Highly supercooled riming and unusual triple-frequency radar signatures over Antarctica

Frederic Tridon^{1,*}, Israel Silber², Alessandro Battaglia^{3,4}, Stefan Kneifel¹, Ann Fridlind⁵, Petros Kalogeras⁴, and Ranvir Dhillon⁴

¹Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany

²Department of Meteorology and Atmospheric Science, Pennsylvania State University, University Park, PA, USA ³DIATI, Politecnico di Torino, Turin, Italy

⁴University of Leicester, Leicester, UK

⁵NASA Goddard Institute for Space Studies, New York, NY, USA

*Now at: DIATI, Politecnico di Torino, Turin, Italy

Supplementary Material

This supplementary material provides the joint histograms of radar multifrequency observations during the period with large DWR_{Ka,W} on the 4th of January 2016 at McMurdo station, as in Figure 7 of the main manuscript. However, in the figures of this supplementary material, the superimposed lines correspond to the parameters forward modeled with different electromagnetic-microphysical EM-MIC models: SSRGA-LS15-B1kgm2 in Figure S1 and TMAT-M18-r0.4 in Figure S2.

Figure S1: Joint histogram of observed (a) DWR_{X,Ka}, (b) difference between Ka-band Doppler velocity and Doppler spectra slow edge v_D^{Ka} - $v_{D,slowedge}^{Ka}$, (c) Ka-band spectral width σ_D^{Ka} and (d) W-band spectral width σ_D^W as function of observed DWR_{Ka,W}. Superimposed lines represent the corresponding parameters forward modeled with the SSRGA for a gamma distribution of aggregates of dendrites with various μ (see the legends in the plots), a mean mass diameter comprised between $0 < D_m < 10$ mm (each marker corresponding to 1 mm step) and simulated using an equivalent liquid water path of 1 kg/m². In panel (b), different line widths correspond to calculations of fall velocities using various hydrodynamic models.

Figure S2: Joint histogram of observed (a) DWR_{X,Ka}, (b) difference between Ka-band Doppler velocity and Doppler spectra slow edge v_D^{Ka} - $v_{D,slowedge}^{Ka}$, (c) Ka-band spectral width σ_D^{Ka} and (d) W-band spectral width σ_D^W as function of observed DWR_{Ka,W}. Superimposed lines represent the corresponding parameters forward modeled with the T-Matrix approximation for a gamma distribution of mixture of ice and air spheroids with various μ (see the legends in the plots), a mean mass diameter comprised between $0 < D_m < 4$ mm (each marker corresponding to 1 mm step) and a density factor of 0.4. In panel (b), different line widths correspond to calculations of fall velocities using various hydrodynamic models.