1	Supporting Information
2	Formation of Organic Sulfur Compounds through SO ₂ Initiated
3	Photochemistry of PAHs and DMSO at the Air-Water Interface
4	
5	Haoyu Jiang, ^{1,2,3} Yingyao He, ⁴ Yiqun Wang, ^{1,2} Sheng Li, ⁵ Bin Jiang, ^{1,2} Luca Carena, ⁶
6	Xue Li, ⁷ Lihua Yang, ⁴ Tiangang Luan, ⁴ Davide Vione, ⁶ Sasho Gligorovski ^{*,1,2,3}
7	
8	¹ State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key
9	Laboratory of Environmental Protection and Resources Utilization, Guangzhou
10	Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510 640, China
11	² Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and
12	Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science,
13	Guangzhou 510640, China
14	³ Chinese Academy of Science, Center for Excellence in Deep Earth Science,
15	Guangzhou, 510640
16	⁴ School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
17	⁵ Hunan Research Academy of Environmental sciences, Changsha, 410004, China
18	⁶ Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5, 10125 Torino,
19	Italy
20	⁷ Institute of Mass Spectrometry and Atmospheric Environment, Jinan University,
21	Guangzhou 510632, China
22	
23	
24 25 26	*Corresponding author: <u>gligorovski@gig.ac.cn</u>

S1

- 27 Section S1. Description of MI-SPI-TOF-MS
- 28 Section S2. Description of FT-ICR-MS
- 29 Section S3. Analysis of FT-ICR-MS aqueous phase products based on DBE vs
- 30 carbon number iso-abundance plot
- 31 Section S4. Reaction mechanism of the aqueous phase product compounds
- 32 Section S5. Tables, Figures and Scheme
- 33
- 34 Number of Pages: 47
- 35 Number of Tables: 6
- 36 Number of Figures: 16
- 37 Number of Schemes: 1
- 38

39 Section 1. MI-SPI-TOF-MS

Briefly, a polydimethylsiloxane (PDMS, thickness 0.002 inch, Technical Products Inc, USA) membrane was used in the injector of the TOF-MS.⁵³ The ionization of the compounds (SPI) was performed by vacuum ultraviolet (VUV) light emitted by a deuterium (D₂) lamp (Hamamatsu, Japan): This is a soft ionization technique characterized by high molecular ion yield and low degree of fragmentation.⁶⁰⁻⁶² The limit of detection (LOD) of TOF-MS is around 1 ppb for most trace gases, and the time resolution of SPI-MS was set to 5 s.

The raw data were analyzed with commercial software (SPI-MS 3000 V1.0.1.2.0,
Guangzhou Hexin Instrument Co., Ltd., China), where the selected Gauss peaks above
a preset threshold are smoothed with a given average number.

50 Section 2. FT-ICR-MS

A solariX XR FT-ICR-MS instrument (Bruker Daltonik GmbH, Bremen, Germany) 51 equipped with a refrigerated, 9.4 T actively shielded superconducting magnet (Bruker 52 53 Biospin, Wissembourg, France) and a Paracell analyzer cell was used to detect the formation of products in the bulk aqueous phase.⁵³ Sample ionization was performed in 54 the negative ion mode using an electrospray ionization (ESI) ion source (Bruker 55 Daltonik GmbH, Bremen, Germany). The detection mass range was set at 150-1,000 56 m/z. Ion accumulation time was set at 0.65 s. Details of this instrument setting, 57 calibration and data processing were described in previous publications.^{63, 64} 58

59

S3

60 Section 3. Analysis of FT-ICR-MS Aqueous Phase Products Based on DBE vs

61 Carbon Number Iso-Abundance Plot

The iso-abundance plots of DBE versus carbon numbers for the detected CHO and CHOS formulae formed upon light-induced SO₂ oxidation of DMSO and PAHs/DMSO are presented in Figure S7-8. The CHO and CHOS with the same DBE values but different carbon numbers are considered as homologs differing from each other by a repeating mass increment.¹

The CHO and CHOS products distributions formed by SO₂ photo-oxidation of 67 68 PAHs/DMSO were different than those formed upon SO₂ photo-oxidation of DMSO, whereas the former had a regular and convergent distribution, while the latter 69 distribution of products was more scattered. The DBE values are smaller than six for 70 71 most of the CHO compounds formed upon SO₂ photo-oxidation of DMSO, whereas only 9 out of 16 CHOS products had low DBE values ranging from 0 to 6. Those OS 72 products with relatively high DBE values over eleven usually along with carbon 73 74 numbers from 27 to 42, indicates the probable formation of unsaturated long-chain aliphatic-like OSs compounds. 75

Considering the light-induced heterogeneous reaction of SO₂ with PAHs/DMSO (Figure S7), generally, the depicted average properties in terms of DBE and carbon number of numerous products for the PYR/DMSO almost contain the average properties of products for FLA/DMSO and PHE/DMSO. Both of the CHO and CHOS products formed in liquid phase could be divided into two clusters. Most of the CHO products, especially those emerged by light-induced heterogeneous reaction of SO₂ with

82	PYR/DMSO, exhibited DBE values in the range of 8-14 and 2-7, with 10-19 carbon
83	atoms and 1-9 oxygen atoms, which would probably be the hydroxyl or carboxyl
84	compounds. ^{2, 3} The products formed by light-induced heterogeneous reaction of SO ₂
85	with PHE/DMSO had lower DBE than those produced by light-induced heterogeneous
86	reaction of SO_2 with FLA/DMSO. The DBE values between 1 and 3 for products
87	formed by light-induced heterogeneous reaction of SO ₂ with PHE/DMSO and 6-7 for
88	products formed by light-induced heterogeneous reaction of SO ₂ with FLA/DMSO
89	exhibited a relatively long carbon chain compared with those corresponding in the other
90	cluster, which is 23-32 and 21-32, respectively, implying that these compounds were
91	most likely the photodegradation products of the initial reactants. There is no significant
92	difference of O atom in these two clusters.
93	Similarly, the majority of CHOS exhibited DBE values in the range of 8-13 and 1-5,
94	with 13 to 16 and 6-17 carbon atoms, and 4 to 10 oxygen atoms. Almost all the CHOS

products were with only one sulfur atom. The limited carbon number indicated these
CHOS products were still inclined to maintain an original aromatic structure from
reactants.

99 Section 4. Reaction Mechanism of the Aqueous Phase Product Compounds

The heterogeneous reaction between SO₂ and unsaturated fatty acid and long-chain 100 alkenes has been reported to take place and leads efficiently to the formation of OSs.⁴, 101 ⁵ In our study, OS products formed by light-induced SO₂ oxidation of PAHs may also 102 follow similar reaction mechanism. The key step is the formation of cyclic 103 organosulfites and linear OS products by the isomerization of a double bond (C=C) via 104 ene-reactions between SO₂ and the double bond. The first step includes evolvement of 105 diaradical OS intermediates via two routes, i.e. the direct interaction of SO₂ with the 106 C=C leading to π complexes, and a four-membered ring formation through a [2+2] 107 cycloaddition. After the SO₂ addition to the C=C double bond, oxidation reactions 108 would be triggered, undergoing radical-initiated H-abstraction, OH radical production 109 110 and chain fragmentation which ultimately leads to the formation of stable cyclic organosulfites by the intramolecular recombination of radicals.^{4, 5} As expected, OS 111 compounds with sulfoxide group such as $C_{16}H_{10}O_3S$ (1, 3), and $C_{14}H_{10}O_3S$ (2) were 112 generated by ³SO₂* oxidation of ³PYR*, ³FLA*, and ³PHE*. Meanwhile, C₁₆H₁₂O₃S 113 (4, 6) and $C_{14}H_{12}O_3S$ (5) could be also generated with the phenyl ring open at the 114 position of 10a, 1 and 5a, 5 of PYR, 10a, 1 and 8a, 9 of PHE, and 10a, a and 3a, a of 115 FLA. All these initial products would be oxidized into sulfones, such as $C_{16}H_{10}O_4S$ (7, 116 9) and $C_{14}H_{10}O_4S$ (8), then followed by subsequent further oxidation. With the attack 117 of oxygen and radicals, a five-membered ring was allowed to open, yielding the 118 formation of aromatic sulfates including 1-pyrenylsulfate (C₁₆H₁₀O₄S) (10), 4-119 pyrenylsulfate ($C_{16}H_{10}O_4S$) (11), 3-phenanthrol sulfate ($C_{14}H_{10}O_4S$) (12), 9-120

121	phenanthrol sulfate $(C_{14}H_{10}O_4S)$ (13), 8-fluoranthenyl sulfate $(C_{16}H_{10}O_4S)$ (14), and 1-
122	fluoranthenyl sulfate ($C_{16}H_{10}O_4S$) (15). A further degradation initiated by triggering
123	phenyl ring open, smaller degradation products with aromatic ring structures could be
124	generated.
125	
126	

127 Section 5. Tables, Figures and Scheme

128 **Table S1:** Calculated Gibbs free energies for all molecules employed in the derivation

100	of and phase	roportion Cibbo	anaraiaa in	transformation	n ro.ooga	initiated	by 3DA LLa*
129	or gas-phase	reaction Globs	energies m	transformation	process	Inntiated	Uy PARS

130	with SO ₂ ,	arranged	in the	order	of i	ncreasing	molecu	ılar mass.
-----	------------------------	----------	--------	-------	------	-----------	--------	------------

Chemical Formula or Name	Gm ^{\ODef} /Hartree
·CH ₃	-39.81
·OH	-75.74
H ₂ O	-76.42
CH ₂ O	-114.49
·OCH ₃	-115.03
·CH ₂ OH	-115.04
O ₂	-150.28
CH ₃ OH	-115.69
CO ₂	-188.61
·OOCH ₃	-190.19
SO ₂	-548.64
$(^{3}\Sigma)SO_{2}$	-548.54
HOSO	-549.21
S(=O)(CH ₃) ₂	-553.14
SO ₃	-623.84
CH ₃ S(=O)OH	-589.09
S(=O) ₂ (CH ₃) ₂	-628.37
$CH_3S(=O)_2OH$	-664.33
H_2SO_4	-700.28
$CH_3S(=O)_2OCH_3$	-703.60
HOS(=O)OOCH ₃	-739.45
$CH_2(OH)S(=O)_2OH$	-739.55
$CH_2=CH(OS(=O)_2OH)$	-777.63
cyclo-(CH=CHOS(=O) ₂ O)	-776.43
$CH_3CH_2(OS(=O)_2OH)$	-778.84
$CH_2(OH)CH_2S(=O)_2OH$	-778.83
$S(=O)_2(CH2OH)_2$	-778.81
Z-CH ₃ CH=CH(OS(=O) ₂ OH)	-816.92
$CH_3S(=O)_2OCH_2CH_2OH$	-818.11

$S(=O)_2(COOH)_2$	-926.92
CH ₃ S(=O) ₂ OCH ₂ COOH	-892.18
C5H4-1-(OS(=O)2OH)	-893.09
$C_6H_{4-1,2-}(cyclo-OS(=O)_2O)$	-930.04
$C_{6}H_{5}-1-(OS(=O)_{2}OH)$	-931.24
$S(=O)_2(OCOOH)_2$	-1077.42
C ₁₀ H ₆ -2,3-(cyclo-OS(=O)O)	-1008.41
C ₁₀ H ₇ -2-(OS(=O)OH)	-1009.60
C9H7-1-(OS(=O)2OH)	-1046.70
$C_{10}H_6-2,3-(cyclo-OS(=O)_2O)$	-1083.63
C ₁₀ H ₇ -2-(OS(=O) ₂ OH)	-1084.83

Table S2: Calculated Gibbs free energies for all molecules employed in the derivation

135 of aqueous-phase reaction Gibbs energies in transformation process initiated by ³FLA*,

136 arranged in the order of increasing molecular mass.

Chemical Formula or Name	Gm ^O /Hartree
Fluoranthene	-615.54
(³ Σ)Fluoranthene	-615.48
C ₁₆ H ₈ -(8H,9H)-8,9-(cyclo-OS(=O)O)	-1239.38
C ₁₆ H ₈ -(1H,2H)-1,2-(cyclo-OS(=O)O)	-1239.39
<i>E</i> -C ₁₂ H ₆ -1-(CH=CHCH=CH ₂)-2-(OS(=O)OH)	-1240.54
<i>E</i> -C ₁₃ H ₇ -1-(OS(=O)OH)-9-(=CHCH=CH ₂)	-1240.56
C ₁₆ H ₈ -(8H,9H)-8,9-(cyclo-OS(=O) ₂ O)	-1314.61
C ₁₆ H ₉ -8-(OS(=O) ₂ OH)	-1314.66
C ₁₆ H ₈ -(1H,2H)-1,2-(cyclo-OS(=O) ₂ O)	-1314.62
<i>E</i> -C ₁₂ H ₆ -1-(CH=CHCH=CH ₂)-2-(OS(=O) ₂ OH)	-1315.78
C ₁₆ H9-1-(OS(=O) ₂ OH)	-1314.66
<i>E</i> -C ₁₃ H ₇ -1-(OS(=O) ₂ OH)-9-(=CHCH=CH ₂)	-1315.80
C ₁₆ H ₈ -8-(OS(=O) ₂ OH)-9-OH	-1389.89
<i>E</i> -C ₁₂ H ₆ -1-(CH=CHCH ₂ CHO)-2-(OS(=O) ₂ OH)	-1391.02
C ₁₆ H9-1-(OS(=O) ₂ OH)-2-OH	-1389.89
<i>E</i> -C ₁₃ H ₇ -1-(OS(=O) ₂ OH)-9-(=CHCH ₂ CHO)	-1391.04
(<i>1E</i> , <i>2E</i>)-C ₁₂ H ₆ -1-(=CHC(=O)OS(=O) ₂ OH)-2-(=CHCOOH)	-1540.33
<i>E</i> -C ₁₃ H ₇ -1-(=CHCOOH)-9-(C(=O)OS(=O) ₂ OH)	-1540.32

145 **Table S3:** Calculated Gibbs free energies for all molecules employed in the derivation

146 of aqueous-phase reaction Gibbs energies in transformation process initiated by ³PHE*

147	and ³ PYR*,	arranged in	the order	of increasing	molecular mass.
		U		Ų	

Chemical Formula or Name	G _m ^{\overline{\eta}} /Hartree
Phenathrene	-539.34
(³ Σ)Phenathrene	-539.26
Pyrene	-615.56
(³ Σ)Pyrene	-615.48
C ₁₄ H ₈ -(2H,3H)-2,3-(cyclo-OS(=O)O)	-1163.17
C ₁₄ H ₈ -(9H,10H)-9,10-(cyclo-OS(=O)O)	-1163.20
<i>E</i> -C ₁₀ H ₆ -1-(CH=CHCH=CH ₂)-2-(OS(=O)OH)	-1164.35
C ₁₂ H ₈ -2-(CH=CH ₂)-2'-OS(=O)OH	-1164.36
C ₁₄ H ₈ -(2H,3H)-2,3-(cyclo-OS(=O) ₂ O)	-1238.40
C ₁₄ H ₉ -3-(OS(=O) ₂ OH)	-1238.46
C ₁₄ H ₈ -(9H,10H)-9,10-(cyclo-OS(=O) ₂ O)	-1238.44
C ₁₄ H ₉ -9-(OS(=O) ₂ OH)	-1238.46
<i>E</i> -C ₁₀ H ₆ -1-(CH=CHCH=CH ₂)-2-(OS(=O) ₂ OH)	-1239.59
C ₁₂ H ₈ -2-(CH=CH ₂)-2'-OS(=O) ₂ OH	-1239.60
C ₁₆ H ₈ -(2H,3H)-2,3-(cyclo-OS(=O)O)	-1239.38
C ₁₆ H ₈ -(4H,5H)-4,5-(cyclo-OS(=O)O)	-1239.43
<i>E</i> -C ₁₃ H ₇ -1H-1-(=CHCH=CH ₂)-9-(OS(=O)OH)	-1240.56
C ₁₄ H ₈ -4-(OS(=O)OH)-5-(CH=CH ₂)	-1240.56
C ₁₄ H ₈ -2-OH-3-(OS(=O) ₂ OH)	-1313.69
C ₁₄ H ₈ -9-OH-10-(OS(=O) ₂ OH)	-1313.68
<i>E</i> -C ₁₀ H ₆ -1-(CH=CHCH ₂ CHO)-2-(OS(=O) ₂ OH)	-1314.83
C ₁₂ H ₈ -2-(CH ₂ CHO)-2'-OS(=O) ₂ OH	-1314.84
C ₁₆ H ₈ -(2H,3H)-2,3-(cyclo-OS(=O) ₂ O)	-1314.61
C ₁₆ H ₉ -2-(OS(=O) ₂ OH)	-1314.66
C ₁₆ H ₈ -(4H,5H)-4,5-(cyclo-OS(=O) ₂ O)	-1314.66
C ₁₆ H ₉ -4-(OS(=O) ₂ OH)	-1314.68
<i>E</i> -C ₁₃ H ₇ -1H-1-(=CHCH=CH ₂)-9-(OS(=O) ₂ OH)	-1315.79
C ₁₄ H ₈ -4-(OS(=O) ₂ OH)-5-(CH=CH ₂)	-1315.80
C ₁₆ H ₈ -1-OH-2-(OS(=O) ₂ OH)	-1389.91
C ₁₆ H ₈ -2-(OS(=O) ₂ OH)-5-OH	-1389.90
<i>E</i> -C ₁₃ H ₇ -1H-1-(=CHCH ₂ CHO)-9-(OS(=O) ₂ OH)	-1391.03

C ₁₄ H ₈ -4-(OS(=O) ₂ OH)-5-(CH ₂ CHO)	-1391.04
(<i>1Z</i> , <i>2E</i>)-C ₁₀ H ₆ -(1H,2H)-1-(=CHC(=O)OS(=O) ₂ OH)-2- (=CHCOOH)	-1464.31
C ₁₂ H ₈ -2-COOH-2'-C(=O)OS(=O) ₂ OH	-1464.16
C ₁₄ H ₈ -4-(C(=O)OS(=O) ₂ OH)-5-COOH	-1540.37
E-C ₁₃ H ₇ -1H-1-(=CHC(=O)OS(=O) ₂ OH)-9-COOH	-1540.35

Table S4: All detected m/z signals upon SO₂ oxidation of DMSO and a mixture of

m/z signals						
Pyrene	Fluoranthene	Phenanthrene	DMSO			
42	32	46	32			
46	42	48	34			
48	46	50	42			
50	48	58	46			
58	50	62	48			
60	56	64	50			
62	58	66	56			
64	62	72	58			
66	64	74	60			
72	70	76	62			
74	72	78	64			
76	74	80	66			
78	76	82	70			
80	78	88	72			
82	80	90	74			
88	82	92	76			
90	84	94	78			
92	88	96	80			
94	86	100	82			
96	90	102	84			
100	92	106	88			
102	94	108	90			
106	96	110	92			
108	98	112	94			
110	100	122	96			
112	102	124	98			
118	104	126	100			
120	106	128	102			
122	108	136	104			
124	110	138	106			
126	112	140	108			
136	118	142	110			
138	120	154	112			
140	122	156	114			
154	126	158	116			
156	128	166	118			
158	134	170	120			
166	136	178	122			

PAHs/DMSO under all conditional experiments.

170 142	180	124
178 166	182	126
180 178	184	128
180	192	136
182	194	138
	196	140
	204	142
	206	150
	208	152
	210	154
	222	156
		158
		160
		166
		168
		170
		178
		180
		182
		202
		204
		206
		208
		210

Table S5: Tentative gaseous organic unsaturated multifunctional molecules and sulfur compounds identification of detected m/z uponheterogeneous SO2 oxidation of PAHs/DMSO dissolved in water.

			PAHs/DMSO		DMSO
Sample	m/z	Tentative CHO	Tentative OS	Tentative CHO	Tentative OS
DMSO	34			H_2O_2	H_2S
	114			$C_5H_6O_3$	C ₅ H ₆ OS
				$C_6H_{10}O_2$	
				$C_7H_{14}O$	
	116			C4H4O4	C ₅ H ₈ OS
				C5H8O3	
	150			$C_8H_6O_3$	$C_4H_6O_4S$
				$C_9H_{10}O_2$	$C_5H_{10}OS_2$
				$C_{10}H_{14}O$	$C_5H_{10}O_3S$
					$C_6H_{14}O_2S$
	152			$C_8H_8O_3$	$C_4H_8O_2S_2$
				$C_{9}H_{12}O_{2}$	$C_4H_8O_4S$
	160			C6H8O5	$C_7H_{12}O_2S$
				C7H12O4	$C_8H_{16}OS$
				C8H16O3	
	168			$C_8H_8O_4$	$C_8H_8O_2S$

				$C_{12}H_8O$	$C_5H_{12}O_4S$	
				$C_9H_{12}O_3$	$C_5H_{12}O_2S_2$	
					$C_9H_{12}OS$	
	202			$C_{12}H_{10}O_3$	$C_7H_6O_5S$	
				$C_9H_{14}O_5$	C8H10O4S	
				$C_{13}H_{14}O_2$	$C_8H_{10}O_2S_2$	
				$C_{14}H_{18}O$	$C_9H_{14}OS_2$	
				$C_{11}H_{22}O_3$	$C_{10}H_{18}O_2S$	
					$C_{11}H_{22}OS$	
FLA/DMSO	86	$C_3H_2O_3$	C_4H_6S			
		$C_4H_6O_2$	$C_6H_{14}OS$			
		$C_5H_{10}O$				
	134	$C_4H_6O_5$	$C_5H_{10}O_2S$			
		$C_8H_6O_2$	$C_6H_{14}OS$			
		$C_{5}H_{10}O_{4}$				
		$C_9H_{10}O$				
PHE/DMSO	184	C8H8O5	$C_5H_{12}O_5S$			
		C12H8O2	$C_4H_8O_6S$			
		C9H12O4				
		C11H20O2				
		C13H12O				

	192	$C_9H_4O_5$	C6H8O5S	
		$C_{10}H_8O_4$	$C_7H_{12}O_4S$	
		$C_{14}H_8O$		
		$C_{11}H_{12}O_3$		
		$C_{12}H_{16}O_2$		
	194	$C_{10}H_{10}O_4$	C5H6O6S	
		$C_{14}H_{10}O$	$C_{6}H_{10}O_{5}S$	
		$C_{11}H_{14}O_3$	$C_7H_{14}O_4S$	
		$C_{12}H_{18}O_2$		
	196	$C_9H_8O_5$	C5H8O6S	
		$C_{13}H_8O_2$	$C_6H_{12}O_5S$	
		$C_{10}H_{12}O_4$	$C_7H_{16}O_4S$	
		$C_{14}H_{12}O$		
		$C_{11}H_{16}O_3$		
		$C_{12}H_{20}O_2$		
	222	$C_{11}H_{10}O_5$	$C_5H_2O_8S$	
		$C_{15}H_{10}O_2$	$C_7H_{10}O_6S$	
		$C_{12}H_{14}O_4$	$C_8H_{14}O_5S$	
		$C_{16}H_{14}O$	$C_9H_{18}O_4S$	
FLA/DMSO and DMSO	32	CH ₄ O		
	56	C3H4O	C_2S	C_2S
	70	C4H6O	C_3H_2S	C_3H_2S

	84	$C_4H_4O_2$	C_4H_4S	C_4H_4S
		C ₅ H ₈ O		
	104	$C_3H_4O_4$	C ₄ H ₈ OS	C_4H_8OS
		$C_4H_8O_3$		
PYR/DMSO and DMSO	60	$C_2H_4O_2$	C_2H_4S	C_2H_4S
PHE/DMSO and DMSO	98	$C_5H_6O_2$	H_2O_4S	H_2O_4S
		$C_6H_{10}O$	C5H6S	C ₅ H ₆ S
	182	$C_{9}H_{10}O_{4}$	C4H6O6S	C4H6O6S
		$C_{10}H_{14}O_3$	$C_5H_{10}O_5S$	$C_5H_{10}O_5S$
		$C_{11}H_{18}O_2$	C ₆ H ₁₄ O ₄ S	C ₆ H ₁₄ O ₄ S
	204	$C_{12}H_{12}O_{3}$	$C_{10}H_{20}O_2S$	$C_{10}H_{20}O_2S$
		$C_{13}H_{16}O_2$	C7H8O5S	C7H8O5S
	206	$C_{10}H_6O_5$	C7H10O5S	C7H10O5S
		$C_{11}H_{10}O_4$	$C_8H_{14}O_4S$	C8H14O4S
		$C_{12}H_{14}O_{3}$	$C_8H_{14}O_2S_2$	$C_8H_{14}O_2S_2$
		$C_{13}H_{18}O_2$	$C_9H_{18}O_3S$	$C_9H_{18}O_3S$
		$C_{14}H_{22}O$	$C_{10}H_{22}O_2S$	$C_{10}H_{22}O_2S$
	208	$C_{10}H_8O_5$	C ₆ H ₈ O ₆ S	C ₆ H ₈ O ₆ S
		$C_{14}H_8O_2$	$C_7H_{12}O_5S$	C7H12O5S
		$C_{11}H_{12}O_4$	$C_8H_{16}O_4S$	C ₈ H ₁₆ O ₄ S
		$C_{15}H_{12}O$	$C_8H_{16}O_2S_2$	$C_8H_{16}O_2S_2$
		$C_{12}H_{16}O_3$		

		$C_{13}H_{20}O_2$		
	210	$C_9H_6O_6$	C ₆ H ₁₀ O ₆ S	$C_6H_{10}O_6S$
		$C_6H_{10}O_8$	C7H14O5S	$C_7H_{14}O_5S$
		$C_{10}H_{10}O_5$	$C_8H_{18}O_4S$	$C_8H_{18}O_4S$
		$C_{14}H_{10}O_2$		
		$C_{11}H_{14}O_4$		
		$C_{15}H_{14}O$		
		$C_{12}H_{18}O_{3}$		
		$C_{13}H_{22}O_2$		
PYR/DMSO, FLA/DMSO and DMSO	42	$C_2H_2O\cdot$	C_3H_6	C_3H_6
	118	$C_4H_6O_4$	$C_4H_6O_2S$	$C_4H_6O_2S$
		C_8H_6O	$C_5H_{10}OS$	$C_5H_{10}OS$
		$C_{5}H_{10}O_{3}$		
	120	$C_3H_4O_5$	$C_4H_8O_2S$	$C_4H_8O_2S$
		C_8H_8O	$C_5H_{12}OS$	$C_5H_{12}OS$
	122	$C_7H_6O_2$	$C_4H_{10}O2S$	$C_4H_{10}O_2S$
		$C_7H_8O_2$		
		$C_8H_{12}O$		
		$C_7H_6O_2$		
	138	$C_7H_6O_3$	$C_4H_{10}O_3S$	$C_4H_{10}O_3S$
		$C_6H_4O_4$		
		C7H8O3		

		$C_8H_{12}O_2$		
	140	$C_7H_8O_3$	C7H8OS	$C_3H_8O_4S$
		$C_8H_{12}O_2$	$C_6H_4O_2S$	
FLA/DMSO, PHE/DMSO and DMSO	128	$C_{10}H_{8}$	$C_2H_8O_4S$	$C_2H_8O_4S$
			$C_5H_4O_2S$	$C_5H_4O_2S$
			C_6H_8OS	C_6H_8OS
	142	$C_6H_6O_4$	$C_6H_6O_2S$	$C_6H_6O_2S$
		$C_9H_6O_2$	$C_7H_{10}OS$	$C_7H_{10}OS$
PYR/DMSO, PHE/DMSO and DMSO	66	C_5H_6	H_2O2S	H_2O2S
	124	$C_7H_8O_2$	C ₃ H ₈ O ₃ S (EMS)	C ₃ H ₈ O ₃ S (EMS)
		$C_8H_{12}O$	$C_2H_4O_4S$	$C_2H_4O_4S$
	154	$C_7H_6O_4$	$C_4H_{10}O_4S$	$C_4H_{10}O_4S$
		$C_8H_{10}O_3$	C3H6O5S	$C_3H_6O_5S$
		$C_{10}H_{18}O$	$C_8H_{10}OS$	C_8H_10OS
	156	$C_{11}H_8O$	$C_2H_4O_6S$	$C_2H_4O_6S$
		$C_7H_8O_4$	$C_7H_8O_2S$	$C_7H_8O_2S$
			$C_8H_{12}OS$	$C_8H_{12}OS$
	158	$C_{10}H_6O_2$	$C_6H_6OS_2$	$C_6H_6OS_2$
		$C_7H_{10}O_4$		$C_7H_{10}O_2S$
		$C_{11}H_{10}O$	$C_8H_{14}OS$	$C_8H_{14}OS$
	170	$C_8H_{14}O_3$	$C_3H_6O_6S$	$C_3H_6O_6S$
		$C_7H_6O_5$	$C_4H_{10}O_5S$	$C_4H_{10}O_5S$
		$C_{12}H_{10}O$	$C_7H_6O_3S$	$C_7H_6O_3S$

		$C_{10}H_{18}O_2$	$C_8H_{10}O_2S$	$C_8H_{10}O_2S$
PAHs/DMSO and DMSO	46	CH_2O_2	CH_2S	CH ₂ S
	48	CH_4O_2	OS	OS
	50	CH ₂ O	H_2OS	H ₂ OS
	58	$C_2H_2O_2$	C_2H_2S	C_2H_2S
		C_3H_6O		
	62	CH ₂ O ₃	CH ₂ OS	CH ₂ OS
	64	CH_4O_3	CH_4OS	CH_4OS
	72	$C_3H_4O_2$	C_3H_4S	C_3H_4S
		C_4H_8O		
	74	$C_2H_2O_3$	C_2H_2OS	C_2H_2OS
		$C_3H_6O_2$		
	76	$C_2H_4O_3$	C_2H_4OS	C_2H_4OS
		$C_3H_8O_2$		
	78	C_6H_6	C_2H_6OS	C_2H_6OS
	80	C_5H_4O	CH ₄ O ₂ S (MSIA)	CH ₄ O ₂ S (MSIA)
	88	$C_3H_4O_3$	C_4H_8S	C_4H_8S
		$C_4H_8O_2$		
		$C_5H_{12}O$		
	90	$C_2H_2O_4$	C_3H_6OS	C_3H_6OS
		$C_3H_6O_3$		
		$C_4H_{10}O_2$		

92	C_6H_4O	$C_2H_4O_2S$	$C_2H_4O_2S$
	$C_2H_4O_4$	C ₃ H ₈ OS	C ₃ H ₈ OS
	$C_3H_8O_3$		
94	C_6H_6O	C ₂ H ₆ O ₂ S (MSM)	C ₂ H ₆ O ₂ S (MSM)
96	C_6H_8O	CH4O3S (MSA)	CH4O3S (MSA)
	$C_5H_4O_2$		
	$C_5H_6O_2$		
100	$C_4H_4O_3$	C ₄ H ₄ OS	C ₄ H ₄ OS
	$C_5H_8O_2$		
	$C_6H_{12}O$		
102	$C_4H_6O_3$	C_4H_6OS	C_4H_6OS
	$C_5H_{10}O_2$		
106	C_7H_6O	$C_3H_8O_2S$	$C_3H_8O_2S$
		$C_2H_4O_3S$	$C_2H_4O_3S$
108	$C_6H_4O_2$	$C_3H_8O_2S$	$C_3H_8O_2S$
110	$C_6H_6O_2$	$C_2H_6O_3S$	$C_2H_6O_3S$
112	$C_6H_8O_2$	CH ₄ O ₄ S (MSAOH)	CH ₄ O ₄ S (MSAOH)
	$C_7H_{12}O$	C_5H_4OS	C_5H_4OS
126	$C_6H_6O_3$	C ₂ H ₆ O ₄ S (ESAOH)	C ₂ H ₆ O ₄ S (ESAOH)
		C ₆ H ₆ OS	C_6H_6OS
136	$C_8H_8O_2$	$C_4H_8O_3S$	$C_4H_8O_3S$
	$C_5H_{12}O_4$	$C_5H_{12}O_2S$	$C_{5}H_{12}O_{2}S$

	$C_9H_{12}O$		
166	$C_8H_6O_4$	$C_4H_6O_5S$	C4H6O5S
		$C_5H_{10}O_4S$	$C_5H_{10}O_4S$
		$C_6H_{14}O_3S$	$C_6H_{14}O_3S$
178	$C_{14}H_{10}$	$C_6H_{10}O_4S$	$C_6H_{10}O_4S$
		$C_5H_6O_5S$	$C_5H_6O_5S$
180	$C_9H_8O_4$	$C_{10}H_{12}OS$	C5H8O5S
			$C_{6}H_{12}O_{2}S_{2}$
			$C_6H_{12}O_4S$

The formula with grey back colour and the bold number were found to be the precursors of organic ambient aerosol with the same molecular compositions.

The bold number were found in ambient atmospheric aerosols with the same molecular compositions

Tentative chemical **Reaction system References*** m/z formulas 6 DMSO $C_4H_8O_4S$ ^a 152 6,7 $C_5H_{12}O_4S$ ^a 168 7 $C_7H_6O_5S^{b}$ 202 6 $C_8H_{10}O_4S$ ° 7 (260) (C6H12O9S) 6 278 C12H22O5S 6,7 280 C13H28O4S^a 7 292 C14H28O4S 6 320 C16H32O4S 6,7 PHE/DMSO and PYR/DMSO 242 C7H14O7S 6,7 (274) $(C_{14}H_{10}O_{4}S)$ 7-9 364 C₁₈H₃₆O₅S 6,7 PHE/DMSO 184 C₅H₁₂O₅S^a 6 $C_4H_8O_6S^{a}$ 7 192 $C_6H_8O_5S$ 6 $C_7H_{12}O_4S$ 6 194 $C_5H_6O_6S$ 6,7 $C_6H_{10}O_5S$ 6,7 $C_7H_{14}O_4S^{a}$ 6-8 196 $C_5H_8O_6S$ 6-8 C₆H₁₂O₅S^a 6,7 $C_7H_{16}O_4S^{a}$ 7 222 $C_5H_2O_8S$ 6,7 $C_7H_{10}O_6S$ 6 $C_8H_{14}O_5S$ 7,8 $C_9H_{18}O_4S^{a}$ 6-8 PYR/DMSO 212 C6H12O6S^a 6,7 232 C8H8O6S 6-8 266 C9H14O7S 6 278 C11H18O6S 280 C10H16O7S^d 6-8 6-8 282 C10H18O7S^d 6, 8 284 C9H16O8S 6-8 294 C11H18O7S 6-8 296

Table S6: Tentative organic sulfur compounds detected in the present study that were

identified in ambient atmospheric aerosols

C11H20O7S

	200	C H O C	7
	298	C ₁₆ H ₁₀ O ₄ S	6.8
	312	C11H20O8S	6-8
	(322)	$(C_{14}H_{26}O_6S)$	6-9
	324	C14H28O6S ^a	6-8
	326	$C_{12}H_{22}O_8S$	7
	334	C16H30O5S	8,9
	336	C14H24O7S	6, 8
	338	C13H22O8S	6-8
	350	C14H22O8S	6,7
	352	C16H32O6S ^a	6-8
	354	$C_{12}H_{22}O_0S$	6,7
	366	C14H22O9S	6
	500	C141122O95	6
	(200)		6
	(380)	(C15H24O9S)	6 7
	382	$C_{15}H_{26}O_9S$	6, /
PAHs/DMSO and DMSO	80	$CH_4O_2S^{**}$ (MSIA)	
	94	$C_2H_6O_2S^{**}(MSM)$	
	96	$CH_4O_3S^{**}(MSA)$	
	112	CH ₄ O ₄ S**(MSAOH)	
	126	$C_2H_6O_4S^{**}(ESAOH)$	6
	166	$C_4H_6O_5S$	6.7
	170	$C_5H_{10}O_4S$	7
	178	$C_5H_6O_5S$	6
	180	$C_5\Pi_8O_5S$	6,7
PVR/DMSO_PHF/DMSO and DMSO	124	$C_{6}H_{12}O_{4}S$ $C_{2}H_{0}O_{2}S^{**}(FMS)$	
T TROWSO, THE DWSO and DWSO	124	$C_{2}H_{4}O_{4}S$	6
	140	$C_2H_4O_4S^{a}$	6
	154	$C_4H_{10}O_4S^{a}$	6
		$C_3H_6O_5S^{a, e}$	6
	156	$C_2H_4O_6S^{a,e}$	6
	170	C ₃ H ₆ O ₆ S ^{a, e}	6
		C ₄ H ₁₀ O ₅ S ^a	6
	216	C8H8O5S ^b	6-8
FLA/DMSO, PHE/DMSO and DMSO	182	$C_4H_6O_6S$	6
		$C_5H_{10}O_5S^{a,e}$	6, 7, 9
		$C_6H_{14}O_4S^{a}$	6,7
PHE/DMSO and DMSO	204	$C_7H_8O_5S$	7
	206	$C_7H_{10}O_5S$	6,7
		$C_8H_{14}O_4S$	6
	208	$C_6H_8O_6S$	6, 7
		$C_7H_{12}O_5S$	6

	C ₈ H ₁₆ O ₄ S ^a	6, 7, 9
210	$C_6H_{10}O_6S$	6, 7
	C7H14O5S ^a	6, 7
	$C_8H_{18}O_4S$ ^a	6 7

Chemical formulae in bold were detected in aqueous solutions. Those chemical formulae with brackets were only detected under dark condition.

*References related to the chemical formulae of organic sulfur compounds identified in ambient aerosols.

** Chemical formulae correspond to the organic sulfur compounds, known to participate in the NPF events.

Tentatively identified VOC precursors:

^a alkyl OS. ^b 2-methylnaphthalene. ^c methylbenzyl sulfate. ^d α,β -Pinene, Limonene, α,β -Terpinene. ^e Isoprene.

Figure S1: Venn Diagrams of gaseous compounds detected upon reaction of SO₂ with PAHs/DMSO and DMSO.

Figure S2: Formation profiles of m/z=80 (MSIA) (Panel A), m/z=94 (MSM) (Panel B), m/z=112 (MSAOH) (Panel C), m/z=124 (EMS) (Panel D) and m/z=126 (ESAOH) (Panel E) upon light-induced heterogeneous reactions of SO₂ with PAHs/DMSO.

Figure S3: Venn Diagrams of the detected aqueous-phase product compounds formed during the heterogeneous reaction of SO₂ with PAHs/DMSO under light irradiation (300 nm $<\lambda<700$ nm) (Panel A); Total number of detected formulae for the heterogeneous reactions of SO₂ with DMSO and PAHs/DMSO upon light irradiation (Panel B).

Figure S4: Venn Diagrams of aqueous compounds detected upon reaction of SO₂ with PAHs/DMSO and DMSO.

Figure S5: Venn Diagrams of $C_cH_hO_o$ (CHO) and $C_cH_hO_oS_s$ (CHOS) compounds detected upon reaction of SO₂ with PAHs/DMSO and DMSO in the aqueous phase.

Figure S6: DBE versus carbon number isoabundance plots for the $C_cH_hO_o$ (panel A) and $C_cH_hO_oS_s$ (panel B) group of products detected in ESI⁻ mode, emerged by the light-induced heterogeneous reaction of SO₂ with PAHs/DMSO.

Figure S7: DBE versus carbon number isoabundance plot for the $C_cH_hO_o$ (Panel A) and $C_cH_hO_oS_s$ (Panel B) group of compounds detected in ESI⁻ mode, emerged by the light-induced heterogeneous reaction of SO₂ with PAHs/DMSO.

Figure S8: The van Krevelen graph and aromaticity equivalent (grey with $X_c < 2.5$, black with 2.5 $\leq X_c < 2.7$, and silver with $X_c \geq 2.7$) for detected C_cH_hO_o (CHO) and C_cH_hO_oS_s (CHOS) compounds detected in ESI⁻ mode, formed by the heterogeneous reactions of SO₂ with DMSO in dark and in presence of light. The X_c is illustrated by the color bar of each VK diagram, while the pie chart demonstrates the number in different thresholds.

Figure S9: The van Krevelen graph and aromaticity equivalent (grey with $X_c < 2.5$, black with 2.5 $\leq X_c < 2.7$, and silver with $X_c \geq 2.7$) for detected C_cH_hO_o compounds in ESI⁻ mode, formed by the heterogeneous reaction of SO₂ with PAHs/DMSO in presence of light. The X_c is illustrated by the color bar of each VK diagram, while the pie chart demonstrates the number in different thresholds during these reactions.

Figure S10: The van Krevelen graph and aromaticity equivalent (grey with $X_c < 2.5$, black with $2.5 \leq X_c < 2.7$, and silver with $X_c \geq 2.7$) for detected $C_cH_hO_oS_s$ compounds in ESI⁻ mode, formed by the heterogeneous reaction of SO₂ with PAHs/DMSO in presence of light. The X_c is illustrated by the color bar of each VK diagram, while the pie chart demonstrates the number in different thresholds during these reactions.

Figure S11: The van Krevelen graph and aromaticity equivalent (grey with $X_c < 2.5$, black with $2.5 \leq X_c < 2.7$, and silver with $X_c \geq 2.7$) for detected $C_cH_hO_oS_s$ compounds in ESI⁻ mode formed during the heterogeneous reaction of SO₂ with PAHs/DMSO upon all experimental conditions. The X_c is illustrated by the color bar of each VK diagram, while the pie chart demonstrates the number in different thresholds during these reactions.

Figure S12: Structures of pyrene, fluoranthene and phenanthrene and their numbering convention.

Figure S13: The total number of identified *m/z* signals upon (**A**) both, the photodegradation of PYR/DMSO, FLA/DMSO, and PHE/DMSO and light-induced reaction of SO₂ with DMSO, PYR/DMSO, FLA/DMSO, and PHE/DMSO, (**B**) only photodegradation of PYR/DMSO, FLA/DMSO, and PHE/DMSO and (**C**) only light-induced reaction of SO₂ with DMSO, PYR/DMSO, FLA/DMSO, FLA/DMSO, and PHE/DMSO

Figure S14: UV-VIS absorption spectra of pyrene/DMSO in the aqueous phase taken before the irradiation and after 2 h of light irradiation

Figure S15: UV-VIS absorption spectra of phenathrene/DMSO in the aqueous phase taken before the irradiation and after 2 h of light irradiation

Figure S16: UV-VIS absorption spectra of fluonanthrene/DMSO in the aqueous phase taken before the irradiation and after 2 h of light irradiation

Scheme S1: Detailed reaction mechanism describing the OSs formation of aqueous phase products initiated by ³PAHs* and ³SO₂*. Numbers in brackets, written below each molecule, present compound designations to better follow the discussion with Scheme S1.

References

1. Jiang, B.; Liang, Y.; Xu, C.; Zhang, J.; Hu, M.; Shi, Q., Polycyclic aromatic hydrocarbons (PAHs) in ambient aerosols from Beijing: characterization of low volatile PAHs by positive-ion atmospheric pressure photoionization (APPI) coupled with Fourier transform ion cyclotron resonance. *Environ. Sci. Technol.* **2014**, *48*, (9), 4716-23.

2. Mekic, M.; Liu, J.; Zhou, W.; Loisel, G.; Cai, J.; He, T.; Jiang, B.; Yu, Z.; Lazarou, Y. G.; Li, X.; Brigante, M.; Vione, D.; Gligorovski, S., Formation of highly oxygenated multifunctional compounds from cross-reactions of carbonyl compounds in the atmospheric aqueous phase. *Atmos. Environ.* **2019**, *219*.

3. Vione, D.; Albinet, A.; Barsotti, F.; Mekic, M.; Jiang, B.; Minero, C.; Brigante, M.; Gligorovski, S., Formation of substances with humic-like fluorescence properties, upon photoinduced oligomerization of typical phenolic compounds emitted by biomass burning. *Atmos. Environ.* **2019**, *206*, 197-207.

4. Passananti, M.; Kong, L.; Shang, J.; Dupart, Y.; Perrier, S.; Chen, J.; Donaldson, D. J.; George, C., Organosulfate Formation through the Heterogeneous Reaction of Sulfur Dioxide with Unsaturated Fatty Acids and Long-Chain Alkenes. *Angew. Chem. Int. Ed.* **2016**, *55*, (35), 10336-10339.

5. Shang, J.; Passananti, M.; Dupart, Y.; Ciuraru, R.; Tinel, L.; Rossignol, S. p.; Perrier, S. b.; Zhu, T.; George, C., SO2 Uptake on oleic acid: A new formation pathway of organosulfur compounds in the atmosphere. *Environ. Sci. Technol. Lett.* **2016**, *3*, (2), 67-72.

6. Kuang, B. Y.; Lin, P.; Hu, M.; Yu, J. Z., Aerosol size distribution characteristics of organosulfates in the Pearl River Delta region, China. *Atmos. Environ.* **2016**, *130*, 23-35.

7. Wang, X. K.; Rossignol, S.; Ma, Y.; Yao, L.; Wang, M. Y.; Chen, J. M.; George, C.; Wang, L., Molecular characterization of atmospheric particulate organosulfates in three megacities at the middle and lower reaches of the Yangtze River. *Atmospheric Chem. Phys.* **2016**, *16*, (4), 2285-2298.

8. Tao, S.; Lu, X.; Levac, N.; Bateman, A. P.; Nguyen, T. B.; Bones, D. L.; Nizkorodov, S. A.; Laskin, J.; Laskin, A.; Yang, X., Molecular characterization of organosulfates in organic aerosols from Shanghai and Los Angeles urban areas by nanospray-desorption electrospray ionization high-resolution mass spectrometry. *Environ. Sci. Technol.* **2014**, *48*, (18), 10993-1001.

9. Zhu, M.; Jiang, B.; Li, S.; Yu, Q.; Yu, X.; Zhang, Y.; Bi, X.; Yu, J.; George, C.; Yu, Z., Organosulfur Compounds Formed from Heterogeneous Reaction between SO2 and Particulate-Bound Unsaturated Fatty Acids in Ambient Air. *Environ. Sci. Technol. Lett.* **2019**, *6*, (6), 318-322.