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Abstract. Calculations of the aerosol direct effect on climate rely on simulated aerosol fields. The model representation of

aerosol mixing state potentially introduces large uncertainties into these calculations, since the simulated aerosol optical prop-

erties are sensitive to mixing state. In this study, we systematically quantified the impact of aerosol mixing state on aerosol

optical properties using an ensemble of 1800 aerosol populations from particle-resolved simulations as a basis for Mie calcula-

tions for optical properties. Assuming the aerosol to be internally mixed within prescribed size bins caused overestimations of5

aerosol absorptivity and underestimations of aerosol scattering. Together, these led to errors in the populations’ single scatter-

ing albedo of up to −22.3% with a median of −0.9%. The mixing state metric χ proved useful in relating errors in the volume

absorption coefficient, the volume scattering coefficient and the single scattering albedo to the degree of internally mixing of

the aerosol, with larger errors being associated with more external mixtures. At the same time, a range of errors existed for any

given value of χ. We attributed this range to the extent to which the internal mixture assumption distorted the particles’ black10

carbon content and the refractive index of the particle coatings. Both can vary for populations with the same value of χ. These

results are further evidence of the important yet complicated role of mixing state in calculating aerosol optical properties.

1 Introduction

Particles scatter and absorb incoming solar radiation, thereby impacting the global radiative balance and temperatures on Earth

(Mitchell Jr, 1971; Charlson et al., 1992; Yu et al., 2006; Winker et al., 2010; Oikawa et al., 2013; Subba et al., 2020). Black15

carbon (BC), commonly emitted from combustion, has a direct radiative forcing of +0.11 Wm−2 (Thornhill et al., 2021;

Szopa et al., 2021). At the same time, the overall global average aerosol direct radiative forcing in the clear-sky environment

is −0.22 Wm−2 because of the presence of other non-absorbing aerosol species, which exert a cooling impact (Forster et al.,

2021).

Radiative effects of aerosols depend on their optical properties, which, as a whole, are determined by the individual particles20

that the aerosol consists of. As observed in field campaigns, particles are mixtures of inorganic and organic species, and exhibit
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significant spacial and temporal variation in their abundance and composition (Zhang et al., 2007; Bzdek et al., 2012; Laskin

et al., 2006), with considerable diversity in composition existing within individual aerosol populations. The topic of this paper

is to quantify the importance of diversity in composition for aerosol optical properties.

Aerosol composition impacts aerosol optical properties for several reasons. First, aerosol species differ in their complex25

refractive index. While inorganic species and many organic species have a purely real refractive index for wavelength of

visible sunlight (i.e., only scatter radiation), black carbon and some organic carbon species have a non-zero imaginary part of

the refractive index and hence also absorb radiation (Corbin et al., 2018; Esteve et al., 2014; Cappa et al., 2019). Second, aerosol

species differ in their hygroscopicity. This governs aerosol water uptake in a humidified environment, which is important for

scattering (Michel Flores et al., 2012; Zieger et al., 2013; Titos et al., 2014, 2016).30

Lastly, the arrangement of the different aerosol species within a particle is important for determining their scattering and

absorption. For mixed particles without strongly absorbing species, i.e., BC, a volume-mixing rule can be used to calculate the

refractive index of the entire particle. When the particle contains BC, assuming a core-shell configuration was proven to be

more accurate (Bond et al., 2006) (still assuming sphericity as particle shape). The absorption enhancement of BC-containing

particles due to their non-absorbing coatings has been widely investigated (Moffet and Prather, 2009; Liu et al., 2017; Wu35

et al., 2020; Fierce et al., 2020). Taking the non-spherical shapes of BC-containing particles into account complicates matter

considerably since Mie calculations cannot be applied and more sophisticated optical models need to be used, which are

computationally much more expensive. By using the Discrete Dipole Approximation model, Scarnato et al. (2013) found that

the absorption coefficients enhancement of BC-NaCl mixtures is higher for compact BC particles completely embedded in

NaCl than for lacy BC particles.40

To understand the importance of aerosol composition in calculating aerosol optical properties, it is useful to define the

term aerosol mixing state, that is, the distribution of aerosol species among the particles in a population (Riemer et al., 2009;

Riemer and West, 2013; Riemer et al., 2019). Aerosol mixing state in the ambient atmosphere ranges between the two idealized

extremes of an external mixture on the one hand, where each particle is composed of a single species, and an internal mixture

on the other hand, where all particles consist of the same mixture of species. Aerosols close to emission sources tend to be more45

(although not completely) externally mixed (Bondy et al., 2018; Rissler et al., 2014). After emission, aging processes, such as

coagulation between particles and condensation of gas species on the particles, transform aerosol populations towards more

internal mixtures (Healy et al., 2014; Liu et al., 2013; Zaveri et al., 2010). Past studies quantified the importance of mixing

state for aerosol optical properties through optical closure studies. For example, using measured aerosol size distributions and

aerosol composition observed over the East China Sea, Koike et al. (2014) found that the internal mixture assumption for fine50

particles increased the absorption aerosol optical depth by a factor of 2 or more.

Aerosol mixing state is challenging to represent in 3D chemical transport models, which usually rely on simplifying assump-

tions for computational efficiency. These assumptions then influence the magnitude of calculated aerosol optical properties.

Optical properties are here understood by three widely-used parameters: the absorption cross section, the scattering cross sec-

tion and the asymmetry parameter (Majdi et al., 2020). Many 3D models use a modal approach to represent aerosols, such55

as the Community Multiscale Air Quality Modeling System (CMAQ)(Binkowski et al., 2007; Appel et al., 2017) and Modal
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Aerosol Module (MAM)(Liu et al., 2012). The modes are externally mixed from each other, whereas within each mode, the

aerosol is assumed to be internally mixed. For BC-containing modes, sphericity and a core-shell configuration are assumed, so

that Mie calculations can be applied to calculate optical properties. Fierce et al. (2016) found that neglecting the diversity in

coating thickness for BC-containing particles (a result of the internal mixture assumption) leads to overestimated absorption60

enhancement by up to 200%. Another approach is the sectional model representation, which tracks size-resolved composition,

but not particle composition diversity within a certain size, such as TwO-Moment Aerosol Sectional (TOMAS) and the GLObal

Model of Aerosol Processes (GLOMAP)(Kodros et al., 2018; Spracklen et al., 2005). Still, mixing state assumptions need to

be invoked for each size bin. Recently, aerosol modules with more detailed BC mixing state representation were implemented

in global climate models (Matsui et al., 2013; Matsui, 2017). These approaches better represent the evolution of BC aging65

processes within a size bin by adding a second dimension for BC mass fraction. However, this two-dimensional bin approach

still does not capture the mixing state information of other, non-BC aerosol species.

The uncertainties in optical properties introduced by mixing state assumptions were also evaluated through model sensitivity

studies. Using the AQMEII-2 model inter-comparison framework, Curci et al. (2015) quantified the sensitivity of aerosol

optical properties to several parameters, including aerosol mixing state and size distribution. They found that aerosol mixing70

state is the dominant factor introducing uncertainties, explaining 30–35% of the uncertainty in aerosol optical depth and single

scattering albedo (SSA). Kodros et al. (2018) found that the direct radiative forcing (DRF) can vary from −1.65 to −1.34 W

m−2 over the pan-Arctic region depending on the assumption of internal or external mixture. The variation is similar when the

assumptions are used to calculate DRF at the top of atmosphere (Ma et al., 2012). These sensitivity studies have in common

that no benchmark simulations exist that represent the real mixing state, and therefore the importance of mixing state can only75

be assessed based on differences between varied idealized assumptions. By applying a detailed particle-resolved benchmark

model, Fierce et al. (2017) found that simple mixing state assumptions can result in an erroneous distribution of BC cores and

coating material and lead to errors in absorption. This effect was further confirmed to be the main source for the discrepancies

between simulated and experimentally-determined particle optical properties (Fierce et al., 2020).

The goal of this study is to systematically quantify the errors in optical properties due to simplified assumptions for mixing80

state, here quantified with the mixing state metric χ (Riemer and West, 2013). A similar framework was used to quantify the

error in CCN concentration (Ching et al., 2017), showing that CCN error ranges from −40% to 150% when assuming the

aerosol was internally mixed. The error depended on supersaturation level that CCN concentrations were evaluated at, and also

aerosol mixing state. In this work, we want to answer the questions: Given the aerosol mixing state, what is the error in aerosol

optical values when assuming internal mixture and what are the leading causes for this error?85

The paper is structured as follows: Model description, scenario design and the definition of metrics are given in Sect. 2. Sec-

tion 3 shows the relation between the errors in aerosol scattering and absorption and mixing state for dry aerosol populations,

and Sect. 4 further analyzes the errors for the aerosol populations at different levels of ambient relative humidity. The errors in

single scattering albedo and its implications for aerosol direct radiative forcing are analyzed in Sect. 5. Section 6 summarizes

the main findings.90
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2 Model description, scenario libraries and metrics

2.1 The stochastic particle-resolved model PartMC-MOSAIC

The model used for this study is the particle-resolved model PartMC-MOSAIC (Particle Monte Carlo Model-Model for Sim-

ulating Aerosol Interactions and Chemistry). A comprehensive description of the model can be found in Riemer et al. (2009)

and DeVille et al. (2011, 2019) for PartMC, and in Zaveri et al. (2008) for MOSAIC. PartMC is a Lagrangian box model that95

tracks the evolution of particles in a fully-mixed computational volume. The processes of emission, coagulation and dilution are

simulated stochastically. Gas-phase chemistry and gas-aerosol partitioning are incorporated by coupling with the deterministic

model MOSAIC. Specifically, MOSAIC uses the carbon bond based mechanism CBM-Z for gas-phase photochemical reac-

tions (Zaveri and Peters, 1999), the Multicomponent Taylor Expansion Method (MTEM) for calculating electrolyte activity

coefficients in aqueous inorganic mixtures and the Multicomponent Equilibrium Solver for Aerosols (MESA) for calculating100

the phase states of the particles (Zaveri et al., 2005). The secondary organic aerosol (SOA) treatment follows the Secondary

Organic Aerosol Model (SORGAM) (Schell et al., 2001). Aerosol water uptake is calculated using the Zdanovskii-Stokes-

Robinson (ZSR) method (Zaveri et al., 2008; Zdanovskii, 1948; Stokes and Robinson, 1966) based on the composition of the

inorganic portion of the particles. By this method, organic species are treated as hydrophobic, and do not contribute to water

uptake. The impact of this assumption on optical properties was quantified by Nandy et al. (2021), where they found that errors105

in single scattering albedo can be up to 6% if neglecting the water uptake of organic compounds.

2.2 Scenario library design

Following the strategy in Zheng et al. (2021) and Hughes et al. (2018), we created a scenario library of PartMC-MOSAIC

simulations, for this study with a focus on the aging of carbonaceous aerosol. To produce particle populations with a wide

range of compositions and mixing states, we varied the model input parameters within the ranges shown in Table 1. We used110

Latin hypercube sampling (McKay et al., 2000) to create input parameter combinations for a total of 100 model simulations.

The simulation time for each simulation was 24 hours beginning at 6 am local time with hourly output. This yielded a total

of 2500 particle populations. All scenarios were run with 10 000 computational particles. To create aerosol initial conditions

with realistic mixing states, we adopted the approach described in Zheng et al. (2021): We carried out a first set of simulations,

starting with the aerosol initial concentrations set to zero for all simulations (the “initial runs”). We then repeated the same115

set of simulations, but replaced the aerosol initial condition with a randomly sampled population from the initial runs (the

“restart runs”). For the analysis in this paper, we only used the results from the restart runs. Within our ensemble or aerosol

populations, some were found with higher species concentrations than what would be expected in the ambient atmosphere. We

applied upper thresholds to eliminate those which were calculated as the sum of the 75th percentile and 1.5 IQR (interquartile

range) for each of the aerosol species. After this procedure, 1809 out of 2500 populations were used for the error analysis120

presented in the remainder of the paper.
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Table 1. Baseline and range for the input variables

Input parameters Baseline Range

Enviroment Variables

Relative humidity (RH) [0.1, 1) or [0.4, 1)

Latitude (70oS, 70oN) or (90oS, 90oN)

Day of year [1, 365]

Temperature Based on latitude and day of year

Gas emission rates (mol m−2 s−1)

Sulfur dioxide (SO2) 8.5× 10−9 [0-200%]

Nitrogen dioxide (NO2) 3.0× 10−9 [0-200%]

Nitrogen oxide (NO) 5.7× 10−8 [0-200%]

Ammonia (NH3) 8.9× 10−9 [0-200%]

Carbon oxide (CO) 7.8× 10−7 [0-200%]

Methanol (CH3OH) 2.3× 10−10 [0-200%]

Acetaldehyde (ALD2) 1.7× 10−9 [0-200%]

Ethanol (ANOL) 5.3× 10−9 [0-200%]

Acetone (AONE) 7.8× 10−10 [0-200%]

Dimethyl sulfide (DMS) 3.8× 10−11 [0-200%]

Ethene (ETH) 1.8× 10−8 [0-200%]

Formaldehyde (HCHO) 4.1× 10−9 [0-200%]

Isoprene (ISOP) 2.4× 10−10 [0-200%]

Internal olefin carbons (OLEI) 5.9× 10−9 [0-200%]

Terminal olefin carbons (OLET) 5.9× 10−9 [0-200%]

Paraffin carbon (PAR) 1.7× 10−7 [0-200%]

Toluene (TOL) 6.1× 10−9 [0-200%]

Xylene (XYL) 5.6× 10−9 [0-200%]

Carbonaceous aerosol emission (single mode)

Geometric mean diameter (Dg) [25, 250] nm

Geometric standard deviation of diameter (σg) [1.4, 2.5]

BC/OC mass ratio [0, 100%]

Particle emission flux [0, 1.6× 107] m−2 s−1
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Table 2. Refractive indices of aerosol species at λ = 550 nm

Compounds Refractive index

H2SO4 1.43

(NH4)2SO4 1.52

(NH4)HSO4 1.47

NH4NO3 1.5

H2O 1.33

BC 1.82 + 0.74i

SOA 1.45

OC 1.45

2.3 Optical properties calculations

We calculated the optical properties of the particle populations using Mie calculations (Zaveri et al., 2010). These properties

included the asymmetry parameter g, scattering cross section σscat and absorption cross section σabs for each particle. Particles

were assumed to be spherical, and when BC was present, a core-shell configuration was assumed, with BC as the core and125

non-BC species as the shell. In PartMC-MOSAIC, each chemical species was assigned a refractive index and the values were

the same as Zaveri et al. (2010), as listed in Table 2. The shell refractive index of the particle was the volume average of all

the shell species, including aerosol water. The absorptivity of brown carbon has been of great interest in recent years (Corbin

et al., 2018; Cappa et al., 2019), however, this was not considered in the current work. We used the values for wavelength λ

of 550 nm for our analysis. In PartMC-MOSAIC, all particles are tracked individually in a well-mixed computational volume,130

and we obtained the ensemble optical property values by summing over all particles in the volume. The ensemble scattering

coefficients βscat(λ), ensemble extinction coefficients βext(λ) and ensemble absorption coefficients βabs(λ) at wavelength λ

are given as

βscat(λ) =

N∑
i

σscat,i(λ)ni, (1)

βext(λ) =

N∑
i

σext,i(λ)ni, (2)135

βabs(λ) = βext(λ)−βscat(λ), (3)

where i is the particle index, ni is the number concentration associated with particle i, and N is the number of computational

particles in the population. We determined the optical properties of all particle populations of our scenario libraries using these

equations.
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Two additional derived quantities of interest are the absorption enhancement and the mass absorption coefficient. The ab-140

sorption enhancement of BC-containing particles due to coatings is defined as

Eabs(λ) = βabs(λ)/βabs,BC(λ), (4)

where βabs,BC(λ) is the volume absorption coefficient when the particle coatings are removed from the BC cores.

We can also calculated the BC-specific mass absorption coefficients MACBC (m2g−1) using

MACBC =

N∑
i

σabs,i(λ)ni

N∑
i

mBC,ini

, (5)145

where mBC,i is the BC mass in particle i.

2.4 Quantifying the impact of mixing state through composition-averaging

To quantify the impacts of mixing state on aerosol optical properties, we employed the strategy of “composition-averaging”

similar to Ching et al. (2016) to create sensitivity scenarios. The technique is shown conceptually in Fig. 1. For each population

in our reference scenario library, we averaged the dry particle compositions within prescribed size bins. We chose eight size150

bins between 0.039 and 10 µm, consistent with the bin structure of the sectional aerosol module MOSAIC used in WRF-Chem

(Fast et al., 2006).

The composition-averaging procedure preserves the bulk mass concentration of each species, the total number concentration,

and the particle diameters within each bin (Ching et al., 2012, Appendix B1), i.e., after composition-averaging, each bin still

contains particles of different sizes. It changes the per-particle compositions so that each bin becomes internally mixed, however155

the composition can vary between bins. This mimics the assumption frequently made in sectional models, namely that each size

bin contains an internally mixed aerosol. PartMC-MOSAIC represents particles outside the MOSAIC bin range, especially for

the lower boundary, and we used an extra bin (bin 0) to preserve the total number and mass concentrations. Since the aerosol

water content plays an important role for aerosol optical properties, we further calculated water uptake for the reference

populations and for the composition averaged populations for 50% (P2) and for 90% (P3) relative humidity, respectively. At160

RH= 50%, depending on the exact composition, some particles take up water, and at RH= 90%, most particles take up

water, except particles that only contain hydrophobic species, such as pure black carbon or primary organic carbon. Note that

while the dry aerosol mass was conserved by the composition-averaging procedure, the water content was re-calculated after

composition-averaging and could change compared to the reference population.

Figure 2 illustrates the changes of two important parameters for aerosol optical properties due to composition-averaging, BC165

mass fraction and the real part of the refractive index. In the reference case, a wide range of BC mass fractions exists within

the same size bin (Fig. 2(a)). After composition-averaging, all particles within a size bin have the same BC mass fraction

(Fig. 2(b)). Since composition-averaging preserves the particle diameters, BC and other species are redistributed so that all

particles within a size bin are assigned the same mass fractions. Specifically, if a particle has lower BC mass fraction than the
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Figure 1. Conceptual framework of composition-averaging. The colors indicate different aerosol species. Light blue stands for water, black

stands for black carbon. The other colors conceptually represent other chemical species. In total, we track 18 aerosol species in addition to

BC and water. Composition averaging is applied to the dry populations, and then water uptake is recalculated for RH = 50% and RH = 90%.

The composition-averaging procedure conserves bulk mass concentration of each species, the total number concentration, and the particle

diameters within each bin.

average level in the same size bin, BC is added to this particle from those with higher BC content. The coating species are also170

redistributed after composition-averaging which causes the refractive index of the coating to change (Fig. 2(c) and (d)). Hence,

comparing optical properties before and after composition-averaging in the dry population P1 isolates the impact of mixing

state on aerosol optical properties. We will discuss the impact of composition-averaging for dry conditions in Sect. 3 and the

impact of water uptake in Sect. 4.

2.5 Mixing state metrics175

We quantified the optical properties error introduced by a simplified mixing state representation by using the metrics developed

by Riemer and West (2013). These metrics include the single-particle diversity Di, the average particle species diversity Dα

and bulk population species diversity Dγ . For a population with N particles, total mass µ and A species, we can calculate these

metrics from the total mass of particle i, µi, total mass of species a in the population, µa, and mass of species a in particle

i, µa
i , for i = 1, . . . , N and a = 1, . . . , A. The mass fraction of species a in particle i, pai , mass fraction of particle i in the180

population, pi and mass fraction of species a in the population, pa are given by

pai =
µa
i

µi
, pi =

µi

µ
, pa =

µa

µ
. (6)
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Figure 2. Two-dimensional number distributions of BC mass fraction and dry diameter (a (reference), b (composition-averaged)), and real

part of the refractive index and dry diameter (c (reference), d (composition-averaged)). The population is taken from scenario 76 at t= 1 h,

with χ = 36%. Red numbers and grey vertical lines represent the size bin ranges. The two red rectangles are for the analysis in Sect. 3.

The single particle diversity Di describes the effective species number in each particle, and is defined as

Di =

A∏
a=1

(pai )
−pa

i . (7)

As shown in Fig. S1, if a particle only contains one species, Di is 1. If the chemical species are present in equal amounts in the185

particle, Di equals the number of species. If the species are unevenly distributed, Di is a real number ranging between 1 and

the number of species in the particle.

Based on Di, we can construct Dα and Dγ , which describes the average effective species number in each particle and bulk

population, respectively:

Dα =

N∏
i=1

(Di)
pi , (8)190

Dγ =

A∏
i=1

(pa)−pa

. (9)
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Finally, the mixing state metric χ is defined as the affine ratio of Dα and Dγ :

χ=
Dα − 1

Dγ − 1
. (10)

The values of χ vary between 0% to 100%. Take the three particle populations in Fig. S1 as an example. All three populations

have the same bulk species mass concentration. Thus, they have the same bulk effective species diversity Dγ . However, the195

species are distributed differently within the populations. When the particles are externally mixed, each particle only contains

one species and Dα is 1, which results in χ = 0%. When all particles have the same species mass fractions, Dα equals to Dγ ,

and we obtain χ of 100%. The population is fully internally mixed. For the intermediately mixed population, χ ranges between

0% and 100%. In many applications, χ is used to describe the mixing state of chemical species, and we can therefore also refer

to it as chemical abundance metric χchem (Riemer and West, 2013; Healy et al., 2014; Bondy et al., 2018; Ye et al., 2018).200

For this work, our focus is the optical properties of the particles. Differing from χchem, we grouped the aerosol species

by absorbing and non-absorbing species, i.e., BC and non-BC species and defined a new index accordingly, χBC. It still

ranges between 0% to 100% and signifies the degree to which BC and non-BC species are mixed. Since we only consider two

(surrogate) aerosol species, the maximum value of Di, Dα and Dγ is 2. The same metric was chosen by Yu et al. (2020) to

characterize the mixing state of BC-containing aerosol in Beijing and by Zhao et al. (2021) to understand the role of mixing205

state for aerosol light absorption enhancement. For the remainder of the paper, unless otherwise noted, we will refer the χBC

simply as χ.

Figure 3 shows the range of bulk chemical species concentrations, mixing state metric, and optical properties within the

selected scenario library. The simulated aerosol bulk species mass concentration in the library covered a wide range of urban

conditions (Fig.3(a)), and the values were comparable to the measurements in different locations (Jimenez et al., 2009; Lanz210

et al., 2010). Both mixing state metrics χchem and χBC were larger than 30%, with a median value of 85%. The fact that

mixing state metric values smaller than 30% did not occur in our scenario library is consistent with the notion that aerosol

species rarely exist in a completely external mixture but rather form some degree of internal mixtures already at the time of

emission. Additionally, in urban environments, particles age quickly, forming internal mixtures with secondary species (Riemer

et al., 2010; Wang et al., 2010).215

Our range of χBC values encompasses the range observed in field measurements at Taizhou, China, where χBC ranged

between 68% and 79% for a period in May/June (Zhao et al., 2021), and at Beijing, China, where χBC ranged between 55%

and 70% in winter and between 60% and 75% in summer (Yu et al., 2020). The range of χchem is also consistent with the daily

range of 37–73% of particle samples collected in Paris, France (Healy et al., 2014).

Figure 3(c) shows that the single scattering albedo (SSA) was larger than 0.4 for all populations, with a median value of220

0.88. While SSA values lower than 0.5 are considered extremely low (4%), most populations (72%) had a SSA larger than 0.85,

which is consistent with fine mode SSA observations from AERONET (Levy et al., 2007). The distribution of simulated total

number concentration (Fig. 3(d)) are consistent with the observed number concentration of particles in the accumulation mode

size range (Asmi et al., 2011). Note that the simulations presented here do not include the process of new particle formation.
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Figure 3. Distribution of (a) bulk species concentration, (b) mixing state metric χBC and χchem, (c) SSA and (d) total number concentration

in the scenario library. Error bars in (a) are for ±1 interquartile range (IQR) and numbers are the species median concentration in µgm−3.

As a result, the simulated particle populations are more representative of accumulation mode particles in a range of different225

environments.

3 Errors in aerosol absorptivity and scattering for dry particles

This section describes how we quantified the error introduced by composition-averaging assumptions and how this error de-

pends on mixing state. Similar to the approach used by Ching et al. (2017), we stratified the populations by the black carbon

mixing state metric χ. To isolate the impacts of mixing state (in the sense of how the chemical species except for aerosol water230

are distributed across the population) from the impacts of water uptake, we first analyzed the results for the dry population

scenarios P1. Particles were partially or fully deliquescent in scenarios P2 (RH50) and P3 (RH90). These populations will be

further analyzed in Sect. 4 to quantify the water uptake effects on aerosol optical properties resulting from internally mixing

hygroscopic and hydrophobic species.
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The errors in aerosol optical properties due to the internal mixture assumption were defined by comparing the values of235

reference and composition-averaged populations. The relative error ϵ for the aerosol populations was calculated as

ϵ(v,χ) =
v′(χ)− v(χ)

v(χ)
, (11)

where v stands for βabs, βscat, Eabs or single scattering albedo in the reference library, and v′ is for the same parameters in the

sensitivity library. These parameters are stratified by the mixing state metric χ.

3.1 Errors in aerosol absorptivity due to composition-averaging240

Absorption was overestimated universally after composition-averaging, and, as expected, the error was higher for more externally-

mixed populations (low χ values), with ϵ(βabs) reaching up to +70% for χ of 30% (Fig. 4(a)). Each dot in Fig. 4(a) represents

a particle population from the scenario library. As shown in the box plot inset, the mean overestimation was 18% and the

maximum reached over 80%. The figure further contains information of BC bulk mass concentration and relative average BC

core size changes, which are the two main factors in determining absorptivity (Bond and Bergstrom, 2006), as represented by245

marker size and color, respectively. The relative average BC core size change for a population is defined as

∆Dcore =

∑N
i=1niD

core
i

′ −
∑N

i=1niD
core
i∑N

i=1niDcore
i

, (12)

where i is the particle index, ni and Dcore
i are the associated number concentration and BC core diameter in the reference

scenario, and Dcore
i

′ is the BC core diameter in the sensitivity scenario. The Number concentration ni is always greater than 0,

and if there is no core for particle i, Dcore
i is 0. It is interesting to note that ∆Dcore is always positive, that is, the average core250

diameter after composition-averaging is larger than the average core diameter before composition-averaging. This is a result of

particle mass being a convex function of particle diameter (assuming spherical particles). Calculating the new core diameters

after composition averaging will therefore always lead to on-average larger core diameters than averaging the core diameters

before composition averaging, as shown in Fig. S2.

The decreasing error with increasing χ can be explained by the magnitude of ∆Dcore. Evidently, composition-averaging255

caused larger changes of BC core sizes when the populations were more externally mixed. For example, for χ= 30%, the

change in core sizes was as large than +25%, while for χ= 95%, the change in core sizes was less than 5%. We also noticed

a range of errors for populations with χ between 60 and 70%, i.e., partially internally-mixed populations. In fact, the highest

overestimation of 82% was reached at χ= 63%. As indicated by the circle size, these populations contained very little BC

(0.01 µgm−3), and even small changes in core sizes can lead to large relative errors in the volume absorption coefficient.260

Given the constraint that composition-averaging preserves the particle number concentration and sizes, it follows that, for

some particles, this operation increases the sizes of BC cores (while at the same time decreasing the coating thickness), whereas

for other particles it decreases the BC cores sizes (while increasing the coating thickness). It is therefore not immediately clear

that composition-averaging consistently causes overestimation of aerosol absorption coefficients.

At a per-particle scale, for particles of the same diameter, σabs increases with increasing BC core, even though the coating265

thickness (and hence the absorption enhancement) decreases (Fig. S3). However, ϵ(βabs) is determined by the entire population.

12



30 40 50 60 70 80 90 100
BC mixing state metric , %

0

20

40

60

80

100
Re

la
tiv

e 
er

ro
r i

n 
ab

so
rp

tio
n 

co
ef

f.
(

ab
s),

 %
(a)

BC mass, g m 3

3.0
6.0
9.0

30 40 50 60 70 80 90 100
BC mixing state metric , %

10

0

10

20

30

40

50

Re
la

tiv
e 

er
ro

r i
n 

ab
so

rp
tio

n 
en

ha
nc

em
en

t 
(E

ab
s),

 % (b)

0

20

40

60

80

(
ab

s),
 %

0
6

13

24

82

0

10

20

30

40

(E
ab

s),
 %

-3
1
5

11

43

10 1

100

101

102

Co
re

 si
ze

 re
la

tiv
e 

ch
an

ge
 

D
co

re
, %

Figure 4. Relative error in absorption coefficients (a) ϵ(βabs) and (b) ϵ(Eabs) after composition averaging for dry particles. Each marker

represents an aerosol population. The color denotes the change of BC diameter due to composition-averaging, and the marker size represents

BC bulk mass in the population. The box plot inset shows the distribution of the error. The red line shows the median, and the edges of the

dashed lines are the minimum and maximum values. Red numbers are for the minimum, first quartile, median, third quartile and maximum

values.

The internal mixture in each size bin is reached by moving species from a group of particles to another group of particles.

As the BC mass fraction distribution in Fig. 2 shows, there are two major groups of particles in the population: Group 1 are

particles with higher BC mass fraction, and group 2 are particles with lower BC mass. Particles in group 1 experience decreased

absorbing ability because they are losing BC, and vice versa for particles in group 2.270

To further illustrate the effects at the population level, we show the effects of composition-averaging on the volume absorp-

tion coefficient for a simplified case of five monodisperse populations of different sizes, starting out with completely externally

mixed populations consisting of BC and ammonium bisulfate (Fig. 5). Absorption coefficients are normalized by the absorption

coefficient for fBC = 1 (pure BC). The black line shows the normalized volume absorption coefficient for populations when all

particles are externally mixed for bulk BC mass fractions fBC varying between 0 and 100%. For external mixtures, absorption275

increases linearly with increasing BC mass fraction (black line). The linear relationship applies for all five externally-mixed

populations with different diameters, so we can only see one black line in the figure.

The colored lines represent the internally-mixed monodisperse populations (i.e., after composition-averaging) for different

diameters. These populations all have higher absorption coefficients compared to the corresponding externally mixed popula-

tions. The effect is more pronounced for larger particles and intermediate BC mass fractions because the maximum ∆core is280
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Figure 5. Normalized absorption coefficient as a function of BC mass fraction for five monodisperse populations with different sizes. The

coating species is ammonium bisulfate with refractive index 1.47. Absorption coefficients are normalized by βabs of the population with

fBC = 1 (pure BC). The black line is for BC in external mixture. Colored lines are for BC in internal mixture of different sizes. Table on the

right sketches three 300 nm internal and external populations with BC mass fraction of 0%, 50%, and 100%. Black is for BC and yellow for

coating species.

reached. As the table (Fig.5) shows, for a 300 nm population, the normalized absorption is 0.76 when the particles are inter-

nally mixed, higher than an external mixed population (0.5). Although this example is an idealized case since our populations

lie between external and internal mixtures before composition-averaging and are polydisperse, this illustrates that assuming

internal mixture will lead to absorption overestimation.

The coating redistribution after composition-averaging also changes the absorption enhancement. As shown in Fig. S4, the285

median Eabs is 1.88 for the reference populations with BC mass fraction less than 10%, while it is 1.98 for the corresponding

populations of the sensitivity library. The absorption enhancement decreases as the bulk BC mass fraction decreases. These

values are within the range of previous studies (Fierce et al., 2020; Cappa et al., 2012). Similar to the error in volume absorption

coefficient ϵ(βabs), the errors are larger for the populations for lower mixing state metric (Fig. 4(b)). Lastly, since composition-

averaging conserves the bulk species mass concentrations, the denominator in Eq. 5 (total BC mass concentration) remains290

unchanged, and the errors for MACBC are the same as for βabs.

3.2 Error in aerosol scattering due to composition-averaging

Considering the volume scattering coefficient, composition-averaging resulted in a negative relative error (Fig.6(a)). Similar to

what we found for ϵ(βabs), the magnitudes of ϵ(βscat) decreased with increasing χ, but were overall smaller, with the largest

underestimation of −32% for a population with χ = 40% and a median of −1.2%.295

Two factors affect the particle scattering ability by composition-averaging, the change of the BC core size (and the corre-

sponding change in coating thickness), and the change in the refractive index of the coating. As Fig. 7 shows, adding a BC
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(a) (b)

Figure 6. (a) Same as Fig. 4, but for ϵ(βscat). The color is for refractive index relative change and the marker size represents BC bulk mass

in the population. The red box is the population analyzed in (b). (b) Size-resolved scattering coefficients for the reference and sensitivity

(composition-averaged scenario library). The population is from scenario 77 at t= 2 h.
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Figure 7. Relation between scattering cross section, refractive index and diameter for a wavelength of 550 nm. Blue lines are for non-

absorbing particles and symbols indicate refractive index. The red line is for absorbing particles containing a BC core of 0.2Ddry (constant

BC volume fraction across the size range).

core decreases the scattering ability for particles with diameters less than 1200 nm, which is the typical size range considered

in our study. This explains the larger scattering underestimation with higher BC mass concentration in Fig. 6(a).
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To further explore the effects of coating volume changes, Fig. 6(b) shows the size-resolved scattering coefficients before300

and after composition-averaging for the aerosol populations from scenario 77 at t= 2 h, which produced the largest scattering

coefficients underestimation (−32%). There is a significant decrease of σscat in the size range of 400–800 nm in the sensitivity

populations, and the core mass ratio increment in bin 4 is responsible for this decrease (Fig. S5).

The blue lines in Fig. 7 show the scattering cross sections for two different real refractive indices. For particles with diameters

between 800 and 1200 nm, a lower refractive index leads to a larger scattering cross section, although the difference is smaller305

than the change caused by adding a BC core. Similar to the BC core size change ∆Dcore in Figure 4, we defined a volume-

weighted refractive index change, ∆mreal, to help understand the changes in scattering. The index change is defined as:

∆mreal =

∑N
i=1Vim

real′ −
∑N

i=1Vim
real∑N

i=1Vimreal
, (13)

where i is the particle index, Vi is the particle volume, mreal is the real part of the coating refractive index of the particles

in the reference library, and mreal′ is for particles in the sensitivity library. Here we applied the total particle volume Vi in310

the equation to focus on the relation between the changes in scattering and changes in the refractive index. As shown in

Fig. 6, aerosol populations with small errors in scattering tend to be associated with small ∆mreal. For more externally-mixed

populations (with lower χ), ∆mreal tended to be larger.

For the effects of composition-averaging for particle scattering, we conclude that at a given value of χ, the magnitude of

ϵ(βscat) was determined by the change in core/coating volumes and by changes in the coating refractive index. The increase315

of BC core sizes after composition-averaging is the major factor for the decrease of the scattering coefficients. Populations

with large underestimation are those with higher BC mass concentrations and large refractive index changes. It is worth to

emphasize that we did not consider the absorption of organic carbon that might be present in the coating (Esteve et al., 2014).

4 The effects of water uptake on aerosol optical properties

The analysis so far was based on dry aerosol populations. In this section we investigate the impact of water uptake on the errors320

in absorption and scattering by considering RH values of 50% and 90%. As a reminder, we performed composition-averaging

on the dry population first, and then calculated water uptake based on the averaged composition for RH=50% and RH=90%,

respectively.

Considering all populations, the range of relative errors in βscat decreased with increasing RH, with the median error over

all populations decreasing from −1.2% (RH=0%) to −1.0% (RH=50%) and −0.2% (RH=90%) (Fig.8(a)). In contrast, the325

range of relative errors in βabs remained approximately the same (Fig.8(b)), with a median of approximately 13%.

The different response of ϵ(βscat) and ϵ(βabs) after the populations became humidified was due to the scattering coefficients

increasing strongly at higher relative humidities (Fig. S6(a)). The enhancement ratio, defined by the βscat values for the higher

RH cases and the dry case, had a median of 1.33 at RH= 50% and 3.35 at RH= 90% in our scenario populations. These

values are in accordance with previous studies (Titos et al., 2016; Burgos et al., 2020). As for the absorption coefficients in the330

humidified environments, the differences between reference and sensitivity cases remained almost the same for both βabs and
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Figure 8. Box plot of (a) scattering relative error ϵ(βscat) and (b) absorption relative error ϵ(βabs) at three RH levels (0%, 50% and 90%).

Dots are the populations with values outside Q3 + 1.5IQR.

MACBC (Fig. S6(b) and (c)), indicating that the errors in absorptivity introduced by composition-averaging were not sensitive

to RH.

5 Errors in single scattering albedo and implications for directive radiative forcing

The changes of scattering and absorption coefficients lead to changes in SSA, which is an important quantity that determines335

radiative forcing. With the definition of SSA, we can calculate the absolute error ∆SSA as:

∆SSA =
β′
scat

β′
scat +β′

abs

− βscat

βscat +βabs
=

β′
scatβabs −βscatβ

′
abs

(β′
scat +β′

abs)(βscat +βabs)
, (14)

where β′
scat, β

′
abs refer to the scattering and absorption coefficients after composition-averaging. Based on the previous analysis,

we know that β′
scat tends to be lower than βscat and β′

abs greater than βabs. Combining these changes with equation 14, these

variations will result in negative values for ∆SSA and the relative error ϵ(SSA), which is confirmed by Fig. 9.340

Figure 9 shows that ϵ(SSA) was negative for all the dry aerosol populations, with a median value of −0.9% and a largest

value of −22.3%. The dependence of ϵ(SSA) on the mixing state metric χ shows a similar pattern as for the volume scattering

coefficient ϵ(βscat). The errors decreased with increasing χ, indicating the SSA underestimation was smaller for more internally

mixed populations. For the populations with the same mixing state metric χ, errors were higher for the populations with more

BC mass concentrations. Aerosol populations with higher SSA errors were also associated with higher refractive index changes.345

In order to further connect ϵ(SSA) with ϵ(βscat) and ϵ(βscat), and investigate the effects of RH, we sorted the populations by

ϵ(βscat) and ϵ(βabs) ranges and calculated the averaged ϵ(SSA) for each ϵ(βscat)-ϵ(βabs) bin for the three RH levels, as shown
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Figure 9. Same as Fig. 6(a), but for ϵ(SSA). Red numbers in the inset box plot are for the minimum, median and maximum values.
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Figure 10. Relation between errors in SSA, scattering and absorption coefficients. Color represents the averaged ϵ(SSA) in the corresponding

ϵ(βscat) and ϵ(βabs) histograms.

in Fig. 10. For all three RH levels, ϵ(SSA) was negative, meaning that composition-averaging causes an underestimation

of SSA. The largest ϵ(SSA) (−22.3%) occurred for the largest underestimation in ϵ(βscat) in the RH = 0% environment.

Populations with ϵ(SSA) lower than −10% were related to populations with large negative magnitudes of ϵ(βscat). Relative350

errors in SSA decreased in a more humidified environment, accompanied by decreasing errors in scattering coefficients. The

median underestimation of SSA decreased from 0.9% (RH= 0%) to 0.7% (RH= 50%) and 0.4% (RH= 90%).
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The underestimation of SSA can have significant impacts in calculating direct radiative forcing. McComiskey et al. (2008)

evaluated the response of directive radiative forcing to changes of several quantities, including aerosol optical depth and single

scattering albedo. They found that the total uncertainties in directive radiative forcing ranged from 0.2 to 3.1 Wm−2, and SSA355

introduced the largest uncertainties. Through perturbation analysis, Loeb and Su (2010) also found the SSA to be the dominant

factor for direct radiative forcing uncertainties. They perturbed SSA by ± 3% over land, which resulted in uncertainties in

direct aerosol radiative forcing between −0.59 and +0.69 Wm−2. The median SSA errors for our simulations were on the

order of the pertubations imposed in the study by Loeb and Su (2010), and we therefore conclude that mixing state effects can

have impacts on radiative forcing similar to the ones reported in Loeb and Su (2010). Furthermore, the spatial and temporal360

variations of relative humidity imply that the errors in optical properties for a population with a given mixing state may vary

depending on location, season and time of day. Radiative transfer calculations would be required for a more in-depth analysis

of radiative forcing impacts.

6 Conclusion and discussion

Simplified representation of aerosol mixing state used in current regional or global models may introduce errors in simu-365

lating aerosol optical properties, thus leading to uncertainties in calculating directive radiative forcing. In this study, the er-

rors introduced by internal mixture assumptions used in sectional aerosol models were systematically quantified. We created

a reference scenario library with 1800 aerosol populations by performing particle-resolved aerosol model simulations with

PartMC-MOSAIC. We constructed a sensitivity library where particles were internally mixed in a prescribed set of size bins

by applying composition-averaging. This operation has the properties of conserving number concentration and particle sizes,370

and hence differences in any quantity can be solely attributed to mixing state impacts. Aerosol populations from the reference

and sensitivity library were then exposed to three different RH levels to understand the relative role of chemical species and

water redistribution introduced by the internal mixture assumption.

The internal mixture assumption generally led to an overestimation of the volume absorption coefficients and an under-

estimation of the volume scattering coefficients. The relative errors for ϵ(βabs) and ϵ(βscat) reached up to 70% and −32%,375

respectively. The relative errors generally increased for more externally-mixed populations, although at a given value for χ

a range of errors could be found, especially for the error in the scattering coefficient. The range of error in the absorption

coefficient can be explained by the magnitude of BC core size changes that are induced by composition-averaging. The find-

ing of overestimation of BC absorption due to simplified mixing state representation was consistent with many other stufies,

including the works by Fierce et al. (2016), Matsui and Mahowald (2017) and Matsui et al. (2018). The error in the scattering380

coefficient can be explained by the magnitude of the changes in the refractive index of the coating that are induced by the

composition-averaging.

For the cases with RH of 50% and 90%, the bulk aerosol water content was almost identical for the aerosol populations in

reference and sensitivity libraries. The relative error in the volume absorption coefficient ϵ(βabs) displayed a similar pattern
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for RH of 50% and 90% compared to the dry environment. The relative error in the volume scattering coefficient ϵ(βscat)385

decreased for higher relative humidities because of the enhanced scattering cross section through hygroscopic growth.

The absorption overestimation and scattering underestimation resulted in an consistent underestimation of SSA, with median

errors of −0.9% (RH0), −0.7% (RH50) and −0.4% (RH90). Populations with the largest underestimation of SSA (−22.3%)

were associated with populations with the largest underestimation in scattering.

It is worth emphasizing that we used Mie theory with a core-shell configuration to calculate optical properties assuming390

spherical particle shapes. Our results are therefore most representative of BC-containing populations where the BC core is

collapsed rather than a fractal aggregate (China et al., 2013, 2015; Hu et al., 2021). More accurate methods, such as dis-

crete dipole approximation (DDA) and dynamic shape factor should be used to represent these more irregular particle shapes

(Scarnato et al., 2013; Curtis et al., 2008; Luo et al., 2019; Wu et al., 2020; Hu et al., 2021).
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