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Abstract. Riming of ice crystals by supercooled water droplets is an efficient ice growth process, but its basic properties are

still poorly known. While it has been shown to contribute significantly to surface precipitation at mid-latitudes, little is known

about its occurrence at high latitudes. In Antarctica, two competing effects can influence the occurrence of riming: the scarcity

of supercooled liquid water clouds due to the extremely low tropospheric temperatures and the low aerosol concentration,

which may lead to the formation of fewer and larger supercooled drops potentially resulting in an enhanced riming efficiency.5

In this work, by exploiting the deployment of an unprecedented number of multi-wavelength active and passive remote

sensing systems (including triple-frequency radar measurements) in West Antarctica, during the Atmospheric Radiation Mea-

surements West Antarctic Radiation Experiment (AWARE) field campaign, we evaluate the importance of riming incidence in

Antarctica and find that riming occurs at much lower temperatures compared to the mid-latitudes.

We then focus on a case study featuring a persistent layer of unexpectedly pronounced triple-frequency radar signatures10

but only a relatively modest amount of supercooled liquid water. In-depth analysis of the radar observations suggests that

such signatures can only be explained by the combined effects of moderately rimed aggregates or similarly shaped florid

polycrystals and a narrow particle size distribution (PSD). Simulations of this case study performed with a 1D bin model

indicate that similar triple frequency radar observations can be reproduced when narrow PSDs are simulated. Such narrow

PSDs can in turn be explained by two key factors: (i) the presence of a shallow homogeneous droplet or humidified aerosol15

freezing layer aloft seeding an underlying supercooled liquid layer, and (ii) the absence of turbulent mixing throughout a stable

polar atmosphere that sustains narrow PSDs, as hydrometeors grow from the nucleation region aloft to several millimeter ice

particles, by vapor deposition and then riming.

1 Introduction

Besides deposition and aggregation, riming is an efficient ice growth process. It contributes significantly to surface precipitation20

at mid-latitudes (Grazioli et al., 2015; Moisseev et al., 2017) and is pivotal for improving our understanding of the role of
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ice phase in the water budget. However, basic properties of riming such as its efficiency or its importance in precipitation

formation are still largely unknown since it involves the collection of poorly characterized supercooled water droplets by

complex ice particles. It is widely accepted, however, that at the beginning of a riming process, the mass of a rimed ice particle

increases while its maximum dimension remains constant or only slightly increases (e.g., Heymsfield, 1982; Seifert et al.,25

2019); hence, the density and fall speed of rimed ice hydrometeors tend to be enhanced. Riming occurrence is strongly linked

with temperature since the probability of finding supercooled liquid water decreases with temperature. By exploiting a multi-

year dataset of cloud radar observations at four European sites in various environment, Kneifel and Moisseev (2020) showed

that riming is rare below -12◦C and more frequent closer to 0◦C.

In the Arctic, supercooled liquid water clouds are frequent (e.g., Shupe et al., 2008; Cesana et al., 2012; Morrison et al., 2012;30

Mioche et al., 2015) and rimed precipitating particles are commonly observed (Mioche et al., 2017; Fitch and Garrett, 2022). In

Antarctica however, liquid water clouds are less frequent, in particular during winter months due to lower temperatures (e.g.,

Matus and L’Ecuyer, 2017; Lubin et al., 2020). Nevertheless, the typical low aerosol concentrations in this region can lead

to the formation and persistence of supercooled drizzle drops (Silber et al., 2019a), which might facilitate the occurrence of

riming due to the enhanced riming efficiency of drizzle drops (Lohmann, 2004). Therefore, a thorough investigation of riming35

in Antarctic clouds is timely.

Field measurements in Antarctica are historically sparse due to logistical challenges. Space-borne instruments such as the

Cloud Profiling Radar (CPR) onboard CloudSat (Stephens et al., 2008) can cover extended and remote areas but have inherent

limitations to measure weak ice precipitation fluxes (e.g., Silber et al., 2021), or any ice precipitation fluxes near the ground

due to the so-called “blind-zone” (Maahn et al., 2014). Only recently, riming has been shown to be a recurring process at an40

Antarctic site based on ground-based optical probe observations at the Dumont d’Urville Station (Grazioli et al., 2017), with

most of the detected large ice hydrometeors being at least partially rimed. However, in order to detect an active riming process,

suitable measurement are needed across the vertical column, which can be achieved via ground-based multi-frequency radars,

for example.

By analysing scattering models of snow aggregates and graupel, Kneifel et al. (2011) suggested that triple-frequency radar45

measurements could be exploited to differentiate between rimed and unrimed ice particles. This differentiation has been later

verified by comparing triple-frequency radar signatures with bulk snow density derived from collocated ground-based obser-

vations (Kneifel et al., 2015). While the radar Doppler velocity is the simplest and most obvious parameter for retrieving the

degree of riming or an equivalent parameter (e.g. density factor or rime mass fraction) of ice particles (e.g., Mosimann, 1995;

Mason et al., 2018; Kneifel and Moisseev, 2020), triple frequency radar observations can also provide critical information on50

the internal structure of snowflakes (Mason et al., 2019), and hence, on the growth processed involved. For example, by exploit-

ing triple-frequency Doppler spectra, Kneifel et al. (2016) combined triple-frequency and Doppler velocity information and

confirmed that rimed and unrimed aggregates produce distinct scattering signatures. Further development of multi-frequency

radar retrievals demonstrated that the combination of three radar frequencies enables the derivation of snow aggregate proper-

ties with various degree of riming (e.g., Mason et al., 2018). Quantitative agreement was found with the measurements from55
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collocated ground-based (Moisseev et al., 2017; von Lerber et al., 2017) or airborne (Leinonen et al., 2018; Tridon et al., 2019)

in-situ probes.

In the framework of the Atmospheric Radiation Measurement (ARM) West Antarctic Radiation Experiment (AWARE,

Lubin et al., 2020), the U.S. Department of Energy (DOE) deployed the second ARM Mobile Facility (AMF2) at McMurdo

Station from 1 December 2015 to 31 December 2016, resulting in an unprecedented suite of remote sensing instruments in60

Antarctica, including the Ka-band ARM Zenith Radar (KAZR), the Marine W-band ARM Cloud Radar (MWACR) and the

scanning dual-wavelength ARM cloud radar system (X/KaSACR). Although the MWCAR stopped transmitting after about

three months, these instruments provided triple-wavelength radar profiles for the first time in Antarctica (in Sect. 2). In this

work these data have been exploited to evaluate the probability of finding triple-frequency signatures of riming in clouds over

McMurdo Station and have been compared with climatologies collected at other triple-frequency radar sites at mid-latitudes65

and in the Arctic (Sect. 3). A case study with strong triple-frequency signatures is further analysed in Sect. 4 via a detailed

retrieval of ice microphysics, and bin model simulations performed to investigate its salient features. Conclusions are drawn in

Sect. 5.

2 Radar Data processing

KAZR, MAWCR, radiosonde and XSACR data (Atmospheric Radiation Measurement (ARM) user facility, 2014, 2015a, b, c,70

respectively) were collected during the AWARE field campaign at McMurdo Station located at the southern tip of Ross Island,

Antarctica (77◦50’47”S, 166◦40’06”E, 76 m above mean sea level; see Fig. 2a).

While the KAZR and MWACR are zenith-pointing radars, the X/KaSACR loops through a sequence of various scanning

modes in order to sample the three-dimensional geometry of clouds (Kollias et al., 2014), including a zenith-pointing period

of about 25 min every 2 hours. Triple-frequency radar observations are therefore available only during these zenith-pointing75

operation periods. At the beginning of the field campaign, the radar beams alignment has been maximized for an optimal

volume matching. Since the temporal and range resolution of the radars slightly differ, their data have been first regridded to a

common 3 s by 30 m time–height grid.

Following standard ARM procedures, absolute calibrations of the scanning radar systems have been performed on site with

a corner reflector and the calibration of the KaSACR has been transferred to the KAZR via a statistical comparison of the80

reflectivities measured in the vertical (Kollias et al., 2016, 2020). Without the possibility to use natural volume targets, such as

rainfall, for checking the radar calibration (e.g. involving a co-located disdrometer as in Dias Neto et al., 2019), the calibration

cannot be considered to be more accurate than ±3 dB and absolute reflectivities are mainly used qualitatively in the current

study. The KAZR calibration provided in the ARM Archive was deemed appropriate despite the results from Kollias et al.

(2019), based on a systematic comparison with nearby measurements from Cloudsat, suggesting a rather large miscalibration85

of the KAZR during AWARE. Indeed, such an automatic method is challenging in an area with complex topography like

McMurdo and, for the AWARE campaign, it suggests an erratic KAZR calibration instability with an offset ranging between
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Table 1. List of AWARE cases with triple frequency radar observations.

Start time [UTC] End time [UTC] Cloud top [km AGL] Duration with 3-frequency [min]

31/12/2015 17:00 01/01/2016 21:00 3.5 46

02/01/2016 10:00 05/01/2016 09:00 6 351

09/01/2016 23:00 11/01/2016 15:00 8 117

16/01/2016 13:00 21/01/2016 07:00 7 339

28/01/2016 14:00 01/02/2016 17:00 6 172

02/02/2016 18:00 03/02/2016 08:00 6 86

08/02/2016 18:00 12/02/2016 09:00 5 180

3.5 and 7.7 dB. Furthermore, thanks to coincidental observations during the case study presented in Sect. 4, comparisons of

KAZR and Cloudsat reflectivities suggest the ARM calibration to be appropriate.

Before deriving the dual-wavelength ratios (DWRs), the relative calibration between the different radars is performed. Firstly,90

the two-way attenuation profile due to atmospheric gases is derived from the measurements of the closest radio soundings and

the absorption model of Rosenkranz (1998). Secondly, the remaining offsets due to supercooled liquid, snow, and radome

attenuation as well as possible absolute calibration differences are derived by matching the measured reflectivity near cloud

tops, where only small hydrometeors are present and non-Rayleigh scattering is negligible (Tridon et al., 2020). While the

XSACR calibration proposed in the ARM Archive was found to be correct, a considerable offset of +19.6 dB was necessary95

for the MWACR.

Due to a failed power supply, the MWACR was taken offline in March 2016 (Lubin et al., 2017) and the triple-frequency

dataset is limited to only about three months. Nevertheless, during this period 7 multi-day snowfall events were recorded during

which the signal to noise ratio of all three radars exceeded -10 dB. This results in a total duration of 21 hours of triple frequency

observations (see Table 1), providing insights on how frequent riming might be in Antarctica, at least for the summer season.100

3 Triple-frequency signatures during AWARE

3.1 Results from previous data sets

In order to highlight the occurrence of aggregation or riming processes, it is helpful to combine the DWRs of all three frequen-

cies in a single plot showing DWRX,Ka as function of DWRKa,W , as proposed by Kneifel et al. (2011). When snowflakes

become sufficiently large (with a threshold on the characteristic sizes that depend on the frequency pair; see Fig. A4 in Battaglia105

et al., 2020a), their reflectivity depends on the radar frequency and the DWRs depart from zero. In a nutshell, the DWRX,Ka

and DWRKa,W increase almost equally in case of aggregates, while the DWRX,Ka remains much lower than DWRKa,W in

case of rimed particles (a maximum DWRX,Ka of roughly 3 dB was suggested by Kneifel et al., 2015; Dias Neto et al., 2019,
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but it can reach slightly larger values when the mean mass diameter is larger than 3 mm). The proposed explanation for this

behaviour is that the rimed particles are too small to enhance the DWRX,Ka while their larger density enhance their refrac-110

tive index, and hence, the DWRKa,W (Dias Neto et al., 2019). In case of very large low-density aggregates, the DWRKa,W

can actually decrease producing a bending back of the curve (for details, see Kneifel et al., 2015). Mason et al. (2019) have

shown that the shape of the size distribution and the internal structure of snowflakes also have a non-negligible influence on

the triple-frequency signatures.

The ARM program has pioneered ground-based triple-frequency radar observations (e.g., during the BAECC field campaign,115

Petäjä et al., 2016) and similar experimental setups are emerging at other sites such as the TRIple-frequency and Polarimetric

radar experiment (TRIPEx) at the Jülich Observatory for Cloud Evolution, Germany (Dias Neto et al., 2019). The triple-

frequency density occurrence derived from datasets collected at these sites generally include the branches of both aggregates

and rimed particles (Kneifel et al., 2015; Mason et al., 2018, 2019; Dias Neto et al., 2019). This is also true for the AWARE

snowfall event on the 10th of January which was succinctly analysed in Lubin et al. (2020). A peculiarity of the AWARE case120

analysed in the current paper (see Sect. 4) is the presence of a rimed particle branch leading to very large DWRKa,W values

(up to 16 dB); DWRKa,W barely exceeds 12 dB for all other studies cited above and corresponding to data from various sites

located at mid to high latitudes.

3.2 Temperature dependence of DWRs

In order to investigate the conditions at which the aggregation and riming processes occur, another way of showing the triple-125

frequency signatures is to plot the profiles of the observed DWRs after they have been stratified according to air temperature

(Fig. 1a,b), as suggested by Dias Neto et al. (2019) for their TRIPEx dataset. To this aim, the temperature information has been

interpolated from the closest radio soundings, which were launched every 12 hours during AWARE. For comparison, this has

also been applied to the BAECC triple-frequency dataset (Fig. 1c,d) which has already been thoroughly analysed in previous

papers (e.g., Kneifel et al., 2015; Mason et al., 2018, 2019). The BAECC DWR density plots are practically identical to those130

from TRIPEx (Fig. 9 in Dias Neto et al., 2019), two sites which can be identified as mid-latitudes.

Despite appearing slightly noisier due to the reduced size of the data set, the AWARE density plots (Fig. 1) show interesting

similarities in comparison with those from BAECC (and, equivalently, TRIPEx), but also some striking differences. On the

similarities side, the medians of both DWRs (black lines) reach nearly the same maxima around 0◦C (6 and 2 dB for DWRKa,W

and DWRX,Ka, respectively). Furthermore, the rate of increase of the DWRX,Ka with temperature is similar: it remains small135

at low temperatures and increases faster for temperatures greater than -15◦C, which can be explained by a rapid growth of

aggregates favored by the dendritic growth around -15◦C. On the disparities side, the AWARE DWRKa,W increases at a lower

temperature (around -25◦C) compared to the mid-latitude sites. Furthermore, there is a thin but striking branch of DWRKa,W

reaching extreme values, much higher than the common maximum of 12 dB, a feature which is consistent with the triple-

frequency signatures shown in Lubin et al. (2020).140

It appears somewhat unlikely that the aggregation process has a temperature dependence which would be different from

mid-latitudes because the shape of ice particles is mainly a result of temperature and supersaturation (e.g., Bailey and Hallett,
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Figure 1. Density plots of DWRKa−W (a,c) and DWRX−Ka (b,d) as function of temperature for AWARE (a,b) and BAECC (c,d) datasets.

The dashed lines indicate the 10th and 90th percentiles.

2009). In our opinion, a much more likely explanation for the increase of DWRKa,W at low temperatures might be occurrence

of riming at lower temperatures. This differences from previous studies may be explained by the low concentration of aerosol

in Antarctica, compared to the northern hemisphere: a low cloud condensation nuclei concentration could lead to fewer but145

larger supercooled droplets (for a given cloud water content), and therefore, more efficient riming (Lohmann, 2004). In the

rest of the paper, this interpretation will be further assessed by focusing on a single case study, which features the strongest

DWRKa,W of the AWARE dataset.

6

https://doi.org/10.5194/acp-2022-136
Preprint. Discussion started: 9 March 2022
c© Author(s) 2022. CC BY 4.0 License.



Figure 2. (a) Overview of the geographical features around McMurdo. (b) Atmospheric (continuous line) and dew point (dashed line)

temperatures profiles measured by the 10:24 UTC sounding from the AMF2 on the 4th of January. Time-height cross sections of the

reflectivity measured during the ascending (c) and descending (d) Cloudsat overpasses closest to McMurdo for the same day, indicated by

the blue and red dashed lines in (a) (the colored circles in (a) and along the x-axis of (c) (d) are spaced by 30 s timesteps along the satellite

path (equivalent to 228 km) and allow to better visualize the position of the cloud system). The vertical black dotted lines in (c) and (d) show

the time of the closest approach for each overpass, and magenta lines indicate supercooled liquid water clouds as detected by CALIPSO.
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4 Extreme triple-frequency signatures of the 4th January 2016

4.1 General description of the case study150

Between the 1st and 4th January 2016, the weather conditions were typical of the frequent strong katabatic wind events

recorded at McMurdo Station (Chenoli et al., 2013; Coggins et al., 2014; Monaghan et al., 2005; Weber et al., 2016). The

Ross sea semi-permanent cyclonic circulation (Carrasco and Bromwich, 1994; Monaghan et al., 2005; Simmonds et al., 2003)

deepened and moved to the South, bringing moist air over the Ross Ice Shelf (see Fig. 2a). MODIS cloud phase retrieval

(see Fig. 3) indicates that clouds formed over the ice shelf, including extended clouds with supercooled liquid at their top. The155

evolution of cloud features in the subsequent panels of Fig. 3 demonstrates the cyclonic (clockwise) circulation centered around

the North of the Ross ice shelf, which led to deeper ice-topped clouds along the Transantarctic Mountains to the West of the

Ross ice shelf (see Fig. 2c,d). Cloud initiation mechanisms included lifting of air due to the relief barrier and convergence of

cyclone winds with katabatic winds descending from the Antarctic Plateau. Between the 2nd and 4th of January, this resulted in

strong Southerly winds (e.g. winds up to 16 m s−1 were recorded at 1.7 km ASL by the radiosonde launched from the AMF2160

at McMurdo on the 4th of January at 11h UTC as shown in Fig. 2b) associated with long lasting clouds deepening on the

windward side of Ross Island.

On the 4th January 2016, Cloudsat made two overpasses exceptionally close to McMurdo Station (as close as 46 and 23 km

at 5:16 and 11:47 UTC, respectively). Cloudsat reflectivity transects (Figs. 2c and d) confirm the presence of extended and

complex cloud fields over the whole Ross Ice Shelf, and particularly deep clouds near McMurdo with cloud tops reaching165

nearly 6 km ASL and reflectivity as large as 14 dBZ. Furthermore, co-located CALIPSO observations indicate that most of

these clouds were mixed-phase clouds with a supercooled liquid layer at their tops at temperatures as low as -35°C (magenta

lines in Figs. 2c and d).

4.2 Observations at McMurdo

Over McMurdo, a persistent thick cloud layer was continuously observed between the 2nd and 5th January 2016. While the170

ARM lidars were not able to penetrate through the full extent of the clouds and sample their top, the associated liquid cloud

base height products (Silber et al., 2018a, b) suggest that supercooled liquid layers were almost always present at various

heights within the clouds, from 0.5 to 3 km AGL (not shown).

Of particular interest on the 4th of January is the period between 07 and 12 UTC which is associated with a persistent

supercooled liquid layer around 2 km AGL and characterised by clouds with the largest reflectivities (Fig. 4a). After applying175

the climatological relative calibrations determined for the whole AWARE field campaign (see Sect. 2), effective DWRX,Ka

and DWRKa,W are derived (Fig. 4c and 4e, respectively).

Microwave radiometer measurements were not available at McMurdo before the 29th of January 2016. Before that date,

liquid water path can still be roughly estimated thanks to multi-frequency radar observations (Tridon et al., 2020): using the

Rayleigh plateau technique, Rayleigh reflectivity regions at cloud top can be identified (non-shaded zones in Fig. 4e) and180

used to derive the two-way differential path-integrated attenuation (∆PIA, black thick line at the top of Fig. 4e associated
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Figure 3. Time evolution of cloud top phase (ice, liquid or undetermined in blue, red and green, respectively) retrieved by subsequent MODIS

overpasses on the 4th of January at (a) 3:35, (b) 5:15, (c) 8:30 and (d) 10:05 UTC within the geographical area shown in Fig. 2a. The magenta

lines correspond to the satellite ground track for each overpass.
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Figure 4. Time height cross section of the (a) KAZR reflectivity, (b) KAZR Doppler velocity V Ka
D , (c) DWRX,Ka, (d) Doppler velocity

of KAZR spectra slow edge V Ka
D,slowedge, (e) DWRKa,W , (f) difference between KAZR Doppler velocity and Doppler spectra slow edge

V Ka
D −V Ka

D,slowedge, (g) KAZR spectral width σKa
D , (h) MWACR spectral width σW

D , (i) differential Doppler velocity between KAZR and

MWACR δV Ka,W
D and (j) differential spectral width between KAZR and MWCAR δσKa,W

D . The horizontal black lines indicate the -15 and

-30◦C levels while the vertical dashed lines delimit the period of large DWRKa,W used to produce the density plots in Fig. 5, 6 and 7. The

black dots in (a) show the liquid water as detected by the ARM high spectral resolution lidar (HSRL) cloud base height product (Silber et al.,

2018a); see also the inset in Fig. 10a). The thick black curve in the upper part of (e) is the 2-way ∆PIA in dB (scale along the right axis)

derived from Rayleigh scattering hydrometeors at cloud top (non-shaded zones) following Tridon et al. (2020).
10
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with its own scale on the right axis in dB). While in general, ∆PIA can be due to thick layers of supercooled liquid droplets

or dense snow, the ice crystals in this case study are not expected to produce any significant attenuation. ∆PIA can then be

used to roughly estimate the supercooled liquid water path within this cloud (Tridon et al., 2020). Before 7:00 UTC and after

14:00 UTC, ∆PIA is very close to 0 dB suggesting that ice water path (IWP) and liquid water path (LWP) are small and do not185

produce any detectable differential attenuation. During the period with largest DWRKa,W (between 10:00 and 12:00 UTC),

∆PIA reaches 0.25 dB. Assuming that only the supercooled liquid water contributes to the ∆PIA, the corresponding LWP

should be of the order of 100 g m−2, according to recent refracting index models (Tridon et al., 2020). Note that ∆PIA

becomes slightly negative (-0.25 dB) between 9:30 and 10:30 UTC. This may be linked to the light snow shower reaching the

ground around 9:00 UTC, and be explained by snow accumulating preferentially on the KAZR large flat radome. If this effect190

persists over the following hours, the true ∆PIA between 10:00 and 12 UTC could be at most 0.5 dB, corresponding to a LWP

of the order of 200 g m−2.

In the upper part of the cloud (4 to 6 km AGL) where the temperature is comprised between -25 and -40◦C, the reflectivity

and DWRs remain low. As aggregation in this temperature regime can be expected to be relatively weak, we expect plate-like

particles and possibly polycrystals to dominate. Closer to the supercooled liquid layer, the DWRX,Ka is found only slightly195

enhanced (up to 5 dB, Fig. 4c) while the DWRKa,W reaches the rather extreme value of 15 dB (Fig. 4e), i.e. the largest

values in the AWARE field campaign data depicted in Fig. 1a. At temperatures lower than -15◦C, aggregation is still expected

to be limited and it is unlikely to be the process which leads to very large DWRKa,W since DWRX,Ka would be also more

strongly enhanced if the 15 dB were due to large aggregates. Conversely, such DWR combination strongly suggests an intense

riming event, but this assumption cannot be readily corroborated by Doppler velocity because the entire period is affected by200

significant vertical motions.

The KAZR Doppler velocity, V KaD (positive when downward in our convention), is the result of the vertical air motion and

the ice particle fall speed. For many instances of the case study, it features periods with negative values (Fig. 4b), i.e. updrafts.

These updrafts are even more evident when exploiting KAZR Doppler spectra: the Doppler velocity of the slow edge of the

spectra V KaD,slowedge (i.e., the vertical velocity of the smallest hydrometeors detected in the sampling volume) is practically205

always negative (i.e. upward), and in some regions by almost 2 m s−1 (Fig. 4d).

In case of low turbulence broadening such as in most of this case (Fig. 4g; further discussed in the following paragraph),

subtracting the slow edge Doppler velocity from the Doppler velocity V KaD −V KaD,slowedge provides a lower limit for the re-

flectivity weighted mean fall velocity, or in other words, the Doppler velocity corrected from vertical air motion (Fig. 4f). This

subtraction provides a lower boundary because the smallest hydrometeors detected by the radar may not have a negligible fall210

speed, an issue which will be exacerbated in regions of low radar sensitivity. In such instances, the actual updraft and, conse-

quently, the derived mean fall velocity would both be underestimated. Conversely, enhanced level of turbulence would cause

an overestimation of the updraft and of the mean fall velocity. Panels Fig. 4b and d (V KaD and V KaD,slowedge) clearly show verti-

cal stripes typically associated with abrupt changes of vertical air motions. Conversely, in panel Fig. 4f (V KaD −V KaD,slowedge)

the velocity increases downward as expected for ice particles growing via deposition, riming or aggregation while they fall215

through a cloud, suggesting that most of the variability induced by the vertical air motions has been correctly eliminated. The
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Figure 5. Contoured frequency by altitude diagram of the differential fall velocity δV Ka,W
D and differential spectral width δσKa,W

D between

KAZR and MWACR during the period of high DWRKa,W in between the vertical dash lines in Fig.4i and j. The continuous and dashed

black lines show the profiles of median, 10th and 90th percentiles of the distributions.

fall velocity of unrimed aggregates is known to be capped at around 1 m s−1, independent of their size because the increase

of mass via aggregation is compensated by the enhanced drag due to the larger cross sectional area (Zawadzki et al., 2001;

Kneifel and Moisseev, 2020). With values often reaching 1.4 m s−1 between 1.8 and 3 km AGL (Fig. 4f), the resulting mean

fall velocity supports the presence of at least slightly rimed ice particles.220

Less directly, the spectral width σD can be used to infer some information on ice properties as well (Maahn and Löhnert,

2017). The challenge is to separate the broadening due to the spread of hydrometeor fall velocities from the broadening due to

air motion. For a vertically pointing cloud radar, the air motion broadening is mainly due to turbulence, wind shear and cross

wind within the scattering volume (Borque et al., 2016). During this case study, the spectrum widths observed by the KAZR

(Fig. 4g) is mostly limited to rather small values compatible with the narrow spread of ice crystals fall velocity while only few225

layers with larger values are probably associated to gravity waves. Since the KAZR and the MWACR have practically identical

beam widths (0.33 and 0.36◦, respectively) and range resolutions, were the air motion broadening dominating the spectral

width, the latter should be identical for both radars. Any difference must therefore be related to the spread of hydrometeors fall

velocity and to differential non-Rayleigh effects associated to the large ice crystal PSD tail. Interestingly, the MWACR spectral

width is significantly larger than KAZR spectral width in the large DWRKa,W region (Fig. 4h), which leads to a negative230

differential spectral width between Ka and W bands δσKa,WD (Fig. 4j). While the spectral width is generally larger at Ka-band,

such a peculiar behaviour is possible for narrow size distributions of large ice crystals, as will be seen in Sect. 4.4.

In order to verify that the negative δσKa,WD is not a spurious signal due to a possible mismatch of the radar beams, two-

dimensional histograms (contoured frequency by altitude diagram, CFAD) of the differential Doppler velocity (δV Ka,WD ) and

δσKa,WD for the period with high DWRKa,W are shown in Fig. 5. Above 3 km AGL, reflectivity, DWRs, and fall velocity are235
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small (Fig. 4) suggesting that mostly small ice particles, thus Rayleigh scatterers, are present. In this case, both δV Ka,WD and

δσKa,WD should be very close to zero. When non-Rayleigh targets are present, the Doppler velocity (still with a positive when

downward convention) is generally smaller at the higher radar frequency because scattering effects reduce the backscatter cross

section of the largest and faster falling ice crystals. The slightly negative δV Ka,WD (-0.5 m s−1) — and hence larger VWD —

can only be explained by one of the radars slightly pointing off-zenith, as was found for the BAECC dataset (Kneifel et al.,240

2016). As a result, a small component of the horizontal winds is found along the pointing direction of the mis-pointing radar

which explains the observed δV Ka,WD difference. Conversely, being defined as the spread around the mean Doppler velocity,

the spectral width is not affected by a bias in Doppler velocity. As expected, δσKa,WD is centered around zero for the small ice

crystals present above 4 km AGL, confirming that the negative δσKa,WD below 3 km AGL is not an artefact due to mispointing

radar beams.245

4.3 Evidence of narrow particle size distribution

The reflectivity observed by the three radars within the period delimited by the dashed lines in Fig. 4 are combined in the

so-called triple-frequency space (Fig. 6). The bullseye cluster centered around 0-0 dB corresponds to the upper part of the

cloud (above 4 km) where the ice particles are small and nearly scatter in the Rayleigh regime at all frequencies. The cluster

on the right hand side corresponds to the lower part of the cloud where supercooled liquid water is present. The combination250

of very high DWRKa,W and rather small DWRX,Ka is known to be the signature of rimed aggregates. In this case, this riming

signature appears much stronger than previously observed (Kneifel et al., 2015; Mason et al., 2018; Dias Neto et al., 2019).

For reference, the lines superimposed in Fig. 6 show DWRs of exponential distributions of unrimed and rimed ice crystals

forward modelled using various scattering models designated as electromagnetic-microphysical (hereafter EM-MIC) models

following the nomenclature introduced in Tridon et al. (2019). Light gray to dark gray lines correspond to the self-similar255

Rayleigh-Gans approximation (Hogan and Westbrook, 2014; Hogan et al., 2017) for realistic ensembles of ice aggregates

(B model of Leinonen and Szyrmer, 2015) with various degrees of riming (from unrimed SSRGA-LS15-B0kgm2 to heavily

rimed SSRGA-LS15-B2kgm2). Blue, purple and red lines correspond to T-matrix scattering calculations for oblate spheroid

ice crystals with an axial ratio of 0.6 and composed of a homogeneous ice-air mixture (soft spheroid model). The different lines

correspond to various densities which are determined from the density factor r introduced by Mason et al. (2018) (from unrimed260

TMAT-M18-r0 when r = 0 to nearly hail TMAT-M18-r0.8 when r = 0.8). Fig. 6 clearly shows that none of the scattering

models corresponding to rimed particles can explain the observed reflectivities, if exponential distributions are assumed.

Mason et al. (2019) showed that the shape of the ice particle size distribution (PSD) can also affect the triple-frequency radar

signature: reducing the width of a PSD (e.g. by increasing the shape parameter µ of a gamma PSD) has a similar effect to that

of increasing the particle density. As a result and since riming has been shown to be correlated with narrow size distributions265

(Garrett et al., 2015), a narrow PSD could amplify the triple frequency signature of riming and is the most plausible way to

explain the extreme signature observed in this case.
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Figure 6. Joint histogram of measured dual-wavelength ratios (DWRs) for triple-frequency radar observations. Superimposed curves repre-

sent the forward modeled DWR for an exponential distribution of particles with a mean mass diameter comprised between 0<Dm ≤ 6 mm

(each marker corresponding to 1 mm step) using various electromagnetic-microphysical models (see details in the text).

4.4 Constraining ice particle properties from multi-frequency radar observations

In order to take into account the effect of the shape of the PSD, we consider gamma distributions of the form:

N(D) =N∗
0 f(µ)(D/Dm)µ exp−ΛD (1)270

where Λ and µ are the slope and shape parameters, Dm = (1 +µ+ bm)/Λ is the mean mass diameter, bm is the exponent of

the mass-size relation associated to the EM-MIC model and f(µ) is a normalisation factor following Testud et al. (2001). In

comparison to an exponential distribution, a gamma distribution (with µ larger than zero) leads to larger DWRKa,W for any

EM-MIC model (Mason et al., 2019, and Fig. 7a). However, it also leads to a reduced spectral width and, as was shown in

Sect. 4.2, the observed negative δσKa,WD is a very specific feature and is an evidence that the PSD is wide enough to contribute275

to the spectral width. Therefore, combining the triple-frequency radar signature with the observed σDs offers a way to constrain

the best EM-MIC model matching the observations (e.g., by comparing the density plots of these observations as function the

DWRKa,W to the theoretical lines provided by the EM-MIC models). Furthermore, even if the estimation of VD−VD,slowedge
requires a negligible turbulence broadening and a high radar sensitivity, Sect. 4.2 and Fig. 4 suggest that these conditions are

reasonably fulfilled for this case study. Then, since the VD −VD,slowedge parameter is unaffected by the vertical wind, it is a280

further parameter that can be used to evaluate EM-MIC models, contrary to the Doppler velocity. To this aim, Doppler spectra

with a realistic noise level are simulated following the methodology described in Tridon and Battaglia (2015) and vD,slowedge
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is determined as being the Doppler velocity of the first bin with spectral reflectivity larger than the noise, as for the observed

Doppler spectra.

The resulting density plots of observations are shown in Fig. 7, in which the superimposed theoretical lines correspond to285

a new EM-MIC model briefly introduced below. By using a similar methodology, Fig. S1 and Fig. S2 of the supplementary

material provide an assessment on how well the two types of rimed aggregates EM-MIC models discussed in the previous

section (i.e. SSRGA-LS15-B1kgm2 and TMAT-M18-r0.4) fit the radar observations. Interestingly, despite choosing the most

adequate degree of riming, these models appear to be inconsistent with the measurements for the following reasons:

– For the SSRGA-LS15 type (Fig. S1), a rather high degree of riming (equivalent liquid water path of 1 kg m−2) is290

required to produce large enough DWRKa,W . This is very surprising because this EM-MIC model corresponds to heavily

rimed particles while the small ∆PIA between Ka and W-bands (see Sect. 4.2) suggests that the amount of observed

supercooled liquid water is relatively small. This leads to excessive simulated fall velocities and spectral widths, with

particularly high V KaD −V KaD,slowedge at small DWRKa,W , resulting in a completely inadequate sloping of this parameter

with increasing DWRKa,W .295

– A much better agreement is found for the TMAT-M18 type when using a density factor r=0.4 and shape parameter µ= 4

(Fig. S2). Nevertheless, the resulting V KaD −V KaD,slowedge and σKaD are slightly too large. Furthermore, this model appears

less physical since it suggests that very high DWRKa,W (larger than 20 dB) could be reached in case of very narrow

size distributions (µ≥ 16), while the observations suggest a clear cut-off above 15 dB.

Note that the Doppler velocity comparison is not without uncertainty: first, the proposed vertical air motion correction is300

an approximation; and second, the hydrodynamic theory for ice particles of complex shape is still a topic of active research,

with the different hydrodynamic models proposed in the literature (Böhm, 1992; Khvorostyanov and Curry, 2005; Heymsfield

and Westbrook, 2010) known to lead to slightly different fall velocities (different line widths in Fig. 7b). Nevertheless, this

uncertainty is much smaller than the large overestimation found with the SSRGA-LS15-B1kgm2 model.

A possible explanation for the excessive Doppler velocities of the SSRGA-LS15-B1kgm2 models could be in its mass-size305

relation. Indeed, the mass-size relation parameters of the Leinonen and Szyrmer (2015) B model for heavily rimed particles

are quite different from those derived from various observations according to the comprehensive review made by Mason et al.

(2018, their Fig. 1). The rather large prefactor with low exponent lead to particularly large masses for corresponding sizes.

While the aggregation and riming model used in Leinonen and Szyrmer (2015) is widely accepted and provides physically

reasonable particle shapes (Seifert et al., 2019; Karrer et al., 2020), it remains debatable how realistic it is to cluster the ice310

particles by the equivalent LWP of supercooled droplets through which they sediment. This model indeed assumes an ideal

seeder-feeder cloud situation with the same riming efficiency at all ice particles sizes.

Instead, we propose to cluster rimed particles according to their normalized rime mass,M, defined by Seifert et al. (2019)

as the ratio of the particle mass m to the mass mg of a 700 kg m−3 graupel of equivalent size. Such parameter is better suited

to represent successive stages of riming since its definition literally translates the asymptotic increase of m toward mg , and it315

allowed Seifert et al. (2019) to illustrate the self-similarity of the conversion of aggregates to graupel-like particle. In order to
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Figure 7. Joint histogram of observed (a) DWRX,Ka, (b) difference between Ka-band Doppler velocity and Doppler spectra slow edge

V Ka
D −V Ka

D,slowedge, (c) Ka-band spectral width σKa
D and (d) W-band spectral width σW

D as function of observed DWRKa,W . Superimposed

lines represent the corresponding parameters forward modeled with the SSRGA for a gamma distribution of aggregates of plates with various

µ (see the legends in the plots), a mean mass diameter comprised between 0<Dm ≤ 10 mm (each marker corresponding to 1 mm step)

and a normalized rimed massM= 0.016 (see the text for details). In panel (b), thick lines correspond to calculations of fall velocities using

the Böhm (1992) model while thin lines correspond to the Khvorostyanov and Curry (2005) and Heymsfield and Westbrook (2010) models.
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Table 2. Parameters of the main EM-MIC models used in this study: mass-size relation parameters (prefactor am and exponent bm), effective

aspect ratio (αeff ) and SSRGA parameters (kurtosis parameter κ, power-law prefactor β and exponent γ, and correction factor ζ1) averaged

over the 1-10 mm range of sizes. To obtain the parameters of the other EM-MIC models of Fig. 6, the reader can refer to Leinonen and

Szyrmer (2015) and Mason et al. (2018) for the SSRGA-LS15 and TMAT-M18 series, respectively.

EM-MIC model am bm αeff κ β γ ζ1

TMAT-M18-r0.4 0.68 2.34 0.6 N/A N/A N/A N/A

SSRGA-LS15-B1kgm2 0.37 2.11 0.79 0.17 2.55 3.34 0.06

SSRGA-plates-M0.016 0.52 2.43 0.53 0.26 2.05 2.57 0.07

build new EM-MIC models corresponding to specificM values, we used the open code provided by Leinonen and Szyrmer

(2015) and produced an ensemble of rimed aggregates with a wide range ofM (leading to more diversified degrees of riming

than what was proposed in Leinonen and Szyrmer, 2015). Since the DWRs observed during the case study start to increase in

the plate-like growth regime, plate aggregates or polycrystals are quite likely and we chose plates as primary ice crystal shape320

for the simulations. We then used the Snowscatt tool (Ori et al., 2020) to derive the SSRGA parameters for variousM classes.

While the full discussion of the resulting rime ice particle classes is beyond the scope of this study and will be fully described

in a subsequent paper, the resultingM classes provide mass-size parameters which are significantly different from previous

studies, but are consistently increasing (not shown) in agreement with riming theory, in particular, with an exponent increasing

from 2 (fractal geometry of unrimed aggregates) to 3 (spherical particles, i.e. fully rimed). Especially, for corresponding sizes,325

these mass-size parameters lead to smaller masses and fall velocities than the Leinonen and Szyrmer (2015) B model. With

a normalized rimed massM= 0.016 and a µ value on the order of 16, the resulting slightly rimed particle class provides a

reasonable agreement with the observed triple-frequency DWRs, spectral widths, and fall velocity, all at the same time (Fig. 7).

In this scenario, the high DWRKa,W cluster in Fig. 7a corresponds to mean mass diameter Dm ranging from 5 to 7 mm.

For comparison, the parameters of the SSRGA-plates-M0.016 model are compared to those of previous EM-MIC models330

in the Table 2. Apart from the mass-size parameters, a significant difference resides in the effective aspect ratio (αeff ): for

the SSRGA-LS15-B1kgm2 model, it is closer to unity suggesting rounded particles and heavy riming, while SSRGA-plates-

M0.016 has a value closer to 0.6, the value widely accepted in the literature and more consistent with slight riming.

4.5 Retrieval of ice properties

In order to constrain the ice particle properties from multi-frequency radar observations, numerous assumptions are required.335

The most important one is the EM-MIC model (and its associated mass-size relation) chosen to describe the type of ice particles.

In an effort to evaluate the uncertainty associated with this choice, a simple retrieval of ice properties using the multi-frequency

radar data and the most likely ice particle types is proposed in this section.

The retrieval assumes an EM-MIC model and is applied for each ice particle type independently. Its aim is to retrieve

parameters such as ice particle number concentration ni, ice water content (IWC) and mean mass diameter Dm. To do so, it340
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is required to invert the ice particle size distribution (PSD). By assuming a gamma PSD (Eq. (1)), three parameters must be

retrieved: N∗
0 , µ and Dm. The core of the methodology is to retrieve µ and Dm via a simple minimization technique (such as

in Turk et al., 2011) and its main steps are as follows:

1. For each EM-MIC candidate, we build a multidimensional lookup table that provides the forward simulated DWRsimX,Ka,

DWRsimKa,W and V simD −V simD,slowedge at the Ka band (where the Ka subscript is omitted for simplicity) corresponding to345

any µ−Dm pair.

2. For each combination of measurements, DWRobsX,Ka, DWRobsKa,W and V obsD −V obsD,slowedge, the best matching µ−Dm pair

is found by minimizing the cost function CF:

CF =

∣∣DWRobsX,Ka−DWRsimX,Ka
∣∣

σDWRX,Ka

+

∣∣DWRobsKa,W −DWRsimKa,W
∣∣

σDWRKa,W

+

∣∣∣(V obsD −V obsD,slowedge)− (V simD −V simD,slowedge)
∣∣∣

σVD−VD,slowedge

, (2)

where σDWRX,Ka
, σDWRKa,W

and σVD−VD,slowedge
are the measurements errors corresponding to those observations.350

Based on the joint histograms of Fig. 7, these errors have been set to 3 dB, 1.5 dB and 0.2 m s−1, respectively. This

provides a direct mapping from a set of measurements DWRsimX,Ka, DWRsimKa,W and V simD −V simD,slowedge to the unknowns

µ−Dm.

3. The mapping from the measurements to the unknowns is highly non-linear. The error associated to this variability is

taken into account via Monte Carlo propagation. Namely, the retrieval is performed several times on an ensemble ob-355

tained by perturbing each measurement via normally distributed measurement errors with standard deviations σDWRX,Ka
,

σDWRKa,W
and σVD−VD,slowedge

, respectively. For each set of measurements, a µ−Dm pair is retrieved and the resulting

retrieval errors σµ and σDm
are obtained by taking the standard deviation of the ensemble of retrieved µ and Dm values.

4. Once µ and Dm and their uncertainty are retrieved for a data voxel, N∗
0 can be directly derived from the observed

reflectivity ZKa thanks to the relation360

N∗
0 =

π5 |K|2
λ4
Ka

ZKa∫
σEM-MIC
b (D)Dµ exp−ΛD dD

, (3)

while its standard deviation σN∗
0

is computed via error propagation, assuming that σµ and σDm
are independent.

5. Finally, IWC and ice number concentration ni and their errors are computed using:

ni = N∗
0

∫
Dµ exp−ΛD dD, (4)

IWC = N∗
0

∫
amD

bmDµ exp−ΛD dD, (5)365

where am and bm are the prefactor and exponent of the mass-size relation associated to the EM-MIC model.

The retrieval is applied with the three EM-MIC models, which were found to better describe the joint histograms of obser-

vations in Fig. 7, Fig. S1 and Fig. S2: SSRGA-plates-M0.016, SSRGA-LS15-B1kgm2 and TMAT-M18-r0.4. As an example,
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Figure 8. Time height cross section of the retrieved (a) Dm, (b) µ, (c) IWC and (d) Ni when using the SSRGA-plates-M0.016 model, for

all pixels where DWRKa,W is larger than 4 dB. The black dots show the location of supercooled liquid water as detected by the ARM high

spectral resolution lidar.

Fig. 8 illustrates the results of the retrieval using the SSRGA-plates-M0.016 model. For simplicity, it is applied only to the

data identified as rimed by requiring the DWRKa,W to be larger than 4 dB (of course, such a simple threshold is valid for this370

particular case study only because aggregation is negligible in the unrimed part of the cloud). Apart from µ, which appears

slightly noisy, the retrieved fields are reasonably homogeneous. At the top of the layer, a strong increase of Dm towards the

ground is seen, which could be linked to the supercooled liquid layer. From 2 km AGL downward, there is a clear decrease of

ni and IWC, consistent with sublimation of snow when it mixes with dry air in the boundary layer.

The fields of parameters retrieved with SSRGA-LS15-B1kgm2 and TMAT-M18-r0.4 (not shown) are similarly homogeneous375

as for SSRGA-plates-M0.016. However, significant and consistent differences are found throughout the entire case study. For

simplicity, the retrieved parameters are compared in Fig. 9 for a single profile at 11:58:09 UTC where the DWRKa,W is max-

imum, but the results are similar for all other profiles. While all three EM-MIC models agree fairly well on the retrieved µ

values peaking at 20 between 1.4 and 2.2 km AGL, the range of Dm values is not very well constrained owing to the discrep-

ancies between the EM-MIC model attributes (Table 2): SSRGA-plates-M0.016 suggests Dm values about twice as large as380

SSRGA-LS15-B1kgm2. Sensitivity tests (not shown) indicate that this large difference is mainly due to the unexpectedly high

aspect ratio associated with the SSRGA-LS15-B1kgm2 model. With a smaller and more realistic aspect ratio, the particles of

the SSRGA-plates-M0.016 model have a shorter dimension along the scattering direction, resulting in lesser destructive inter-

ferences at higher radar frequencies, a weaker reduction of the backscatter cross section of large particles, and hence, smaller

DWRs for corresponding sizes. With TMAT-M18-r0.4, this effect is cancelled by the distinct method used for the scattering385

calculations and the resulting Dm are close to those of SSRGA-LS15-B1kgm2 by coincidence. In a nutshell, the resulting

uncertainty on Dm is large because the particle shape is under-constrained. We can only conclude with confidence that the par-
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Figure 9. Comparison of (a) Dm, (b) µ, (c) IWC and (d) ni profiles at 11:58:09 UTC retrieved with the most probable EM-MIC models

identified in Sect. 4.4. Colored shadings show the corresponding ±1 standard deviation.

ticles are notably large, with aDm on the order of 4 mm or larger. Furthermore, knowing that both the SSRGA-plates-M0.016

and SSRGA-LS15-B1kgm2 models have been derived from the same aggregation and riming model, additional work is needed

to determine which aspect ratio is the most realistic and to be able to derive Dm with a better accuracy. Interestingly, ni and390

IWC retrieved with the three different EM-MIC models are in a fairly good agreement despite the large difference in Dm,

which suggests that these parameters are rather well constrained when combining reflectivity observed at X, Ka and W-bands

and the V simD −V simD,slowedge estimate.

Likewise, the figure 9c also shows the IWC retrieved using the climatological IWC-ZKa-T relationships of Hogan et al.

(2006) and Protat et al. (2007, for midlatitude). They result in IWCs more than one order of magnitude larger than the EM-MIC395

models suggesting that such simple statistical relations are not suited for specific conditions like the narrow size distributions

of this case.
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In summary, despite the lack of in situ observations for constraining the ice particles properties, the detailed exploitation of

triple-frequency radar observations allowed us to conclude that the specific radar signature observed during this case study was

due to narrow distributions of large and slightly rimed plate polycrystals. It the next section, we devise a bin model experiment400

to better understand whether riming and such a narrow PSD can be physically consistent.

4.6 Bin model experiment: can the observed narrow PSD of rimed ice particles be reproduced?

4.6.1 Model setup and initialization

To examine whether a plausible riming scenario could develop the triple-frequency signature detected in the observations, we

use the Distributed Hydrodynamic Aerosol and Radiative Modeling Application (DHARMA) model (Stevens et al., 2002)405

coupled with the Community Aerosol-Radiation-Microphysics Application (CARMA) size-resolved bin microphysics model

(Ackerman et al., 1995; Jensen et al., 1998). Our main hypothesis in this modeling exercise is that the high µ values suggested

by the observations are most likely to occur if the ice hydrometeors dominating the radar echoes originate from a shallow gen-

erating layer and experience little to no mixing before the combined DWRX,Ka and DWRKa,W signatures are produced. That

is because a deep generating layer or strong mixing of rimed ice hydrometeors would necessarily lead to stronger dispersion410

of size-dependent ice particle fall velocities at given air volumes and broadening of the ice PSD (lower µ). Such broadening

of the PSD implies larger contribution of particle sizes producing lower DWRKa,W and/or higher DWRX,Ka (Fig. 7) to the

total output signatures resulting in deviation from the observed DWR values. This hypothesis is supported by the small spec-

tral width values (Fig. 4g) and the largely stable atmospheric profile during the event indicated by the potential temperature

sounding measurements (Fig. 10a).415

As indicated by the high spectral resolution lidar (HSRL; Eloranta, 2005) measurements (Fig. 4a and Fig. 10a’s inset), a

distinct supercooled cloud layer was continuously observed over McMurdo Station at altitudes of 1.7-2.5 km ASL. Neverthe-

less, the sounding relative humidity (RH) measurements (Fig. 10c) show too low values at these altitudes peaking at 84%.

Considering the cloud field extent during the event based on the satellite measurements (figs. 2 and 3), we postulate that even

with the radiosonde horizontal drift of a few kilometers away from McMurdo until it reached an altitude of 2.5 km ASL, it420

could not reach a liquid-free layer. Therefore, we deduce that the radiosonde RH measurements became negatively biased at

some point of balloon’s flight by up to∼16%. We note that such negative RH measurement biases were detected in some other

cases during AWARE based on HSRL, KAZR, and sounding cross-validation (not shown), and were occasionally occurring

at other sites as well. Based on this deduction and supported by indications of a geometrically-thick liquid water hydrometeor

population in the KAZR spectra (not shown), we conclude that a deep supercooled layer was extending from about 1.7 to425

3.6 km ASL, with a possible break of a few hundred meters centering at∼2.6 km ASL (Fig. 10c). The location of this deep su-

percooled layer suggests that even if some vertical mixing did occur during this event (at 3.5-4.2 km ASL and 6.4-6.7 km ASL;

see vertical potential temperature profiles in Fig. 10a), it mostly took place at altitudes where the ice particle population did not

yet experience rapid mass growth due to high ice supersaturation conditions (Fig. 10d) and/or intense riming. The potentially
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Figure 10. Sounding (10:24 UTC) and radar (09:30-09:55 UTC) measurement profiles together with the bin model output at the end of

the 8-h simulation. (a) Potential temperature (θ), (b) temperature, (c) relative humidity (RH), (d) RH with respect to ice (RHi), (e) unrimed

and rimed ice number concentration (model only; see legend), (f) measured temporal mean ±1 standard deviation XSACR (shaded region)

plus model forward-calculated X-band (black dashed line) reflectivities, (g) as in panel f but for KAZR (Ka-band), (h) as in panel f but for

MWACR (W-band), (i) as in panel f but showing the DWRX,Ka, and (j) as in panel f but showing the DWRKa,W . The insets in panel a depict

the θ profile between 6 and 7 km ASL altitude with the dashed red line designating the RH peak (see panel c) at 6.8 km ASL (top), and

backscatter cross section measured with the HSRL around radiosonde release time together with liquid cloud base heights (black markers;

see Silber et al., 2018a, b).

mixed layer between the surface and 1.2 km ASL was below the DWR signatures around 2 km ASL examined in this study,430

and hence, had no impact on the observed signatures.

The sounding RH bias also indicates that it is plausible that the ∼100 m thick RH peak value aloft of 77.5% at 6.7 km ASL

was actually greater, on the order of 93-94%. The source of this elevated shallow high-RH layer could be associated with the

apparently mixed ∼300 m deep underlying layer potentially transporting relatively warmer and moister air aloft (Fig. 10a and

its inset). However, a detailed investigation of this moisture source as well as the generating mechanism of the elevated mixed435

layer, which could be related to gravity wave breaking, for example (e.g., Lane and Sharman, 2006; Podglajen et al., 2017), is

beyond the scope of this study.

The inferred RH peak-values (>90%) in this elevated layer suggest that homogeneous freezing of humidified aerosols (here-

after aerosol freezing; e.g., Jensen and Ackerman, 2006; Jensen et al., 2001) might have played a role in the initial formation
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of at least some of the ice population examined in this study, owing to the large RHi values (Fig. 10d), which occurred close440

to water saturation at a low temperature of -50◦C measured at the RH-peak altitude (Fig. 10b). Continuous precipitation of ice

from an altitude of∼7 km ASL is indicated by spaceborne radar echoes over the region (Fig. 2) as well as by the ground-based

radar echoes (below ∼6 km ASL; Fig. 4). The difference between the topmost radar echoes in the ground-based versus space-

borne measurements could be the result of relatively small ice particles between 6-7 km ASL (especially if indeed formed via

aerosol freezing) combined with the limited ground-based radar detectability at the upper troposphere (e.g., Silber et al., 2021).445

Following this discussion while acknowledging that our constraining observations over the depth of the atmospheric profiles

are relatively limited in space and time, we use a simplified approach, where possible, to initialize and run the bin model.

Thus, we run the model over a 1-dimensional (column) domain justified by generally stable atmosphere. We also nudge the

bin model simulation thermodynamically (liquid potential temperature and total water) to the local sounding measurements

over McMurdo Station (Figs. 2 and 10) using a nudging time scale of 15 min. That is, because the long duration of the triple-450

frequency signature (∼5 h) suggests steady-state Eulerian conditions. Moreover, the highly-complex flow fields typical to the

McMurdo region (e.g., Silber et al., 2019a, Fig. S1) often result in large reanalysis and regional model biases in reproducing

local flow patterns and thermodynamic fields (see Silber et al., 2019b), inhibiting the option of faithfully informing the Eulerian

column model with advective tendencies. With the implemented 15-min nudging time scale, our 8-h long sensitivity test

simulations typically reach steady state after 3-5 h, allowing us to process and examine the bin model output profiles at the end455

of the simulation.

Our simplified approach is also incorporated in our treatment of the initialized (and nudged) thermodynamic profile as well

as in the treatment of ice nucleation. Ice nucleation is represented only via homogeneous freezing of humidified ammonium

bisulfate aerosol or activated droplets (heterogeneous ice nucleation is neglected). Since only aerosol freezing occurs here,

the ice number concentrations are effectively determined by the RH maximum within the most elevated moisture layer. In the460

simulation discussed below, which provided rough agreement with observations, the model is being nudged to an RH peak

value of 94%, consistent with the RH bias discussion above. We note that results similar to the examined simulation at the

bottom 3.5 km ASL were also obtained in different model simulations (not shown) in which ice nucleation via heterogeneous

immersion freezing was included and presented the only source of ice crystals (without aerosol homogeneous freezing aloft,

thus omitting the mid-to-upper tropospheric ice); in that case, ice nucleation was concentrated at ∼3.6 km ASL, at the top of465

the deep supercooled layer.

The RH profile below the moisture layer peak is set such that the full profile is supersaturated with respect to ice (Fig. 10d),

thereby excluding potential ice sublimation and growth convolution effects on the model output. The RH profile is set to be

supersaturated between ∼1.7-3.6 km ASL (Fig. 10c), enabling the formation and persistence of the deep supercooled layer in

steady-state. The sounding temperature measurement profile is kept unmodified (Fig. 10). Aerosol are set to a log-normal PSD470

with a mean diameter of 0.076 µm, a geometric standard deviation of 1.5, and total concentration of 430 cm−3, the values of

which are based on monthly mean surface measurement at AWARE for January 2016 (Liu et al., 2018).

The bin model is initialized with a single liquid water group and two ice groups: one for unrimed (pristine) ice and another

for rimed ice. Each hydrometeor group consists of 60 bins with a minimum radius of 1 µm and mass ratio between consecutive
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bin radii of 1.5, allowing maximum particle diameter of a few centimeters. For the unrimed ice group, we use mass- and area-475

diameter power law parametrizations for radiating plates taken from Fridlind et al. (2012, Table 1), which generally correspond

with the polycrystal ice habit regimes (Bailey and Hallett, 2009) of the generating layer, whether it was actually the elevated

moisture layer at∼6.7 km ASL or at the top of the deep supercooled layer at∼3.6 km ASL (Fig. 10). The rimed ice mass- and

area-diameter power law parametrizations we use are the SSRGA-derived parameters forM= 0.016 discussed in Sect. 4.4.

Collision and accretion between droplets (creating larger droplets or drops), between unrimed ice and droplets (converting to480

rimed ice), and between rimed ice and droplets (increasing rimed ice mass) are computed from pairwise particle properties

(masses, maximum dimensions, aspect ratio, and projected areas) following Böhm (1999, 2004). Aggregation of ice particles

is neglected. Consistently, the forward radar calculations are performed using the same SSRGA method informed by the bin

model output.

4.6.2 Model results485

The model simulation reached steady-state conditions after ∼5 h. During steady-state, in-cloud mean droplet number concen-

tration is ∼30 cm−3. The domain’s LWP is ∼220 g m−2, in general agreement with rough LWP estimates on the order of

100-200 g m−2 using the method developed by Tridon et al. (2020). Ice water path (IWP) retrievals following Hogan et al.

(2006) using the sounding temperature and KAZR reflectivity measurements suggest values during the event on the order of

400 g m−2 (see Fig. 9), the highest IWPs observed during AWARE. The model steady-state IWP values of ∼165 g m−2 are in490

general agreement with these retrievals considering the high uncertainty associated with this (and other) radar-based ice water

content retrievals (e.g., Heymsfield et al., 2008).

Fig. 10 illustrates profiles of ice particle concentrations (panel e) together with forward calculated reflectivities and DWRs

(panels f-j) corresponding to the end of simulation (8 h). Initial ice nucleation occurs at the elevated RH layer via aerosol

freezing with a maximum ice number concentration of∼0.7 L−1 (Fig. 10e). The ice number concentration apparently decreases495

with height because the ice particle fall velocities increase with decreasing height as their mass becomes larger due to vapor

growth under the ice-supersaturated conditions, reaching roughly uniform concentrations with height that are consistently

smaller than retrieved, as discussed further below. As the precipitating ice particles reach an altitude of ∼3.6 km ASL, the ice

particles become rimed and quickly gain additional mass.

Intensification of the Ka- and X-band reflectivities at these lower altitudes in which the deep supercooled layer exists500

(Fig. 10f-g; the W-band reflectivity intensification in Fig. 10h is less pronounced) is commensurate with this rapid mass growth.

These reflectivity strengthening patterns and values down to the reflectivity peak (between 2.1-3.5 km ASL) are in reasonable

agreement with the radar observations. Note that reflectivity aloft is underestimated in this model simulation by up to several

dB, which could be attributable to possible biases in the representation of unrimed polycrystals or underestimated ice number

concentrations.505

The model-based DWRs within the deep supercooled layer where the triple-frequency signature was detected show key

similarities with the observations; that is, the DWRX,Ka is kept at low values (< 5 dB) while the DWRKa,W increases to large
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values of ∼12 dB (Fig. 10i-j). This comparability is also demonstrated in Fig. 11a showing the spread in the observed DWR

values at different height ranges together with the temporally-averaged values and the bin model output.

Figure 11. (a) DWR parameter space scatter plot showing the observations (09:30-09:55 UTC) at different height ranges, the temporal-mean

observations (color scale denotes height), and the bin model output at the end of the simulation (8 h) (see legend). (b) Shape parameter (µ)

derived from gamma distribution fits for the rimed ice group at different heights. µ values are only shown for fits in which the adjusted r2 is

larger than 0.98. (c) Mode and mean diameter of the rimed ice group using the gamma fit parameters under the same adjusted r2 threshold.

To examine the correspondence of this case study’s observational analysis conclusions concerning the shape of the ice PSD510

able to generate the observed triple-frequency signatures (Sect. 4), we perform a gamma distribution fitting to the bin array

profile of the rimed ice group at the end of the simulation. Fig. 11b shows a profile of µ derived from gamma distribution fits

that agree reasonably well with the rimed ice PSD (adjusted r2 > 0.98). The µ profile indicates a very narrow PSD (µ > 40) at

the top of the supercooled layer followed by stabilization of µ values at a range of 9-11 at lower heights, which is consistently

lower than the best fit to observations (µ∼ 20). The mean and median ice particle diameters range between 3 and 4 mm over515

the height range around 2 km ASL corresponding to the DWR signatures (Fig. 11c).

Taken together, these model results offer general support for the observational and theoretical analysis of the triple-frequency

signatures detected during this January 4 2016 event (Fig. 7). Although simulated number concentrations are lower than re-
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trieved and the PSD shapes not as narrow, the overall development of DWR trends with height is generated by the model’s

standard physics schemes without requiring any special tuning. If model number concentrations are doubled prior to the for-520

ward calculations, reflectivity is overestimated (not shown). We have therefore not tried to exactly match retrieved number

concentrations and ice PSD widths, also owing to weak constraints on ice crystal properties.

In summary, the bin model simulation corroborates the plausibility of scenarios capable of producing the unique signatures

observed during this event. DWR parameter space agreement with the observations could be reached in other sensitivity tests

where some vertical motion was introduced or in cases where the nudged sounding profile was slightly modified. However,525

reaching these high (low) DWRKa,W (DWRX,Ka) values always required some compromises concerning the reflectivity aloft,

for example (as in this depicted simulation), thus emphasizing the difficulty to constrain ice properties with our limited obser-

vational dataset. Yet, the fact that similar results could be reached using somewhat varying configurations as long they allowed

narrow rimed ice PSD with diameters on the order of a few millimeters to be produced and developed, suggest that such cases

might occasionally occur over the Antarctic (or other polar regions). The frequency of occurrence of such scenarios will be530

examined in future studies.

5 Conclusions

In this work, by exploiting the deployment of an unprecedented number of multi-wavelength active and passive remote sens-

ing systems (including triple-frequency radar measurements) in West Antarctica during the Atmospheric Radiation Measure-

ments West Antarctic Radiation Experiment (AWARE) field campaign, we find frequent occurrences of extremely high Ka-W535

dual-wavelength ratios (DWR) coinciding with relatively low X-Ka dual-wavelength ratios taking place at unexpectedly low

temperatures of -20◦C, in comparison to the mid-latitudes. These features are commonly interpreted as riming signatures and

pinpoint at unique ice processes over Antarctica, even if the limited amount of the triple frequency dataset collected during

AWARE does not allow drawing definite conclusions.

An extraordinary case study featuring a persistent layer with relatively modest amounts of supercooled liquid water pro-540

ducing such unexpectedly strong triple-frequency radar signatures is analysed in greater detail. Since in situ observations are

lacking, the radar observations are exploited to retrieve the properties of the ice particles leading to these signatures. To this

aim, several state-of-the-art microphysics and scattering models (EM-MIC models) are used. The combination of the triple-

frequency radar reflectivities, the differential spectral width and a proxy of the ice particles fall velocities derived from the

Doppler spectra allows to constrain the ice particles microphysical properties. Results suggest that the fall velocity associated545

with recent rimed aggregates EM-MIC models is too large, and a novel potentially more realistic EM-MIC model is therefore

proposed. Even if a non-negligible uncertainty remains on the size of the retrieved ice particles, results indicate that the ob-

served DWR signatures can only be explained by the combined effects of moderately rimed aggregates or similarly shaped

florid polycrystals and a narrow particle size distribution (PSD). More studies are needed to validate the retrieval algorithm

proposed here. This could be done either by cross-comparing the algorithm results with other techniques and/or by using in-situ550
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validation datasets from field campaigns (Leinonen et al., 2018; Mason et al., 2018; Battaglia et al., 2020b; Mroz et al., 2021;

Nguyen et al., 2021).

Simulations of this case study performed with a 1D bin model confirm that, with the modest amount of supercooled liquid

water, the triple frequency radar observations can be generally reproduced, provided that narrow PSDs are simulated. Such

narrow PSDs could be explained by two key factors: (i) the presence of a shallow homogeneous droplet or humidified aerosol555

freezing layer aloft seeding a supercooled liquid layer, and (ii) the absence of turbulent mixing throughout a stable polar atmo-

sphere that sustains narrow PSDs, as hydrometeors grow from the nucleation region aloft to several millimeter ice particles, by

vapor deposition and then riming.

This study illustrates that triple-frequency radar measurements can be used to infer detailed properties of precipitating ice

such as the PSD width or the degree of riming of ice particles. While the associated retrieval techniques are still at an exploratory560

stage, such information is crucial for improving our understanding of the role of ice phase in the water budget. Therefore, more

observations and analysis involving triple-frequency radars are needed in the future.
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