Reviewer 1

General comment

Reviewer comments	Author reply
The processes which influence changing aerosol iron fractional solubility during atmospheric	Thank you for your time and effort. We have carefully revised the manuscript with full
transport remain a crucial gap in our understanding. Additionally, ship-based collections of	consideration of the comments and suggestions provided. Please find the detailed responses
size-fractionated aerosols over the open ocean are rare. This work reports results from a field	below.
study which captures these sorts of samples and attempts to use a combination of spectroscopic	"Revised text as it appears in the text (in quotes, blue font)"
and microscopic analytical methods to examine aerosol iron speciation along with chemical	
modeling to explore these processes. The authors find that most of the total aerosol iron was	
found on coarse particles of >1 μm but that iron solubility was higher on smaller particles.	
This observation is attributed to atmospheric processes which expose the smaller particles to	
environmental acidity levels beyond the inherent buffering capacity of the aerosol. Further, the	
authors suggest that Fe(III) complexes with humic-like substances (Fe(III)-HULIS) stabilize	
solubilized iron during transport prior to deposition on the ocean. This study is fundamentally	
sound and uses methods that are well established in the field. The novelty lies in the application	
of these methods on samples collected across a meridional section of the Pacific Ocean	
between the temperate north and south. This paper lies firmly within the scope of ACP and	
will be of interest to the aerosol and ocean communities following revision. The study finds	
that most of the total aerosol Fe is found in the coarse fraction defined as >1.3 μm but that	
more labile Fe was in the fine faction. Statistical tests show correlation aerosol Fe solubility	
and the abundance of Fe(III)-HULIS. Using models, they suggest that aerosol Fe is solubilized	
at pH<3 and these complexes keep the Fe stabile as pH increases as ferrihydrite precipitation	
is suppressed. These results are all interesting and will contribute to our collective	
understanding of the processing of aerosols in the atmosphere.	

The text is not without weaknesses which can be improved by careful revision in some cases	Long time sampling was required to determine the size-distributions of Fe concentration
but perhaps not in others. Generally, the text requires careful editing for clarity and grammar.	because the expected Fe concentration was too low to measure these factors. Moreover, the
A fundamental concern of mine is that few samples were collected for this study. In total, only	aerosol samples were collected only while the research vessel was underway to avoid
five marine samples and one land-based sample encompass all measurements. My concern is	contamination with ship emissions during anchorage for seawater sampling. Thus, long
that results might be overinterpreted if the samples are not wholly representative. For instance,	sampling periods with wide spatial coverage for CPO and SPO samples were required. As
the SPO sample covers approximately 17 degrees of latitude over four days. Are there caveats	noted, results from observation vessels are snapshots and may be overinterpreted depending
to any of the conclusions because of this? Are the SPO and CPO truly different?	on the sample representativeness. We also regarded our samples as the average snapshot of Fe
	concentrations and species during each sampling. However, we believe that our observational
	results regarding L-Fe concentrations in marine aerosols and their relationship to Fe speciation
	and solubility are useful for understanding the factors determining Fe _{sol%} in marine aerosol
	particles because of the limited observational data on the size dependence of these factors.
	Therefore, we think that the results provide rare and important information.
	"This was a case study on the relationship between $\mathrm{Fe}_{\mathrm{sol}}\%$ and Fe species in size-
	fractionated aerosol particles collected from the Pacific Ocean."
Some of the conclusions hinge on inferences from the SXTM single particle analysis. More	We have added descriptions about the comparison of the internal mixing state of mineral dust
generally on this point, the comparisons of the five different samples was given far less	with Na and OCs reported in previous studies. The internal mixing particles between mineral
emphasis than the geochemical modeling which I think is the reverse of the proper strategy.	dust and SSA (dust-SSA) were found in the WPO and other oceanic regions. It is considered
	that dust-SSA particles were formed through in-cloud process. Moreover, a previous study
	revealed similarities in OC species in SSA and dust-SSA. As (i) SSA is ubiquitously present
	in the marine atmosphere and (ii) chemical compositions of marine cloud waters are influenced
	by SSA, the internal mixing between mineral dust and SSA through the cloud process
	contributes to Fe(III)-HULIS formation. These results play a significant role in the discussion
	on the formation of Fe(III)-HULIS with increasing pH of mineral dust.
	"Similar internal mixing particles between mineral dust and SSA have been found not only
	in the Pacific Ocean, but also in other regions (Okada et al., 1990; Niimura et al., 1998;
	Wagner et al., 2008; Kandler et al., 2017; Adachi et al., 2020; Kwak et al., 2022; Knopf et
	contributes to Fe(III)-HULIS formation. These results play a significant role in the discussion on the formation of Fe(III)-HULIS with increasing pH of mineral dust. "Similar internal mixing particles between mineral dust and SSA have been found not only in the Pacific Ocean, but also in other regions (Okada et al., 1990; Niimura et al., 1998;

	al., 2022). It is considered that the internal mixing of mineral dust and sea salt is formed
	by cloud processes (Niimura et al., 1998; Formenti et al., 2011). A recent study found
	internal mixing particles between aged sea salt, mineral dust, S, and OCs in submicron
	aerosols collected from the North Atlantic Ocean, of which OCs species were similar to
	those in SSA (Knopf et al., 2022). This result is similar to the microscopic observation
	results (Figs. S7 and S8). Since (i) SSA is ubiquitously present in the marine atmosphere
	and (ii) the chemical composition of marine cloud water is influenced by SSA, the internal
	mixing of mineral dust with SSA in cloud water may play a significant role in the organic
	complexation of L-Fe in aerosol particles in the marine atmosphere."
The authors rely to heavily on references to the supplemental material. For example, on page	Thank you for your comment. We have reconstructed the contents of figures and tables in the
11 the authors make eight references to figures and tables in the supplement. This is too	manuscript and the supporting information. We have added descriptions of aerosol size for a
much. I encourage a careful consideration of what data and figures are required and these	cascade impactor and explanations about $[H^+]_{mineral}$ in the main text (please see section 2.4).
materials be included in the main paper. As an example, I am surprised that Table S1 which	
includes crucial information about the aerosol size fractionation scheme, filter type, and	
sample description scheme is relegated to the supplement. Indeed, Equation 3 in the	
Supplement defines the term [H+]mineral which is used throughout the paper. This equation	
needs to be in the primary article.	

Specific comments

No.	Reviewer comments	Author reply
1.1	Line 76: "decreases a saturation index of Fe" Revise for clarity	We have improved the sentence in the following manner:
		"Moreover, the formation of organic complexes with L-Fe in the aqueous phase
		promoted further Fe dissolution from the aerosol particles to aerosol liquid water
		(ALW)."

1.2	Line 114-115: I don't understand why the label PM _{1.3-10.2} is used for coarse particles but	Thank you for your comment. In general, aerosol particles finer than 2.5 µm are described
	$PM_{1.3}$ is used for fine. Both represent a range of size classes but only the former	as $PM_{2.5}$. The description is available if the cut-off diameter is other than 2.5 μ m.
	indicates as such. PMcoarse and PMfine would be appropriate or, if the desire is to	Therefore, we described fine aerosol particles as $PM_{1,3}$. In contrast, coarse aerosol
	maintain the current form, perhaps $PM_{1,3-10,2}$ and $PM_{<1,3}$.	particles cannot be described as $PM_{10,2}$ because $PM_{10,2}$ encompasses $PM_{1,3}$. We have
		rephrased $PM_{1.3-10.2}$ as $PM_{>1.3}$. It should be noted that $PM_{1.0-2.5}$ in section 4.2 has not been
		rephrased because we have focused on aerosol particles ranging from 1.0 to 2.5 μ m.
1.3	How were blank concentrations in ng/cm2 converted to pg/m3?	We have added the method used for unit conversion of the filter blank concentrations of
		Fe and Al.
		"The blanks of Al and Fe in the PTFE filter were 0.306 ± 0.352 and 0.335 ± 0.340 ng/cm ² ,
		respectively. The unit of filter blank concentrations were converted from ng/cm ² to
		ng/m ³ by the following equation:
		$Filter \ blank \ (ng/m^3) = \frac{filter \ blank \ (ng/cm^2) \times filter \ area \ (cm^2)}{Total \ flow \ for \ each \ sampling \ (m^3)} $ (Eq. 1)
		As a result, the filter blank concentrations of Al and Fe were a few pg/m ³ ."
1.4	Line 136: How long were the aerosol samples stored prior to labile metal extraction? Were	Aerosol samples were stored in a dry desiccator at 20% RH and room temperature
	the samples frozen?	(approximately 20 °C).
1.5	Line 148: More details are needed on the ion analysis. What were the levels of detection?	We have added descriptions for LOD and stability and ammonium, nitrate, and oxalate.
	Were there issues with the stability of ammonium and/or oxalate?	In the case of nitrate in coarse aerosols, nitrate was mainly present as NaNO3 because
		almost no NH_4^+ was detectable in the fraction. In contrast, some NH_4NO_3 may evaporate
		in PM _{1.3} . According to previous studies, during sampling, negative artifacts have
		negligible effects on ammonium sulfate and oxalate concentrations (Yao et al., 2002; Bian
		et al., 2014).
		"The detection limits of the ICS-1000 for Na ⁺ , NH ₄ ⁺ , K ⁺ , Mg ²⁺ , Ca ²⁺ , Cl ⁻ , NO ₃ ⁻ , SO ₄ ²⁻ ,
		and $C_2O_4^{2-}$ were 0.556, 0.464, 1.15, 0.726, 1.50, 5.62, 15.0, 18.8, and 33.2 ng/mL,
		respectively. Among the targeted ions, the lowest and highest filter blank concentrations
		were 0.0687 and 32.4 ng/cm^2 for Mg^{2+} and SO_4^{2-} , respectively (Sakata et al., 2018).

to ng/m ₃ using Equation 1, the Gemi-volatile compounds (e.g., mpling. The negative artifact es were present in PM _{>1.3} with IO ₃ present in PM _{1.3} may be as of oxalate and ammonium 2002; Bian et al., 2014)."
mpling. The negative artifact es were present in $PM_{>1.3}$ with IO_3 present in $PM_{1.3}$ may be es of oxalate and ammonium 2002; Bian et al., 2014)."
es were present in $PM_{>1.3}$ with IO ₃ present in $PM_{1.3}$ may be as of oxalate and ammonium 2002; Bian et al., 2014)."
10_3 present in PM _{1.3} may be as of oxalate and ammonium 2002; Bian et al., 2014)."
ts of oxalate and ammonium 2002; Bian et al., 2014)." ation about [H ⁺] _{mineral} from the
2002; Bian et al., 2014)." Ition about [H ⁺] _{mineral} from the
tion about [H ⁺] _{mineral} from the
ction 2.4 in the manuscript).
ch is an abbreviation for linear
opearance in the manuscript.
H 0, which is estimated by
) of the previous study (Shi et
between pH 1–3 in this study.
ed to state that pH is variable
sentence as follows:
escribed in Table 1. This curve
rved L-Fe within the expected
m the expected source region.
creasing aerosol diameter and
nce: WPO1 < WPO2 < WPO3

1.12	Line 402: The text states that the pH of cloud water decreases by 0.03 units but the next	We apologize for the ambiguity of the sentence. We have modified the sentence as
	sentence states that there is an increase in aerosol pH by cloud processes. Please clarify.	follows:
		"Given that 500 nm of phyllosilicate particles with a 100 nm-thick water layer at pH
		1.0 was incorporated into typical marine cloud water (diameter 10 μ m, pH 4.0, Boris et
		al., 2016; Kim et al., 2019; Shah et al., 2020), the pH of aerosol particles was 3.97."
1.13	Line 435: I do not think that changing PM1.3-2.3 to PM1.0-2.5 is simplifying.	We removed the term $PM_{1.3-2.3}$ from the manuscript, and the sentence has been improved
		as follows:
		"In contrast, aerosol particles in stage-4 ($PM_{1.0-2.5}$) did not have a high Fe _{sol} % because
		mineral dust in the fraction was not acidified because of the negative [H ⁺] _{mineral} ."
1.14	Figure 1: Suggest removing the gray arrows as these do not represent samples included in	Thank you for your comment. We have removed the gray arrows from the figure.
	this paper.	
1.15	Figure 2: Air mass back trajectories could be moved to the supplement.	According to your suggestion, the figure has been moved to the Supplementary
		Information.
1.16	Figure 6: I am not sure that the panes b, c, and e are necessary for the main paper and	We considered that the XANES spectra of several samples must be shown in the
	could be moved to the supplement as many of these images already are. 6(e) is not	manuscript because spectra information is the most important data of spectroscopic
	described in the caption.	studies. We are sorry for the lack of explanation about Fig. 6(e). We have included the
		explanation for Fig. 6(e).
1.17	Figure 7: Much more detail is required in the caption. Clarify that S(n) refers to specific	The Al K-edge XANES spectra of single particles 1 to 3 and SRFA (organo-Al) have been
	size classes. What are the significance of Particle 1, Particle 2, and Particle 3? What is	removed from Figure 7. We have also removed Figure 8 from the manuscript. We
	SRFA?	apologize for the ambiguous figure captions. The aerosol diameter of each sample has
		been described in the figure rather than in the caption. We have improved the caption for
		Figure 7 as follows:
		"Figure 7: (a) Fraction of Fe species in each sample determined by Fe K-edge XANES
		spectroscopy. Iron K-edge XANES spectra of size-fractionated aerosol particles
		collected in (b) WPO2 and (c) NOTOGRO. (d) a scatter plot between fraction of

		Fe(III)-HULIS and Fe _{sol} % in PM _{1.3} ."
1.18	Figure 8 is not necessary.	According to your suggestion, we have removed the figure from the manuscript.

Reviewer 2

General comments

Reviewer comment	Author reply
Organic ligands have been postulated to enhance aerosol iron solubility, but the chemical	Thank you for the time and effort required to review our manuscript. We have carefully
speciation of Fe complexes in size-resolved aerosols is not characterized well. The authors	revised the manuscript with full consideration of the comments and suggestions provided.
analyzed Fe species in size-fractionated aerosol particles over the Pacific. The X-ray spectrum	Please find the detailed responses below.
analysis using reference materials indicated that fine particles contained ferric organic complexes	"Revised text as it appears in the text (in quotes, blue font)"
with humic-like substances. The Fe(III)-HULIS was suggested to be formed during transport to	
the Pacific. The results presented in this paper contribute to better understanding of Fe cycles. I	
have some comments and questions to improve this paper.	

Specific Comments

No.	Reviewer comments	Author reply
2.1	General reply to the reviewer (Dr. Ito) in particular about the contribution of the	The importance of anthropogenic Fe and the suppression effects of dust/liquid ratio on Fe
	anthropogenic Fe.	dissolution were emphasized in several comments given by Dr. Ito. We think that
		elemental ratios and statistical analysis added in the revise version showed the importance
		of mineral dust rather than anthropogenic emission as a source of Fe in aerosol samples
		in this study (please see our replies to Comments 2.2, 2.15, and 2.16). The reviewer also
		suggested the significance of anthropogenic Fe due to the higher $\mathrm{Fe}_{\mathrm{sol}}\%$ compared with
		laboratory experiments. However, aerosol diameter with high Fe $_{sol}\%$ (<1.3 $\mu m)$ was
		different from those for general laboratory experiments (TSP or PM10). The Fe $_{\rm sol}\%$ of our
		TSP samples was up to 7.69%. This value was within an upper limit suggested by you (<
		15% at pH 1.0 and for 120 h). Moreover, Fesol% higher than 15% has been reported in
		laboratory experiments on Fe dissolution from mineral particles (Shi et al., 2011).
		Therefore, we do not consider that the emission source of L-Fe should not be estimated
		based only on the Fe_{sol} % (Please see our reply to Comment 2.22).

-		
		As stated by Dr. Ito, Fe dissolution from mineral dust is suppressed at higher dust/liquid
		ratios. Since the dissolution model was constructed using experimental data at a
		dust/liquid ratio of 60 mg/L, the model may overestimate L-Fe concentration. However,
		lower pH condition is needed to explain the observed L-Fe with consideration of the
		suppression effects. Therefore, it does not significantly affect our conclusion that aerosol
		acidification is the dominant process for solubilizing Fe in aerosol particles (Please see
		our reply to the comment 2.10).
2.2	P2., 1.30: Even though EF of Fe is close to one, L-Fe in fine particles can be derived from	According to your suggestion, L-Fe from mineral dust was rephrased as L-Fe in fine
	anthropogenic sources due to much higher solubility, as is indicated by Fe stable isotope	aerosol particles as the existence of anthropogenic Fe cannot be completely ruled out.
	ratios and the model estimates over the northwestern Pacific. This lower Fe solubility for	However, we still considered that anthropogenic Fe was not the dominant L-Fe source in
	mineral dust is partly because the high dust/liquid ratio due to low water content in mineral	our samples.
	dust could suppress the Fe dissolution even in acidic condition over polluted regions, in	Anthropogenic Fe with a negative Fe isotope ratio (δ^{56} Fe) is emitted as Fe-oxides with a
	addition to the buffering capacity of calcite. Moreover, the Fe dissolution rate for mineral	small amount of coexisted elements, including Al. The relationship between EF and δ^{56} Fe
	dust is much slower than fly ash. Please see below and consider rephrasing L-Fe for	needs to be further evaluated, but the presence of Fe-oxides should increase EF of Fe. The
	mineral dust in PM1.3 throughout the paper.	EF of Fe in $PM_{1.3}$ collected near the source regions was approximately 2.0 or more.
		Therefore, the influence of anthropogenic Fe-oxides is unlikely to be significant when the
		EF of Fe is approximately 1.
		In the case of fly ash, it is difficult to distinguish between mineral dust and coal fly ash
		because of the similar EF between Fe and δ^{56} Fe (ash: approximately –0.1%). However,
		coal and coal fly ashes enrich cobalt (EF \sim 10) compared to mineraldust. If coal fly ashes
		are the dominant L-Fe source of $PM_{1.3}$, the expected EF of our samples is 3.0 or more.
		However, EF of Co in PM _{1.3} was almost 1.0, indicating lower amount of coal fly ash in
		the sample. Furthermore, the correlation between Fe_{sol} % and EF of Pb was likely a pseudo-
		correlation, with little direct relationship between these components due to the small
		partial correlation factor (-0.15). Thus, the observed data suggest that the effects of
		anthropogenic Fe on Fe _{sol} % are not significant. Detailed discussions are described in

		section 3.2 in the revised manuscript.
		Information regarding the dust/liquid ratio has been detailed in 2.10.
2.3	p.3, 1.72 Please define the average pH.	We apologize for the ambiguous description. We have improved the sentence as follows:
		"Based on the Fesol% and speciation results, the expected pH required for L-Fe
		concentration in the aerosol samples by proton-promoted dissolution within the
		transport time (pHPPD) was evaluated using a conceptual model following first-order
		iron dissolution."
2.4	p.4, l.81: Please specify previous studies for HULIS on mineral dust or other types. How	We have added descriptions of the source and formation processes of atmospheric HULIS.
	does it form on mineral dust or other types?	"Atmospheric HULIS in marine aerosols are formed by atmospheric processes and
		direct emissions from the ocean surface (Deng et al., 2014; Chen et al., 2016; Santander
		et al., 2021), whereas soil-derived organic matter is generally not an important source
		of atmospheric HULIS (Graber and Rudich, 2006; Spranger et al., 2020)."
2.5	p.4, l.83: Please specify previous studies for siderophore on mineral dust or other types.	There are limited data regarding the emission source and siderophore formation in aerosol
	How does it form on mineral dust or other types?	particles, but biological activities on mineral dust and in cloud water are considered as the
		formation processes in the aerosol particles.
		"In addition, siderophores have been detected in aerosols, rainwater, and cloud water,
		which are likely formed by biological activities in mineral dust and cloud water (Cheize
		et al., 2012; Sullivan et al., 2012; Vinatier et al., 2016)."
2.6	p.6, l.137: Please specify the filter. Sub-micron particles for Stage 6 samples might	Insoluble particles in the extracted solution were filtrated using a hydrophilic PTFE filter
	penetrate the filter regardless its chemical form including nano particulate form. How do	(ϕ : 0.20 µm). The aerodynamic diameter for stage 6 ranged from 0.39 to 0.69 µm, while
	you consider this?	smaller particles were collected in stage 7. Therefore, there are almost no nanoparticles
		passing through the PTFE filter. We have specified the filter type in the manuscript.
		"The extracted solutions were acidified to 0.15 mol/L after filtration of insoluble
		particles using a hydrophilic syringe PTFE filter (:0.20 m, Dismic®, 25HP020AN,
		Advantec, Japan)."

2.7	p.6, 1.157: How do you consider the external mixing of Fe-bearing particles with the main	We have added the detailed method for calculation the available protons in mineral dust
	component of the marine aerosols mentioned in introduction?	([H ⁺] _{mineral}) in section 2.4. We calculated [H ⁺] _{mineral} with the assumption that Fe-bearing
		particles externally mixed with sea spray aerosol, (NH ₄) ₂ SO ₄ , and NH ₄ NO ₃ . [H ⁺] _{mineral}
		refers to the maximum amount of H ₂ SO ₄ and HNO ₃ that can be internally mixed with iron-
		bearing particles.
2.8	Figure 6: Fig. 6 appears before Fig. 2. Please also correct the caption (d) and check the	Thank you for pointing this out. The XANES and EXAFS spectra of key Fe species are
	consistency of Fe species with (a).	shown in Fig. 2, and Figure 6b has been removed. In addition, we have corrected the
		legend of Fig. 6d (Fig. 6c in the revised version).
2.9	p.7, l.176: Please also describe the distinction of Fe(III)-HULIS from ferrihydrite and	We have added the following explanations about spectrum differences between Fe(III)-
	goethite.	HULIS, ferrihydrite, and goethite.
		"These species were distinguished from Fe(III)-HULIS because Fe(III)-HULIS has a
		flat peak at 7125-7135 eV (Fig. 2). In the case of ferrihydrite and goethite, these
		XANES spectra have a flatter peak than hematite, but the width of the peak is narrower
		than that of Fe(III)-HULIS (Fig. 2). Furthermore, the EXAFS spectrum of Fe(III)-
		HULIS was clearly different from that of ferrihydrite, goethite, and hematite. Fe(III)-
		HULIS has a single peak at 7-9 Å in the k-space, whereas Fe-(hydr)oxides have two
		peaks in the same region. Based on these spectral differences, the Fe species in the
		aerosol particles were determined using the LCF method."
2.10	p.8, 1.202: These equations are not valid at the high dust/liquid ratio due to low water	We agree that dissolution of Fe from mineral dust is suppressed by the high dust/liquid
	content in mineral dust, which could suppress the Fe dissolution even in acidic solution.	ratio. The calculation may overestimate modeled L-Fe concentration because it does not
	How do you consider the degree of the suppression?	take into account the suppressive effect of high dust/liquid ratios on Fe dissolution. A pH
		lower (or higher aerosol acidity) than pH_{PPD} would be required to account for the observed
		L-Fe concentration with consideration of the suppression effect. Therefore, it does not
		significantly affect the conclusion that aerosol acidification is important for explaining
		high L-Fe concentrations. According to your comment, we have added descriptions
		regarding the overestimation of L-Fe concentration due to the suppressive effects in the

		manuscript.
		"It should be noted that these kinetic parameters are estimated using the
		experimental data with a solid/liquid ratio of 60 mg/L. The actual aerosol
		dust/liquid ratios are predicted to be as high as 3000 g/L, which may suppress the
		dissolution of Fe from the aerosol particles (Shi et al., 2011). Our calculation results
		may have overestimated the modeled L-Fe concentration at pH _{PPD} with a high
		dust/liquid ratio. In other words, a lower pH (or higher aerosol acidity) than the
		predicted pH_{PPD} is required to account for the observed L-Fe concentration, while
		considering the suppression effect. Therefore, pH_{PPD} can be recognized as the upper
		pH limit to explain the observed L-Fe concentration by proton-promoted
		dissolution."
0.11		
2.11	p.8, 1.210 and 1.211: The cloud cycle and dissolution time depend on the transport pathway	We apologize for the absence of the reference about cloud cycles. As noted, the time of
	of the particles. Please specify the method and references to justify the 12 hours and half	the cloud process would depend on the transport path, but it is not easy to predict the exact
	of the transportation time.	time. We reconsidered the time of the cloud cycle based on the global average residence
		time of aerosol particles and clouds (Pruppacher and Jaenicke, 1995). As a result, pH was
		estimated by assuming that aerosol particles were in the evaporated state during 75% of
		the transport time. In this calculation, $pH_{\mbox{\scriptsize PPD}}$ is slightly higher than the estimated pH in the
		previous version.
		"Mineral dust is expected to undergo several condensation-evaporation cycles
		during transport (Pruppacher and Jaenicke, 1995). Proton-promoted Fe dissolution
		occurred during the evaporation state (wet aerosol), whereas aerosol particles were
		taken in cloud water during the condensation phase. According to a previous study,
		the global average residence times for aerosol particles before uptake by clouds and
		within the cloud in an air parcel are up to 12 h and 3 h, respectively (Pruppacher
		and Jaenicke, 1995). Based on these residence times, aerosol particles are expected
		to exist in an evaporative state (wet aerosol) for approximately 67–80% of their
		to enter in an exuporative state (wer acrossify for approximately 07, 0070 of their

		transport time. In this study, the estimation of pH was estimated assuming that
		aerosol particles spent the evaporated state in 75% of transport time (approximately
		90 h for the WPO and 130 h for CPO and SPO)."
2.12	p.8, 1.214: The dissolution curve is fitted to the mass concentration. Please specify the	Labile Fe concentration in aerosol particles was normalized by mineral mass
	dissolution rates of biotite and illite after normalizing the dissolution rates to the mineral	concentration. Mineral dust in the atmosphere was estimated as follows: total Al
	mass.	concentration divided by the average abundance of Al in the continental crust.
2.13	p.8, l.225: How do you consider calcite? How do you also consider the external mixing of	We did not consider the effect of calcite in E-AIM calculation due to the following
	Fe-bearing particles with the main component of the marine aerosols mentioned in	reasons: (i) mineral dust in fine aerosol particles was likely acidified beyond the buffer
	introduction?	capacity of calcite, (ii) calcite was not the dominant Ca species in fine aerosol particles
		collected in Japan, even though aerosol samples were collected in the dust season
		(Miyamoto et al., 2020), and (iii) Ca speciation indicated that calcite was not the dominant
		Ca species in the S6-WPO2 and S6-WPO3 samples (please see below figure, for only
		review). Moreover, we used E-AIM for the estimation of ALW rather than pH.
		Vigture Devices of the contract of the contrac
		"In this study, the buffering effect of calcite in the equilibrium calculation was not
		considered because (i) mineral dust was likely acidified beyond the buffering capacity
		of calcite, and (ii) calcite in fine aerosol particles was altered to $\rm CaSO_4{\cdot}2H_2O$ and
		CaC2O4 during transport from the source region of Asian dust to Japan (Takahashi et
		al., 2008; Miyamoto et al., 2020)."
2.14	p.9, 1.251: Please show the enrichment factors for Beijing aerosol and NOTOGRO.	Enrichment factors and fractional Fe solubilities in NOTGORO sample are shown in Fig.

	p.10, 1.284: Please show Fe solubilities for Beijing aerosol and NOTOGRO.	S1. Enrichment factors of NOTOGRO samples were also approximately 1.0 regardless of
		aerosol diameter. The Fe_{sol} % in coarse fraction was approximately 1.0%, whereas that in
		stage-5 and stage 6 was 19.7% and 34.4%, respectively. In the case of Beijing dust, EF
		and Fe _{sol} % were 0.85 and 0.53%, respectively.
2.15	p.10, l.276: How do you reconcile non-anthropogenic Fe source with the positive	First, we have added Fig. 5 regarding the correlation between Fe_{sol} % and trace elements
	correlation between Fe solubility and EF of Pb?	and nss-SO ₄ ²⁻ instead of Table S3. As described in 2.1, the correlation between Fe _{sol} %, Pb,
	p.10, l.280: How do you reconcile the positive correlation between Fe solubility and non-	and Cd does not always guarantee the significant effect of anthropogenic Fe on $\mathrm{Fe}_{\mathrm{sol}}\%$
	sea-salt sulfate with non-anthropogenic Fe source?	because mineral dust and anthropogenic aerosol and gases were externally mixed during
		transport.
		A correlation between Fe_{sol} % and nss-SO ₄ ²⁻ has been reported when the Fe in mineral dust
		was solubilized by coal-derived SO ₂ (Wong et al., 2020). In fact, there is a significant
		correlation between (NH ₄) ₂ SO ₄ and sulfate-containing dust in Asian dust (Sullivan et al.,
		2007). Therefore, a positive correlation between L-Fe, Pb, Cd, and $nss-SO_4^{2-}$ can be
		observed, even if these components are not emitted from the same emission source.
2.16	p.10, l.290: How do you reconcile this with the positive correlation between Cd or Pb and	The positive correlation between Fe_{sol} % and Pb, Cd, and nss- SO_4^{2-} has been described in
	non-sea-salt sulfate? How do you explain low non-sea-salt sulfate concentrations over	2.15.
	SPO? Please show non-sea-salt sulfate concentration which can be attributed to biogenic	The low concentration of nss-SO42- in SPO could be attributed to the low influence of
	S emission alone.	anthropogenic emissions. A recent observational study on S isotope in $PM_{1.0}$ collected
		from the coast of New Zealand showed that almost all nss-SO42- in PM1.0 had biogenic
		origins. The S isotope in submicron aerosol showed biogenic origins (Calhoun et al.,
		1991). For these reasons, it is reasonable that most of the $nss-SO_4^{2-}$ in CPO and SPO is of
		biogenic origins (Please see the last paragraph in section 3.2).
2.17	p.10, l.287: How do you confirm this before the 7-day backward trajectories?	The 10-day backward trajectories for SPO and CPO show little or no terrestrial influence.
2.18	p.11, l.315: Please show biotite fraction for Beijing dust quantitatively.	We have added the relative amounts of Fe species in Beijing dust. The relative biotite
		abundance was 36%.
		"Beijing dust also contained Fe(II)-sulfate and Fe(III)-sulfate with ferrihydrite and

		biotite. Relative abundances of these species to total Fe were 9 %, 11 %, 44 %, and
		36 %, respectively (Fig. S4d)."
2.19	p.11, 1.319: The biotite fraction in S6-WPO2 is higher than that in S6-NOTOGRO. The	The sampling years for size-fractionated aerosol particles are different between the
	biotite fraction in the S5-WPO3 is also higher than that in S5-NOTOGRO. These results	Western Pacific and NOTOGRO samples. Therefore, unfortunately, the quantitative
	rather suggest that biotite in fine particles is relatively insoluble. How do you explain	comparison of Fe species between these samples was difficult. However, we still consider
	higher biotite fraction over the oceans than NOTOGRO?	that the NOTOGRO sample can be used as an analog for Fe species in the $PM_{1,3}$ altered
		during the transport from East Asia to Japan (before reaching the West Pacific).
2.20	p.11, 1.335: Please show the fraction of Al species quantitatively.	We have added the abundance of Al species in the manuscript.
		"Gibbsite was found in S5-WPO2 and S5-WPO3, with which abundances of 20 $\%$
		and 30 % in total Al, respectively (Figs. 8a and 8b). The S6-WPO3 contained Al-
		sulfate and organic complexes of Al (organo-Al), gibbsite, and phyllosilicates, and
		their abundances were 8 %, 8 %, 18 %, and 66 %, respectively. The presence of
		organo-Al and Al-sulfate in S6-WPO3 is consistent with that of Fe(III)-sulfate in
		this sample (Figs. 7a and 8b)."
2.21	p.12, 1.360: Non-spherical dust particles can be converted to spherical particles when they	We are unsure of the effect of weathering on the conversion of non-spherical dust particles
	are intensely altered. Thus, the irregular shapes rather suggest that phyllosilicate particles	into spherical particles. Microscopy-based images of mineral dust before and after proton-
	in S6-WPO2 are relatively unaltered. How do you reconcile this intensely altered particles	promoted dissolution in laboratory experiments have been published. However, mineral
	with irregular shapes?	particles are irregularly shaped even after undergoing acidification at pH 1.0 (Wang et al.,
		2018; Xie et al., 2021). Therefore, it is difficult to determine the degree of acidification
		based on the change in the shape of mineral particles.
		Wang et al. (2018): <u>https://doi.org/10.1016/j.jes.2018.04.012</u>
		Xie et al. (2021): <u>https://doi.org/10.1016/j.atmosenv.2021.118436</u>
2.22	p.13, l.375 and Fig. 9: Why don't you show the dissolution curve from the Beijing dust?	Fe dissolution experiments have been previous performed in the particle size range close
	In the laboratory experiments, Fe solubility for mineral dust has not reached more than	to PM_{10} or TSP. Therefore, the results of laboratory experiments should be compared to
	15% at pH 1 for the proton-promoted dissolution time up to 120 (h), in contrast to fly ash.	the observed Fe _{sol} % of TSP rather than PM _{1.3} . The Fe _{sol} % of TSP ranged from 0.967% to
	Moreover, Eq. 7 is not valid at the high dust/liquid ratio due to low water content in	7.69%, which were lower than the upper limit of Fe_{sol} % as you have mentioned. Therefore,

	mineral dust, which could suppress the Fe dissolution even in acidic condition over	it is difficult to directly compare the Fe_{sol} % of our PM _{1.3} samples with the results of the
	polluted regions. Thus, it is extremely hard to accept such high Fe solubility for the	laboratory experiments.
	samples with no evidence from the laboratory experiments and field observations for	We are unsure why the upper limit of $Fe_{sol}\%$ for mineral dissolution (pH 1.0, 120 h) is
	mineral dust near the source regions. The results presented in this paper rather suggest that	15%. Indeed, the dissolution rate of the slow Fe pool using this study was modified based
	L-Fe in fine particle is mainly derived from anthropogenic source.	on the XAFS results as the dissolution rate of biotite is approximately an order of
		magnitude higher than that of illite. As a result, our model can explain observed L-Fe
		concentration within a shorter dissolution time compared to the original model (Shi et al.,
		2011). However, even if Fe_{sol} % was calculated using original data, approximately 27% of
		the Fe in Beijing dust was solubilized at pH 1 for 120 h. Therefore, Fe $_{sol}\%$ can exceed
		15% even for mineral particles.
		Finally, the advantage of this study is that it is possible to distinguish between acidified
		and non-acidified aerosol. This advantage facilitates comparison with $\mathrm{Fe}_{\mathrm{sol}}\%$ determined
		by the laboratory experiments (all particles were acidified). However, as Beijing dust
		(CRM No. 28) is a TSP sample, it contains acidified and non-acidified particles.
		Therefore, it is difficult to estimate pH_{PPD} using L-Fe data obtained using MQ extraction.
2.23	p.14, l.412: How do you reconcile this with the acidifications of mineral dust by sulfate	Longo et al. (2016) showed increasing $Fe_{sol}\%$ in Saharan dust in response to aerosol
	derived from biogenic S mentioned in this paper?	acidification during transport in the Atlantic Ocean, even if the dust particles did not pass
		over the polluted region. Therefore, aerosol acidification may be promoted in the marine
		atmosphere. As mentioned in 2.15, the S source in CPO was mainly derived from biogenic
		S, but further studies are needed to study the effect of biogenic S on Fe _{sol} %.
		"By contrast, the CPO sample did not pass over the polluted region (Fig. S1b), and
		positive $[H^+]_{mineral}$ and low pH_{PPD} were observed in S6-CPO (Figs. 6a and S12a).
		Aluminosilicate particles react with sulfate through cloud processes, even if the
		particles do not pass over the polluted region (Fitzgerald et al., 2015). Moreover, a
		previous study reported that the $\mathrm{Fe}_{\mathrm{sol}}\%$ in Saharan dust was increased by aerosol
		acidification by nss-SO4 ²⁻ during long-range transport in the Atlantic Ocean (Longo

et al., 2016). Therefore, similar reaction processes can promote the acidification of
the CPO sample. Although $nss-SO_4^{2-}$ in the pelagic region is thought to be derived
from biogenic origins (Calhoun et al., 1991; Li et al., 2018), further studies are
required for determining the effect of biogenic S on the increase in Fe _{sol} %."