depends on the certainty required.   140 

This is discussed in more detail using a Monte Carlo simulation, as described below.  
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Table 3. Sparks daily PM2.5 and CO data for May-September 2018-2021, segregated by the PM2.5/CO ratio and by overhead HMS 

smoke. 

 

 145 

 

 

 

 

 150 

 

 

 

We used the PM2.5 and CO data to develop a Monte Carlo simulation of the PM2.5/CO ratio for Reno using the following 

relationships: 155 

PM2.5 (µg m-3) = Urban PM2.5 + Smoke PM2.5 + background PM2.5 = 10α + 10β + 2 µg/m3  (1) 

CO (ppm) = Urban PM2.5/Rurban + Smoke PM2.5/Rsmoke  + 0.2 ppm  (2) 

Where Rurban and Rsmoke are the NERs (ΔPM2.5/ΔCO) to represent urban emissions and smoke, respectively.  The smoke 

terms in equations 1 and 2 were non-zero on 1/3 of the days, corresponding to the fractional incidence of HMS smoke.  We 

explored a range of values for Rurban and Rsmoke as shown in Table 4.  The parameters α and β were used to represent the log-160 

normal distributions for urban PM2.5 with, and without, smoke PM2.5, respectively.  Equations 1 and 2 include a background 

contribution to represent natural, biogenic, and intercontinental sources of PM2.5 and CO.   The background concentrations 

were set to 2 µg m-3 for PM2.5 and 0.2 ppm for CO.    These background values were estimated based on observations from 

2019, a low fire year, from a rural continental site (West Yellowstone, MT AQS #300310017) and a marine background site 

(Cheeka Peak, WA, AQS #530090013).   During the May-Sept 2019 period the West Yellowstone mean values for PM2.5 165 

and CO were 2.5 µg m-3 and 0.24 ppm, whereas the Cheeka Peak site the mean values were 2.1 µg m-3  and .08 ppm.    

Median values were very similar at both sites.  We note that PM2.5 concentrations were similar at both sites, whereas CO was 

higher at the continental site.  Given that Sparks, NV is a continental/inland location, the West Yellowstone, MT 

concentrations are likely more representative of its background concentrations.   We also examined a range of background 

values for CO (0.1-0.2 ppm) and PM2.5 (1-3 µg m-3) and found little influence on the conclusions.    170 

 PM2.5/CO <30.0  

        (no smoke) 

PM2.5/CO ≥30.0  

(smoke-influenced) 

Count 392 220 

Mean PM2.5 (µg m-3) 4.7 25.4 

Std. Dev. (µg m-3) 1.9 28.6 

Count of days with 

HMS =1 

53 147 

 HMS=0  

(no smoke) 

HMS=1  

(smoke-influenced) 

Count 412 200 

Mean PM2.5 (µg m-3) 5.0 26.9 

Std. Dev. (µg m-3) 2.0 29.6 

Count of days with  

PM2.5/CO ≥30.0 

73 147 
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The Monte Carlo simulations estimate a range of observed PM2.5 and CO concentrations using Equations 1 and 2.  The 

simulation computes 10,000 concentrations, where α, β, Rurban and Rsmoke are allowed to vary independently with values as 

defined in Table 4.    These values were chosen to be consistent with the mean and S.D. of the non-smoke (α) and smoke (β) 

datasets, respectively, excluding the contribution from background concentrations.  Note that the Monte Carlo simulations 

are intended to reflect the bulk distributions, so there is no correspondence between an individual day in the simulation with 175 

any particular day in the observations.  

Table 4.  Parameter values used in the Monte Carlo simulations.   For the Rurban  and Rsmoke parameters, multiple mean values are 

considered. 

 

 180 

 

 

Figure 3 shows results of the simulation with varying mean values for the Rsmoke parameter.   Even at very high PM2.5 

concentrations, the observed PM2.5/CO ratio never exceeded 125 µg m-3 ppm−1.  The simulation suggests an optimum Rsmoke  

value of 140 µg m-3 ppm−1.    So, consistent with the work of Laing et al (2017) and Selimovic et al (2019; 2020), we found 185 

that the best-fit NER values at the surface were much lower than NERs reported for fresh or free tropospheric smoke plumes 

(200-300 µg m-3 ppm−1). 

Figure 4 shows the results of the simulations with varying values for the Rurban parameter.   The best value of Rurban was more 

difficult to discern.   At high PM2.5 concentrations and PM2.5/CO ratios, Rurban  has very little influence on the simulated values.   

At the low range of PM2.5 concentrations, a value of 20 µg m-3 ppm-1 is clearly too low, but there is little difference between 190 

the other values so it is not clear which value is optimal.   This parameter should reflect the primary PM2.5 and CO emissions 

in the area, plus contributions from secondary organic aerosol (e.g., Nault et al 2021).  For Washoe County, NV (the county 

containing Reno and Sparks) the EPA's 2017 National Emissions Inventory gives primary emissions of PM2.5 and CO of 1,482 

and 55,529 short tons per year, excluding wildfires and residential wood combustion.   This corresponds to a PM2.5/CO 

emission ratio of 0.034 g/g or an enhancement ratio of 39 µg m-3 ppm−1.   Important constraints on using the Monte Carlo 195 

approach to discern the urban, non-smoke  PM2.5/CO NER are limitations on the instrumentation and the impact of background 

concentrations at low PM2.5 and CO concentrations.   Nonetheless, we found that using an Rurban parameter of either 40 or 80 

has little influence on our results at higher PM2.5 concentrations.  For the rest of this analysis, we used an Rsmoke value of 140 

and an Rurban value of 40. 

Figure 5 shows the fractional smoke contribution to PM2.5 vs the PM2.5/CO NER from the Monte Carlo simulations.   As 200 

specified in the model setup, 2/3 of the points have no smoke contribution.   These have a mean PM2.5/CO value of 17, with a 

 

α 

(unitless) 

β 

(unitless) 

Rurban  

(µg m-3 ppm-1) 

Rsmoke 

(µg m-3 ppm-1) 

Mean 0.4 1.3 20,40,80 100,140,200 

Std. Dev. 0.2 0.4 10 20 
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range of 6-34.  As the Monte Carlo simulations represent a probabilistic approach, we can also look at the likelihood that a 

given set of points has a specific degree of smoke influence.  Figure 5 shows the probability that a given set of PM2.5/CO ratios 

(binned in units of 10) has more than 50% of the PM2.5 due to smoke.   So, starting with the PM2.5/CO bin of 30-40, we have 

a very high probability (0.85) that more than 50% of the PM2.5 mass is due to smoke and at a bin of 40-50 we have near 205 

certainty (0.993) that more than 50% of the PM2.5 mass is due to smoke. 

We can use the information in Figure 5 to evaluate the likelihood that smoke contributed to the days with high PM2.5 or O3, as 

shown in Table 2.    The years 2018, 2020 and 2021 all had a significant number of exceedances days (over the NAAQS), 

whereas the low fire year of 2019 had none.  Using a PM2.5/CO value of 30.0 which, based on the Monte Carlo simulation, 

implies that smoke contributes more than half of the total PM2.5 on 85% of days.   Even using a smoke criteria of PM2.5/CO of 210 

45, we found no change in the number of smoke-influenced days.  Not surprisingly, the PM2.5/CO criteria identified all of the 

PM2.5 exceedance days as smoke influenced, using either smoke criteria (35 or 45).  For O3, the results show that 24 out of the 

28 exceedance days were smoke influenced, using either criteria.  While the PM2.5/CO ratio can quantitatively estimate the 

fraction of PM2.5 due to smoke (e.g. Figure 5), we note that this approach cannot provide a quantitative estimate of the smoke 

contribution to the O3 levels.  Other tools would be needed to quantify the smoke contribution to the MDA8 O3 values (e.g., 215 

Ninneman and Jaffe 2021; Jaffe 2021; Gong et al 2017).  Nonetheless, the results shown in Table 2 demonstrate that the 

PM2.5/CO ratio can identify days with a strong smoke signature.   

4.  Summary 

The large difference in PM2.5/CO emission ratios between typical urban pollution and wildfire smoke gives rise to very different 

observed NERs in urban areas for non-smoke and smoke-influenced conditions.   We used PM2.5 and CO data for May through 220 

September, when residential wood combustion is minimal, to develop a Monte Carlo simulation of the resulting ratios.  We 

find that the Monte Carlo simulation that includes both smoke and non-smoke NERs can accurately reproduce the observed 

NERs and provides a measure of smoke influence in an urban area.    The model supports earlier work that found the PM2.5/CO 

NER in biomass burning influenced plumes at surface sites is approximately half of that observed in fresh emissions and in 

cooler environments.  This likely is caused by loss of PM2.5 mass during transport due to dilution and warmer temperatures at 225 

surface sites.   For the Sparks, NV monitoring site we found that at a  PM2.5/CO ratio of 35 µg m-3 ppm-1 biomass burning 

contributed more than half of the total PM2.5 on 85% of days.  To apply the Monte Carlo simulation at other sites requires that 

the parameters in Table 4 be adjusted to fit the local data.  The Rurban parameter would need to be adjusted based on local 

emissions and observations and the α and β parameters would need to be fit based on the observed non-smoke and smoke 

concentrations, respectively.   230 

This analysis demonstrates that it is possible to identify wildfire smoke at the surface based on commonly measured air 

pollutants with high confidence.  While satellite data can also identify smoke influence, these have both high false positive 

and negative rates, meaning that many days identified by satellite products as having overhead smoke show little or no 
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influence at the surface and many days that have smoke at the surface are missed by the HMS product..   We conclude that the 

observed PM2.5/CO ratio provides a more robust signal of surface smoke in urban areas and with no false positives. 235 
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Figure 1: NOAA HMS smoke and fire location for Aug. 16, 2020.  The Loyalton fire is burning in California near the Nevada border 

at this time.   The blue star shows the location of the Sparks, NV monitoring site, which is approximately 35-45 km from the fire.   

This map was created from the AirNowTech site (https://www.airnowtech.org/). 

 395 

 

 

https://www.airnowtech.org/


14 

 

 

 

Figure 2: Observed PM2.5 vs CO for May-September data (May 1, 2018-August 31, 2021).   Each point is the daily mean of observed 400 
values segregated by (top) overhead HMS smoke product or (bottom) PM2.5/CO threshold  of 30.0 µg m-3/ppm.   
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Figure 3.  PM2.5/CO ratio (µg m-3 ppm−1) vs PM2.5.  The black dots show the observations and the blue diamonds, red 

circles and green squares show the influence of the Rsmoke parameter for the urban + smoke simulations.  The simulation 405 

results are binned in 10 µg m-3 intervals centered on the indicated values.  For these Monte Carlo simulations, Rurban is 

fixed at 40.  Error bars show 1 σ on the middle simulation.   One observation is not shown (PM2.5/CO ratio of 122 and 

a PM2.5 concentration of 159 µg m-3).  
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Figure 4.  PM2.5/CO ratio (µg m-3 ppm−1) vs PM2.5.    The black dots show the observations and the and the blue 

diamonds, red circles and green squares show the influence of the Rurban parameter on the Monte Carlo simulations.  

The simulation results are binned in 10 µg m-3 intervals centered on the indicated values.   For these simulations, Rsmoke 

is fixed at 140.  Error bars show 1 σ on the middle simulation.  One observation is not shown (PM2.5/CO ratio of 122 415 

and a PM2.5 concentration of 159 µg m-3).  
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Figure 5.  Fraction of PM2.5 due to smoke vs the PM2.5/CO ratio (µg m-3 ppm−1) as calculated from the Monte Carlo 

simulations.  We note that the Monte Carlo simulations give a probabilistic relationship.  So, for example, at a PM2.5/CO 

ratio of between 30 and 40, 83% of the points have more than half of the PM2.5 due to smoke.    The red open circles 425 

show the probability that more than 50% of the PM2.5 is due to smoke, within each PM2.5/CO bin.   

 

 

 


