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Technical note: Use of PM25 to CO ratio as an indicator of wildfire
smoke in urban areas
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Abstract. Wildfires and the resulting smoke are an increasing problem in many regions of the world. However, identifying
the contribution of smoke to pollutant loadings in urban regions can be challenging at low concentrations due to the presence
of the usual array of anthropogenic pollutants. Here we propose a method using the difference in PMas to CO emission ratios
between smoke and typical urban pollution. For temperate wildfires, the mean emission ratio of PMzs to CO is in the range
of 0.14-0.18 g/g, whereas typical urban emissions have a PM2s to CO emissions ratio that is lower by a factor of 2-20. This
gives rise to the possibility of using this ratio as an indicator of wildfire smoke.. We use observations at a regulatory surface
monitoring site in Sparks, NV, for the period of May-September 2018-2021. There were many smoke-influenced periods from
numerous California wildfires that burned during this period. Using a PM,s/CO ratio of 30 pg m= ppm™ , we can split the
observations into smoke-influenced and no-smoke periods. We then develop a Monte Carlo simulation, tuned to local
conditions, to derive a set of PM2.5 /CO values that can be used to identify smoke influence in urban areas. From the simulation,
we find that a smoke enhancement ratio of 140 pg m= ppm™ best fits the observations, which is significantly lower than the
ratio observed in fresh smoke plumes (e.g. 200-300 pg m ppm™). The most likely explanation for this difference is loss of
PMg2 during dilution and transport to warmer surface layers. We find that the PM2s/CO ratio in urban areas is an excellent
indicator of smoke and should prove to be useful to identify biomass burning influence on the policy relevant concentrations
of both PM2s and Os. Using the results of our Monte Carlo simulation, this ratio can also quantify the influence of smoke on
urban PMzs.

1. Introduction
Inthe U.S., smoke has become an increasingly challenging problem due to a significant increase in the area burned by wildfires
(Zhuang et al 2021; Kalashnikov et al 2022; McClure and Jaffe 2018). Data from the National Interagency Fire Center
(www.nifc.gov) showed that between the early 1980s and 2021, the decadal average annual area burned by wildfires in the
U.S. increased by almost a factor of 3, from 1.1 to 3.0 million ha per year. Multiple factors were responsible for this increase,

including climate change, increasing human ignitions and past forest management (Jaffe et al 2020).
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Primary emissions from fires include fine particulate matter with diameter of less than 2.5 pm (PM ), carbon monoxide (CO),
nitrogen oxides (NOx=NO+NO,), and hundreds of volatile organic compounds (VOCs), which include many toxic and
hazardous air pollutants (Akagi et al 2011; Permar et al 2021). Furthermore, atmospheric chemistry leads to Oz and other
secondary products. The cumulative impact of these emissions has substantial health implications (e.g., Ebi et al 2021; O'Dell
et al 2020; 2021; Gan et al 2020; Doubleday 2020; Sorenson et al 2021).

Smoke at the surface can originate from nearby or distant fires (e.g., DeBell et al 2004; Jaffe et al 2004; Teakles et al 2017,
Rogers et al 2020). Satellites can provide an exceptional geospatial view of fires and the occurrence and transport of smoke
(e.g., Duncan et al 2014; Jaffe et al 2020; Kahn 2020; O'Neill et al 2021; Holloway et al 2021). But with very few exceptions,
satellite data provide little to no vertical information directly. Modeling of smoke transport and exposure is challenging for a
number of reasons, including uncertainties in emissions, plume injection heights and model resolution (Lu et al 2016; O'Neill
et al 2021; Ye et al 2021). It is possible to measure unique smoke tracers , such as acetonitrile (CH3zCN) (Singh et al 2012;
Chandra et al 2020), but these measurements are not routinely performed at surface sites and also have some anthropogenic

sources (Huangfu et al 2021).

Wildfire emissions are chemically distinct from industrial and vehicle emissions in having very high PM2s emissions per unit
of fuel burned. Table 1 shows emissions ratios (ERs) of PM2.s5/CO, expressed on a g/g basis along with observed and calculated
NERs normalized enhancement ratios (NERs, APM25/ACO), for smoke and non-smoke sources. The PM2s/CO ERs from
temperate wildfires are at least a factor of 1.9 greater than the same ER for anthropogenic emissions. Comparing the PM2s/CO
ERs from wildfires with vehicle emissions, we see that wildfires emit 15-19 times the amount of PMzs per unit of CO emitted.
Using these ERs we can estimate normalized enhancement ratios (NER, APM25s/ACQO), assuming no chemical or physical loss
of either species (also shown in Table 1). Observed NERs will reflect not only the emissions, but also chemical and physical
processing, plus any background contribution. The observed NERs in urban areas with no smoke (21-66, mean of 37 pug m
ppm) are much closer to the estimated NERs for vehicle emissions, which is reasonable given these are usually the largest

source of both PM25 and CO in urban areas.

The observed smoke NERs appear to fall into two groups. At the surface, mean smoke NERs are in the range of 103-128 ug
m= ppm, whereas in fresh plumes aloft, the mean values are 201-339 pug m=3ppm. The values aloft are much closer to the
mean NER (220 pug m=ppm) calculated from the most recent compilation of ERs for temperate forests (Andreae et al 2019).
Selimovic et al (2019; 2020) noted that the PM25s/CO NER in ground-level smoke is about half of that observed from aircraft
or free tropospheric observations. This was most likely caused by a reduction in aerosol mass from evaporation of organic
aerosols due to higher surface temperatures and greater downstream dilution. These past observations present a fairly
consistent picture showing that PM2s/CO NER for surface smoke is about 3-4 times greater than the NER for typical urban

observations in the absence of smoke, based on the values given in Laing et al (2017).
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Table 1. Emission ratios (ERs) and observed NERs for non-smoke and smoke conditions. ERs are converted into NERs using a
pressure of 1 atmosphere and temperature of 273K (STP). This calculation assumes no loss of either PM2s or CO. For observed
ERs and NERs, the study mean is given and the range (if reported) is shown in parentheses.

PM,5s/CO NER (ug m
PM_s/CO E.R. (9/9) opm)
Non-smoke emissions and observed NERs
US industrial and mobile emissions (excludes wildfires and
S o 0.076 95
residential wood combustion)
U.S. Mobile sources only* 0.009 11
Observed NERs in urban areas with no smoke? 37 (21-66)
Smoke emissions and observed NERSs

Temperate wildfires ERs® 142 177
Temperate wildfires ERs* 176 (.07-.57) 220 (87-712)
Observed smoke NERs in urban areas? 128 (57-228)
Observed smoke NERs, surface sites® 103 (120-156)
Fresh plumes, high elevation site® 258 (66-377)
Fresh plumes, high elevation site and aircraft data’ 299 (170-630)
Fresh plumes, aircraft data® 201 (80-400)
Fresh plumes, aircraft data® 339 (21—492)

!Data from the EPA's 2017 National Emission Inventory (EPA 2022).

2Data from Laing et al 2017.

3Data from Akagi et al 2011.

“Data from Anderea 2019.

SData from Selimovic et al 2020.

Data from Briggs et al 2016.  Scattering values are reported at STP and converted to PM2s using a dry mass scattering
coefficient of 3.5 m?g2

"Data from Collier et al 2016. This value includes refractory PM;. Values are adjusted to STP.

8Data from Garofolo et al 2019. This value includes only the organic, non-refractory PM: fraction, however this is likely
more than 90% of total PM2.s mass. Values are adjusted to STP.

°Data from Kleinman et al 2020. This value includes only the non-refractory PM; mass. Values are adjusted to STP.

The very different PM2s to CO NERs for typical urban air and smoke events suggest that the observed ratios can be used to
derive the smoke contribution to surface PM2s concentrations. (Laing et al 2017; Xiu et al 2022). To examine this hypothesis,
we used data from a monitoring site in Sparks, NV, near Reno, a region that has been heavily influenced by smoke in the past
several years due to the large number and extent of California wildfires. Data from this region were used to examine the role
of high PMzs exposure from smoke on COVID-19 incidence (Kiser et al 2021). From the Sparks, NV, observations, we
developed a quantitative model using a Monte Carlo simulation (Baez and Tweed 2013) that provides a range of probabilistic
results that can be compared to observations. We found that this method appears to reasonably quantify the smoke contribution

in an urban area.
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2. Methods and data sources
For this analysis, we use daily mean PMzs and CO concentrations for May-September 2018-2021 from the Sparks, NV, air
quality monitoring site (EPA AQS identification #320311005) near Reno, NV, that is operated by the Washoe (NV) County
Health District, Air Quality Management Division. The site uses instruments and standards that are consistent with the national
EPA requirements (40 CFR Part 58) and report data into the EPA's national Air Quality System (AQS). The Sparks site has
near-continuous measurements of PMzs, CO and Os. We used data for May—September 2018-2021 to avoid complications

with sources from residential wood combustion. Data were obtained from the EPA AirData site (https://www.epa.gov/outdoor-

air-quality-data), except for 2021 data, which were obtained from AirNow-Tech, a web-based data resource operated for the
U.S. EPA (https://www.airnowtech.org/). Instrumentation at the Sparks site included a MetOne model 1020 Beta Attenuation
Monitor (BAM) for PMz2s, a Teledyne APl model 300 EU non-dispersive IR monitor for CO and a Teledyne APl model T400
UV Oz analyser. These instruments have stated detection limits (DLs) of 1 ug m, 20 ppb and 0.4 ppb, respectively. Because

there were some zero and very low values, PM:s concentrations less than the DL were set to 1 pg m=. This impacted less than
2% of the dataset. No below DL values were reported for the CO or O3 data. As an indication of overhead smoke, we used
the daily smoke polygon product from the NOAA Hazard Mapping System-Fire and Smoke Product (hereafter simply HMS).
The smoke polygon product is created by expert image analysts that digitize smoke plume extent a few times per day based
on analysis of GOES-16 and GOES-17 ABI True Color Imagery available during daylight hours. More details on HMS are in
Rolph et al (2009) and Kaulfus et al (2017). We note that HMS can sometimes miss thin smoke plumes, especially in the
presence of clouds (Buysse et al 2019). Buysse et al (2019) found that there is enhanced surface PM2.s on 30-70% of the days

with overhead HMS smoke, depending on the location.

3. Results

Figure 1 shows one example of the HMS smoke product for the Loyalton fire on Aug. 16, 2020, which was about 35-45 km
from the Sparks monitoring site. This fire started on 8/14/2020 and burned for approximately one month. In total, this fire
burned approximately 20,000 ha in the Tahoe and Humboldt-Toiyabe National Forests. On 8/16/2020, the daily mean PM:s
and CO concentrations were 38 g m and 0.43 ppm at the Sparks, NV monitoring site. Washoe County is located due east
of the California-Nevada border, so smoke from many fires in California is often transported to the Sparks monitor. Table 2
shows data for the number of days that exceeded the U.S. National Ambient Air Quality Standards (NAAQS) for PM2.s (2006
24-hour standard, daily mean of 35 ug m3) and O3 (2015 8-hour O3 standard, maximum daily 8-hour mean of 0.070 ppm) for
the Sparks monitoring site, along with the annual area burned in California. While 2020 was the highest year on record for
the area burned in CA for the past 2 decades, 2021 was the second highest year and had a greater number of days in Reno that
exceeded the NAAQS. Note that 2019 was a particularly low fire year in CA, and there were no exceedances of either the
daily PMzs or O3 NAAQS at the Sparks monitoring site. Overall, for this time period (May-September 2018-2021), 200 out
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of 612 days had overhead HMS smoke at the Sparks monitoring location. The PM2s/CO smoke criteria is discussed later in
this section.
Table 2: California area burned, overhead HMS smoke days, and days over the U.S. National Ambient Air Quality Standard at

Sparks, NV, for PM2; (daily mean of 35 ug m2) and Os (70 ppb, 8 hour average). The smoke criteria (indicated by *) uses a PM2s
/CO ratio of 35 pg m ppm, as discussed later in text.

2018 2019 2020 2021

California area burned (Ha) 7.4E5 1.0E5 1.7E6 1.1E6
Sparks Overhead HMS smoke (days) 51 11 52 86
Sparks smoke days* 30 5 64 57
Identified Sirggrlfteif??gtsixth no HMS 2 0 21 4
PM2s exceedance days 6 0 19 22
PM, 5 exceedance days with smoke* 0 19 22
Os exceedance days 10 0 5 13
O3 exceedance days with smoke* 8 0 5 11

Figure 2 shows the daily PM2.s vs CO concentrations for May-Sept 2018-2021, segregated for smoke vs non-smoke conditions.
The data are segregated using (1) the HMS smoke product and (2) a PM2s/CO ratio greater or less than 30. The value of 30
was chosen based, in part, on the work of Laing et al (2017) and on evaluation of likely smoke influence. We found the slopes
and correlations were not strongly influenced by the choice of PM2s/CO ratio. For example, using a ratio of <20, <30, <40
and <50 we get slopes of 16.5, 18.0, 23.4 and 33.9 pg m™ per ppm, an increasing pattern as would be expected. We found that
smoke influence can be observed on some days at a PM,s/CO ratio as low as 32. An example of this is 8/5/2018, when
extensive and heavy smoke blanketed most of California, Nevada and other western states. PMzs and CO concentrations at
Sparks were 22 pg m= and 0.68 ppm, respectively, for a PM2s/CO ratio of 32.  The relatively low ratio implies significant
mixing of this smoke event with air containing a lower ratio, but the high PM2s concentrations and widespread smoke are
consistent with a significant smoke influence on that day. Using the PM2s/CO ratio to segregate the data, we found an
improved correlation of PM2s and CO in the lower range of ratios, compared with using the HMS as an indicator (Figure 2).
There are 612 days in the analysis. 200 have a positive HMS smoke identification and 220 have PM.s/CO ratios>30. In total,
73 days with PM2s/CO ratios>30 do not have a positive HMS smoke identification. As noted in Table 2, using a criteria of
PM2.5/CO>35, there are 27 days with identified smoke, but no HMS indication. Table 3 summarizes the dataset, as segregated
by the PM,s/CO ratio as well as using the HMS smoke product separately. While there is relatively little difference between
the mean and SD of the smoke-influenced and non-smoke data, the improved correlation suggests that the PM2s/CO ratio is a
better way to segregate the dataset. The exact choice of PM2s/CO ratio depends on the certainty required. This is discussed
in more detail using a Monte Carlo simulation, as described below. We note that there were 53 days with overhead HMS
smoke, but a PM2s/CO ratio<30 and 60 days with a PM2.s/CO ratio>30 and no HMS smoke.
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Table 3. Sparks daily PM2s and CO data for May-September 2018-2021, segregated by the PM25/CO ratio and by overhead HMS
smoke.

145
PM25s/CO <30.0 | PM25/CO >30.0
(no smoke) (smoke-
influenced)
Count 414 198
Mean PM2s (ug 4.8 27.7
m®)
Std. Dev. (ug m 1.8 29.2
%)
HMS=0 HMS=1 150
(no smoke) (smoke-
influenced) We used the PM2s and CO data to develop a
Count 412 200 Monte Carlo simulation of the PM,s/CO ratio for
Mean PM2s (ug 51 26.9 _ _ "
m_3) Reno using the following relationships:
Std. De;/. (Mg m° 1.9 29.6 PMas (ug m) = Urban PM2s + Smoke PMzs +
) 155 background PMzs = 10* + 10F + 2 pg/m?
1)

CO (ppm) = Urban PM2s/Rurban + Smoke PM25s/Rsmoke + 0.2 ppm  (2)

Where Ryrban and Rsmoke are the NERs (APM25/ACO) to represent urban emissions and smoke, respectively. The smoke
terms in equations 1 and 2 were non-zero on 1/3 of the days, corresponding to the fractional incidence of HMS smoke. We
explored a range of values for Ruman and Rsmoke 85 shown in Table 4. The parameters a and 3 were used to represent the log-
normal distributions for urban PM2 s with, and without, smoke PMzs, respectively. Equations 1 and 2 include a background
contribution to represent natural, biogenic, and intercontinental sources of PM2s and CO. The background concentrations
were set to 2 ug m for PM2s and 0.2 ppm for CO.  These background values were estimated based on observations from
2019, a low fire year, from a rural continental site (West Yellowstone, MT AQS #300310017) and a marine background site
(Cheeka Peak, WA, AQS #530090013). During the May-Sept 2019 period the West Yellowstone mean values for PM2s
and CO were 2.5 ug m= and 0.24 ppm, whereas the Cheeka Peak site the mean values were 2.1 pg m= and .08 ppm.
Median values were very similar at both sites. We note that PM2.s concentrations were similar at both sites, whereas CO was
higher at the continental site. Given that Sparks, NV is a continental/inland location, the West Yellowstone, MT

concentrations are likely more representative of its background concentrations.

The Monte Carlo simulations estimate a range of observed PM.s and CO concentrations using Equations 1 and 2. The
simulation computes 10,000 concentrations, where a, B, Ruban and Rsmoke are allowed to vary independently with values as

defined in Table 4. These values were chosen to be consistent with the mean and S.D. of the non-smoke (o) and smoke ()
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datasets, respectively, excluding the contribution from background concentrations. Note that the Monte Carlo simulations
are intended to reflect the bulk distributions, so there is no correspondence between an individual day in the simulation with

any particular day in the observations.

Table 4. Parameter values used in the Monte Carlo simulations. For the Rurban and Rsmoke parameters, multiple mean values are
considered.

o B Rurban Rsmoke
(unitless) | (unitless) | (ug m= ppm™) (hg M ppm™)
Mean 04 1.3 20,40,80 100,140,200
Std. Dev. 0.2 0.4 10 20 180

Figure 3 shows results of the simulation with varying mean values for the Rsmoke parameter. Even at very high PMzs
concentrations, the observed PM,s/CO ratio never exceeded 125 pg m= ppm=. The simulation suggests an optimum Rsmoke
value of 140 ug m= ppm™.  So, consistent with the work of Laing et al (2017) and Selimovic et al (2019; 2020), we found
that the best-fit NER values at the surface were much lower than NERs reported for fresh or free tropospheric smoke plumes
(200-300 ug m ppm™?).

Figure 4 shows the results of the simulations with varying values for the Ruman parameter. The best value of Ryman Was more
difficult to discern. At high PM. s concentrations and PM2s/CO ratios, Ruban has very little influence on the simulated values.
At the low range of PM_ s concentrations, a value of 20 pg m= ppm is clearly too low, but there is little difference between
the other values so it is not clear which value is optimal. This parameter should reflect the primary PM2sand CO emissions
in the area, plus contributions from secondary organic aerosol (e.g., Nault et al 2021). For Washoe County, NV (the county
containing Reno and Sparks) the EPA's 2017 National Emissions Inventory gives primary emissions of PMzsand CO of 1,482
and 55,529 short tons per year, excluding wildfires and residential wood combustion.  This corresponds to a PM»s/CO
emission ratio of 0.034 g/g or an enhancement ratio of 39 ug m= ppm™. Important constraints on using the Monte Carlo
approach to discern the urban, non-smoke PM2s/CO NER are limitations on the instrumentation and the impact of background
concentrations at low PM2sand CO concentrations. Nonetheless, we found that using an Ryman parameter of either 40 or 80
has little influence on our results at higher PM2s concentrations. For the rest of this analysis, we used an Rsmoke Value of 140

and an Ryrpan value of 40.

Figure 5 shows the fractional smoke contribution to PM2s vs the PM,s/CO NER from the Monte Carlo simulations. As
specified in the model setup, 2/3 of the points have no smoke contribution. These have a mean PM2s/CO value of 17, with a
range of 6-34. As the Monte Carlo simulations represent a probabilistic approach, we can also look at the likelihood that a
given set of points has a specific degree of smoke influence. Figure 5 shows the probability that a given set of PM2.s/CO ratios
(binned in units of 10) has more than 50% of the PM2s due to smoke. So, starting with the PM2s/CO bin of 30-40, we have
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a very high probability (0.85) that more than 50% of the PMzs mass is due to smoke and at a bin of 40-50 we have near
certainty (0.993) that more than 50% of the PM2s mass is due to smoke.

We can use the information in Figure 5 to evaluate the likelihood that smoke contributed to the days with high PM2s or Os, as
shown in Table 2. The years 2018, 2020 and 2021 all had a significant number of exceedances days (over the NAAQS),
whereas the low fire year of 2019 had none. For Table 2, we used a PM2s/CO value of 35 which, based on the Monte Carlo
simulation, implies that smoke contributes more than half of the total PM2s on 85% of days. Even using a smoke criteria of
PM2s/CO of 45, we found no change in the number of smoke-influenced days. Not surprisingly, the PM2s/CO criteria
identified all of the PM2s exceedance days as smoke influenced, using either smoke criteria (35 or 45). For Og, the results
show that 24 out of the 28 exceedance days were smoke influenced, using either criteria. While the PM2s/CO ratio can
quantitatively estimate the fraction of PM.s due to smoke (e.g. Figure 5), we note that this approach cannot provide a
quantitative estimate of the smoke contribution to the Oz levels. Other tools would be needed to quantify the smoke
contribution to the MDAS8 O3 values (e.g., Ninneman and Jaffe 2021; Jaffe 2021; Gong et al 2017). Nonetheless, the results

shown in Table 2 demonstrate that the PM2.s/CO ratio can identify days with a strong smoke signature.

4, Summary

The large difference in PM2.5/CO emission ratios between typical urban pollution and wildfire smoke gives rise to very different
observed NERs in urban areas for non-smoke and smoke-influenced conditions. We used PMzs and CO data for May through
September, when residential wood combustion is minimal, to develop a Monte Carlo simulation of the resulting ratios. We
find that the Monte Carlo simulation that includes both smoke and non-smoke NERs can accurately reproduce the observed
NERs and provides a measure of smoke influence in an urban area. The model supports earlier work that found the PM2.s/CO
NER in biomass burning influenced plumes at surface sites is approximately half of that observed in fresh emissions and in
cooler environments. This likely is caused by loss of PM2s mass during transport due to dilution and warmer temperatures at
surface sites. For the Sparks, NV monitoring site we found that at a PM,s/CO ratio of 35 pg m= ppm biomass burning
contributed more than half of the total PM2s on 85% of days. To apply the Monte Carlo simulation at other sites requires that
the parameters in Table 4 be adjusted to fit the local data. The Rumnan parameter would need to be adjusted based on local
emissions and observations and the a and B parameters would need to be fit based on the observed non-smoke and smoke

concentrations, respectively.

This analysis demonstrates that it is possible to identify wildfire smoke at the surface based on commonly measured air
pollutants with high confidence. While satellite data can also identify smoke influence, these have a high false positive rate,
meaning that many days identified by satellite products as having overhead smoke show little or no influence at the surface.
We conclude that the observed PM2s/CO ratio provides a more robust signal of surface smoke in urban areas and with no false

positives.
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395 Figure 1: NOAA HMS smoke and fire location for Aug. 16, 2020. The Loyalton fire is burning in California near the Nevada border
at this time. The blue star shows the location of the Sparks, NV monitoring site, which is approximately 35-45 km from the fire.
This map was created from the AirNowTech site (https://www.airnowtech.org/).
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Figure 2: Observed PM2s vs CO for May-September data (May 1, 2018-August 31, 2021). Each point is the daily mean
of observed values segregated by (top) overhead HMS smoke product or (bottom) PM.s/CO ratio of 30 pg m=3/ppm.
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440 Figure 5. Fraction of PM;s due to smoke vs the PM,s/CO ratio (ug m= ppm™) as calculated from the Monte Carlo
simulations. We note that the Monte Carlo simulations give a probabilistic relationship. So, for example, at a PM2s/CO
ratio of between 30 and 40, 83% of the points have more than half of the PM25 due to smoke. The red open circles

show the probability that more than 50% of the PM35 is due to smoke, within each PM25s/CO bin.
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