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 14 

Abstract. Coastal regions are susceptible to multiple complex dynamic and chemical mechanisms and emission sources that 15 

lead to frequently observed large tropospheric ozone variations. These large ozone variations occur on a meso-scale which 16 

have proven to be arduous to simulate using chemical transport models (CTMs). We present a clustering analysis of multi-17 

dimensional measurements from ozone Light Detection And Ranging (LiDAR) in conjunction with both an offline GEOS-18 

Chem CTM simulation and the online GEOS-Chem simulation GEOS-CF, to investigate the vertical and temporal variability 19 

of coastal ozone during three recent air quality campaigns: 2017 Ozone Water-Land Environmental Transition Study 20 

(OWLETS)-1, 2018 OWLETS-2, and 2018 Long Island Sound Tropospheric Ozone Study (LISTOS). We developed and 21 

tested a clustering method that resulted in 5 ozone profile curtain clusters. The established 5 clusters all varied significantly in 22 

ozone magnitude vertically and temporally which allowed us to characterize the coastal ozone behavior. The lidar clusters 23 

provided a simplified way to evaluate the two CTMs for their performance of diverse coastal ozone cases. The two models 24 

have fair-to-good relationships with the lidar observations (R = 0.66 to 0.69) in the low-level altitude range (0 to 2000 m), 25 

with low and unsystematic bias for GEOS-Chem and high systemically positive bias for GEOS-CF.  In the mid-level altitude 26 

range (2000 to 4000 m), both models have difficulty simulating the vertical extent and variability of ozone concentrations in 27 

all 5 clusters, with a weak relationship with the lidar observations (R = 0.12 and 0.22, respectively). GEOS-Chem revealed a 28 

high systematic negative bias and GEOS-CF an overall low unsystematic bias range. Using ozone vertical and diurnal 29 

distribution from lidar measurements, this work provides new insights on model’s proficiency in complex coastal regions. An 30 

overall evaluation of the models reveals good agreement (R ≈ 0.70) in the low-level altitude range (0 to 2000 m), with a low 31 
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and unsystematic bias for GEOS-Chem and high systemic positive bias for GEOS-CF. The mid-level (2000 – 4000 m) 32 

performances show a high systematic negative bias for GEOS-Chem and an overall low unsystematic bias for GEOS-CF and 33 

a generally weak agreement to the lidar observations (R = 0.12 and 0.22, respectively). In evaluating the cluster specific 34 

performances additional model insight is revealed as cluster-by-cluster model performance is more convoluted than the overall 35 

performances suggest. Utilizing the full vertical and diurnal ozone distribution information specific to lidar measurements, this 36 

work provides new insights on model’s proficiency in complex coastal regions. 37 

 38 

1. Introduction 39 

Tropospheric ozone (O3) is an important secondary pollutant created by multiple reactions involving sunlight, nitrogen 40 

oxides (NOx = NO + NO2), and volatile organic compounds (VOCs) which, in accumulation, can have damaging effects on 41 

human and plant health. In addition to its photochemical growth, O3 can easily be influenced by local and regional transport 42 

mechanisms. For coastal regions, surface O3 is highly variable in time and space due to its susceptibility to many factors such 43 

as local ship emissions, long range transport, and sea/bay breeze processes. Multiple studies have proven the strong influence 44 

that sea/bay breeze and wind flow patterns can have on the accumulation of coastal O3 and can often lead to poor air quality 45 

(e.g., Tucker et al., 2010; Martins et al., 2012; Stauffer et al., 2012; Li et al., 2020). Loughner et al. (2014) highlighted the 46 

importance for understanding the ability for bay breeze events to cause O3 differences not only spatially but vertically in coastal 47 

regions.  48 

This variability is challenging for air quality models to capture as high-resolution measurements are necessary to fully 49 

understand and simulate this O3 behavior in coastal regions. For example, Dreessen et al. (2019) tested the U.S. Environmental 50 

Protection Agency (EPA) Community Multiscale Air Quality (CMAQ) model’s ability, configured at 12 km, to simulate O3 51 

exceedances at Hart Miller Island in Maryland (HMI) revealing high bias and ‘false alarms’ due to several reasons such as 52 

emission transport over water and the coarse model resolution’s inability to capture fine-scale meteorology and transport. 53 

Cases such as sea/bay breeze events, which directly contribute to high coastal O3 cases, are denoted by local meteorological 54 

mechanisms such as surface wind speed deceleration, wind direction convergence and recirculation (Banta et al., 2005). Air 55 

quality models with coarse horizontal and vertical resolutions are not able to capture such fine developments (Caicedo et al., 56 

2019). Ring et al. (2018) also used CMAQ to estimate the impact of ship emissions on the air quality in eastern U.S. coastal 57 

regions indicating that an understanding of the vertical profiles of emissions was significant for improving air quality 58 

simulations. These are consistent and unanimous issues with air quality modeling in coastal regions. Since offshore sites within 59 

coastal regions are historically under sampled due to the difficulty of water-based measurements, this problem is still pertinent 60 

today.  61 

Recently, three associated air quality campaigns set out to address this issue (https://www-air.larc.nasa.gov/index.html): 62 

2017 & 2018 NASA Ozone Water-Land Environmental Transition Study (OWLETS-1 & OWLETS-2) and Long Island Sound 63 

Tropospheric Ozone Study (LISTOS), set out to address this issue  (e.g., Sullivan et al., 2019). These three campaigns were 64 

each conducted in highly populated coastal regions along the Chesapeake Bay in Virginia and Maryland and Long Island 65 
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Sound in the New England/Middle Atlantic region, respectively, that are vulnerable to O3 exceedances with the goal of filling 66 

the measurement gaps in these regions. During these campaigns, a suite of detailed airborne and ground measurements were 67 

taken during the course of highly polluted summer months (end of May through August) to capture the variability of pollutants, 68 

including O3 and its precursor species, and the distinct meteorological processes specific to land-water regions that affect them.  69 

The three campaigns strategically placed multi-dimensional tropospheric lidar measurements of O3 on and offshore in 70 

order to capture critical land-water gradients and to fill the deficit of measurements in these under monitored areas. These 71 

measurements were supported as part of NASA’s Tropospheric Ozone Lidar Network (TOLNet). Continuous profile 72 

measurements from O3 lidars highlight important regional transport and temporal variations of O3 in the lower and middle 73 

levels of the troposphere that are usually difficult to capture by most satellite-based remote-sensing instruments (Thompson et 74 

al., 2014). Lidar measurements are unique in their ability to capture high resolution full O3 2-D profile curtains over a period 75 

of time that indicate pollutant transport and can help in understanding O3 behavior in coastal regions. In Gronoff et al. (2019), 76 

the co-located lidar at the Chesapeake Bay Tunnel Bridge (CBBT) during OWLETS-1 successfully captured a near-surface 77 

maritime ship plume emission event on August 01, 2017. An ensemble of other instruments (e.g., drones, Pandora spectrometer 78 

systems, etc.) launched near the shipping channel captured elevated NO2 concentrations while the lidar instrument captured a 79 

depletion of O3 simultaneously. The lidar was able to capture the unique low range altitude O3 concentrations which elucidated 80 

the evolution of the trace-gas concentrations during this ship plume event. 81 

Several studies have thoroughly evaluated the results from the air quality campaigns used in this study but were focused 82 

more on specific case studies (Dacic et al., 2019; Sullivan et al., 2019; Gronoff et al., 2019). Dacic et al. (2019) used lidar 83 

measurements of a high O3 episode during OWLETS-1 to evaluate the ability of two NASA coupled chemistry-meteorology 84 

models (CCMMs), the GEOS Composition Forecast (“GEOS-CF”; Keller et al., 2021) and MERRA2-GMI (Strode et al., 85 

2019), to simulate this high O3 event. They found that the GEOS-CF model performed fairly in simulating O3 in the lower 86 

level (between 400 to 2000 m ASL) and outperformed MERRA2-GMI based on surface observations at multiple monitoring 87 

sites and by a median difference of -6 to 8 % +/- 7 % at both lidar sites. In the case of this event, GEOS-CF was able to simulate 88 

the 2-D O3 profile curtains at small scales. At the time of the Dacic et al. (2019) study, only processed observational data from 89 

OWLETS-1 was available.  90 

For this study, we took advantage of 91 captured 2-D (vertical and diurnal) O3 profile curtains from all three air quality 91 

campaigns (Sect. 2). To characterize the different behaviors of O3 in coastal regions, we developed a novel clustering method 92 

based on the altitude and time dimensions of the lidar measurements that organized the profile curtains (Sect. 2). We used the 93 

developed clusters to evaluate the ability of both offline and online GEOS-Chem and GEOS-CF simulations to reproduce the 94 

coastal O3 and wind characteristics highlighted by each cluster (Sect. 3).  95 

 96 

2. Materials & Method 97 

2.1. Air quality campaigns 98 
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 During the years 2017 and 2018, NASA in partnership with other U.S. national agencies and university research groups 99 

orchestrated three air quality campaign studies that focused on key land and water observations: OWLETS-1, OWLETS-2, 100 

and LISTOS. OWLETS-1 was conducted in 2017 from July 5 to August 3, while OWLETS-2 and LISTOS were conducted in 101 

2018 from June 6 to July 6 and July 12 to August 29, respectively. All campaigns took advantage of a multitude of ground, 102 

aircraft, and remote sensing measurements. For the sake of this study, we will focus on measurements from the two lidars from 103 

the TOLNet: NASA Langley Mobile Ozone Lidar (LMOL) (De Young et al. 2017; Farris et al. 2018; Gronoff et al, 2019, 104 

2021) and NASA Goddard Space Flight Center (GSFC) Tropospheric Ozone (TROPOZ) Differential Absorption Lidar (DIAL) 105 

(Sullivan et al. 2014, 2015a), which ran simultaneously at the marked positions in Figure 1. The TOLNet data from all three 106 

campaigns are available on the NASA LaRC Airborne Science Data for Atmospheric Composition archive (https://www-107 

air.larc.nasa.gov/missions.htm; accessed – 20 January 2021). 108 

 109 

Figure 1. An inset map of the Chesapeake Bay airshed in Maryland, Virginia, and Long Island Sound in New York with the 110 

six lidar monitoring locations used for OWLETS-1, OWLETS-2, and LISTOS highlighted and labeled. 111 

The two lidars were placed strategically for each campaign (Figure 1), so that one lidar was closest to over-water 112 

measurements while the other was farther inland with the goal of examining how O3 transport and concentration is influenced 113 

by specific coastal mechanisms such as the land–water breezes. For OWLETS-1, the LMOL lidar was used at the CBBT 114 

[37.0366°N, 76.0767°W], depicting the real time over water O3 measurements while the GSFC TROPOZ lidar was stationed 115 

at NASA Langley Center [37.1024°N, 76.3929°W] further inland. Similarly, for OWLETS-2, the LMOL lidar was stationed 116 

for the over water measurements at Hart Miller Island [39.2449° N, 76.3583° W] and GSFC TROPOZ was stationed at the 117 
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University of Maryland, Baltimore County (UMBC) [39.2557° N, 76.7111° W]. Finally, for LISTOS, LMOL was at the 118 

Westport site [41.1415° N, 73.3579° W] and TROPOZ at Rutgers [40.2823° N, 74.2525° W]. For the sake of this study the 119 

unique benefits due to the different placements (onshore versus offshore) of the co-located lidars are not specifically evaluated. 120 

Instead, the study focuses on the benefits of detailed and multi-dimensionality of both lidar instrument data in general. 121 

Routine lidar measurements were taken for the duration of the campaigns providing 91 multi-dimensional O3 profile 122 

curtains. Both lidars retrieve data at a 5-min temporal resolution and use a common processing scheme to produce a final O3 123 

product which was used for this study. In this study, the individual profile curtains refer to the “full day”, vertical and diurnal 124 

lidar measurements. In this study, 91 individual 2-D profile curtains were used from both lidars from the three campaigns: 26 125 

profile curtains from OWLETS-1, 28 profile curtains from OWLETS-2, and 37 profile curtains from LISTOS.  126 

To evaluate meteorological impacts on the lidar O3 clusters and distinguish certain model discrepancies we used various 127 

temperature and wind measurements. Hourly observed temperature, wind speed , and wind direction, and O3 from surface 128 

monitors pertaining to the study area were obtained from the Air Quality System (AQS) (data can be accessed at 129 

https://aqs.epa.gov/aqsweb/airdata/). Along with the O3 lidar instruments, we utilized high resolution vertical and horizontal 130 

wind speed and direction data monitored by Doppler wind lidar Leosphere WINDCUBE 200s instruments deployed at HMI 131 

during OWLETS-2 during LISTOS (e.g., Couillard et al., 2021; Coggon et al., 2021; Wu et al., 2021).  132 

 133 

2.2. Clustering lidar data 134 

2.2.1 Description of the ozone lidar measurements 135 

The lidar instrument is unique in that it provides high dimensional profile measurements of O3, as opposed to one 136 

dimensional surface measurements from air quality monitoring sites. The two TOLNet lidars used during the campaigns have 137 

been evaluated for their accuracy during previous air quality campaigns (DISCOVER-AQ;  https://www-138 

air.larc.nasa.gov/missions/discover-aq and FRAPPÉ; https://www2.acom.ucar.edu/frappe) and have also been compared 139 

against each other (e.g., Sullivan et al., 2015; Wang et al., 2017). The two lidars have different transmitter and retrieval 140 

components but produce O3 profiles within 10 % of each other as well as compared to ozonesondes (Sullivan et al., 2015). In 141 

comparison with other in situ instrument measurements, the TOLNet lidars were found to have an accuracy better than ±15 % 142 

for capturing high temporal tropospheric O3 vertically proving their capability of capturing high temporal tropospheric O3 143 

variability (Wang et al., 2017; Leblanc et al., 2018).  144 

To characterize coastal O3 during the summer months, we use a multitude of lidar profile curtains obtained during the 145 

OWLETS-1, 2, and LISTOS campaigns. The two lidars used in the campaigns produced profile curtains of O3 from 0 – 6000 146 

m above ground level (AGL) with some days beginning as early as 06:00 local time (EDT) and ending measurements as late 147 

as the last hour of the day. One of the challenges is that the multiple lidar datasets are not always uniform; although most of 148 

the profile curtains began at or around 08:00 EDT, the lidar measurements commence and conclude at different times. At the 149 

time of these campaigns, the lidar data retrieval was constrained by the availability of personnel as well as the availability of 150 

electricity in remote areas (at time of writing, the lidar instrument systems have been updated and are now more fully 151 
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automatized for use during succeeding campaigns removing such constraints). Due to this constraint, the 91 lidar curtains 152 

range from as short as a 6-hour window to a full 24-hour window. Similarly, the profile curtains do not have an exact uniform 153 

altitude range either. In the processing of the lidar data, some measurements may be filtered out and removed due to issues, 154 

such as clouds, which can influence and degrade the retrieval leaving some blocks of empty data within the vertical altitude 155 

dimension. When the cloud conditions are perfect, the limiting factor for the altitude is the solar background: the UV from the 156 

sun is a source of noise that prevents the detection of the low level of backscattered photons. For LMOL, this means that the 157 

maximum altitude is about 10 km AGL at night (Gronoff et al., 2021) and lowered to about 4 km AGL at solar noon (worse 158 

conditions possible for the summer in the continental U.S. resulting in below 4 km AGL).  This results in a general scarcity of 159 

O3 measurements above 4000 m AGL for most of the vertical profile curtains. Lidars still have limitations that prove to be a 160 

complication e.g., noise signal and manual operations. At the time of writing, the operative limitation has been addressed and 161 

the lidars are now more fully automated which removes some of the difficulty. 162 

 163 

2.2.2 Clustering approach and application 164 

To facilitate the comparison of the 2-D O3 profile curtains and the air quality model simulations we used a cluster analysis 165 

that categorized the behavior of the tropospheric O3 captured in the profile curtains. Clustering methods are commonly used 166 

in air quality and atmospheric studies to group and characterize large datasets (Darby, 2005; Alonso et al., 2006; Christiansen, 167 

2007; Davis et al., 2010; Stauffer et al., 2018). In our previous work, we have successfully used clustering methods to 168 

automatically characterize diurnal patterns of surface winds and surface O3 in the Houston-Galveston-Brazoria area that proved 169 

to perform better than a rudimentary quantile method to reveal the dependence of surface O3 variability on local and synoptic 170 

circulation patterns on the Gulf Coast (Bernier et al., 2019; Li et al., 2020)  171 

In evaluating the structure of the lidar measurements and working within measurement limitations (described in Sect. 172 

2.2.1) from the three air quality campaigns, we developed a method to cluster multi-dimensional O3 profile curtains using K-173 

Means clustering algorithm. Input features (seed values) were rationally established to best represent the behavior of O3 174 

temporally and vertically without including an excessive amount of input features, which can weaken the results of clustering 175 

(discussed in detail in Sect. S1). With the goal of evaluating lower level tropospheric O3 and based on description of the 176 

structure and constraints of the lidar measurements, the features were tailored to the altitude range 0 – 4000 m AGL and time 177 

range of 06:00 EDT – 21:00 EDT. 178 

Figure 2 illustrates the 8 features that represent slabs of altitude and time used in the cluster analysis. For each O3 profile 179 

curtain (total of 91), we calculated the average O3 from the following time and altitude range: Features 1 – 4 altitudes range 180 

from 0 – 2000 m; Features 5 – 8 altitudes range from 2000 – 4000 m. The two altitude ranges were determined to best represent 181 

different O3 transport events although they do not explicitly represent these layers. For Features 1 – 4, O3 would most likely 182 

primarily be affected by local production and pollution transport while for Features 5 – 8, O3 would more likely be associated 183 

with long range transport (e.g. interstate). As planetary boundary layer growth (PBL) in coastal regions do not usually reach 184 

altitudes greater than 2000 m, mixing between the boundary layer and free troposphere would presumably take place within 185 
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the low-level altitude bin. Additional attention to the PBL in the selecting of low versus mid-level features for the clustering 186 

will be investigated in future work. For clarity, we will use the terms low-level and mid-level features to address the two 187 

altitude subsets e.g., Features 1 – 4 and 5 – 8, respectively. Feature 1 and 5 time range from 06:00 – 08:00 EDT; Feature 2 and 188 

6 from 08:00 – 12:00 EDT; Feature 3 and 7 from 12:00 – 16:00 EDT; and Feature 4 and 8 from 16:00 – 21:00 EDT. The four 189 

subset time ranges were indicated to best represent features that characterize the common diurnal behavior of O3.  190 

 191 
Figure 2. Clustering method developed for clustering vertical O3 profiles taken from lidar measurements. The color coding 192 

shows a typical day of lidar measurements of O3 profiles on August 6, 2018, from the LMOL at Westport, CT during the 193 

LISTOS Campaign. F1 – F8 indicate the time and altitude range of the eight features used for the clustering algorithm.  194 

 195 

The features were evaluated for cluster tendency, essentially to confirm our dataset contained meaningful clusters 196 

(discussed in detail in Sect. S2). One statistical approach was used to test the dataset called Hopkins statistic which measures 197 

whether there is uniform distribution (spatial randomness) within the dataset (Lawson and Jurs, 1990). The results calculated 198 

using the Hopkins statistic concluded a value higher than 0.75 (actual = 0.77) which by this standard indicates a clustering 199 

tendency at the 90 % confidence level. Evaluating different feature options did not lead to better statistical results than with 200 

the final chosen features. To visualize the cluster tendency of our dataset, we applied the algorithm of the visual assessment of 201 

cluster tendency (VAT) approach (Bezdek and Hathaway, 2002) which uses the Euclidean distance measure to compute the 202 

dissimilarity matrix in the dataset and creates an ordered dissimilarity matrix image. Figure S1 shows the VAT approach results 203 

which indicates high similarity (red) and low similarity (blue) and confirms a cluster structure (not random) within our dataset.  204 

Since the choice of clustering algorithm is subjective, we chose K-means clustering for its simplicity and widespread use. 205 

To use the K-Means clustering algorithm, the optimal number of clusters based on your dataset must be chosen beforehand. 206 

For this study, the package Nbclust (Charrad et al., 2014) in R was used, which applies 30 indices for determining the optimal 207 
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number of clusters. Using this package, as well as testing the quality of the clustering results using the silhouette method 208 

(Kaufman & Rousseeuw, 1990), we selected six clusters as the optimal number of clusters. Since the K-Means clustering 209 

algorithm is based on the Euclidean distance to each centroid, the input data was normalized (to a mean of zero and standard 210 

deviation of one) to ensure each feature is given the same importance in the clustering (Aksoy & Haralick, 2001; Larose, 211 

2005). The resulting six clusters (described fully in Sect. 3.1) represent clusters of regularly observed lidar O3 curtains for the 212 

regions of our study during the campaign periods. 213 

 214 

2.2.3 Missing data  215 

Although the input features were tailored based on the structure of the lidar measurements, the remaining data still had 216 

missing data points. In performing a quick evaluation on the 8 input features (Figure S52), we found that Features 1, 4, 5, and 217 

8 had the most missing data while Features 2, 3, 6, and 7 had few or zero cases of missing data. This means that the earlier 218 

morning measurements (06:00 – 12:00 EDT) and the later evening measurements (16:00 – 21:00 EDT) had the most cases of 219 

missing data points. This is plausible as the campaign teams were best able to retrieve clear measurement during 220 

midday/evening hours (12:00 – 16:00 EDT). As a result, 51 out of 91 O3 profile curtains had at least one missing data point 221 

(feature) throughout the individual profile curtain. 222 

A common practice for dealing with missing data is complete case analysis (CCA), in which observations with missing 223 

values are completely ignored, leaving only the complete data to cluster. CCA can be inefficient as it introduces selection bias 224 

since the sample data no longer retains the state of the original full dataset (Donders et al., 2006; Little & Rubin, 2014). When 225 

we applied CCA, there were only 40 O3 profile curtains of complete data, removing over half of the study profiles. Instead, 226 

we used a more comprehensive solution – imputation - that yields unbiased results (Donders et al., 2006). For this study we 227 

used the single imputation (SI) technique knnImputation in R (Torgo, 2010), which uses the k-nearest neighbors and searches 228 

for the most similar cases and uses the weighted average of the values of those neighbors to fill the missing data. Essentially, 229 

this method selects the days that have the most similar profile curtain to any profile which has missing data points and uses 230 

those real data points to calculate a weighted mean that will fill in the missing data. We acknowledge using an imputation 231 

method on the dataset will possibly introduce a bias which is difficult to quantify, but this allows the use of the full 91 profile 232 

curtains of O3 data. The silhouette method was used to test the quality of the newly imputed dataset and proved to be no worse, 233 

nor better, than the CCA (real data) results. Therefore, the dataset was first imputed using SI to create a complete dataset and 234 

then the clustering method described in the sect. before (2.2.2) was applied to the complete imputed dataset.  235 

 236 

2.3. Model simulations 237 

The offline GEOS-Chem chemical‐transport model (CTM) was utilized to simulate the spatial and temporal variability 238 

of coastal O3 in the Chesapeake Bay and Long Island Sound during the time of the campaigns. The GEOS-Chem model is a 239 

global 3-D CTM driven by assimilated meteorological data from the NASA Global Modeling and Assimilation Office 240 

(GMAO). Our simulations were driven by reanalysis data from Modern-Era Retrospective analysis for Research and 241 
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Applications, Version 2 (MERRA-2; Gelaro et al., 2017). We ran a nested GEOS-Chem (v12-09) simulation at 0.5° x 0.625° 242 

horizontal resolution over the eastern portion of North America and adjacent ocean (90 – 60°W, 20 – 50°N), using lateral 243 

boundary conditions updated every three hours from a global simulation with 2° x 2.5° horizontal resolution. The nested 244 

GEOS-Chem simulation was run with 72 vertical levels from 1013 to 0.01 hPa. Since the study focuses on the altitude range 245 

0 – 4000 m, the first 20 vertical levels from GEOS-Chem were used with 14 levels within the boundary layer (≤ 2000 m). The 246 

nested simulation was conducted for the study periods June – September 2017 and April – August 2018. We used the standard 247 

“out-of-the-box” unmodified default settings from the tropospheric chemistry chemical mechanism (tropchem) with global 248 

anthropogenic emissions from the Community Emissions Data System (CEDS) inventory (McDuffie et al, 2020) and U.S. 249 

Environmental Protection Agency (EPA) National Emissions Inventory (NEI) 2011 for monthly mean North American 250 

regional emissions (EPA NEI, 2015).  251 

We also used results from NASA’s near real-time forecasting system, GEOS-CF, an online GEOS-Chem simulation (v12-252 

0-1) from GMAO (https://gmao.gsfc.nasa.gov/-weather_prediction/GEOS-CF/) with GEOS coupled to the GEOS-Chem 253 

tropospheric-stratospheric unified chemistry extension (UCX) and run at a high spatial resolution of 0.25°, roughly 25 km 254 

(Keller et al., 2021, Knowland et al., 2021). The vertical resolution for GEOS-CF is interpolated onto 72 vertical levels from 255 

1000 to 10 hPa. Since the study focuses on the altitude range 0 – 4000 m, the first 21 vertical levels from GEOS-CF were used 256 

with 14 levels within the boundary layer (≤ 2000 m). Prior to the launch of the 12z five-day forecast, GEOS-CF produces daily 257 

global, 3-D atmospheric composition distributions using the GEOS meteorological replay technique (Orbe et al., 2017), and 258 

this study makes use of these historical estimates, made available to the public for the period since January 2018.  Therefore, 259 

the GEOS-CF results shown in this study only include the dates from OWLETS-2 and LISTOS campaigns, since they both 260 

occurred in 2018.  261 

While both model simulations use similar versions of GEOS-Chem chemistry, there are noteworthy differences to keep 262 

in mind during the analysis of the clustering. The main differences between the two models are (1) GEOS-Chem is an offline 263 

CTM using archived meteorology, while GEOS-CF simulates atmospheric composition simultaneously with meteorology 264 

(online); (2) the spatial resolution of the GEOS-CF model (0.25°) is higher than GEOS-Chem (0.5° x 0.625°); and (3) the 265 

GEOS-CF model runs with Harmonized Gridded Air Pollution (HTAP; v2.2; base year 2010) anthropogenic emissions from 266 

the Emission Database for Global Atmospheric Research (EDGAR), while GEOS-Chem was run with CEDS anthropogenic 267 

emissions (base year 2014). These imperative differences can lead to disparities in the following results. 268 

 269 

3. Results & Discussion 270 

3.1 Overview of the 2-D O3 curtain clusters 271 

The clustering results reveal distinctive characterized O3 behavior during the three campaigns in which O3 concentrations 272 

vary significantly across the clusters. As previously mentioned in Sect. 2.2.3, the clustering analysis initially identified six 273 

cluster groups from the O3 profile curtains. Only one date was assigned to Cluster 6 (16 June 2018): the lidar profile curtain 274 

on this day (Figure S63) shows a large fraction of data missing, and the available data have relatively high O3 throughout the 275 
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lowest 3 km, which is different from other clusters. Therefore, we consider Cluster 6 to be an outlier and will not include it in 276 

the subsequent analysis.  277 

Various O3 and surface meteorological parameter cluster statistics for the remaining five clusters are summarized in Table 278 

1. With only 5 of the 2-D profile curtains assigned, Cluster 5 depicts the least common O3 behavior during the campaigns. On 279 

the other hand, Cluster 3 is the most common O3 behavior during the campaigns with 28 profile curtains assigned to this 280 

cluster. Following Cluster 3, Cluster 1 is the next most common cluster with 25 profile curtains. Cluster 2 and Cluster 4 fall in 281 

the middle with 14 and 18 profile curtains assigned to the cluster numbers, respectively.  282 

 283 

 284 

 285 

 286 

 287 

 288 

 289 

 290 

 291 

Table 1. Lidar vertical O3 profile cluster statistics: a) total number of vertical profiles; b) O3 maximum; c) O3 minimum O3;) 292 

AQS monitoring station cluster mean d) surface temperature and e) wind speed; minimum and maximums in parenthesis. The 293 

statistics and averages were derived from the total number of profile curtains assigned to each cluster.  294 

 295 

The five clusters were distinguished by the varying O3 concentrations between the low-level and mid-level as well as 296 

temporal diurnal variations (Figure 3). Figure 3a quantifies the between-cluster differences. We separate the data by the two 297 

altitude subsets (low and mid-level) and by two time subsets (morning = 6:00 – 12:00 and afternoon = 12:00 – 21:00) for 298 

lucidity as the majority of the cluster differences are contrasted between these subsets. In the low-level, all five clusters exhibit 299 

the common O3 diurnal pattern where surface O3 is titrated overnight and reaches a minimum but then is quickly exacerbated 300 

with the increase of sunlight throughout the day and typically peaks after midday (Figure 3b). The extent of this common 301 

diurnal pattern varies by cluster.  302 

 303 

Cluster # 

a) No. of 

vertical 

profiles 

b) O3 Max (ppb) c) O3 Min (ppb) 
d) T avg.  

(min; max) (℉) 

e) WS avg.  

(min; max) (m s-1) 

1 25 86.5 42.2 74.1 (67.8; 86.4)  1.5 (0.5; 2.8)  

2 14 72.8 28.9 71.6 (64.0; 83.9)  1.6 (0.6; 2.9) 

3 28 86.6 34.2 77.2 (67.0; 87.6)  1.3 (0.5; 2.4)  

4 18 97.8 44.1 78.4 (68.0; 90.4)  1.2 (0.4; 2.3)  

5 5 67.7 29.1 74.5 (66.8; 74.5)  1.2 (0.3; 3.4)  
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 304 

Figure 3. Lidar O3 cluster average comparisons (five clusters depicted in colors). a) Altitude comparison of mean O3 averaged 305 

over time: morning hours from 6:00 – 12:00 (solid line) and afternoon hours from 12:00 – 21:00 (dashed lines). Time 306 

comparison of mean hourly O3 split between the b) low-level and c) mid-level. 307 

 308 

Cluster 1 has the second highest low-level O3 peak and the highest mid-level O3 concentrations averaging at 67 ppb 309 

(Figure 3a). Cluster 1 also exhibit the most unique pattern of mid-level O3 (Figure 3c), with the highest concentrations found 310 

in the early morning and an uncharacteristic plunge to lower O3 concentrations from 11:00 – 15:00 EDT. This is contrary to 311 

the other clusters which do not show as much O3 magnitude variation temporally in the mid-level. In assessing the individual 312 

curtain profiles assigned to Cluster 1, the majority of the curtains reveal concentrated residual layers in the mid-level and early 313 

in the temporal profile that diffuse after the morning. This explains the uncharacteristic behavior of mid-level O3 in Cluster 1. 314 

Cluster 2 has the lowest low-level O3 peak among the clusters averaging at 44 ppb (Figure 3a) with also the lowest morning 315 

O3 (from 6:00 – 10:00 EDT) and moderate mid-level O3 concentrations. Distinct from the other clusters that differ greatly in 316 

O3 concentrations vertically, Cluster 3 has the most uniform vertical O3 extent between the low and mid-level (Figure 3a). 317 

Cluster 4 reaches the highest low-level O3 concentrations, averaging at 64 ppb (Figure 3a) and reaching > 70 ppb temporally 318 

(Figure 3b). Finally, Cluster 5 has, considerably, the lowest mid-level O3 (Figure 3c) averaging at 45 ppb (Figure 3a), almost 319 

10 ppb lower than the other clusters. Cluster 5 also has the most variable low-level O3 diurnal pattern (Figure 3b) which could 320 

be attributed to the averaging of only five different profile curtains that were assigned to this cluster (Table 1). 321 

Cluster 1 in the low-level has the second highest morning and afternoon O3 average (52 and 59 ppb) and in the mid-level 322 

the highest morning O3 average (64 ppb) (Figure 3a). Cluster 1 also exhibits the most unique pattern of mid-level O3 (Figure 323 

3c), with the highest concentrations found in the early morning and an uncharacteristic plunge to lower O3 concentrations from 324 

11:00 – 15:00 EDT. This is contrary to the other clusters which do not show much O3 variation temporally in the mid-level. 325 

The majority of the individual profile curtains assigned to Cluster 1 show concentrated early morning residual layers in the 326 

mid-level that diffuse after the morning, which is distinctive to the other clusters. In the low-level, Cluster 2 has the lowest 327 

morning and afternoon O3 average among the clusters (39 and 45 ppb) with moderate mid-level O3 concentrations. Cluster 3 328 

has the most uniform vertical O3 extent between the low and mid-level (Figure 3a), in contrast to the other clusters that differ 329 
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greatly in O3 concentrations between the two altitude subsets. Cluster 4 has the highest morning and afternoon O3 averages (59 330 

and 68 ppb) in the low-level, reaching > 70 ppb temporally (Figure 3b). Finally, Cluster 5 has, considerably, the lowest morning 331 

and afternoon O3 averages (42 and 43 ppb) in the mid-level, almost 10 ppb lower than the other clusters. Cluster 5 does not 332 

have a smooth-evolving O3 diurnal pattern in the lower level (Figure 3b), which can be attributed to the averaging of only five 333 

different profile curtains that were assigned to this cluster (Table 1).  334 

Figure 4a illustrates the mean lidar O3 2-D profile curtains for each of the clusters. For Cluster 1, 3, 4, and 5, higher O3 335 

concentrations in the low-level are captured during afternoon/evening time (12:00 – 21:00 EDT), with the highest low-level 336 

O3 in Cluster 4 (> 70 ppb). This behavior follows the common diurnal pattern of O3, that was distinguishable in Figure 3b. This 337 

common O3 growth reaches vertically to approximately 1500 m for each of the clusters but is generally contained below 2000 338 

m. Differing from the low-level O3 behavior, mid-level O3 is generally less variable in magnitude throughout the entire profile 339 

curtain (except for Cluster 1; see Figure 3a). The highest O3 concentrations for the mid-level are exhibited in Cluster 1, 2, 3, 340 

and 4, with the highest mid-level O3 in Cluster 1 during the early morning hours (≥ 70 ppb).  341 

Following the descriptions above, each cluster is given a nomenclature according to their unique characteristics. Cluster 342 

1 is termed as the highest mid-level O3 (HMO) cluster; Cluster 2 as the lowest low-level O3 (LLO) cluster; Cluster 3 is the 343 

most common O3 (MCO) cluster; Cluster 4 is the highest low-level O3 (HLO); Cluster 5 is the least common and lowest mid-344 

level O3 (LMO) cluster. The O3 variability represented and justified above is what led to the successful clustering of the lidar 345 

O3 2-D profile curtains.  346 

 347 

 348 

Cluster 1
High Mid-Level O3

(HMO)

Cluster 3
Most Common O3

(MCO)

Cluster 2
Low Low-Level O3

(LLO)

Cluster 4
High Low-Level O3

(HLO)

Cluster 5
Low Mid-Level O3

(LMO)

(a) LIDAR

(b) GEOS-
Chem

(c) GEOS-
CF
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Figure 4. Cluster-mean O3 vertical profile results by cluster assignment (1- 5) and arranged: a) LIDAR; b) GEOS-Chem 349 

simulation; and c) GEOS-CF simulation. 350 

 351 

The clustering analysis results provided a characterization of O3 behavior that transpired during these three campaigns. 352 

Figure 3c indicates each cluster represents a different photochemical regime and is useful in that it could demonstrate 353 

background O3 in the case studies. HLO curtain profiles also had higher background O3, indicating these cases did not have 354 

“clean air” to begin with which have allowed for a greater accumulation in the low-level. Figure 3b and 3c indicate each cluster 355 

represents a different O3 evolution pattern, likely related to different photochemical or transport regimes. This kind of 356 

evaluation is useful in that it combines O3 information from both temporal and vertical dimensions. For example, the HLO 357 

cluster reveals the specific case in which higher O3 is captured early in the temporal profile in the low-level and translates to 358 

the higher O3 captured in the low-level as well. The profile curtains show higher background O3, indicating these cases did not 359 

have “clean air” to begin with which can allow a greater accumulation in the low-level in the afternoon. This is an example of 360 

how this type of clustering analysis, if applied, could demonstrate background O3 in the similar case studies. In another 361 

example, several profile curtains assigned to the HMO cluster indicate concentrated residual layers in the mid-level and 362 

possible entrainment to the surface as the day progressed. To prove this feature, vertical velocity and vertical velocity variance 363 

data would be needed but the knowledge that a clustering approach is able to pinpoint these features that could only be 364 

discernible through lidar measurements proves to be useful. The clustering results was valuable in recognizing a significant 365 

large pollution related cluster (HLO), a total of 18 out of the 91 curtain profiles which correspond with the highest daily surface 366 

maxima measured at these sites (= 97.77 ppb) (Table 1). This cluster, on average, exhibited a daily surface maxima up to 10 367 

ppb greater than any of the other clusters. Discerning these higher O3 cases is imperative for mitigating severe air pollution. 368 

 369 

3.2. Cluster meteorological surface analysis 370 

To support the lidar clustering results, daily averaged meteorological surface observations from AQS stations pertaining 371 

to the campaign period and GEOS-Chem surface model output were evaluated in regard to the five clusters. Figure 5 shows 372 

the cluster mean surface temperature from AQS stations and GEOS-Chem model as well as the simulated wind speed and 373 

direction. The average surface temperature from each station is represented as the circular markers while the simulated 374 

temperatures are represented as the spatial contour and the simulated wind speed (m s-1) and direction as arrows. Cluster 375 

average, minimum, and maximum AQS surface temperature and wind speed can be found in Table 1d, e. 376 

 377 
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 378 

Figure 5. Cluster averaged meteorological surface AQS station observations and GEOS-Chem model results. a) Surface 379 

temperature observations represented as the circular markers and simulated surface temperatures represented as the spatial 380 

contour (top-panel). b) Surface wind speed and direction observations represented as the circular markers and white arrows 381 

and simulated wind speed and direction represented as spatial contour and black arrows (bottom-panel). 382 

 383 

In general, the surface meteorological conditions agree with our knowledge of transport and O3 production that would 384 

lead to each of the five clustered lidar O3 profile curtains. It is evident that the clusters with the highest surface O3 (HMO, 385 

MCO, and HLO) all share a predominant offshore, westerly wind. Furthermore, MCO and HLO presented higher overall 386 

observed and simulated surface temperatures compared to the other clusters (Figure 5a). Observed and simulated wind speeds 387 

reveal slightly lower average wind speeds and primarily continental wind flow for both clusters as well (Figure 5b). These 388 

meteorological conditions are conducive to a higher production of surface O3 concentrations which validates the higher O3 389 

found in the low-level results (Figure 3b, 4a).  390 

Conversely, the lowest surface temperatures are found in LLO. Lower surface temperatures are also indicative of low 391 

vertical mixing due to less generation of convection. Relatively calm wind speeds and lower temperatures indicate other 392 

possible meteorological factors such as high cloud cover that could have contributed to the lower O3 concentrations in LLO. 393 

Although surface O3 concentrations in LMO reach higher levels later in the day, first at 13:00 EDT and then again at 16:00 394 

EDT, the rest of the temporal profile stays below moderate levels. Average temperatures for LMO are moderately high but, in 395 

contrast, the average wind speed is higher (specifically over the Long Island Sound) and unique to the other clusters, wind 396 

direction is predominantly onshore (Easterly – Southerly). This prevalent onshore flow indicates a transport of cleaner marine 397 

air which corroborates the lower surface O3 levels. LMO did not have any profile curtains assigned from OWLETS-1 which 398 

is why data for the lower Chesapeake Bay area is not shown in Figure 5. 399 

Cluster 1 – HMO Cluster 2 – LLO Cluster 3 – MCO Cluster 4 – HLO Cluster 5 – LMOa)

b)
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There was only one occurrence during the dates in which the lidar instruments were operating in which there was a 400 

recorded maximum daily 8-hour average (MDA8) O3 exceedance (> 70 ppbv). This exceedance date is 25 May 2018 in which 401 

3 AQS sites in the LISTOS region measured MDA8 O3 of 73, 72, and 72 ppbv. This curtain profile was assigned to the HMO 402 

cluster (Cluster 1), the cluster with high O3 in the mid-level and moderate O3 in the low-level and near the surface. 403 

 404 

3.3. Evaluating the GEOS-Chem and GEOS-CF model 405 

In this sect. the model results from GEOS-Chem and GEOS-CF will be compared to the lidar data using the five lidar O3 406 

profile clusters discussed in Sect. 3.1. Both model results were sampled in an equal manner, in which we extracted the same 407 

cluster date assignments from the lidar clusters and created mean vertical profiles based on the model results. This allowed us 408 

to evaluate the model performance based on the five characterized O3 lidar clusters. As mentioned previously, the GEOS-CF 409 

simulation data is not available for 2017. Thus, the results shown subsequently will only include GEOS-CF results from 2018 410 

(only dates from the OWLETS-2 and LISTOS campaigns). The GEOS-Chem simulation results include both years thus all 411 

three campaign duration periods.  412 

 413 

3.3.1 Overall model performance 414 

In Figure 6, we first evaluate the overall relationship and correlation between both models and the lidar data, disregarding 415 

the specific clusters. The comparisons are separated by the two different altitude subsets as the performances are strikingly 416 

different between low-level and mid-level for both GEOS-Chem (Figure 6a) and GEOS-CF (Figure 6b). In general, the models 417 

perform better simulating O3 behavior in the low-level than the mid-level for all five clusters. 418 

The overall correlation indicates that GEOS-CF (R = 0.69) has a slightly stronger correlation than GEOS-Chem (R = 419 

0.66) in the low-level (Figure 6 - top panel). For both models, correlation is higher than 0.51, signifying a fair relationship 420 

between the model simulations and the lidar observations. The overall correlation reveals that GEOS-CF is marginally superior 421 

to GEOS-Chem in the mid-level but both models have a fairly weak relationship at this altitude range (R = 0.22 and R = 0.12, 422 

respectively) (Figure 6 - bottom panel). The overall correlation analysis provides a fundamental but condensed assessment of 423 

model performance. In the next sect., the cluster specific differences reveal additional model performance insight that would 424 

be conceivably overlooked when evaluating overall performance.  425 

In evaluating the models based on the established O3 behavior cases, significant cluster by cluster differences are 426 

unmasked. Figure 4b and 4c depict the simulated cluster-mean O3 profile curtains from GEOS-Chem and GEOS-CF, mirroring 427 

the mean lidar curtains in Figure 4a. For all clusters in the low-level, both models simulate a continuous accumulation of O3 428 

near the surface after 12:00 EDT, mirroring the O3 common diurnal pattern depicted in mean lidar curtains in Figure 4a. 429 

However, the extent the models simulate is often higher in magnitude than the observations, specifically GEOS-CF predicting 430 

the accumulation at a higher magnitude than GEOS-Chem. In the mid-level, both models simulate much less O3 variability 431 

than what is captured in the lidar observations. Figure 4b and 4c clearly show how the models struggle to reproduce the intricate 432 

O3 pattern and variability that is relayed in the lidar observations (Figure 4a), especially in the mid-level. To compare and 433 
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quantify the results illustrated in Figure 4, modeled versus lidar observation spatial O3 differences were derived for each cluster 434 

(Figure 7). Figure 7 highlights the explicit spatiotemporal model differences compared to the lidar curtains for each cluster. 435 

The cluster specific percent biases and correlation statistics, found in Table S1 and Figure S4 (in Supplementary Material), 436 

were calculated from the total vertical and diurnal averages separated by low-level and mid-level.  437 

GEOS-Chem performs well in simulating low-level O3 with a lower non-systematic percent bias ranging from -0.051 to 438 

+0.068 % for the five clusters. GEOS-Chem has a slightly lower correlation than GEOS-CF in the low-level (R = 0.51 – 0.61) 439 

but still indicates a reasonable relationship with the lidar observations. GEOS-Chem also has a non-systematic bias in the low-440 

level. Thus, GEOS-Chem can simulate the variability of O3 and based on the lower bias, the magnitude as well. In all five 441 

clusters, GEOS-CF overestimates the average magnitude of low-level O3 with a systematic high positive percent bias ranging 442 

from +0.139 to +0.340 % (Table S1). GEOS-CF has a relatively good correlation (R = 0.54 - 0.74) but a consistently high bias 443 

compared to the lidar observations (Table S1 and Figure S4, Supplementary Materials). From the estimated differences (Figure 444 

7), this can be attributed predominantly to GEOS-CF overestimating afternoon O3. 445 

In the low-level, GEOS-Chem has the best performance (minimal +0.020 % bias) in LLO, which is the cluster with the 446 

lowest O3 accumulation. The second-best performance for GEOS-Chem in the low-level follows closely behind (minimal -447 

0.026 % bias) in HLO, the cluster with the highest O3 accumulation. These results suggest GEOS-Chem performs well in the 448 

low-level but has a tendency to overpredict lower O3 concentrations and underpredict higher O3 concentrations. GEOS-CF has 449 

a similar performance in the low-level for HMO, LLO, and LMO with positive percent biases at 0.139, 0.189, and 0.197 %, 450 

respectively. This implies GEOS-CF has a better ability capturing lower O3 concentrations below 2000 m than higher 451 

concentrations, such as MCO and 4. Both models have the worst performance in MCO with a +0.068 % bias for GEOS-Chem 452 

and +0.340 % bias for GEOS-CF. As described in Sect. 3.1, MCO is the most common cluster with moderately high average 453 

O3 concentrations (refer to Figure 3b). As both models have the highest bias for this cluster, this suggests neither model is fully 454 

able to simulate moderately high O3 in the low-level which was a frequently occurring event for this study period. 455 

In the mid-level, GEOS-Chem performs poorly, consistently underestimating O3 to a significant magnitude. In all five 456 

clusters, GEOS-Chem underestimates the magnitude of mid-level O3 with a systematic high negative percent bias ranging from 457 

-0.268 to -0.096 % (Table S1). GEOS-Chem also has a low correlation in the mid-level (R = -0.26 – 0.23). Thus, GEOS-Chem 458 

is not able to simulate the variability of O3 nor the magnitude well in the mid-level. GEOS-CF performs slightly better than 459 

GEOS-Chem in simulating mid-level O3 with a lower and non-systematic percent bias for the five clusters ranging from -0.143 460 

to +0.112 %. GEOS-CF has a marginally stronger correlation to the lidar observations than GEOS-Chem for all clusters except 461 

MCO, where GEOS-Chem has -0.26 correlation and GEOS-CF has a -0.19 correlation (Figure S4, Supplementary Materials). 462 

Thus, GEOS-CF, in some cases, is better able to simulate the O3 variability in the mid-level (R = -0.19 – 0.74) and based on 463 

the lower bias, the magnitude as well. 464 

Both models underestimate mid-level O3 magnitude to the greatest extent in HMO, which is the cluster with the highest 465 

mid-level O3 concentrations (refer to Figure 3c). This implies that the models struggle to simulate higher concentrations of O3 466 

in the mid-level (≥ 70 ppb). GEOS-CF does best simulating LLO, MCO, and HLO, all clusters with moderate mid-level O3 467 
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averages (≤ 60 ppb). On the other hand, the GEOS-Chem model never reaches O3 cluster averages greater than 50 ppb, which 468 

directly divulges the greater systemic negative bias in the mid-level. GEOS-Chem simulates LMO mid-level O3 the best (-469 

0.096 percent bias), which is the cluster with the lowest O3 average (< 45 ppb) indicating GEOS-Chem is relatively capable of 470 

simulating mid-level O3 only when the case devises lower concentrations. 471 

Figure 4b and 4c depict the simulated cluster-mean O3 profile curtains from GEOS-Chem and GEOS-CF, mirroring the 472 

mean lidar profile curtains in Figure 4a. For all clusters in the low-level, both models simulate a consistent accumulation of 473 

O3 near the surface after 12:00 EDT, mirroring the O3 common diurnal pattern depicted in mean lidar profile curtains in Figure 474 

4a. However, the extent the models simulate is often higher in magnitude than the observations, specifically GEOS-CF 475 

consistently predicting the accumulation at a higher magnitude than GEOS-Chem. In the mid-level, both models simulate 476 

much less O3 variability than what is captured in the lidar observations. Figure 4b and 4c clearly show how the models struggle 477 

to reproduce any mid-level O3 pattern or variability that is relayed in the lidar observations. This is in contrast to the low-level 478 

where the models are able to reproduce the common diurnal pattern of O3. With the lidar data providing a full temporal and 479 

vertical profile curtain of O3 behavior and development, we are able to indicate areas where the models struggle such as in this 480 

case in the mid-level. 481 

We first evaluate overall correlation and biases between the model and lidar data. The overall correlation between both 482 

models and the lidar data, disregarding the specific clusters, based on the two altitude subsets as the performances differ 483 

between low-level and mid-level for both GEOS-Chem (Figure S7a) and GEOS-CF (Figure S7b). The mean normalized biases 484 

for the five clusters displayed in Table S1 (in Supplementary Material) were calculated from the total vertical and diurnal 485 

averages separated by low-level and mid-level. For both models, overall low-level O3 correlation rounds to 0.70, signifying a 486 

strong relationship between the model simulations and the lidar observations (Figure S7 - top panel). This indicates that both 487 

models can simulate the development and pattern of O3 well in the low-level. Overall, GEOS-Chem performs well in 488 

simulating low-level O3 with a lower non-systematic normalized bias ranging from -0.10 to +0.13 for the five clusters. Thus, 489 

based on the lower bias, GEOS-Chem fairs well simulating the magnitude of low-level O3 as well. For all clusters, GEOS-CF 490 

overestimates the average magnitude of low-level O3 with a systematic high positive normalized bias ranging from +0.30 to 491 

+0.67. This consistently high bias reveals that GEOS-CF generally is unable to simulate low-level O3 magnitude well.  492 

For the mid-level, the overall correlation reveals that GEOS-CF and GEOS-Chem both have a weak relationship with the 493 

lidar (R = 0.22 and R = 0.12, respectively) (Figure S7 - bottom panel). This indicates that neither model is able to simulate 494 

mid-level O3 pattern well. GEOS-Chem consistently underestimates the magnitude of mid-level O3 with a systematic high 495 

negative normalized bias ranging from -0.44 to -0.18, for all clusters, while GEOS-CF has a lower and non-systematic 496 

normalized bias ranging from -0.22 to 0.28. Overall, both models are not able to simulate the variability of O3 nor the magnitude 497 

well in the mid-level. The overall analysis in this sect. provides a fundamental but condensed assessment of model 498 

performance. In the next sect., the cluster specific differences reveal additional model performance insight that would be 499 

conceivably overlooked when evaluating overall performance. 500 

 501 
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3.3.2 Model evaluation based on lidar clusters 502 

 503 

Figure 6. Mean profile curtain spatial O3 difference (model – lidar observations) for each cluster (1 – 5). GEOS-Chem 504 

differences (a) and GEOS-CF differences (b). 505 

 506 

Cluster 1 - HMO Cluster 3 - MCOCluster 2 - LLO Cluster 4 - HLO Cluster 5 - LMO

(a) GEOS-
Chem

(b) GEOS-
CF

Spatial O3 Difference: model – lidar observations
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 507 

Figure 7. O3 correlation between lidar observations and a) GEOS-Chem model simulation results and b) GEOS-CF model 508 

results by each cluster split by low-level (top panel) and mid-level (bottom panel). 509 

 510 

In evaluating the models based on the established O3 behavior cases, significant cluster by cluster differences are 511 

unmasked. Figure 4b and 4c depict the simulated cluster-mean O3 profile curtains from GEOS-Chem and GEOS-CF, mirroring 512 

the mean lidar curtains in Figure 4a. For all clusters in the low-level, both models simulate a continuous accumulation of O3 513 

near the surface after 12:00 EDT, mirroring the O3 common diurnal pattern depicted in mean lidar curtains in Figure 4a. 514 

However, the extent the models simulate is often higher in magnitude than the observations, specifically GEOS-CF predicting 515 

the accumulation at a higher magnitude than GEOS-Chem. In the mid-level, both models simulate much less O3 variability 516 

than what is captured in the lidar observations. Figure 4b and 4c clearly show how the models struggle to reproduce the intricate 517 

O3 pattern and variability that is relayed in the lidar observations (Figure 4a), especially in the mid-level. To compare and 518 

quantify the results illustrated in Figure 4, modeled versus lidar observation spatial O3 differences were derived for each cluster 519 

(Figure 7). Figure 7 highlights the explicit spatiotemporal model differences compared to the lidar curtains for each cluster. 520 
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The cluster specific percent biases and correlation statistics, found in Table S1 and Figure S4 (in Supplementary Material), 521 

were calculated from the total vertical and diurnal averages separated by low-level and mid-level.  522 

 GEOS-Chem performs well in simulating low-level O3 with a lower non-systematic percent bias ranging from -0.051 523 

to +0.068 % for the five clusters. GEOS-Chem has a slightly lower correlation than GEOS-CF in the low-level (R = 0.51 – 524 

0.61) but still indicates a reasonable relationship with the lidar observations. GEOS-Chem also has a non-systematic bias in 525 

the low-level. Thus, GEOS-Chem can simulate the variability of O3 and based on the lower bias, the magnitude as well. In all 526 

five clusters, GEOS-CF overestimates the average magnitude of low-level O3 with a systematic high positive percent bias 527 

ranging from +0.139 to +0.340 % (Table S1). GEOS-CF has a relatively good correlation (R = 0.54 - 0.74) but a consistently 528 

high bias compared to the lidar observations (Table S1 and Figure S4, Supplementary Materials). From the estimated 529 

differences (Figure 7), this can be attributed predominantly to GEOS-CF overestimating afternoon O3. 530 

In the low-level, GEOS-Chem has the best performance (minimal +0.020 % bias) in LLO, which is the cluster with the 531 

lowest O3 accumulation. The second-best performance for GEOS-Chem in the low-level follows closely behind (minimal -532 

0.026 % bias) in HLO, the cluster with the highest O3 accumulation. These results suggest GEOS-Chem performs well in the 533 

low-level but has a tendency to overpredict lower O3 concentrations and underpredict higher O3 concentrations. GEOS-CF has 534 

a similar performance in the low-level for HMO, LLO, and LMO with positive percent biases at 0.139, 0.189, and 0.197 %, 535 

respectively. This implies GEOS-CF has a better ability capturing lower O3 concentrations below 2000 m than higher 536 

concentrations, such as MCO and 4. Both models have the worst performance in MCO with a +0.068 % bias for GEOS-Chem 537 

and +0.340 % bias for GEOS-CF. As described in Sect. 3.1, MCO is the most common cluster with moderately high average 538 

O3 concentrations (refer to Figure 3b). As both models have the highest bias for this cluster, this suggests neither model is fully 539 

able to simulate moderately high O3 in the low-level which was a frequently occurring event for this study period. 540 

In the mid-level, GEOS-Chem performs poorly, consistently underestimating O3 to a significant magnitude. In all five 541 

clusters, GEOS-Chem underestimates the magnitude of mid-level O3 with a systematic high negative percent bias ranging from 542 

-0.268 to -0.096 % (Table S1). GEOS-Chem also has a low correlation in the mid-level (R = -0.26 – 0.23). Thus, GEOS-Chem 543 

is not able to simulate the variability of O3 nor the magnitude well in the mid-level. GEOS-CF performs slightly better than 544 

GEOS-Chem in simulating mid-level O3 with a lower and non-systematic percent bias for the five clusters ranging from -0.143 545 

to +0.112 %. GEOS-CF has a marginally stronger correlation to the lidar observations than GEOS-Chem for all clusters except 546 

MCO, where GEOS-Chem has -0.26 correlation and GEOS-CF has a -0.19 correlation (Figure S4, Supplementary Materials). 547 

Thus, GEOS-CF, in some cases, is better able to simulate the O3 variability in the mid-level (R = -0.19 – 0.74) and based on 548 

the lower bias, the magnitude as well. 549 

Both models underestimate mid-level O3 magnitude to the greatest extent in HMO, which is the cluster with the highest mid-550 

level O3 concentrations (refer to Figure 3c). This implies that the models struggle to simulate higher concentrations of O3 in 551 

the mid-level (≥ 70 ppb). GEOS-CF does best simulating LLO, MCO, and HLO, all clusters with moderate mid-level O3 552 

averages (≤ 60 ppb). On the other hand, the GEOS-Chem model never reaches O3 cluster averages greater than 50 ppb, which 553 

directly divulges the greater systemic negative bias in the mid-level. GEOS-Chem simulates LMO mid-level O3 the best (-554 
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0.096 percent bias), which is the cluster with the lowest O3 average (< 45 ppb) indicating GEOS-Chem is relatively capable of 555 

simulating mid-level O3 only when the case devises lower concentrations. 556 

 557 

Significant cluster by cluster differences are unmasked in evaluating the models based on the established O3 behavior 558 

cases. To quantify the results illustrated in Figure 4, we show spatial O3 differences (model – lidar observations) for each 559 

cluster (Figure 6) as well as individual cluster correlation (Figure 7) (subsequent cluster calculated normalized biases and 560 

correlation can be found in Table S1). Evaluating the individual cluster biases and correlation reveal more in-depth model 561 

discrepancies as well as areas where the models perform well.  562 

In the low-level, GEOS-CF has a similar performance ability for the HMO, HLO, and LMO clusters with high positive 563 

biases at + 0.30, + 0.41, and + 0.45 respectively. These higher biases imply GEOS-CF has difficulty capturing moderate O3 564 

concentrations below 2000 m (HMO and LMO) as well as the in the high O3 cases (HLO). GEOS-CF also has a high positive 565 

bias (+ 0.50) in the LLO cluster indicating that GEOS-CF struggles to capture the lower O3 concentrations in the low-level. 566 

This is warranted as models are intended to approximate and are not usually able to capture extremes (high or low) but GEOS-567 

CF also seems to struggle capturing moderate cases as well. In the low-level, GEOS-Chem has the best performance (minimal 568 

-0.04 bias and strong correlation, R = 0.61) in HLO, which is the cluster with the highest low-level O3 accumulation (refer to 569 

Figure 4a). The second-best performance for GEOS-Chem in the low-level follows closely behind (minimal +0.07 bias and 570 

fair correlation, R = 0.55) in LLO, the cluster with the lowest O3 accumulation. These results suggest GEOS-Chem actually 571 

performs well in cases of high O3 as well as cases of low O3 with a slight tendency to overpredict lower O3 concentrations and 572 

underpredict higher O3 concentrations. This challenges the overall assumption that models struggle to capture extreme cases 573 

since GEOS-Chem actually performs best in simulating both extreme cases of high O3 in HLO and, again, low O3 in LLO. 574 

GEOS-Chem has a similar performance for the LMO and HMO clusters with negative biases of – 0.10 and – 0.09, respectively. 575 

GEOS-Chem is also able to capture the moderate O3 in both of these clusters well with slight underestimations.  576 

Both models perform the worst (in comparison with the other clusters) in the low-level in the MCO cluster with a + 0.13 577 

bias for GEOS-Chem and + 0.67 bias for GEOS-CF. As described in Sect. 3.1, MCO is the most common cluster with moderate 578 

- high average O3 concentrations in the low-level (refer to Figure 3b). Although GEOS-Chem has the worst performance in 579 

the MCO cluster, it is not necessarily a poor performance. The performance follows the conclusion previously made that 580 

GEOS-Chem can fairly simulate moderate O3 in the low-level although, in this case, with slight overestimations. Contrarily, 581 

the GEOS-CF performance in the MCO cluster reveals a more substantially high positive bias. This stands out as models are 582 

usually able to capture moderate levels (e.g., non-extreme cases). Evaluating the full temporal and vertical profile indicates 583 

that the higher GEOS-CF bias in the MCO cluster is additionally influenced by the greater overestimation of morning O3, not 584 

solely the afternoon O3. This is different to the performance in the LLO and LMO clusters where GEOS-CF also had a high 585 

positive bias in the low-level but does better simulating the early morning O3 magnitude. A similar conclusion can be drawn 586 

when evaluating the low-level GEOS-Chem performance. HMO, LLO, MCO, and LMO all share ‘higher’ biases (rounding to 587 

+/– 0.10), but the highest bias is found in the MCO cluster. Analogous to GEOS-CF, this can similarly be attributed to GEOS-588 
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Chem overestimating morning O3 the worst in the MCO cluster in contrast to the better early morning estimation in the other 589 

clusters.  590 

In the mid-level, GEOS-Chem underestimates O3 magnitude to the greatest extent in the HMO and the LLO cluster (both 591 

bias = – 0.44), which are both clusters with higher mid-level O3 concentrations (refer to Figure 3c). GEOS-Chem performs 592 

similarly in the HLO and MCO clusters, with a negative mean bias of – 0.30 and – 0.27, respectively. This indicates that 593 

GEOS-Chem most struggles to simulate higher concentrations of O3 in the mid-level. The GEOS-Chem model actually never 594 

reaches O3 cluster averages greater than 50 ppb, directly divulging the greater systemic negative bias in the mid-level. GEOS-595 

Chem simulates LMO mid-level O3 magnitude the best (– 0.18 bias), which is the cluster with the lowest O3 average (< 45 596 

ppb). Although for the LMO cluster GEOS-Chem has a lower bias, the correlation is still poor (R = 0.23) which indicates that 597 

the model is relatively capable of simulating mid-level O3 only when the case devises lower concentrations but still fails to 598 

replicate any O3 variability and pattern. 599 

On the other hand, GEOS-CF does best simulating LLO, MCO, and HLO, which are all clusters with moderate O3 in the 600 

mid-level (≥ 50 and ≤ 70 ppb). GEOS-CF has the highest bias in the LMO cluster (+ 0.28), the cluster with the lowest mid-601 

level O3 magnitude. GEOS-CF also has the strongest correlation in the same LMO cluster (R = 0.74). This is a unique case 602 

where although GEOS-CF is not able to capture the magnitude in the mid-level, it is able to capture the pattern of low O3 well. 603 

Comparing the full multi-dimensional lidar and model mean profile curtains it is evident that in the LMO cluster, the GEOS-604 

CF model simulates a similar mid-level O3 pattern in the early morning/afternoon that is captured in the mean lidar curtain 605 

profile. The second worst performance for GEOS-CF is the underestimation of mid-level O3 in the HMO cluster, contrarily 606 

the cluster with the highest mid-level O3 (≥ 70 ppb). This supports the previous conclusion that although GEOS-CF has a 607 

relatively lower biases in the mid-level, the model still struggles to simulate the extreme O3 cases. Although GEOS-CF 608 

underestimates O3 magnitude in the HMO cluster, it actually has a higher correlation than most of the other clusters (R = 0.43) 609 

(Figure 7, Table S1). In comparing the full multi-dimensional lidar and model mean profile curtain (Figure 3), GEOS-CF does 610 

a fair job connecting the mid-level higher O3 pattern in the early morning that develops down to the low-level later in the 611 

afternoon. From this we can draw a conclusion that GEOS-CF is better able to capture mid-level O3 patterns earlier in the 612 

temporal profile leading to higher correlations with the lidar. 613 

 614 

3.3.3 Cluster approach and model conclusions 615 

Evaluating the clustered O3 lidar profile curtains against CTMs allowed us to conclude that for cases of high O3 in the 616 

low-level, GEOS-Chem was able to simulate but underestimates the extent of high O3 near the surface while GEOS-CF 617 

struggled to simulate and overestimates these high O3 cases. Previous studies have found that excessive vertical mixing has 618 

led to overestimation of O3 near the surface as well as underestimation of O3 night-time depletion led to overestimation of O3 619 

the next day (Dacic et al., 2020; Keller et al., 2021; Travis & Jacob, 2019). The titration that occurs at night after the initial 620 

afternoon build up requires successful simulation to prevent the model beginning the following day with higher O3 than is 621 

observed which can lead to the overprediction of O3 later that day. Therefore, in the given case there is an O3 event that lasts 622 
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more than one day (at the same lidar location), the model will likely underestimate O3 night-time depletion, overpredict 623 

morning O3, and subsequently overpredict the afternoon build-up. Being as there were multiple cases (17 total from HMO, 624 

MCO, and HLO) of multi-day high O3 events, this is likely one of the main reasons for GEOS-CF overestimating afternoon 625 

O3 in these high low-level O3 cases. In Figure 7, GEOS-CF exhibits the greatest midday O3 overprediction in MCO and HLO. 626 

In HLO alone, there were 4 (out of 18) of the profiles that were consecutive while in MCO there were 8 (out of 28). This gives 627 

explanation for upwards of 22 – 29 % of the overestimation of O3 in the profile curtains of these clusters. These multi-day O3 628 

events are particularly important as they can indubitably lead GEOS-CF to higher overprediction of afternoon O3. 629 

Contrarily, GEOS-Chem underpredicts O3 in the morning times which does not allow for the same build-up up of midday 630 

O3 distinct in the lidar curtain profiles. This could explain why GEOS-Chem underpredicts the clusters with higher O3 631 

concentrations in the low-level. Additionally, the low and non-systemic bias in the low-level for GEOS-Chem demonstrates 632 

that the model does not have such an issue simulating the correct magnitude of O3 but instead, the lower correlations suggest 633 

that GEOS-Chem merely struggles to simulate the pattern. This is most apparent in the MCO cluster where GEOS-Chem 634 

predicts a spatially larger build-up of O3 but essentially does well in simulating the correct magnitude. This model gap can 635 

then be attributed to the coarser model resolution not being able to reproduce finer O3 pattern behavior such as is evident in 636 

the lidar curtain profiles. 637 

In the mid-level GEOS-Chem has a systemic high negative bias for all clusters except the LMO cluster. It is evident that 638 

the model cannot simulate cases with higher O3 concentrations in the mid-level. On the other hand, GEOS-CF performs better 639 

with a lower non-systemic bias in the mid-level. Since GEOS-Chem was run with the tropchem chemistry mechanism which 640 

excludes stratospheric chemistry and GEOS-CF uses the UCX chemistry mechanism that includes stratospheric chemistry, 641 

this may allude to better performance of GEOS-CF in simulating higher O3 concentrations in the mid-level. Both models 642 

indicate weak correlations with the lidar observations in the mid-level and it is apparent that both models struggle to capture 643 

the pattern of O3 behavior in the mid-level. This is likely due to the model resolutions. Although GEOS-CF has a finer 644 

resolution than GEOS-Chem, it still may not be sufficient in horizontal and vertical grid resolution to replicate the finer O3 645 

variations captured in the 2-D lidar observations. 646 

Although this analysis proves to be a useful technique to characterize O3 behavior over a period of time and to evaluate 647 

the ability of model to simulate the largely variably O3 behavior, there are also limitations. In this study we are comparing 648 

single point lidar versus model output, therefore we cannot simply state that the model is incorrect. We make conclusions and 649 

draw biases based on the ability to subset a grid point and compare that to a single point lidar curtain to the best ability but 650 

there is still uncertainty. Ozone lidars have a unique advantage, compared to traditional surface measurements, in measuring 651 

vertical distribution of O3 with respect to time. The high vertical and spatiotemporal resolution reveal intricate details about 652 

the behavior of O3 during these campaigns. Lidars still have limitations that prove to be a complication e.g., noise signal and 653 

manual operations. At the time of writing, the operative limitation has been addressed and the lidars are now more fully 654 

automatized which removes some of the difficulty. 655 
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Several studies rely on case study investigations to evaluate model performance in coastal regions. Another approach, 656 

demonstrated in Sect. 3.3.1, would be to simply group data by altitude to achieve a summarized model evaluation. However, 657 

a systematic and comprehensive understanding of the different photochemical regimes in coastal regions does not only require 658 

case studies and overall summaries. The clustering approach allows for a comprehensive yet still detailed evaluation of the 659 

different photochemical regimes in coastal regions and the model performances in these cases. Looking at the overall 660 

correlations (Figure 6), both models seem to have a good relationship with the low-level lidar observations. But, in applying a 661 

clustering method we can analyze cluster-by-cluster differences (Figure 7) and the gaps within the models are elucidated. 662 

Using the clustering, we are able evaluate how the cluster specific differences reveal additional model performance insight 663 

that would be conceivably overlooked when evaluating overall performance. 664 

 665 

Several studies rely on case study investigations or grouping data by altitude to evaluate model performance. As 666 

demonstrated in Sect. 3.3.1, we can evaluate the overall summarized the model profile curtains O3 against the lidar profile 667 

curtains and come to the simple conclusion that both models fairly simulate low-level O3 but struggle to simulate mid-level 668 

O3. However, a systematic and comprehensive understanding of the different photochemical regimes in coastal regions does 669 

not only require case studies and overall summaries. The clustering approach allows for a comprehensive yet still detailed 670 

evaluation of the different photochemical regimes in coastal regions utilizing the lidar derived full profile curtains. 671 

Additionally, using the clusters, we can efficiently evaluate the ability of the models to simulate many different cases of O3. 672 

This approach revealed specific O3 cases in which the models perform well and others where the models fail that would have 673 

been overlooked by solely considering the overall results. Using the clustering, we are able evaluate how the cluster specific 674 

differences (Figure 6, Figure 7 and Table S1) reveal additional model performance insight and specific gaps that would be 675 

conceivably overlooked when evaluating overall performance. 676 

It is warranted that models struggle simulating extreme events/cases such as seen in the low-level in the HLO cluster and 677 

in the LLO cluster. However, GEOS-Chem performs best in both clusters with minimal biases and strong to fair correlations. 678 

Our result suggest that GEOS-Chem does a much better job simulating extreme O3 cases in the low-level than expected. This 679 

specific model feature is not eminent when evaluating overall performance. Additionally, overall GEOS-Chem performs 680 

poorly in the mid-level. The detailed analysis granted by the cluster approach reveals GEOS-Chem has the lowest bias in the 681 

LMO cluster signifying the model is better able to capture low O3 conditions in the mid-level. The overall high systemic 682 

positive bias for GEOS-CF in the low-level is further dissected when evaluating the individual clusters. GEOS-CF 683 

systematically overestimates low-level O3, but the individual clusters indicate that the model has a better correlation with O3 684 

in HMO cases. An even more profound case is exposed in which GEOS-CF has a strong correlation with mid-level O3 in the 685 

LMO cases despite having a low correlation overall. This concludes that in cases where the GEOS-CF model struggles to 686 

reproduce O3 concentrations, the model can still capture the O3 variability seen by the lidar measurements.  687 

The clustering approach also reveals more discrepancies in the models such as in the MCO cluster. The advantage of 688 

evaluating full temporal and vertical profile curtains indicates that overestimation of early morning O3 throughout the low-689 
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level leads to the poorer performances in MCO for both models. The overestimation of morning O3 in GEOS-CF adds to the 690 

systemic overestimation in afternoon O3 contributing the greater bias and poorer correlation. The same case can be found in 691 

the GEOS-Chem MCO cluster performance but to a lesser extent as GEOS-Chem has a much lower positive bias. Previous 692 

studies have found that excessive vertical mixing leads to overestimation of O3 near the surface as well as underestimation of 693 

O3 night-time depletion resulting in overestimation of O3 the next day (Dacic et al., 2020; Keller et al., 2021; Travis & 694 

Jacob, 2019). The titration that occurs at night after the initial afternoon build up requires successful simulation to prevent the 695 

model beginning the following day with higher O3 than is observed which can lead to the overprediction of O3 later that day. 696 

Therefore, in the given case where there is an O3 event that lasts more than one day (at the same lidar location), the model will 697 

likely underestimate O3 night-time depletion, overpredict morning O3, and subsequently overpredict the afternoon build-up. 698 

Given multiple cases of multi-day high O3 events from the lidar measurements (17 total from HMO, MCO, and HLO), this is 699 

likely one of the reasons for GEOS-CF overestimating early and therefore afternoon O3 in these high O3 cases in the low-level. 700 

In Figure 6, GEOS-CF exhibits the greatest afternoon O3 overprediction in MCO and HLO. In HLO alone, there were 4 (out 701 

of 18) of the profiles that were consecutive while in MCO there were 8 (out of 28). This gives explanation for upwards of 22 702 

– 29 % of the overestimation of O3 in the profile curtains of these clusters. These multi-day O3 events are particularly important 703 

as they can indubitably lead the models to higher overprediction of afternoon O3. As the full lidar profile curtains reveal, the 704 

models tend to overestimate early morning O3 in the MCO cases which links to the overestimation in afternoon O3 as well. 705 

Both models have a better ability to simulate early morning O3 magnitude and pattern for other clusters than the MCO. 706 

For example, GEOS-CF does best simulating morning low-level O3 in cases of lower O3 extent (LLO and LMO). Excluding 707 

MCO, GEOS-Chem does not have such an issue overestimating low-level O3 in the afternoon. In the other clusters, GEOS-708 

Chem actually underpredicts early morning low-level O3 in the full vertical profile. An underestimation of early morning O3 709 

does not warrant the same build-up up of afternoon O3. This gives some explanation to why GEOS-Chem underpredicts the 710 

other clusters with higher O3 concentrations in the low-level (HMO and HLO). In the mid-level GEOS-Chem has a systemic 711 

high negative bias for all clusters, consistently underestimating O3 but the clusters reveal a better performance in LMO, the 712 

cluster with lowest mid-level O3 extent. It is evident that the model cannot simulate cases with higher O3 concentrations in the 713 

mid-level but simulates low O3 cases better. On the other hand, GEOS-CF results indicate a lower non-systemic bias in the 714 

mid-level. Since the version of GEOS-Chem used in this study was run with the tropchem chemistry mechanism which 715 

excludes stratospheric chemistry (now obsolete with current GEOS-Chem developments) and GEOS-CF uses the UCX 716 

chemistry mechanism that includes stratospheric chemistry, this may allude to better performance of GEOS-CF in simulating 717 

higher O3 concentrations in the mid-level. Both models indicate weak correlations with the lidar observations in the mid-level 718 

and it is apparent that both models struggle to capture the pattern of O3 behavior in the mid-level. This could be due to multiple 719 

model inefficiencies such as the coarse model resolutions. Although GEOS-CF has a finer resolution than GEOS-Chem, it still 720 

may not be sufficient in horizontal and vertical grid resolution to replicate the O3 variations captured in the 2-D lidar 721 

observations.  722 
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There are additional model discrepancies that can lead to underestimations of O3 in GEOS-Chem in the mid-level that 723 

was found in all 5 clusters. One gap in the GEOS-Chem model could be the representation of tropospheric halogen chemistry 724 

which has a large effect of coastal O3 production. Newer updates to the GEOS-Chem model (v12.9) have included updated 725 

tropospheric halogen chemistry mechanisms (iodine, bromine, and chlorine) (Wang et al., 2021). This study found that the 726 

updated halogen chemistry actually worsens the overall underestimation of O3 throughout the troposphere, specifically in the 727 

northern hemisphere, indicating further investigation of halogen chemistry is needed for better model representation. Another 728 

study finds a similar conclusion in the proper representation of cloud uptake and tropospheric chemistry (Holmes et al., 2019). 729 

This study found that implementing an updated, more accurate, and stable cloud entrainment-limited uptake in the GEOS-730 

Chem model reduces the sensitivity of oxidants and aerosol chemistry in the troposphere but still had little effect on O3 model 731 

comparison to observations (such as sonde and aircraft). This is due to the environmental variability being much higher than 732 

the effect of NOx and O3 cloud chemistry but still warrants further testing. The role lightning plays in tropospheric oxidation 733 

is another feature that is commonly misrepresented in global models and can affect O3 simulation (Mao et al., 2021). These 734 

are all examples of features that if not simulated correctly can lead to misestimations of O3. The clustering approach allows us 735 

to organize the detailed lidar measurements to scope out specific cases where these misrepresentations occur. These previous 736 

studies also highlight the importance of lidar measurements and their ability to depict tropospheric emission development and 737 

behavior throughout the vertical profile and diurnal cycle which can be used to constrain model emissions and improve 738 

simulations. 739 

Although this analysis proves to be a useful technique to characterize the largely variably O3 behavior in coastal regions 740 

and evaluate the subsequent model performance, there are also limitations. In this study we are comparing single point lidar 741 

versus model output, therefore we cannot simply state that the model is incorrect. We make conclusions and draw biases based 742 

on the ability to subset a grid point and compare that to a single point lidar curtain to the best ability but that still leaves an 743 

uncertainty. The high vertical and spatiotemporal resolution reveal intricate details about the behavior of O3 during these 744 

campaigns. O3 lidars have a unique advantage, compared to traditional surface measurements, in measuring vertical 745 

distribution of O3 with respect to time. This advantage is of great value when investigating model ability in simulating the 746 

spatial and temporal distribution of O3 and can provide crucial information in understanding surface O3 events. 747 

 748 

3.4 Impact of meteorological factors on clusters & model performance Cluster derived case studies to evaluate modeled 749 

wind and ozone 750 

Meteorological factors such as wind speed and direction can directly impact whether a coastal region will experience 751 

clean air or O3 exceedances. When local meteorological processes such as sea/bay breeze occur at such a fine scale, equally 752 

fine resolution measurements are essential in capturing this. The Doppler wind lidar offers a focus on fine details that are only 753 

revealed in the multi-dimensional data which allows for such a comprehensive evaluation of the established O3 cluster profile 754 

curtains. In this sect., we evaluate the 2-D relationship between wind and O3 to assess model performance using lidar and 755 

model derived profile curtains (Figure 8). We derived two specific case studies, each from a different cluster: MCO = 17 June 756 



27 
 

2018 and HLO = 30 June 2018. Utilizing the derived clusters, the case studies were chosen to focus on high low-level O3 757 

behavior cases with a goal of evaluating possible sea/bay breeze events. The two case studies are both from the HMI location 758 

during the OWLETS-2 campaign. There are consistent Doppler lidar measurements throughout the low-level (< 2000 m) which 759 

allows for a direct comparison with the simulated profiles; therefore, the focus of the following analysis will be on the low-760 

level altitudes. The deficit of mid-level observed wind data disallows for a conclusive and concrete evaluation of simulated 761 

mid-level O3.  762 

 763 
Figure 8. Profile curtains of wind speed/direction (a-c) and ozone (d-f) from the lidar (top panel), GEOS-Chem (middle panel), 764 

and GEOS-CF (bottom panel). Results from OWLETS-2 at HMI.  765 

 766 

3.4.1 Doppler wind lidar and simulated wind case studies Sea breeze event interpretation 767 

GEOS-Chem and GEOS-CF both struggle to capture low-level wind speed and direction in both MCO and HLO cases 768 

(Figure 8a-c). In the MCO case, the Doppler wind lidar captures a wind direction shift from westerly to easterly winds 769 

beginning at 06:00 EDT accompanied by calm winds (approximately 0 m s-1) indicating a likely common sea/bay breeze event. 770 

The timing of the start of this event is simulated well but the models fail to predict an actual well-defined wind shift, instead 771 

merely simulating 0 m s-1 winds after 05:00 EDT. It is apparent that the models struggle to capture the finer processes such as 772 

a sea/bay breeze which could have likely led the underprediction of wind speed. It is important to note that GEOS-Chem runs 773 

with offline meteorology, averaged every 3 hours. Since sea/bay breezes often happen at a finer temporal resolution, the GEOS-774 

Chem model is at a disadvantage in modelling such fine processes. A wind direction shift is also depicted in the HLO case, 775 
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with westerly winds early in the morning and a shift to south-easterly winds later in the temporal profile (at about 10:00 EDT). 776 

This could also likely be an early onset sea breeze event which could have contributed to the high observed O3 concentrations 777 

in the afternoon. Again, the exact timing of the start of the wind shift is captured by the models but then no defined directional 778 

shift and little to no winds are simulated after. Both the MCO case and HLO case observe increased wind speeds near the 779 

surface, first before 08:00 EDT then again in the evening. Both models underestimate the extent of the increased wind speeds.  780 

 781 

3.4.2 Ozone and winds in relation to lidar measurements Relation to ozone cases and clustering 782 

In this sect., the wind lidar curtains will be assessed in relation to the O3 lidar profile curtains and the model performance. 783 

The results in sect. 3 revealed that both models had the highest bias and lowest correlation simulating low-level O3 in MCO. 784 

Evaluating the wind and O3 lidar profile curtains against the model simulations helps paint a better picture as to why. Similar 785 

to the MCO cluster mean curtain profile, early morning low-level O3 in each case is overestimated by both models (Figure 8e, 786 

f). There is higher O3 captured in the lidar curtain profile, but it is constrained between 1500 – 2000 m. Both models bring this 787 

higher O3 pattern down to the surface (below 500 m) overestimating O3 throughout the low-level. Since both models predict 788 

little to no winds during this time, this could contribute to overestimations of O3 near the surface.  789 

In the HLO case, GEOS-CF overestimates low-level O3 while GEOS-Chem underestimates low-level O3. From sect. 3.3 790 

the results revealed that although GEOS-CF has a high positive normalized bias for low-level O3 in HLO, the model had a 791 

reasonable relationship (R = 0.61) with the O3 lidar measurements. This is corroborated with the individual HLO case (Figure 792 

8f) as GEOS-CF is better able to simulate the development of O3 in the low-level, especially in the early morning. The GEOS-793 

CF modeled winds mirror this performance with a better reproduction of the wind shift in HLO (Figure 8c). While GEOS-794 

Chem has a lower normalized bias for low-level O3 in the HLO cluster, GEOS-Chem consistently underestimates wind speed 795 

and fails to reproduce any wind shifts. This reveals that in the possible sea breeze event, the two models do not perform equally. 796 

Since GEOS-Chem is an offline CTM using archived meteorology and GEOS-CF simulates atmospheric composition 797 

simultaneously with meteorology (online), the replication of a sea breeze case would not necessarily be comparable. 798 

In most cases, sea/bay breeze events can contribute to high concentrated daytime O3 events in which O3 is recirculated 799 

throughout the region. Such cases would likely lead to a similar curtain profile as seen in the HLO case (Figure 8a), where 800 

high O3 in the morning is likely associated with the higher O3 at the surface in the afternoon. But it is apparent that the cases 801 

for MCO and HLO are dissimilar. We would expect per the clustering approach that sea breeze cases would most likely be 802 

assigned to the same cluster, but this is not the case here. Investigating the full lidar and model profile curtains for the two 803 

cases gives us more information as to why these two curtains are not in the same cluster. It is evident that the HLO case has 804 

much higher afternoon O3 near the surface (below 1000 m) than the MCO case, with peaks > 75 ppb at both 12:00 and again 805 

at 16:00 EDT. In contrast, the MCO case has higher afternoon O3 concentrations captured above 2000 m than the HLO case. 806 

The HLO case has high O3 in the afternoon, but it is constrained to the lower 2000 m and just above this high O3 plume, there 807 

is an O3 deficit of almost 50 ppb. Although the MCO case also reveals lower O3 above 2000 m, the vertical gradient in this 808 

case is not as stark. This is also replicated in both models which simulate lower O3 directly above the high surface O3 in the 809 
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HLO cluster but simulate much higher O3 above 2000 m in the MCO cluster. From their distinct vertical and temporal behavior, 810 

it is easy to conclude why these two cases were not assigned to the same cluster.  811 

The cases elected for MCO and HLO give reason to address the difficulty simulating complex coastal mechanisms. 812 

Despite the fact that MCO and HLO both indicated prospective sea/bay breeze cases, the results of the simulated winds and 813 

O3 were distinctive. Simulating complex sea/bay and land relations is imperative for correctly mitigating high O3 cases. To 814 

accurately simulate such complex exchanges, high resolution vertical and horizontal simulations are needed. Because of the 815 

models’ relatively coarse resolutions (nominally 50 and 25 km horizonal resolution; 72 vertical levels), the fine-scale vertical 816 

wind gradients and horizontal wind shifts are difficult to resolve and, in these cases, not fully able to replicate. This study also 817 

acknowledges the need for an evaluation of other modeled factors, such as divulged in sect. 3.3.3, considering the possible 818 

confounding effects on modeled O3 outcome. 819 

 820 

4. Conclusion 821 

We developed and tested a clustering method on a suite of 91 multi-dimensional lidar O3 profile curtains retrieved 822 

from three recent land/sea campaigns (OWLETS-1, OWLETS-2, and LISTOS), during the summer months of 2017 and 2018. 823 

The K-Means clustering algorithm, driven by 8 well defined features, was applied to categorize the fine resolution O3 data, 824 

revealing five distinct O3 behavior cases that are unique distinct in pattern and magnitude vertically and temporally. We present 825 

five different clusters of O3 behavior identified as: highest mid-level O3 (HMO) cluster; lowest low-level O3 (LLO) cluster; 826 

most common O3 (MCO) cluster; highest low-level O3 (HLO); lowest mid-level O3 (LMO) cluster. The results indicate that 827 

fine resolution data can be used to differentiate the behavior of O3 in a region and classify different cases of O3 exploiting the 828 

multiple dimensions. The clustering approach allowed us to characterize the range of highly variable vertical and temporal 829 

coastal O3 behavior for the duration of these campaigns which can be a good indicator of how O3 behaves in general in these 830 

coastal regions during the summer months. Furthermore, this approach could be used by states to better identify different O3 831 

photochemical regimes and frequency beyond just surface sampling. 832 

The clustering analysis provided an abridged method toWe evaluated the performance of two CTMs, GEOS-Chem 833 

and GEOS-CF, in these complex environments. Overall, the models have the greatest difficulty simulating the vertical extent 834 

and variability of O3 concentrations in the mid-level, with . weak overall relationships to the lidar observations (R = 0.12 and 835 

0.22). GEOS-Chem had a systematic high negative bias and GEOS-CF an overall lower unsystematic bias range. In the low-836 

level, GEOS-Chem had overall low unsystematic bias range and fair relationship with the lidar observations (R = 0.66), while 837 

GEOS-CF had a systematic high positive bias but overall fair relationship (R = 0.69). 838 

Utilizing the curated clusters reveals new model insight that is neglected in the overall performance analysis. The 839 

cluster approach divulges specific model limitations but also cases in which the models perform well. GEOS-Chem simulates 840 

low-level O3 cases best in the HLO and LLO clusters and the worst in the MCO cluster. HLO and LLO are the clusters with 841 

the most extreme (low and high) O3 cases while MCO is the most common cluster with moderate O3. This concludes that 842 

GEOS-Chem does best simulating extreme low-level O3 but struggles to capture the frequently occurring moderate O3 843 
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behavior. GEOS-CF also has the greatest overestimations for low-level O3 in the MCO cluster. Evaluating the full profile 844 

curtain reveals that this overestimation can be most attributed to the greater overestimation of early morning O3. This feature 845 

is unique to the MCO cluster and warrants further investigation as O3 left in the residual layer can contribute to higher O3 in 846 

the afternoon and proves to be a challenge for CTMs. The value of lidar measurements is reflected in its ability to reveal these 847 

features.  848 

Both models share poor performances in the mid-level but there are specific cases that stand out in the clustering 849 

results, specifically the LMO cluster, in which GEOS-CF shares a good agreement with the lidar measurements. It can be 850 

concluded that although the model struggles to simulate O3 magnitude, it can relatively emulate the mid-level O3 pattern in 851 

LMO. This is also apparent in the MCO cluster, in which the pattern of higher mid-level O3 that suggests a relationship with 852 

the low-level O3 is simulated fairly in the GEOS-CF model. This pattern is also a rare feature that is captured in the lidar that 853 

demonstrates the significance of the measurements. The greater underestimations of mid-level O3 for GEOS-Chem can be 854 

alluded to multiple model discrepancies. Since the GEOS-Chem version and mechanism used in this study (tropchem) only 855 

considers tropospheric chemistry we can expect the performance in the mid-level to have deficiencies. Although GEOS-CF is 856 

run with the combined tropospheric and stratospheric chemistry mechanism, has a better grid resolution, and is an online 857 

model, there are still limitations to both models especially when simulating mid-level O3. Known model errors and coarse 858 

horizontal and vertical grid resolution contribute to the difficulty in simulating fine-scale coastal O3 variability. There are many 859 

contributing model factors that can be affecting the performance of GEOS-Chem and GEOS-CF that were mentioned in this 860 

study not solely coarse model resolution.  861 

A unique value of the clustering approach on multi-dimensional lidar data is that it offers a convenient way to ascertain 862 

different O3 case studies. An example of this is our evaluation of two cases studies from the MCO and HLO clusters. Modeled 863 

winds were evaluated using Doppler wind lidar data observed during the OWLETS-2 campaign. The wind lidar data was 864 

mostly limited to lower altitudes (< 2000 m), which allowed for wind speed and direction validation at the low-level. The 865 

morning wind deceleration and directional shifts (onshore to offshore) illustrated in lidar profile curtains indicate a possible 866 

sea/bay breeze event in both case studies. This is likely another contributor that led to enhanced surface O3 in these cases. Due 867 

to the coarser model resolution, GEOS-Chem and GEOS-CF were not able to capture the sea breeze phenomena in these cases 868 

which could have facilitated in the high O3 biases for these clusters. With GEOS-CF having a finer horizontal resolution than 869 

GEOS-Chem, the results reveal minimal advantages for GEOS-CF simulating the pattern of wind speeds better but none the 870 

finer resolution did not help in simulating the wind directional shifts as in MCO and HLO. This affirms that the spatial 871 

resolution of GEOS-CF (~25 km) is still not fine enough for mesoscale processes such as the sea/bay breeze. Although a 872 

regional model analysis is out of the scope of this study, we propose to use multi-dimensional lidar measurements to evaluate 873 

finer regional modeling in our future work. We acknowledge that other factors, aside from model resolution, contribute to 874 

discrepancies in modeled coastal O3 and further warrant a deeper evaluation. The clustering approach on lidar measurements 875 

offers an unmatched ability to pinpoint these features. 876 
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 Ultimately, the vertical resolution for both models was too coarse to resolve fine-scale vertical wind gradients. We 877 

acknowledge that an evaluation of other factors, such as model precursor emissions or chemical mechanisms, is needed to 878 

fully evaluate the discrepancies in modeled coastal O3.  879 

This work is the first time that all three associated campaign lidar data have been analyzed in conjunction. In utilizing 880 

the highly detailed suite of multi-dimensional lidar data, we are able to comprehensively explore the behavior and variability 881 

of coastal O3 for the duration of the campaigns. Applying the clustering analysis directly to the lidar O3 data emerges as a 882 

useful and robust approach for identifying O3 patterns during the highly polluted summer months in coastal environments. 883 

Since the time of the OWLETS and LISTOS campaigns, the lidar instrument systems have been updated and are now more 884 

fully automatized for use eliminating such constraints faced in this study. Further observations using lidar instruments should 885 

be especially valuable in investigating coastal O3 behavior as it can divulge the finer-scale O3 characteristics that remain 886 

difficult to successfully simulate in CTMs. The time-height and fine resolution measurements only available from multi-887 

dimensional lidar instruments were vital in allowing us to form these conclusions.  888 

This kind of evaluation allows for detailed model assessment of specific O3 cases that are unmasked through the 889 

clustering analysis. Looking at the overall correlations, it would seem the models have a good relationship with the low-level 890 

lidar observations but looking into the cluster-by-cluster differences, the gaps within the models are elucidated. Using the 891 

cluster assignments, we are able evaluate how the cluster specific differences reveal additional model performance insight that 892 

could be conceivably overlooked when evaluating overall performance. This work is a middle ground between looking at 893 

specific cases (or dates) and summarizing overall model performance. Additionally, the clustering approach provides an 894 

abridged way to detecting distinctive case studies. We provide a new approach that allows a synopsis of summer coastal O3 895 

behavior and subsequently model performance without completely muting distinct O3 features. Evaluating model performance 896 

for diverse O3 behavior in coastal regions is crucial for improving the simulation and furthermore, mitigation of air quality 897 

events. 898 
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