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 14 

Abstract. Coastal regions are susceptible to multiple complex dynamic and chemical mechanisms and emission sources that 15 

lead to frequently observed large tropospheric ozone variations. These large ozone variations occur on a meso-scale which 16 

have proven to be arduous to simulate using chemical transport models (CTMs). We present a clustering analysis of multi-17 

dimensional measurements from ozone Light Detection And Ranging (LiDAR) in conjunction with both an offline GEOS-18 

Chem CTM simulation and the online GEOS-Chem simulation GEOS-CF, to investigate the vertical and temporal variability 19 

of coastal ozone during three recent air quality campaigns: 2017 Ozone Water-Land Environmental Transition Study 20 

(OWLETS)-1, 2018 OWLETS-2, and 2018 Long Island Sound Tropospheric Ozone Study (LISTOS). We developed and 21 

tested a clustering method that resulted in 5 ozone profile curtain clusters. The established 5 clusters all varied significantly in 22 

ozone magnitude vertically and temporally which allowed us to characterize the coastal ozone behavior. The lidar clusters 23 

provided a simplified way to evaluate the two CTMs for their performance of diverse coastal ozone cases. An overall evaluation 24 

of the models reveals good agreement (R ≈ 0.70) in the low-level altitude range (0 to 2000 m), with a low and unsystematic 25 

bias for GEOS-Chem and high systemic positive bias for GEOS-CF. The mid-level (2000 – 4000 m) performances show a 26 

high systematic negative bias for GEOS-Chem and an overall low unsystematic bias for GEOS-CF and a generally weak 27 

agreement to the lidar observations (R = 0.12 and 0.22, respectively). Evaluating cluster-by-cluster model performance reveals 28 

additional model insight that is overlooked in the overall model performance. Utilizing the full vertical and diurnal ozone 29 

distribution information specific to lidar measurements, this work provides new insights on model proficiency in complex 30 

coastal regions. 31 
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 32 

1. Introduction 33 

Tropospheric ozone (O3) is an important secondary pollutant created by multiple reactions involving sunlight, nitrogen 34 

oxides (NOx = NO + NO2), and volatile organic compounds (VOCs) which, in accumulation, can have damaging effects on 35 

human and plant health. In addition to its photochemical growth, O3 can easily be influenced by local and regional transport 36 

mechanisms. For coastal regions, surface O3 is highly variable in time and space due to its susceptibility to many factors such 37 

as local ship emissions, long range transport, and sea/bay breeze processes. This variability is challenging for air quality models 38 

to capture as high-resolution measurements are necessary to fully understand and simulate this O3 behavior in coastal regions.  39 

For example, Dreessen et al. (2019) tested the U.S. Environmental Protection Agency (EPA) Community Multiscale Air 40 

Quality (CMAQ) model’s ability, configured at 12 km, to simulate O3 exceedances at Hart Miller Island in Maryland (HMI) 41 

revealing high bias and ‘false alarms’ due to several reasons such as emission transport over water and the coarse model 42 

resolution’s inability to capture fine-scale meteorology and transport. Multiple studies have proven the strong influence that 43 

sea/bay breeze and wind flow patterns can have on the accumulation of coastal O3 and can often lead to poor air quality (e.g., 44 

Tucker et al., 2010; Martins et al., 2012; Stauffer et al., 2012; Li et al., 2020). Cases such as sea/bay breeze events, which 45 

directly contribute to high coastal O3 cases, are denoted by local meteorological mechanisms such as surface wind speed 46 

deceleration, wind direction convergence and recirculation (Banta et al., 2005). Loughner et al. (2014) also highlighted the 47 

importance of understanding the ability bay breeze events have in O3 variability not only spatially but vertically throughout 48 

the atmosphere. Air quality models with coarse horizontal and vertical resolutions are not able to capture such fine 49 

developments (Caicedo et al., 2019). Ring et al. (2018) also used CMAQ to estimate the impact of ship emissions on the air 50 

quality in eastern U.S. coastal regions indicating that an understanding of the vertical profiles of emissions was significant for 51 

improving air quality simulations. These are consistent and unanimous issues with air quality modeling in coastal regions. 52 

Since offshore sites within coastal regions are historically under sampled due to the difficulty of water-based measurements, 53 

this problem is still pertinent today.  54 

Recently, three associated air quality campaigns set out to address this issue (https://www-air.larc.nasa.gov/index.html): 55 

2017 & 2018 NASA Ozone Water-Land Environmental Transition Study (OWLETS-1 & OWLETS-2) and Long Island Sound 56 

Tropospheric Ozone Study (LISTOS) (e.g., Sullivan et al., 2019). These three campaigns were each conducted in highly 57 

populated coastal regions along the Chesapeake Bay in Virginia and Maryland and the Long Island Sound in the New 58 

England/Middle Atlantic region, that are vulnerable to O3 exceedances with the goal of filling the measurement gaps in these 59 

regions. During these campaigns, a suite of detailed airborne and ground measurements were taken during the course of highly 60 

polluted summer months (end of May through August) to capture the variability of pollutants, including O3 and its precursor 61 

species, and the distinct meteorological processes specific to land-water regions that affect them.  62 

The three campaigns strategically placed multi-dimensional tropospheric O3 lidar instruments on and offshore in order to 63 

capture critical land-water gradients and to fill the deficit of measurements in these under monitored areas. These 64 

measurements were supported as part of NASA’s Tropospheric Ozone Lidar Network (TOLNet). Continuous profile 65 
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measurements from O3 lidars highlight important regional transport and temporal variations of O3 in the lower and middle 66 

levels of the troposphere that are usually difficult to capture by most satellite-based remote-sensing instruments (Thompson et 67 

al., 2014). Lidar instruments are unique in their ability to capture high resolution full O3 2-D profile curtains over a period of 68 

time that can help in understanding O3 behavior in coastal regions. In Gronoff et al. (2019), the co-located lidar at the 69 

Chesapeake Bay Tunnel Bridge (CBBT) during OWLETS-1 successfully captured a near-surface maritime ship plume 70 

emission event on 01 August 2017. An ensemble of other instruments (e.g., drones, Pandora spectrometer systems, etc.) 71 

launched near the shipping channel captured elevated NO2 concentrations while the lidar instrument captured a depletion of 72 

O3 simultaneously. The lidar was able to capture the unique low range altitude O3 concentrations which elucidated the evolution 73 

of the trace-gas concentrations during this ship plume event. 74 

Several studies have thoroughly evaluated the results from the air quality campaigns used in this study but were focused 75 

more on specific case studies (Dacic et al., 2019; Sullivan et al., 2019; Gronoff et al., 2019). Dacic et al. (2019) used lidar 76 

measurements of a high O3 episode during OWLETS-1 to evaluate the ability of two NASA coupled chemistry-meteorology 77 

models (CCMMs), the GEOS Composition Forecast (“GEOS-CF”; Keller et al., 2021) and MERRA2-GMI (Strode et al., 78 

2019), to simulate this high O3 event. They found that the GEOS-CF model performed fairly in simulating O3 in the lower 79 

level (between 400 to 2000 m ASL) and outperformed MERRA2-GMI based on surface observations at multiple monitoring 80 

sites. In the case of this event, GEOS-CF was able to simulate the 2-D O3 profile curtains at small scales. At the time of the 81 

Dacic et al. (2019) study, processed observational data was only available from OWLETS-1.  82 

For this study, we took advantage of measured 2-D (vertical and diurnal) O3 profile curtains from all three air quality 83 

campaigns (Sect. 2). To characterize the different behaviors of O3 in coastal regions, we developed a novel clustering method 84 

based on the altitude and time dimensions of the lidar measurements that organized the profile curtains (Sect. 2). We used the 85 

developed clusters to evaluate the ability of both offline and online GEOS-Chem and GEOS-CF simulations to reproduce the 86 

coastal O3 and wind characteristics highlighted by each cluster (Sect. 3).  87 

 88 

2. Materials & Method 89 

2.1. Air quality campaigns 90 

 During the years 2017 and 2018, NASA in partnership with other U.S. national agencies and university research groups 91 

orchestrated three air quality campaign studies that focused on key land and water observations: OWLETS-1, OWLETS-2, 92 

and LISTOS. OWLETS-1 was conducted in 2017 from July 5 to August 3, while OWLETS-2 and LISTOS were conducted in 93 

2018 from June 6 to July 6 and July 12 to August 29, respectively. All campaigns took advantage of a multitude of ground, 94 

aircraft, and remote sensing measurements. For the sake of this study, we will focus on measurements from the two lidars from 95 

the TOLNet: NASA Langley Mobile Ozone Lidar (LMOL) (De Young et al. 2017; Farris et al. 2018; Gronoff et al, 2019, 96 

2021) and NASA Goddard Space Flight Center (GSFC) Tropospheric Ozone (TROPOZ) Differential Absorption Lidar (DIAL) 97 

(Sullivan et al. 2014, 2015a), which ran simultaneously at the marked positions in Figure 1. The TOLNet data from all three 98 



4 
 

campaigns are available on the NASA LaRC Airborne Science Data for Atmospheric Composition archive (https://www-99 

air.larc.nasa.gov/missions.htm; accessed – 20 January 2021). 100 

 101 

Figure 1. An inset map of the Chesapeake Bay airshed in Maryland, Virginia, and Long Island Sound in New York with the 102 

six lidar monitoring locations used for OWLETS-1, OWLETS-2, and LISTOS highlighted and labeled. 103 

The two lidars were placed strategically for each campaign (Figure 1), so that one lidar was closest to over-water 104 

measurements while the other was farther inland with the goal of examining how O3 transport and concentration is influenced 105 

by specific coastal mechanisms such as the land–water breezes. For OWLETS-1, the LMOL lidar was used at the CBBT 106 

[37.0366°N, 76.0767°W], depicting the real time over water O3 measurements while the GSFC TROPOZ lidar was stationed 107 

at NASA Langley Center [37.1024°N, 76.3929°W] further inland. Similarly, for OWLETS-2, the LMOL lidar was stationed 108 

for the over water measurements at Hart Miller Island [39.2449° N, 76.3583° W] and GSFC TROPOZ was stationed at the 109 

University of Maryland, Baltimore County (UMBC) [39.2557° N, 76.7111° W]. For LISTOS, LMOL was at the Westport site 110 

[41.1415° N, 73.3579° W] and TROPOZ at Rutgers [40.2823° N, 74.2525° W]. For the sake of this study the unique benefits 111 

due to the different placements (onshore versus offshore) of the co-located lidars are not specifically evaluated. Instead, the 112 

study focuses on the benefits of the detail and multi-dimensionality of lidar instrument data in general.  113 

Routine lidar measurements were taken for the duration of the campaigns. Both lidars retrieve data at a 5-min temporal 114 

resolution and use a common processing scheme to produce a final O3 product which was used for this study. In this study, the 115 

individual profile curtains refer to the “full day”, vertical and diurnal lidar measurements. In this study, 91 individual 2-D 116 
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profile curtains were used from both lidars from the three campaigns: 26 profile curtains from OWLETS-1, 28 profile curtains 117 

from OWLETS-2, and 37 profile curtains from LISTOS.  118 

To evaluate meteorological impacts on the lidar O3 clusters and model performance we used various temperature and 119 

wind measurements. Hourly observed temperature, wind speed and wind direction, and O3 from surface monitors pertaining 120 

to the study area were obtained from the Air Quality System (AQS) (data can be accessed at 121 

https://aqs.epa.gov/aqsweb/airdata/). We utilized high resolution vertical and horizontal wind speed and direction data 122 

monitored by Doppler wind lidar Leosphere WINDCUBE 200s instruments deployed at HMI during OWLETS-2 during 123 

LISTOS (e.g., Couillard et al., 2021; Coggon et al., 2021; Wu et al., 2021).  124 

 125 

2.2. Clustering lidar data 126 

2.2.1 Description of the ozone lidar measurements 127 

The lidar instrument is unique in that it provides high dimensional profile measurements of O3, as opposed to one 128 

dimensional surface measurements from air quality monitoring sites. The two TOLNet lidars used during the campaigns have 129 

been evaluated for their accuracy during previous air quality campaigns (DISCOVER-AQ;  https://www-130 

air.larc.nasa.gov/missions/discover-aq and FRAPPÉ; https://www2.acom.ucar.edu/frappe) and have also been compared 131 

against each other (e.g., Sullivan et al., 2015; Wang et al., 2017). The two lidars have different transmitter and retrieval 132 

components but produce O3 profiles within 10 % of each other as well as compared to ozonesondes (Sullivan et al., 2015). In 133 

comparison with other in situ instrument measurements, the TOLNet lidars were found to have an accuracy better than ±15 % 134 

for capturing high temporal tropospheric O3 vertically proving their capability of capturing high temporal tropospheric O3 135 

variability (Wang et al., 2017; Leblanc et al., 2018).  136 

To characterize coastal O3 during the summer months, we use a multitude of lidar profile curtains obtained during the 137 

OWLETS-1, 2, and LISTOS campaigns. The two lidars used in the campaigns produced O3 profile curtains from 0 – 6000 m 138 

above ground level (AGL) with some days beginning as early as 06:00 local time (EDT) and ending measurements as late as 139 

the last hour of the day. One of the challenges is that the multiple lidar datasets are not always uniform; although most of the 140 

profile curtains began at or around 08:00 EDT, the lidar measurements commence and conclude at different times. At the time 141 

of these campaigns, the lidar data retrieval was constrained by the availability of personnel as well as the availability of 142 

electricity in remote areas. Due to this constraint, the 91 lidar curtains range from as short as a 6-hour window to a full 24-143 

hour window. Similarly, the profile curtains do not have an exact uniform altitude range either. In the processing of the lidar 144 

data, some measurements may be filtered out and removed due to issues, such as clouds, which can influence and degrade the 145 

retrieval leaving some blocks of empty data within the vertical altitude dimension. When the cloud conditions are perfect, the 146 

limiting factor for the altitude is the solar background: the UV from the sun is a source of noise that prevents the detection of 147 

the low level of backscattered photons. For LMOL, this means that the maximum altitude is about 10 km AGL at night (Gronoff 148 

et al., 2021) and lowered to about 4 km AGL at solar noon (worse conditions possible for the summer in the continental U.S. 149 

resulting in below 4 km AGL).  This results in a general scarcity of O3 measurements above 4000 m AGL for most of the 150 
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vertical profile curtains. Lidars still have limitations that prove to be a complication e.g., noise signal and manual operations. 151 

At the time of writing, the operative limitation has been addressed and the lidars are now more fully automatized for use during 152 

succeeding campaigns removing such constraints. 153 

 154 

2.2.2 Clustering approach and application 155 

To characterize coastal O3, we used a cluster analysis to categorize the behavior of the tropospheric O3 captured in the 156 

profile curtains. Clustering methods are commonly used in air quality and atmospheric studies to group and characterize large 157 

datasets (Darby, 2005; Alonso et al., 2006; Christiansen, 2007; Davis et al., 2010; Stauffer et al., 2018). In our previous work, 158 

we have successfully used clustering methods to automatically characterize diurnal patterns of surface winds and surface O3 159 

in the Houston-Galveston-Brazoria area that proved to perform better than a rudimentary quantile method to reveal the 160 

dependence of surface O3 variability on local and synoptic circulation patterns on the Gulf Coast (Bernier et al., 2019; Li et 161 

al., 2020).  162 

In evaluating the structure of the lidar measurements and working within measurement limitations (described in Sect. 163 

2.2.1) from the three air quality campaigns, we developed a method to cluster multi-dimensional O3 profile curtains using K-164 

Means clustering algorithm. Input features (seed values) were rationally established to best represent the behavior of O3 165 

temporally and vertically without including an excessive amount of input features, which can weaken the results of clustering 166 

(discussed in detail in Sect. S1, in Supplementary Material). With the goal of evaluating lower level tropospheric O3 and based 167 

on description of the structure and constraints of the lidar measurements, the features were tailored to the altitude range 0 – 168 

4000 m AGL and time range of 06:00 EDT – 21:00 EDT. 169 

Figure 2 illustrates the 8 features that represent the slabs of altitude and time used in the cluster analysis. For each O3 170 

profile curtain (total of 91), we calculated the average O3 from the following time and altitude range: Features 1 – 4 altitudes 171 

range from 0 – 2000 m; Features 5 – 8 altitudes range from 2000 – 4000 m. The two altitude ranges were determined to best 172 

represent different O3 transport events although they do not explicitly represent these layers. For Features 1 – 4, O3 would most 173 

likely primarily be affected by local production and pollution transport while for Features 5 – 8, O3 would more likely be 174 

associated with long range transport (e.g., interstate). As planetary boundary layer growth (PBL) in coastal regions do not 175 

usually reach altitudes greater than 2000 m, mixing between the boundary layer and free troposphere would presumably take 176 

place within the low-level altitude bin. Additional attention to the PBL in the selecting of low versus mid-level features for the 177 

clustering will be investigated in future work. For clarity, we will use the terms low-level and mid-level features to address the 178 

two altitude subsets e.g., Features 1 – 4 and 5 – 8, respectively. Feature 1 and 5 time range from 06:00 – 08:00 EDT; Feature 179 

2 and 6 from 08:00 – 12:00 EDT; Feature 3 and 7 from 12:00 – 16:00 EDT; and Feature 4 and 8 from 16:00 – 21:00 EDT. The 180 

four subset time ranges were indicated to best represent features that characterize the common diurnal behavior of O3.  181 
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 182 
Figure 2. Clustering method developed for clustering vertical O3 profiles taken from lidar measurements. The color coding 183 

shows a typical day of lidar measurements of O3 profiles on 6 August 2018, from the LMOL at Westport, CT during the 184 

LISTOS Campaign. F1 – F8 indicate the time and altitude range of the eight features used for the clustering algorithm.  185 

 186 

The features were evaluated for cluster tendency, essentially to confirm our dataset contained meaningful clusters 187 

(discussed in detail in Sect. S2). Evaluating different feature options did not lead to better statistical results than with the final 188 

chosen features. Since the choice of clustering algorithm is subjective, we chose K-means clustering for its simplicity and 189 

widespread use. To use the K-Means clustering algorithm, the optimal number of clusters based on your dataset must be chosen 190 

beforehand (Sect. S2). We selected six clusters as the optimal number of clusters. Since the K-Means clustering algorithm is 191 

based on the Euclidean distance to each centroid, the input data was normalized (to a mean of zero and standard deviation of 192 

one) to ensure each feature is given the same importance in the clustering (Aksoy & Haralick, 2001; Larose, 2005).  193 

The clustering analysis initially identified six clusters (described fully in Sect. 3.2). Only one date was assigned to Cluster 194 

6 (16 June 2018): the lidar profile curtain on this day (Figure S1) shows a large fraction of data missing, and the available data 195 

have relatively high O3 throughout the lowest 3 km, which is different from other clusters. Therefore, we consider Cluster 6 to 196 

be an outlier and will not be included in the subsequent analysis.  197 

 198 

2.2.3 Missing data  199 

Although the input features were tailored based on the structure of the lidar measurements, the remaining data still had 200 

missing data points. In performing a quick evaluation on the 8 input features (Figure S6), we found that Features 1, 4, 5, and 201 

8 had the most missing data while Features 2, 3, 6, and 7 had few or zero cases of missing data. This means that the earlier 202 

morning measurements (06:00 – 12:00 EDT) and the later evening measurements (16:00 – 21:00 EDT) had the most cases of 203 
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missing data points. This is plausible as the campaign teams were best able to retrieve clear measurement during 204 

midday/evening hours (12:00 – 16:00 EDT). As a result, 51 out of 91 O3 profile curtains had at least one missing data point 205 

(feature) throughout the individual profile curtain. 206 

A common practice for dealing with missing data is complete case analysis (CCA), in which observations with missing 207 

values are completely ignored, leaving only the complete data to cluster. CCA can be inefficient as it introduces selection bias 208 

since the sample data no longer retains the state of the original full dataset (Donders et al., 2006; Little & Rubin, 2014). When 209 

we applied CCA, there were only 40 O3 profile curtains of complete data, removing over half of the study profiles. Instead, 210 

we used a more comprehensive solution – imputation - that yields results (Donders et al., 2006). For this study we used the 211 

single imputation (SI) technique, knnImputation, which uses the k-nearest neighbors and searches for the most similar cases 212 

and uses the weighted average of the values of those neighbors to fill the missing data (Torgo, 2010). Essentially, this method 213 

selects the days that have the most similar profile curtain to any profile which has missing data points and uses those real data 214 

points to calculate a weighted mean that will fill in the missing data. We acknowledge using an imputation method on the 215 

dataset will possibly introduce a bias which is difficult to quantify, but this allows us to utilize all 91 O3 profile curtains. The 216 

silhouette method was used to test the quality of the newly imputed dataset and proved to be no worse, nor better, than the 217 

CCA (real data) results. Therefore, the dataset was first imputed using SI to create a complete dataset and then the clustering 218 

method described in the sect. before (2.2.2) was applied to the complete imputed dataset.  219 

 220 

2.3. Model simulations 221 

The offline GEOS-Chem chemical‐transport model (CTM) was utilized to simulate the spatial and temporal variability 222 

of coastal O3 in the Chesapeake Bay and Long Island Sound during the time of the campaigns. The GEOS-Chem model is a 223 

global 3-D CTM driven by assimilated meteorological data from the NASA Global Modeling and Assimilation Office 224 

(GMAO). Our simulations were driven by reanalysis data from Modern-Era Retrospective analysis for Research and 225 

Applications, Version 2 (MERRA-2; Gelaro et al., 2017). We ran a nested GEOS-Chem (v12-09) simulation at 0.5° x 0.625° 226 

horizontal resolution over the eastern portion of North America and adjacent ocean (90 – 60°W, 20 – 50°N), using lateral 227 

boundary conditions updated every three hours from a global simulation with 2° x 2.5° horizontal resolution. The nested 228 

GEOS-Chem simulation was run with 72 vertical levels from 1013 to 0.01 hPa. Since the study focuses on the altitude range 229 

0 – 4000 m, the first 20 vertical levels from GEOS-Chem were used with 14 levels within the boundary layer (≤ 2000 m). The 230 

nested simulation was conducted for the study periods June – September 2017 and April – August 2018. We used the standard 231 

“out-of-the-box” unmodified default settings from the tropospheric chemistry chemical mechanism (tropchem) with global 232 

anthropogenic emissions from the Community Emissions Data System (CEDS) inventory (McDuffie et al, 2020) and U.S. 233 

Environmental Protection Agency (EPA) National Emissions Inventory (NEI) 2011 for monthly mean North American 234 

regional emissions (EPA NEI, 2015).  235 

We also used results from NASA’s near real-time forecasting system, GEOS-CF, an online GEOS-Chem simulation (v12-236 

0-1) from GMAO (https://gmao.gsfc.nasa.gov/-weather_prediction/GEOS-CF/) with GEOS coupled to the GEOS-Chem 237 
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tropospheric-stratospheric unified chemistry extension (UCX) and run at a high spatial resolution of 0.25°, roughly 25 km 238 

(Keller et al., 2021, Knowland et al., 2021). The vertical resolution for GEOS-CF is interpolated onto 72 vertical levels from 239 

1000 to 10 hPa. Since the study focuses on the altitude range 0 – 4000 m, the first 21 vertical levels from GEOS-CF were used 240 

with 14 levels within the boundary layer (≤ 2000 m). Prior to the launch of the 12z five-day forecast, GEOS-CF produces daily 241 

global, 3-D atmospheric composition distributions using the GEOS meteorological replay technique (Orbe et al., 2017), and 242 

this study makes use of these historical estimates, made available to the public for the period since January 2018.  Therefore, 243 

the GEOS-CF results shown in this study only include the dates from OWLETS-2 and LISTOS campaigns, since they both 244 

occurred in 2018.  245 

While both model simulations use similar versions of GEOS-Chem chemistry, there are noteworthy differences to keep 246 

in mind during the analysis of the clustering. The main differences between the two models are (1) GEOS-Chem is an offline 247 

CTM using archived meteorology, while GEOS-CF simulates atmospheric composition simultaneously with meteorology 248 

(online); (2) the spatial resolution of the GEOS-CF model (0.25°) is higher than GEOS-Chem (0.5° x 0.625°); and (3) the 249 

GEOS-CF model runs with Harmonized Gridded Air Pollution (HTAP; v2.2; base year 2010) anthropogenic emissions from 250 

the Emission Database for Global Atmospheric Research (EDGAR), while GEOS-Chem was run with CEDS anthropogenic 251 

emissions (base year 2014). These imperative differences can lead to disparities in the following results. 252 

 253 

3. Results & Discussion 254 

3.1 Overview of the 2-D O3 curtain clusters 255 

The clustering results reveal distinctive characterized O3 behavior during the three campaigns in which O3 concentrations 256 

vary. Various O3 and surface meteorological parameter cluster statistics for the five clusters are summarized in Table 1. With 257 

only 5 of the 2-D profile curtains assigned, Cluster 5 depicts the least common O3 behavior during the campaigns. On the other 258 

hand, Cluster 3 is the most common O3 behavior during the campaigns with 28 profile curtains assigned to this cluster. 259 

Following Cluster 3, Cluster 1 is the next most common cluster with 25 profile curtains. Cluster 2 and Cluster 4 fall in the 260 

middle with 14 and 18 profile curtains assigned to the cluster numbers, respectively.  261 

 262 

 263 

 264 

 265 
Cluster # 

a) No. of 

vertical 

profiles 

b) O3 Max (ppb) c) O3 Min (ppb) 
d) T avg.  

(min; max) (℉) 

e) WS avg.  

(min; max) (m s-1) 

1 25 86.5 42.2 74.1 (67.8; 86.4)  1.5 (0.5; 2.8)  

2 14 72.8 28.9 71.6 (64.0; 83.9)  1.6 (0.6; 2.9) 

3 28 86.6 34.2 77.2 (67.0; 87.6)  1.3 (0.5; 2.4)  

4 18 97.8 44.1 78.4 (68.0; 90.4)  1.2 (0.4; 2.3)  

5 5 67.7 29.1 74.5 (66.8; 74.5)  1.2 (0.3; 3.4)  
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Table 1. Lidar vertical O3 profile cluster statistics: a) total number of vertical profiles; b) O3 maximum; c) O3 minimum O3;) 266 

AQS monitoring station cluster mean d) surface temperature and e) wind speed; minimum and maximums in parenthesis. The 267 

statistics and averages were derived from the total number of profile curtains assigned to each cluster.  268 

 269 

The five clusters were distinguished by the varying O3 concentrations between the low-level and mid-level as well as 270 

diurnal variations (Figure 3). In Figure 3a we separate the data by the two altitude subsets (low and mid-level) and by morning 271 

(06:00 – 12:00) and afternoon (12:00 – 21:00) to quantify the between-cluster differences. In the low-level, all five clusters 272 

exhibit the common O3 diurnal pattern where surface O3 is titrated overnight and reaches a minimum but then is quickly 273 

exacerbated with the increase of sunlight throughout the day and typically peaks after midday (Figure 3b). The extent of this 274 

common diurnal pattern varies by cluster.  275 

 276 

 277 
Figure 3. Lidar O3 cluster average comparisons (five clusters depicted in colors). a) Altitude comparison of mean O3 averaged 278 

over time: morning hours from 6:00 – 12:00 (solid line) and afternoon hours from 12:00 – 21:00 (dashed lines). Time 279 

comparison of mean hourly O3 split between the b) low-level and c) mid-level. 280 

 281 

Cluster 1 in the low-level has the second highest morning and afternoon O3 average (52 and 59 ppb) and in the mid-level 282 

the highest morning O3 average (64 ppb) (Figure 3a). Cluster 1 also exhibits the most unique pattern of mid-level O3 (Figure 283 

3c), with the highest concentrations found in the early morning and an uncharacteristic plunge to lower O3 concentrations from 284 

11:00 – 15:00 EDT. This is contrary to the other clusters which do not show much O3 variation temporally in the mid-level. 285 

The majority of the individual profile curtains assigned to Cluster 1 show concentrated early morning residual layers in the 286 

mid-level that diffuse after the morning, which is distinctive to the other clusters. In the low-level, Cluster 2 has the lowest 287 

morning and afternoon O3 average among the clusters (39 and 45 ppb) with moderate mid-level O3 concentrations. Cluster 3 288 

has the most uniform vertical O3 extent between the low and mid-level (Figure 3a), in contrast to the other clusters that differ 289 

greatly in O3 concentrations between the two altitude subsets. Cluster 4 has the highest morning and afternoon O3 averages (59 290 

and 68 ppb) in the low-level, reaching > 70 ppb temporally (Figure 3b). Finally, Cluster 5 has, considerably, the lowest morning 291 
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and afternoon O3 averages (42 and 43 ppb) in the mid-level, almost 10 ppb lower than the other clusters. Cluster 5 does not 292 

have a smooth-evolving O3 diurnal pattern in the lower level (Figure 3b), which can be attributed to the averaging of only five 293 

different profile curtains that were assigned to this cluster (Table 1).  294 

Figure 4a illustrates the mean lidar O3 2-D profile curtains for each of the clusters. For Cluster 1, 3, 4, and 5, higher O3 295 

concentrations in the low-level are captured during afternoon/evening time (12:00 – 21:00 EDT), with the highest low-level 296 

O3 in Cluster 4 (> 70 ppb). This behavior follows the common diurnal pattern of O3, that was distinguishable in Figure 3b. This 297 

common O3 growth reaches vertically to approximately 1500 m for each of the clusters but is generally contained below 2000 298 

m. Differing from the low-level O3 behavior, mid-level O3 is generally less variable in magnitude throughout the entire profile 299 

curtain (except for Cluster 1; see Figure 3a). The highest O3 concentrations for the mid-level are exhibited in Cluster 1, 2, 3, 300 

and 4, with the highest mid-level O3 in Cluster 1 during the early morning hours (≥ 70 ppb).  301 

Following the descriptions above, each cluster is given a nomenclature according to their unique characteristics. Cluster 302 

1 is termed as the highest mid-level O3 (HMO) cluster; Cluster 2 as the lowest low-level O3 (LLO) cluster; Cluster 3 is the 303 

most common O3 (MCO) cluster; Cluster 4 is the highest low-level O3 (HLO); Cluster 5 is the least common and lowest mid-304 

level O3 (LMO) cluster. The O3 variability represented and justified above is what led to the successful clustering of the lidar 305 

O3 2-D profile curtains.  306 

 307 

 308 
Figure 4. Cluster-mean O3 vertical profile results by cluster assignment (1- 5) and arranged: a) LIDAR; b) GEOS-Chem 309 

simulation; and c) GEOS-CF simulation. 310 
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 311 

Figure 3b and 3c indicate each cluster represents a different O3 evolution pattern, likely related to different photochemical 312 

or transport regimes. This kind of evaluation is useful in that it combines O3 information from both temporal and vertical 313 

dimensions. For example, the HLO cluster reveals a unique low-level case in which high O3 concentrations at a high elevation 314 

(~1000 m) are captured early in the temporal profile that translate to the higher O3 concentrations at the surface later in the 315 

evening. The mean profile curtain indicates these cases did not have “clean air” to begin with which can allow a greater 316 

accumulation in the low-level in the afternoon. In another example, several profile curtains assigned to the HMO cluster 317 

indicate concentrated residual layers in the mid-level and possible entrainment to the surface as the day progressed. To prove 318 

this feature, vertical velocity and vertical velocity variance data would be needed but the knowledge that a clustering approach 319 

is able to highlight these features that could only be discernible through lidar measurements proves to be useful. The clustering 320 

results were valuable in recognizing a significant large pollution related cluster (HLO), a total of 18 out of the 91 curtain 321 

profiles which correspond with the highest daily surface maxima measured at these sites (= 97.8 ppb) (Table 1). This cluster, 322 

on average, exhibited a daily surface maxima up to 10 ppb greater than any of the other clusters. Discerning these higher O3 323 

cases is imperative for mitigating severe air pollution. 324 

 325 

3.2. Cluster surface analysis 326 

To support the lidar clustering results, daily averaged meteorological surface observations from AQS stations nearest to 327 

the lidar locations pertaining to the campaign period and GEOS-Chem surface model output were evaluated in regard to the 328 

five clusters. Figure 5 shows the cluster mean surface temperature from AQS stations and GEOS-Chem model as well as the 329 

simulated wind speed and direction. The average surface temperature from each station is represented as the circular markers 330 

while the simulated temperatures are represented as the spatial contour and the simulated wind speed (m s-1) and direction as 331 

arrows. Cluster average, minimum, and maximum AQS surface temperature and wind speed can be found in Table 1d, e. 332 

 333 
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 334 
Figure 5. Cluster averaged meteorological surface AQS station observations and GEOS-Chem model results. a) Surface 335 

temperature observations represented as the circular markers and simulated surface temperatures represented as the spatial 336 

contour (top-panel). b) Surface wind speed and direction observations represented as the circular markers and white arrows 337 

and simulated wind speed and direction represented as spatial contour and black arrows (bottom-panel). 338 

 339 

In general, the surface meteorological conditions agree with our knowledge of transport and O3 production that would 340 

lead to each of the five clustered lidar O3 profile curtains. It is evident that the clusters with the highest surface O3 (HMO, 341 

MCO, and HLO) all share a predominant offshore, westerly wind. Furthermore, MCO and HLO presented higher overall 342 

observed and simulated surface temperatures compared to the other clusters (Figure 5a). These meteorological conditions are 343 

conducive to a higher production of surface O3 concentrations which validates the higher O3 found in the low-level results 344 

(Figure 3b, 4a).  345 

Conversely, the lowest surface temperatures are found in LLO. Lower surface temperatures are also indicative of low 346 

vertical mixing due to less generation of convection which can reduce any possible descending O3 from aloft. Relatively calm 347 

wind speeds, lower temperatures, and other possible meteorological factors such as high cloud cover could have contributed 348 

to the lower O3 concentrations in LLO. Although surface O3 concentrations in LMO reach higher levels later in the day, first 349 

at 13:00 EDT and then again at 16:00 EDT, the rest of the temporal profile stays below moderate levels. Average temperatures 350 

for LMO are moderately high but, in contrast, the average wind speed is higher (specifically over the Long Island Sound) and 351 

unique to the other clusters, wind direction is predominantly onshore (Easterly – Southerly). This prevalent onshore flow 352 

indicates a transport of cleaner marine air which corroborates the lower surface O3 levels. LMO did not have any profile 353 

curtains assigned from OWLETS-1 which is why data for the lower Chesapeake Bay area is not shown in Figure 5. 354 

There was only one occurrence during the dates in which the lidar instruments were operating in which there was a 355 

recorded maximum daily 8-hour average (MDA8) O3 exceedance (> 70 ppbv). This exceedance date is 25 May 2018 in which 356 

Cluster 1 – HMO Cluster 2 – LLO Cluster 3 – MCO Cluster 4 – HLO Cluster 5 – LMOa)

b)
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3 AQS sites in the LISTOS region measured MDA8 O3 of 73, 72, and 72 ppbv. This curtain profile was assigned to the HMO 357 

cluster (Cluster 1), the cluster with high O3 in the mid-level and moderate O3 in the low-level and near the surface. Since the 358 

AQS stations applied here were the nearest stations to the lidar instrument placements, the MDA8 O3 captured by the AQS 359 

stations do not necessarily reflect the high O3 concentrations capture by the lidars near the surface. 360 

 361 

3.3. Evaluating the GEOS-Chem and GEOS-CF model 362 

In this sect. the model results from GEOS-Chem and GEOS-CF will be compared to the lidar data using the five lidar O3 363 

profile clusters discussed in Sect. 3.1. Both model results were sampled in an equal manner, in which we extracted the same 364 

cluster date assignments from the lidar clusters and created mean vertical profiles based on the model results. This allowed us 365 

to evaluate the model performance based on the five characterized O3 lidar clusters. As mentioned previously, the GEOS-CF 366 

simulation data is not available for 2017. Thus, the results shown subsequently will only include GEOS-CF results from 2018 367 

(only dates from the OWLETS-2 and LISTOS campaigns). The GEOS-Chem simulation results include both years thus all 368 

three campaign duration periods.  369 

 370 

3.3.1 Overall model performance 371 

Figure 4b and 4c depict the simulated cluster-mean O3 profile curtains from GEOS-Chem and GEOS-CF, mirroring the 372 

mean lidar profile curtains in Figure 4a. For all clusters in the low-level, both models simulate a consistent accumulation of 373 

O3 near the surface after 12:00 EDT, mirroring the O3 common diurnal pattern depicted in mean lidar profile curtains in Figure 374 

4a. However, the extent the models simulate is often higher in magnitude than the observations, specifically GEOS-CF 375 

consistently predicting the accumulation at a higher magnitude than GEOS-Chem. In the mid-level, both models simulate 376 

much less O3 variability than what is captured in the lidar observations. Figure 4b and 4c clearly show how the models struggle 377 

to reproduce any mid-level O3 pattern or variability that is relayed in the lidar observations. 378 

We first evaluate overall correlation and biases between the model and lidar data, disregarding the specific clusters. The 379 

overall correlation between the models and the lidar data is evaluated by the two altitude subsets as the performances differ 380 

considerably between low-level and mid-level for both GEOS-Chem (Figure S7a) and GEOS-CF (Figure S7b) (mean 381 

normalized biases found in Table S1). For both models, overall low-level O3 correlation rounds to 0.70, signifying a strong 382 

relationship between the model simulations and the lidar observations (Figure S7 - top panel). This indicates that both models 383 

can simulate the development and pattern of O3 well in the low-level. Overall, GEOS-Chem performs well in simulating low-384 

level O3 with a lower non-systematic normalized bias ranging from -0.10 to +0.13. Thus, based on the lower bias, GEOS-385 

Chem also fairs well simulating the magnitude of low-level O3. Overall, GEOS-CF overestimates the magnitude of low-level 386 

O3 with a systematic high positive normalized bias ranging from +0.30 to +0.67. This consistently high bias reveals that GEOS-387 

CF generally struggles to simulate low-level O3 magnitude.  388 

For the mid-level, the overall correlation reveals that GEOS-CF and GEOS-Chem both have a weak relationship with the 389 

lidar (R = 0.22 and R = 0.12, respectively) (Figure S7 - bottom panel). This indicates that neither model can simulate mid-390 
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level O3 pattern well. GEOS-Chem consistently underestimates the magnitude of mid-level O3 with a systematic high negative 391 

normalized bias ranging from -0.44 to -0.18, while GEOS-CF has a lower and non-systematic normalized bias ranging from -392 

0.22 to 0.28. Overall, both models are not able to simulate the O3 variability nor magnitude well in the mid-level. The overall 393 

analysis provides a fundamental but condensed assessment of model performance.  394 

 395 

3.3.2 Model evaluation based on lidar clusters 396 

In this sect. we discuss significant cluster by cluster differences in model performance that are unmasked by the clustering 397 

approach. To better explain the side-by-side comparison in Figure 4, spatial O3 differences (model – lidar observations) for 398 

each cluster were derived (Figure 6) as well as individual cluster correlation (Figure 7, Table S1). Subsequent mean normalized 399 

biases (Table S1) were calculated from the total vertical and diurnal averages separated by low-level and mid-level. 400 

 401 

 402 
Figure 6. Mean profile curtain spatial O3 difference (model – lidar observations) for each cluster (1 – 5). GEOS-Chem 403 

differences (a) and GEOS-CF differences (b). 404 

Cluster 1 - HMO Cluster 3 - MCOCluster 2 - LLO Cluster 4 - HLO Cluster 5 - LMO

(a) GEOS-
Chem

(b) GEOS-
CF

Spatial O3 Difference: model – lidar observations
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 405 
Figure 7. O3 correlation between lidar observations and a) GEOS-Chem model simulation results and b) GEOS-CF model 406 

results by each cluster split by low-level (top panel) and mid-level (bottom panel). 407 

 408 

In the low-level, GEOS-CF has a similar performance ability for the HMO, HLO, and LMO clusters with high positive 409 

biases at + 0.30, + 0.41, and + 0.45 respectively. These higher biases imply GEOS-CF has difficulty capturing moderate O3 410 

cases (HMO and LMO) as well as high O3 cases (HLO) below 2000 m. GEOS-CF also has a high positive bias (+ 0.50) in the 411 

LLO cluster indicating the model struggles to capture the lower O3 cases as well. This is warranted as models are intended to 412 

approximate and are not usually able to capture extremes (high or low). In the low-level, GEOS-Chem has the best performance 413 

(minimal – 0.04 bias and strong correlation, R = 0.61) in HLO, the cluster with the highest low-level O3 accumulation and the 414 

second-best performance (minimal + 0.07 bias and fair correlation, R = 0.55) in LLO , the cluster with the lowest O3 415 

accumulation. These results challenge the overall assumption that models struggle to capture extreme cases. GEOS-Chem has 416 

a similar performance for the LMO and HMO clusters with low negative biases of – 0.10 and – 0.09, respectively, indicating 417 

the model is also able to capture moderate O3 cases.  418 

Both models perform the worst (in comparison to other clusters) in the low-level in the MCO cluster with a + 0.13 bias 419 

for GEOS-Chem and + 0.67 bias for GEOS-CF. As described in Sect. 3.1, MCO is the most common cluster with moderate - 420 
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high average O3 concentrations in the low-level (refer to Figure 3b). Although GEOS-Chem has its worst performance in the 421 

MCO cluster, it is not necessarily a poor performance. Contrarily, the GEOS-CF performance in the MCO cluster reveals a 422 

more substantially high positive bias. This stands out as models are usually able to capture moderate levels (e.g., non-extreme 423 

cases). Evaluating the full temporal and vertical profile indicates that the higher GEOS-CF bias in the MCO cluster is 424 

additionally influenced by the greater overestimation of morning O3, not solely the afternoon O3. This is different to the 425 

performance in the LLO and LMO clusters where GEOS-CF also had a high positive bias in the low-level but better simulates 426 

early morning O3. A similar conclusion can be drawn when evaluating the low-level GEOS-Chem performance. HMO, LLO, 427 

MCO, and LMO all share ‘higher’ biases (rounding to +/– 0.10), but the highest bias is found in the MCO cluster. This can 428 

similarly be attributed to GEOS-Chem overestimating morning O3 in the MCO cluster in contrast to the better early morning 429 

estimation in the other clusters.  430 

In the mid-level, GEOS-Chem underestimates O3 magnitude to the greatest extent in the HMO and the LLO cluster (both 431 

bias = – 0.44), which are both clusters with higher mid-level O3 concentrations (refer to Figure 3c). GEOS-Chem performs 432 

similarly in the HLO and MCO clusters, with a negative mean bias of – 0.30 and – 0.27, respectively. This indicates that 433 

GEOS-Chem most struggles to simulate higher concentrations of O3 in the mid-level. The GEOS-Chem model actually never 434 

reaches O3 cluster averages greater than 50 ppb, directly divulging the greater systemic negative bias in the mid-level. GEOS-435 

Chem simulates LMO mid-level O3 magnitude the best (– 0.18 bias), which is the cluster with the lowest O3 average (< 45 436 

ppb). Although for the LMO cluster GEOS-Chem has a lower bias, the correlation is still poor (R = 0.23) which indicates that 437 

the model is relatively capable of simulating mid-level O3 only when the case devises lower concentrations but still fails to 438 

replicate any O3 variability and pattern. 439 

On the other hand, GEOS-CF does best simulating LLO, MCO, and HLO, which are all clusters with moderate O3 in the 440 

mid-level (≥ 50 and ≤ 70 ppb). GEOS-CF has the highest bias in the LMO cluster (+ 0.28), the cluster with the lowest mid-441 

level O3 magnitude but also has the strongest correlation in the same cluster (R = 0.74). This is a unique case where although 442 

the model is not able to capture mid-level O3 magnitude, it is able to capture the variability well. Comparing the full profile 443 

curtain, it is evident that in the LMO cluster, the GEOS-CF model simulates mid-level O3 pattern in the morning/early 444 

afternoon fairly well. GEOS-CF also struggles to simulate mid-level O3 in the HMO cluster, contrarily the cluster with the 445 

highest mid-level O3 (≥ 70 ppb). This supports the previous conclusion that although GEOS-CF has a relatively lower biases 446 

in the mid-level, the model still struggles to simulate the extreme O3 cases. Although GEOS-CF underestimates O3 magnitude 447 

in the HMO cluster, it has a higher correlation than most of the other clusters (R = 0.51) (Figure 7, Table S1). GEOS-CF does 448 

a fair job connecting the mid-level higher O3 pattern in the early morning that develops down to the low-level later in the 449 

afternoon (Figure 3). From this we can draw a conclusion that GEOS-CF is better able to capture mid-level O3 patterns earlier 450 

in the temporal profile leading to better correlations with the lidar. 451 

 452 

3.3.3 Advantages of cluster approach and derived model conclusions 453 



18 
 

It is warranted that models struggle simulating extreme events/cases such as seen in the low-level in the HLO cluster and 454 

in the LLO cluster. However, GEOS-Chem performs best in both clusters with minimal biases and strong to fair correlations. 455 

Our result suggest that GEOS-Chem does a much better job simulating extreme O3 cases in the low-level than expected. We 456 

can conclude that the non-systemic bias is not only attributed to a good simulation of afternoon O3 but also a fair simulation 457 

in morning O3. This specific model feature is not eminent when evaluating overall performance. GEOS-CF systematically 458 

overestimates low-level O3, but the individual clusters indicate that the model has a better correlation with O3 in the HMO 459 

cluster. The higher O3 levels measured throughout the diurnal profile from 1500 – 2000 m are well captured by the model and 460 

contribute to the better low-level correlation.  461 

The clustering approach also reveals more discrepancies in the models such as in the MCO cluster. Evaluating the full 462 

profile curtains, we find the overestimation of early morning O3 in the low-level in GEOS-CF adds to the systemic 463 

overestimation in afternoon O3 contributing the greater bias and poorer correlation. The same case can be found in the GEOS-464 

Chem MCO cluster performance but to a lesser extent as GEOS-Chem has a much lower positive bias. Previous studies have 465 

found that excessive vertical mixing leads to overestimation of O3 near the surface as well as underestimation of O3 night-time 466 

depletion resulting in overestimation of O3 the next day (Dacic et al., 2020; Keller et al., 2021; Travis & Jacob, 2019). 467 

Model overestimation of O3 at night and in early morning hours is a common problem for 3-D Eulerian CTMs. Overnight, O3 468 

concentrations from the evening before can remain lingering in the residual layer. This residual layer sits at about 1000 m or 469 

higher depending on the conditions of the environment. O3 trapped in this residual layer can directly correlate with the next 470 

day afternoon O3 (e.g., Figure 3a; HLO cluster). Models struggle to resolve the shallow surface layer at night, which enhances 471 

nighttime NO titration and O3 dry deposition. If this residual layer and the titration of O3 overnight in the shallow surface layer 472 

is not resolved, next day simulated O3 will most likely warrant even greater biases. Therefore, in the given case where there is 473 

an O3 event that lasts more than one day (at the same lidar location), the model will likely underestimate O3 night-time 474 

depletion, overpredict morning O3, and subsequently overpredict the afternoon build-up. Given multiple cases of multi-day or 475 

consecutive high O3 events from the lidar measurements (17 total from HMO, MCO, and HLO), this is likely one of the reasons 476 

for GEOS-CF overestimating early and therefore afternoon O3 in these high O3 cases in the low-level. In Figure 6, GEOS-CF 477 

exhibits the greatest afternoon O3 overprediction in MCO and HLO. In HLO alone, there were 4 (out of 18) of the profiles that 478 

were consecutive while in MCO there were 8 (out of 28). This gives explanation for upwards of 22 – 29 % of the overestimation 479 

of O3 in the profile curtains of these clusters. These multi-day O3 events are particularly important as they can indubitably lead 480 

models to overestimations of afternoon O3. Full vertical and temporal curtains provided by lidar instruments are essential in 481 

fully understanding the development and depletion of O3 in these cases. The mean curtain profiles in Figure 3a indicate that 482 

what is captured at the surface (below 500 m) in the early morning does not represent what is captured in the residual layer 483 

(1000 m) by the lidar. Therefore, surface data would not be sufficient in evaluating a multi-day event. 484 

GEOS-Chem does not have such an issue overestimating low-level O3 in the afternoon. In the other clusters, GEOS-485 

Chem actually underpredicts early morning low-level O3 in the full vertical profile and does an overall better job than GEOS-486 

CF simulating morning low-level O3, such as in the HLO cluster. A better estimation of early morning O3 does not warrant the 487 
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same build-up of afternoon O3. In these cases, GEOS-Chem handles the multi-day simulations better than GEOS-CF. This 488 

gives some explanation to why GEOS-Chem underpredicts the other clusters with higher O3 concentrations in the low-level 489 

(HMO and HLO). GEOS-CF does best simulating morning low-level O3 in cases of lower O3 extent (LLO and LMO), but still 490 

overestimates the afternoon O3. Since in these cases the afternoon does not seem to be related to early morning overestimations, 491 

other factors may be contributing. In the LLO cluster, the full curtain profile implies excessive mixing throughout the entire 492 

vertical profile could be adding to afternoon O3 overestimation. Similarly, for the LMO cluster, mid-level O3 seems to be at 493 

play in influencing low-level O3 which could be adding to afternoon biases.  494 

In the mid-level GEOS-Chem consistently underestimates O3 but the clusters reveal a better performance in LMO. It is 495 

evident that the model is better able to capture lower magnitude O3 cases in the mid-level. A unique case is exposed in which 496 

GEOS-CF has a strong correlation in the mid-level in the LMO cluster despite having a low correlation overall and in the other 497 

clusters. The individual cluster correlation reveals the GEOS-CF model is better able to capture the higher O3 observations in 498 

this cluster thus capturing more of the variability. Since the version of GEOS-Chem used in this study was run with the 499 

tropchem chemistry mechanism which excludes stratospheric chemistry (now obsolete with current GEOS-Chem 500 

developments) and GEOS-CF uses the UCX chemistry mechanism that includes stratospheric chemistry, this may allude to 501 

better performance of GEOS-CF in simulating higher O3 concentrations in the mid-level. The weak correlations in the mid-502 

level could be due to multiple model inefficiencies such as the coarse model resolutions. Although GEOS-CF has a finer 503 

resolution than GEOS-Chem, it still may not be sufficient in horizontal and vertical grid resolution to replicate the O3 variations 504 

captured in the 2-D lidar observations. Additionally, transport of emissions in the free troposphere (FT) is another influential 505 

factor that could contribute to the misrepresentation of mid-level O3. In Figure S8, aircraft measurements from OWLETS-2 506 

are used to evaluate GEOS-Chem simulated carbon monoxide (CO) in the FT (1800 – 2500 m AGL). The flight days evaluated 507 

are all curtain profiles that were assigned to the clusters with higher levels of O3 in the mid-level (HMO, MCO, and HLO). It 508 

is evident that the model is able to capture lower levels of CO in the FT (100 – 110 ppbv) (e.g., background levels) but struggles 509 

to capture the higher levels (130 – 140 ppbv). Since increased levels of CO in the FT are indicative of possible long-range 510 

transport (Neuman et al., 2012), FT transport could be a factor contributing to the GEOS-Chem poor performance in the mid-511 

level.  512 

There are additional model discrepancies that can lead to underestimations of O3 in GEOS-Chem in the mid-level that 513 

was found in all 5 clusters. One gap in the GEOS-Chem model could be the representation of tropospheric halogen chemistry 514 

which has a large effect of coastal O3 production. Newer updates to the GEOS-Chem model (v12.9) have included updated 515 

tropospheric halogen chemistry mechanisms (iodine, bromine, and chlorine) (Wang et al., 2021) and indicate further 516 

investigation of halogen chemistry is needed for better model representation. Another study finds a similar conclusion in the 517 

proper representation of cloud uptake and tropospheric chemistry in the model (Holmes et al., 2019), warranting further testing. 518 

The role lightning plays in tropospheric oxidation is another feature that is commonly misrepresented in global models and 519 

can affect O3 simulation (Mao et al., 2021). These are all examples of features that if not simulated correctly can lead to 520 

misestimations of O3. The clustering approach allows us to organize the detailed lidar measurements to scope out specific 521 
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cases where these misrepresentations occur. These previous studies also highlight the importance of lidar measurements and 522 

their ability to depict tropospheric emission development and behavior throughout the vertical profile and diurnal cycle which 523 

can be used to constrain model emissions and improve simulations. 524 

Although this analysis proves to be a useful technique to characterize the largely variably O3 behavior in coastal regions 525 

and evaluate the subsequent model performance, there are also limitations. In this study we are comparing single point lidar 526 

versus model output, therefore we cannot simply state that the model is incorrect. We make conclusions and draw biases based 527 

on the ability to subset a grid point and compare that to a single point lidar curtain to the best ability but that still leaves an 528 

uncertainty.  529 

 530 

3.4 Cluster derived case studies to evaluate modeled wind and ozone 531 

Meteorological factors such as wind speed and direction can directly impact whether a coastal region will experience 532 

clean air or O3 exceedances. When local meteorological processes such as sea/bay breeze occur at such a fine scale, equally 533 

fine resolution measurements are essential in capturing this. The Doppler wind lidar offers a focus on fine details that are only 534 

revealed in the multi-dimensional data which allows for such a comprehensive evaluation of the established O3 cluster profile 535 

curtains. In this sect., we evaluate the 2-D relationship between wind and O3 to assess model performance using lidar and 536 

model derived profile curtains (Figure 8). We derived two specific case studies, each from a different cluster: MCO = 17 June 537 

2018 and HLO = 30 June 2018. Utilizing the derived clusters, the case studies were chosen to focus on high low-level O3 538 

behavior cases with a goal of evaluating possible sea/bay breeze events. The two case studies are both from the HMI location 539 

during the OWLETS-2 campaign. The white spaces in both the wind and O3 lidar indicate missing data. 540 
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 541 
Figure 8. Profile curtains of wind speed/direction (a-c) and O3 (d-f) from the lidar (top panel), GEOS-Chem (middle panel), 542 

and GEOS-CF (bottom panel). Results from OWLETS-2 at HMI. Wind direction is depicted by wind barbs. The white spaces 543 

indicate missing data for both the a) wind and d) O3 lidar curtain profiles. 544 

 545 

3.4.1 Sea breeze event interpretation 546 

In the MCO case, the Doppler wind lidar captures a wind direction shift from westerly to easterly winds beginning at 547 

06:00 EDT accompanied by calm winds (approximately 0 m s-1) indicating an early onset sea/bay breeze event. The timing of 548 

the start of this event is simulated well but the models fail to predict an actual well-defined wind shift, instead merely simulating 549 

0 m s-1 winds after 05:00 EDT. A wind direction shift is depicted in the HLO case, with westerly winds early in the morning 550 

and a shift to south-easterly winds later in the temporal profile (at about 10:00 EDT). This could also likely be a common sea 551 

breeze event which could have contributed to the high observed O3 concentrations in the afternoon. Again, the exact timing of 552 

the start of the wind shift is captured by the models but then no defined directional shift and little to no winds are simulated 553 

after with a worse performance for the GEOS-Chem model. Based on the Doppler wind lidar curtain profiles, we can derive 554 

that the two sea/bay breeze cases are distinct. The HLO case closely mirrors a common sea/bay breeze event with a more 555 

definite wind direction shift later in the morning and winds above the surface remain consistent throughout the profile. The 556 

MCO case shows a less discernible wind shift which also begins earlier in the morning with weaker winds above the surface. 557 

These differences are not well captured by either model. It is important to note that GEOS-Chem runs with offline meteorology, 558 
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averaged every 3 hours. Since sea/bay breezes often happen at a finer temporal resolution, the GEOS-Chem model is at a 559 

disadvantage in modeling such fine processes. 560 

 561 

3.4.2 Wind relation to ozone cases and clustering 562 

In this sect., the wind lidar curtains will be assessed in relation to the O3 lidar profile curtains and the model performance.  563 

We show in sect. 3.3.2 that both models have the highest bias and lowest correlation simulating low-level O3 in the MCO 564 

cluster. Mirroring those results, both models overestimate low-level O3 in the MCO case studies (Figure 8e, f). Higher O3 565 

concentrations are captured in the lidar curtain profile throughout the day, but is constrained between 1000 – 2000 m. Both 566 

models bring this high O3 pattern down to the surface (below 500 m) which contributes to the overestimation. The models 567 

predict little to no winds in the low-level simulating a stagnant environment. Simulated stagnant winds reflect lower dilution 568 

rates and induce higher O3 concentration build-up near the surface that is reproduced in both models. For the mid-level, the 569 

GEOS-CF model seems to replicate O3 pattern better, while GEOS-Chem overestimates O3. This is a unique finding that was 570 

not detected in the previous analysis where GEOS-Chem was found to consistently underestimate mid-level O3. From the data 571 

available above 2000 m, both models seem to do well replicating mid-level winds. This implies that there are more factors at 572 

play such as transport or background level O3 that may have prompted the overestimated O3 in these cases. 573 

For the HLO cluster, GEOS-CF had a high positive mean normalized bias and a reasonable relationship (R = 0.61) in the 574 

low-level (sect. 3). For the individual HLO case (Figure 8f), GEOS-CF was similarly found to overestimate low-level O3 575 

magnitude while better able to capture the O3 pattern. GEOS-CF is better able to reproduce the wind shift in HLO (Figure 8c) 576 

but, like the MCO case, stagnant winds simulated earlier in the morning suggest a similar overestimation of early morning O3. 577 

This is another clear example supporting the tendency for GEOS-CF to overestimate morning O3 which can facilitate an 578 

overestimation in the afternoon. The GEOS-Chem HLO case results mirror its mean cluster performance closely by 579 

underestimating both low-level and mid-level O3. For this case, the simulated winds indicate a very different result than the 580 

lidar winds, simulating no winds in the low-level for almost the entirety of the temporal profile and vertical profile. Since the 581 

results reveal O3 is underestimated, this suggests that there are more factors affecting O3 results in this specific case. One of 582 

these factors can be the simulation of the boundary layer as the sea/bay breeze develops. If the boundary layer is simulated to 583 

be larger in depth, the ability for the model to simulate higher O3 concentrations may be hindered such as found in Dacic et al. 584 

(2017). Since the HLO case indicates a common sea breeze event based on the timing and shift, it appears that GEOS-Chem 585 

really struggles capturing this intricate process while GEOS-CF does a better job.  586 

It is evident from these cases that differences in sea/bay breeze events can lead to diverse O3 profiles. The HLO case high 587 

O3 levels that reach down to the surface, with peaks > 75 ppb at both 12:00 and again at 16:00 EDT. Just above this extreme 588 

O3 plume at 2000 m, there is an O3 deficit of almost 50 ppb. The MCO case differs in that the highest O3 concentrations do not 589 

reach the surface. Also, O3 is more distributed and mixed throughout the curtain profile and the vertical gradient, although 590 

present, is not as stark as the HLO case. The HLO cases also has higher O3 captured aloft above 2500 m which is not captured 591 

in the MCO case. Analyzing their full curtain profiles, it is easy to conclude why these events were not assigned to the same 592 
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cluster and the differences are also apparent in the individual model performance. For both cases, the models generally seem 593 

to underestimate wind speed and overestimate O3 (to different extents) but the GEOS-Chem performance in the HLO case is 594 

different. The uniqueness of this case implies that GEOS-Chem struggles to simulate this sea/bay breeze based on factors other 595 

than wind speed and direction. 596 

It is imperative to correctly simulate coastal mechanisms in order to mitigate high O3 events. To accurately simulate such 597 

complex exchanges, high resolution vertical and horizontal simulations are needed. Because of the models’ relatively coarse 598 

resolutions (nominally 50 and 25 km horizonal resolution; 72 vertical levels), the fine-scale vertical wind gradients and 599 

horizontal wind shifts are difficult to resolve and, in these cases, not fully able to replicate. This study also acknowledges the 600 

need for an evaluation of other modeled factors, aside from model resolution, such as divulged in sect. 3.3.3, considering the 601 

possible confounding effects on modeled O3 outcome. 602 

 603 

4. Conclusion 604 

We developed a clustering method based on a suite of 91 multi-dimensional lidar O3 profile curtains retrieved from 605 

three recent campaigns. The K-Means clustering algorithm, driven by 8 well defined features, was applied to categorize the 606 

fine resolution O3 data, revealing five distinct O3 behavior cases that all vary in pattern and magnitude vertically and 607 

temporally. The results indicate that fine resolution data can be used to characterize highly variable vertical and temporal 608 

coastal O3 behavior and classify different cases of O3 exploiting the multiple dimensions.  Furthermore, this approach could 609 

be used by states to better identify different O3 photochemical regimes and frequency beyond just surface sampling.  610 

The performance of two CTMs (GEOS-Chem and GEOS-CF) were evaluated. Overall, the models had a weak overall 611 

relationship with the lidar observations in the mid-level (R = 0.12 and 0.22). GEOS-Chem had a systematic high negative bias 612 

and GEOS-CF had an overall lower unsystematic bias range. In the low-level, GEOS-Chem had overall low unsystematic bias 613 

range and fair relationship with the lidar observations (R = 0.66), while GEOS-CF had a systematic high positive bias but 614 

overall fair relationship (R = 0.69). Utilizing the curated clusters reveals new model insight that is neglected in the overall 615 

performance analysis. GEOS-Chem does best simulating extreme O3 cases in the low-level (such as in HLO and LLO). The 616 

greater underestimations of mid-level O3 for GEOS-Chem can be alluded to multiple model discrepancies such as the 617 

mechanism used (tropchem) which only considers tropospheric chemistry. Another factor inhibiting the poor simulation in the 618 

mid-level is the model failing to capture long-range transport of emissions in the FT. Evaluating the full profile curtains reveal 619 

that GEOS-CF low-level overestimations can be most attributed to the greater overestimation of early morning O3. This feature 620 

is affiliated to multi-day O3 events where O3 lingering in the residual layer overnight can contribute to higher O3 in the afternoon 621 

the next day and proves to be a challenge for CTMs. Lidar curtain profiles prove to be essential in evaluating these multi-day 622 

cases as they can capture the full development and deposition of O3 in the residual layer that is not observed at the surface. 623 

Although we find the GEOS-CF model struggles to simulate O3 magnitude in the mid-level, it can relatively emulate O3 624 

variability in some cases (LMO cluster). GEOS-CF also does fairly well in cases in which the pattern of higher mid-level O3 625 

suggests a relationship with the low-level O3. Although GEOS-CF is run with the combined tropospheric and stratospheric 626 
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chemistry mechanism, has a finer grid resolution, and is an online model, we conclude there are still limitations to both models 627 

which contribute to the difficulty in simulating fine-scale coastal O3 variability.  628 

We demonstrate a unique value of the clustering approach on multi-dimensional lidar data in which we use the cluster 629 

results to evaluate of two cases studies from the MCO and HLO clusters. The wind speed and directional shifts (onshore to 630 

offshore) illustrated in wind lidar profile curtains indicate a possible sea/bay breeze event in both case studies. The two cases 631 

represent distinct sea/bay breeze events that lead to different O3 developments that were difficult for the CTMs to reproduce, 632 

due to coarse model resolution and other possible factors. With a regional model analysis being out of the scope of this study, 633 

we propose to use multi-dimensional lidar measurements to evaluate finer regional modeling in our future work.  634 

This work is the first time that all three associated campaign lidar data have been analyzed in conjunction. The value 635 

of lidar measurements is reflected in its ability to reveal unique features within the temporal and vertical pattern of O3 behavior. 636 

Applying the clustering analysis directly to the lidar O3 data emerges as a useful and robust approach for identifying O3 637 

regimes. Further observations using lidar instruments should be especially valuable in investigating coastal O3 behavior as it 638 

can divulge the finer-scale O3 characteristics that remain difficult to successfully simulate in CTMs. We provide a new 639 

approach that is the middle ground between looking at specific cases and summarizing overall model performance that allows 640 

a synopsis of summer coastal O3 behavior and subsequently model performance without completely muting distinct O3 641 

features. Evaluating model performance for diverse O3 behavior in coastal regions is crucial for improving the simulation and 642 

furthermore, mitigation of air quality events. 643 
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