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Abstract. We present a novel high-resolution inverse modelling system ("FLEXVAR") based on FLEXPART-COSMO 30 

back trajectories driven by COSMO meteorological fields at 7 km × 7 km resolution over the European COSMO-7 domain 

and the four-dimensional variational (4DVAR) data assimilation technique. FLEXVAR is coupled offline with the global 

inverse modelling system TM5-4DVAR to provide background mole fractions ("baselines") consistent with the global 

observations assimilated in TM5-4DVAR. We have applied the FLEXVAR system for the inverse modelling of European 

emissions in 2018 using 24 stations with in situ measurements, complemented with data from five stations with discrete air 35 

sampling (and additional stations outside the European COSMO-7 domain used for the global TM5-4DVAR inversions). 

The sensitivity of the FLEXVAR inversions to different approaches to calculate the baselines, different parameterizations of 

the model representation error, different settings of the prior error covariance parameters, different prior inventories and 
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different observation data sets are investigated in detail. Furthermore, the FLEXVAR inversions are compared to inversions 

with the FLEXPART extended Kalman filter ("FLExKF") system and with TM5-4DVAR inversions at 1o × 1o resolution 40 

over Europe. The three inverse modelling systems show overall good consistency of the major spatial patterns of the derived 

inversion increments and in general only relatively small differences in the derived annual total emissions of larger country 

regions. At the same time, the FLEXVAR inversions at 7 km × 7 km resolution allow to better reproduce the observations 

than the TM5-4DVAR simulations at 1° × 1°. The three inverse models derive higher annual total CH4 emissions in 2018 for 

Germany, France and BENELUX compared to the sum of anthropogenic emissions reported to UNFCCC and natural 45 

emissions estimated from the Global Carbon Project CH4 inventory, but the uncertainty ranges of top-down and bottom-up 

total emission estimates overlap for all three country regions. In contrast, the top-down estimates for the sum of emissions 

from the United Kingdom and Ireland agree relatively well with the total of anthropogenic and natural bottom-up 

inventories. 

1 Introduction 50 

Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas (GHG) after carbon dioxide (CO2) 

with an estimated contribution of ~16.3% (0.520 W m-2) to the direct anthropogenic radiative forcing of all long-lived GHGs 

in 2020 (NOAA Annual Greenhouse Gas Index (AGGI), evaluated relative to 1750 (Butler and Montzka, 2022)). Including 

also additional indirect effects (e.g., production of tropospheric ozone), however, the total radiative forcing of CH4 is 

considerably higher, with current estimates of the emission-based effective radiate forcing (ERF) of 1.21 (0.90 to 1.51) 55 

W m-2 (Naik et al., 2021). The current global average CH4 mole fraction is 162% higher than preindustrial levels 1750 

(WMO, 2021) and continues to increase with recent growth rates (2014-2020: 10.1 ± 3.2 ppb yr-1) being again close to the 

high growth rates observed during the 1980s (1984-1989: 11.9 ± 0.9 ppb yr-1), while lower growth rates were observed 

during the 1990s and almost zero growth rates during 2000-2006 (Dlugokencky, 2022).  

Reducing CH4 emissions plays an essential role to mitigate climate change, especially on the near-term (Shindell et al., 2017; 60 

Shindell et al., 2012; United Nations Environment Programme and Climate and Clean Air Coalition, 2021), due to the 

relatively short atmospheric lifetime of around 10 years combined with its high radiative efficiency (resulting in a global 

warming potential (GWP) around 80 times higher compared to CO2 on a 20-year timescale (Forster et al., 2021)). The global 

emissions pathways to limit global warming to 1.5°C, compiled by IPCC (2018) include significant reductions of CH4 

emissions after 2020 (for scenarios with no or limited overshoot of temperature above the 1.5°C target). The recognition of 65 

the importance of CH4 emission reductions to mitigate climate change has also led to the recent "Global Methane Pledge" 

(European Commission, 2021) with the collective goal to reduce methane emissions by 2030 by at least 30% compared to 

2020. The development of emission reduction pathways as well as the control of international climate agreements requires 

the accurate quantification of current (and past) GHG emissions. For CH4, however, the quantification of emissions and 

sinks is particularly challenging, mainly owing to the large spatial and temporal variability of emissions from many source 70 

https://doi.org/10.5194/acp-2022-118
Preprint. Discussion started: 16 March 2022
c© Author(s) 2022. CC BY 4.0 License.



3 

 

sectors and consequently large uncertainties in assumed mean emission factors (e.g., for natural emissions from wetlands and 

anthropogenic emissions from fugitive sources such as fossil fuels (coal, oil, gas) (e.g., Brandt et al., 2014) or emissions 

from the waste sector). Therefore, bottom-up inventories of CH4, which are compiled by scaling up emissions using activity 

data and emission factors, have significant uncertainties. Complementary to bottom-up inventories, inverse modelling 

provides top-down emission estimates using atmospheric measurements and atmospheric transport models, by optimizing 75 

emissions from emission inventories (used as prior estimates) to get an optimal agreement between simulated and observed 

CH4 mole fractions, taking into account the uncertainties of prior emission estimates, measurements, and model simulations 

(e.g., Bergamaschi et al., 2018b; Houweling et al., 2017). The Global Carbon Project CH4 (GCP-CH4) provides synthesis 

analyses of the global CH4 cycle based on comprehensive sets of different bottom-up and top-down estimates from the 

international science community working on this topic (Jackson et al., 2020; Saunois et al., 2020; Stavert et al., 2021). The 80 

global inverse models used in these analyses have generally relatively coarse horizontal resolution, in the range of 2.5 - 6.0o 

(longitude) × 1.9 - 4.0o (latitude) (Saunois et al., 2020). Therefore, such models are mainly suitable to provide information 

on the global and larger regional scales. In order to analyse in more detail (and more accurately) regional emissions, specific 

regional inversions have been performed employing regional atmospheric transport models at higher horizontal resolution 

(typically in the range of ~20-100 km) and making use of the increasing number of regional in situ GHG measurements, 85 

which became available in recent years in particular in Europe and North America (e.g., Bergamaschi et al., 2018a; Ganesan 

et al., 2015; Lunt et al., 2021; Manning et al., 2011; Miller et al., 2013). The regional models generally require global 

boundary conditions, which are usually provided from global inverse models. Alternatively, global models with zooming 

option for the specific region of interest have been employed (Bergamaschi et al., 2018a). A specific purpose of such 

regional inversions is to verify national bottom-up emission inventories reported to the United Nations Framework 90 

Convention on Climate Change (UNFCCC), finally aiming at an emission monitoring and verification system to support the 

international climate agreements using in situ and satellite observations (Bergamaschi et al., 2018b; Deng et al., 2021; 

National Research Council, 2010; Pinty et al., 2019; Pinty et al., 2017). Within the European project VERIFY 

(https://verify.lsce.ipsl.fr/) a pre-operational GHG verification system is currently developed, employing various state-of-

the-art global and regional atmospheric transport models (Petrescu et al., 2021a; Petrescu et al., 2021b). In order to further 95 

improve the atmospheric modelling, it is essential to further increase the spatial resolution, aiming at further improving the 

simulation of regional monitoring stations. A pioneering high-resolution study has been reported by Henne et al. (2016), 

using the FLEXPART-COSMO back trajectories driven by meteorological fields from the Swiss national weather service 

(MeteoSwiss) at horizontal resolution of approximately 7 km × 7 km, analysing the CH4 emissions from Switzerland using 

continuous measurements from 6 atmospheric monitoring stations. The authors generated the FLEXPART-COSMO 100 

sensitivity fields (based on the sampling of released particles) at even higher resolution (than the resolution of the COSMO 

meteorological fields) of 0.02o × 0.015o (≈ 1.7 km) over the Alpine domain (but coarser horizontal resolution of 0.16o × 0.12o 

(≈ 13 km) outside the Alpine domain). Since they solved the inverse problem analytically (denoted by the authors as 

"Bayesian method"), however, they applied a reduced grid by merging model grid cells in areas with smaller average source 
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sensitivities in order to reduce the size of the inversion problem to about 1000 unknowns. As alternative to the "Bayesian 105 

method", Henne et al. (2016) applied also the extended Kalman filter method described by Brunner et al. (2012), which - in 

contrast to the "Bayesian method" - assimilates the observations sequentially, but for computational reasons also requires the 

application of a reduced grid. 

Aiming at high-resolution inversions of larger regions (such as the European domain), we have therefore developed a novel 

inversion framework (denoted "FLEXVAR") based on the four-dimensional variational (4DVAR) data assimilation 110 

technique (Meirink et al., 2008; Talagrand and Courtier, 1987), which allows to optimize a much larger number of 

parameters and therefore also avoids the need to apply reduced grids. As in the Henne et al. (2016) study, the new system 

uses FLEXPART-COSMO back trajectories driven by COSMO meteorological fields at 7 km × 7 km resolution, but is 

optimizing emissions of individual grid cells over the whole European COSMO-7 domain with 393 (longitude) × 338 

(latitude) grid cells. Furthermore, the new system uses background mole fractions (baselines) from global TM5-4DVAR 115 

inversions (using two different approaches), i.e., it is coupling offline the FLEXPART-COSMO inversions with the global / 

European TM5-4DVAR inversions.  

The objective of this paper is to present the new FLEXVAR system and its application to the inversion of European CH4 

emissions for 2018 using a comprehensive data set from 24 stations with in situ measurements, complemented with data 

from 5 stations with discrete air sampling (and additional stations outside the European COSMO-7 domain used for the 120 

global TM5-4DVAR inversions). We analyse in detail the sensitivity of the FLEXVAR inversions to internal 

parameterizations and model settings, as well as the sensitivity to the main model input data, i.e., prior inventories and 

observational data. Furthermore, we compare the FLEXVAR inversions with the extended Kalman filter ("FLExKF") 

method and with TM5-4DVAR inversions (at 1o × 1o resolution over Europe). Finally, we present an overall analysis of 

derived European CH4 emissions and comparison with emissions reported to UNFCCC for some major countries (or group 125 

of countries) which are best constrained by the available observations (Germany, France, BENELUX, and United Kingdom 

and Ireland). 

2 Modelling 

2.1 FLEXPART-COSMO back trajectories 

FLEXPART is a Lagrangian atmospheric transport model that simulates the advective, turbulent and convective transport by 130 

tracking the positions of a large number of infinitesimally small air parcels, so-called particles, either forward or backward in 

time (Pisso et al., 2019; Stohl et al., 2005). FLEXPART is an offline model that requires meteorological fields such as 3D 

wind fields from a numerical weather prediction (NWP) model as input. FLEXPART-COSMO is a version of the model that 

is driven by the output of the NWP model COSMO, which was jointly developed by a consortium of European weather 

services under the lead of the German meteorological service DWD (Baldauf et al., 2011). Different from all other 135 

FLEXPART versions, FLEXPART-COSMO operates on the native vertical grid of the driving model COSMO, which 
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avoids potential loss of information and inaccuracies associated with the interpolation onto a different grid. More details on 

the model are provided in Henne et al. (2016) and Pisso et al. (2019). 

In the backward mode, particles are released at the locations of individual observations and followed backwards in time over 

typically a few days. By sampling the near-surface residence times of the particles along their paths, a so-called source-140 

receptor sensitivity matrix or "footprint" is computed, which describes the relationship between the change in mole fraction 

at the observation site and the fluxes discretized in space and time (Seibert and Frank, 2004). A time series of simulated 

mole fractions can be obtained by integrating the time series of source-receptor matrices with a discretized flux estimate. The 

simulations were driven by hourly output from the operational COSMO-7 analyses of the Swiss weather service MeteoSwiss 

at a horizontal spatial resolution of about 7 km × 7 km, largely covering western and central Europe (Fig. 1). In the 145 

simulations used here, 50000 virtual particles were released at all observation locations every 3 hours (evenly distributed 

over each 3-hour time interval) and traced backwards in time for 10 days (or until individual particles left the COSMO-7 

domain). Despite the high spatial resolution, the orography of the COSMO-7 model is smoothed for complex terrain, leading 

to differences between the model surface altitude and the altitude of the observation site. When this difference is greater than 

200 m, the release height of the particles has been chosen as the average between the measurement height above sea level 150 

and the model surface altitude. This approach has been used in previous studies (Henne et al., 2016) and was found to be the 

most representative release height (Brunner et al., 2013). 

2.2 Coupled FLEXPART-COSMO TM5 4DVAR inverse modelling system FLEXVAR 

2.2.1 Inversion framework 

The new coupled FLEXPART-COSMO TM5 4DVAR inverse modelling system, denoted FLEXVAR, allows to optimize 155 

emissions at grid scale using the four-dimensional variational (4DVAR) data assimilation technique (Meirink et al., 2008; 

Talagrand and Courtier, 1987), the FLEXPART-COSMO back trajectories described in Sect. 2.1, and background mole 

fractions ("baselines") from TM5-4DVAR (described in Sect. 2.2.2 and 2.4). The system follows the classical Bayesian 

approach minimizing the cost function 𝐽(𝒙): 

𝐽(𝒙) = 1

2
(𝒙 − 𝒙𝐛)𝑇𝐁−1(𝒙 − 𝒙𝐛) + 1

2
(𝑯(𝒙) − 𝒚)𝑇𝐑−1(𝑯(𝒙) − 𝒚)                                                                                           (1) 160 

where 𝒙 is the state vector, 𝒙𝐛 the prior estimate of the state vector (in data assimilation usually called the "background"),  𝒚 

the set of observations (measurements) to be assimilated, 𝑯(𝒙) the observation operator (or model operator), representing 

the model simulation of the observations, and 𝐁  and 𝐑  the error covariance matrices of the prior estimate and the 

observations, respectively. For the regular inversions, a semi-lognormal probability density function (pdf) is applied for the 

emissions 𝒆 to be optimized (Bergamaschi et al., 2010), optimizing the emission deviation factors 𝑥𝑖,𝑗,𝑡: 165 

𝑒𝑖,𝑗,𝑡(𝑥𝑖,𝑗,𝑡) = {
𝑒b,𝑖,𝑗,𝑡 exp(𝑥𝑖,𝑗,𝑡)  for 𝑥𝑖,𝑗,𝑡<0 

𝑒b,𝑖,𝑗,𝑡 (1+𝑥𝑖,𝑗,𝑡)    for 𝑥𝑖,𝑗,𝑡 ≥0
                                                                                                                                     (2) 
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for each element 𝑒𝑖,𝑗,𝑡, representing the emissions of an individual grid cell with longitude index i, latitude index j, and at 

emission time step t (and 𝑒b,𝑖,𝑗,𝑡 the prior estimate of the emission 𝑒𝑖,𝑗,𝑡). In contrast, a linear expansion of the emission 

deviation factors is used (resulting in a Gaussian pdf of the emissions) for additional inversions for the evaluation of 

posterior uncertainties (as will be described in more detail below): 170 

𝑒𝑖,𝑗,𝑡(𝑥𝑖,𝑗,𝑡) = 𝑒b,𝑖,𝑗,𝑡  (1 + 𝑥𝑖,𝑗,𝑡)                                                                                                                                                 (3) 

For the prior estimate the emission deviation factors 𝑥𝑖,𝑗,𝑡  are set to zero, i.e., 𝑒𝑖,𝑗,𝑡(𝑥𝑖,𝑗,𝑡) = 𝑒b,𝑖,𝑗,𝑡  (both for the semi-

lognormal and Gaussian pdf). In this study we present inversions optimizing the monthly total emissions of all FLEXPART-

COSMO grid cells (at 7 km × 7 km resolution) for one year (2018), hence the dimension of the state vector is: 

𝑛state = 𝑛longitude × 𝑛latitude × 𝑛time = 393 ×  338 × 12 = 1594008                                                                               (4) 175 

The background covariance matrix 𝐁 is parameterized as the product   

𝐁 = 𝐒 𝐂 𝐒                                                                                                                                                                                   (5) 

where 𝐒 is a diagonal matrix with the diagonal elements containing the uncertainty of emissions (standard deviations) and 𝐂 

is the correlation matrix, which is parametrized as a Kronecker product of a horizontal correlation matrix 𝐂hor  and a 

temporal correlation matrix 𝐂t (as in TM5-4DVAR (Meirink et al., 2008)): 180 

𝐂 = 𝐂hor ⊗ 𝐂t                                                                                                                                                                           (6) 

The spatial covariance between two grid cells is parametrized using a Gaussian function: 

𝑐hor(𝑖1, 𝑖2, 𝑗1, 𝑗2)  =  𝑒𝑥𝑝 (−
1

2
(

𝑑(𝑖1,𝑖2,𝑗1,𝑗2)

𝐿corr
)

2

)                                                                                                                           (7) 

where 𝑑(𝑖1, 𝑖2, 𝑗1, 𝑗2) is the distance between two grid cells (with longitude indices 𝑖1, 𝑖2 and latitude indices 𝑗1, 𝑗2), and 𝐿corr 

a pre-defined correlation length constant. The temporal correlation uses an exponential decay function: 185 

𝑐t(𝑡1, 𝑡2) = 𝑒𝑥𝑝 (−
𝑑t(𝑡1,𝑡2)

𝑡corr
)                                                                                                                                                      (8) 

where 𝑑t(𝑡1, 𝑡2) is the temporal distance between two emission time steps and 𝑡corr a pre-defined temporal correlation scale 

constant. 

The observation error covariance matrix 𝐑 considers only diagonal elements (i.e., ignores any error correlation between 

different observations) and takes into account the uncertainties of the measurements and the model representation error: 190 

𝐑 = 𝐑obs + 𝐑mod                                                                                                                                                                      (9) 

We use two different approaches to parameterize the model representation error, which are described in more detail in Sect. 

2.2.3. 

The observation operator 𝑯(𝒙) simulates the measurements as a function of the state vector (i.e., as function of emission 

deviation factors). For a given measurement m in time interval 𝑡𝑚 the simulation is computed as: 195 

𝐻𝑚(𝒙, 𝑡𝑚) = ∑ ∑ ∑ 𝑒𝑖,𝑗,𝑡(𝑥𝑖,𝑗,𝑡)/ 𝛿ℎ𝑘 ∙ 𝑤𝑘 ∙ 𝑀air/𝑀CH4
∙ 109 ∙ 𝜙𝑖,𝑗,𝑘

𝑚  (𝑡, 𝑡 + 𝛿𝑡) 𝑘∈𝐾 [ppb]𝑖,𝑗𝑡∈𝑇𝑚
                                         (10) 

using the 3-dimensional FLEXPART-COSMO footprints 𝜙𝑖,𝑗,𝑘
𝑚  (𝑡 + 𝛿𝑡) (units: [1 / ((kg air) m-3s-1)]), described in Sect. 2.1. 

𝑀air and 𝑀CH4
 are the molecular masses of air and CH4, respectively. 𝛿ℎ𝑘 is the layer thickness of vertical layer k (here we 
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use the two lowermost layers, each with thickness of 50 m) and 𝑤𝑘 is the weighting of layer k (here 0.5 for the applied two 

layers). 𝑇𝑚  represents the time interval of the applied footprints (i.e., 10 days prior to the measurements), and 𝛿𝑡  the 200 

averaging time (3 hours) for the single footprints (computed for the time interval between t and 𝑡 + 𝛿𝑡 ). 𝐻𝑚(𝒙, 𝑡𝑚) 

represents the simulated enhancement of the CH4 mole fraction above the baseline (which is evaluated by using 2 different 

approaches as described in Sect. 2.2.2). 

The minimization of the cost function Eq. (1) requires the evaluation of the gradient of the cost function with respect to the 

state vector: 205 

∇𝑥𝐽(𝒙) = 𝐁−1(𝒙 − 𝒙𝐛) + 𝐇T𝐑−1(𝑯(𝒙) − 𝒚)                                                                                                                        (11) 

where 𝐇T is the adjoint model operator, describing the sensitivity of the simulated observations with respect to changes of 

the state vector. 𝐇T can be directly computed using the FLEXPART-COSMO footprints 𝜙𝑖,𝑗,𝑘
𝑚  (𝑡, 𝑡 + 𝛿𝑡). 

In order to achieve better convergence of the minimization algorithm, pre-conditioning is applied, transforming the state 

vector 𝒙 to the control vector 𝒘 (similarly as e.g., in TM5-4DVAR (Meirink et al., 2008)): 210 

𝒘 = 𝐁−1/2(𝒙 − 𝒙𝒃)                                                                                                                                                                 (12) 

and in reverse direction: 

𝒙 = 𝒙𝐛  + 𝐁1/2𝒘                                                                                                                                                                      (13) 

The square root of the submatrix 𝐂t  is calculated by eigenvalue decomposition. However, this is not possible for the 

submatrix  𝐂hor (in contrast to TM5-4DVAR) due to the large size of this matrix of: 215 

𝑛𝐂hor
= (𝑛longitude  × 𝑛latitude)

2
= 1328342                                                                                                                        (14) 

Therefore, an Arnoldi factorization (Arnoldi, 1951) is used, computing only the largest eigenvalues/eigenvectors. 

Consequently, the square root matrix 𝐁1/2  and its inverse in Eq. (13) and Eq. (12) are replaced by corresponding 

factorizations. As default setting, we use a fraction of 1% of the eigen pairs, which is reducing the size of the control vector 

to 1% of the size of the state vector. Test inversions with higher fractions of eigen pairs (up to 3%) showed that a fraction of 220 

1% is generally sufficient for the range of correlation lengths (𝐿corr = 50 km ... 200 km) used in this study. 

For the regular inversions, we use the limited memory quasi-Newton algorithm m1qn3 developed by Gilbert and Lemaréchal 

(1989), which allows the optimization also of non-linear problems (as the semi-lognormal pdf Eq. (2) introduces a non-

linearity of our optimization problem). In order to evaluate the posterior uncertainties, additional inversions are performed 

using a conjugate gradient algorithm (Fisher and Courtier, 1995; Lanczos, 1950; Meirink et al., 2008) for minimization and 225 

the linear expansion of the emission deviation factors (Eq. (3)). The posteriori covariance is then computed from the leading 

eigenvalues of the Hessian of the cost function: 

𝐁apos = 𝐁 + ∑ (
1

𝜃𝑘
− 1) (𝐁1/2𝜐𝑘)(𝐁1/2𝜐𝑘)

𝑇𝐾
𝑘=1                                                                                                                     (15) 

with 𝜐𝑘 and 𝜃𝑘 the eigenvectors and eigenvalues of the Hessian of the cost function. 
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2.2.2 Baselines 230 

Since FLEXPART-COSMO is a limited domain model, providing the source-receptor relationship due to emissions in the 

European COSMO-7 domain, it requires the provision of background mole fractions ("baselines"), representing the CH4 

mole fractions of the air masses entering the COSMO-7 domain. Here, we simulate the baselines using the global TM5-

4DVAR inverse modelling system (described in Sect. 2.4), using two different approaches to couple the regional 

FLEXPART-COSMO inversion with TM5-4DVAR. The first approach applies the method described by Rödenbeck et al. 235 

(2009) (denoted in the following as "Rödenbeck baselines"), which is a flexible nesting scheme allowing the offline coupling 

of regional models with global inversions. For this purpose, we use a manipulated version of TM5 which simulates only the 

"cis" part of the CH4 fields (representing the CH4 enhancement due to emissions in the area to the FLEXPART-COSMO 

model transported directly to the European measurement stations, without leaving the COSMO-7 domain), denoted 

∆𝑐mod 1,cis. The baseline mole fractions,  𝑐baseline, are then computed as difference of the TM5-4DVAR posterior simulation 240 

(𝑐mod 1) and the "cis" part (Rödenbeck et al., 2009), both sampled at the location of the corresponding station: 

𝑐baseline  =  𝑐mod 1  −  ∆𝑐mod 1,cis                                                                                                                                           (16) 

The second approach to couple FLEXPART-COSMO with TM5-4DVAR uses the particle positions of the FLEXPART-

COSMO back trajectories at the time of termination, i.e., either at the applied maximum termination time (set to 10 days in 

our study), or when they leave the COSMO-7 domain (which can be well before the 10 days). For each individual particle 245 

position, the CH4 mole fraction is then extracted from the 3-dimensional TM5-4DVAR CH4 fields. Since each 3-hourly 

average FLEXPART-COSMO footprint is based on the release of 50000 particles, the corresponding (3-hourly average) 

baseline mole fraction is computed as average of the CH4 mole fraction at the termination points of all individual 50000 

particles. In the following, this approach is denoted "particle position baselines". 

2.2.3 Model representation error 250 

We applied two different approaches to estimate the model representation error. The first approach, denoted "OBS", is 

similar to the method described by Henne et al. (2016), evaluating the residuals (difference between observations and model 

simulations) as function of CH4 enhancement. However, some details of our method are different from Henne et al. (2016). 

Here, we use the following function to parameterize the model representation error, ∆𝑦MOD 𝑘,𝑖, as function of the absolute 

observed CH4 enhancement (i.e., observed CH4 mole fraction minus CH4 background), |𝑦𝑘,𝑖|: 255 

∆𝑦MOD 𝑘,𝑖 = 𝑓0,𝑘 + 𝜌𝑘 (|𝑦𝑘,𝑖| + 
𝑒𝑥𝑝(−𝑎𝑘|𝑦𝑘,𝑖|)−1

𝑎𝑘
)                                                                                                                     (17)                                               

where k is the station index, i the index of the individual observational data point of the time series of station k, and 𝑓0,𝑘, 𝜌𝑘, 

and 𝑎𝑘 the three fit parameters evaluated for each station. These fit parameters are determined by calculating the fit curve of 

the absolute residuals, |𝑦𝑘,𝑖 − (𝐇𝑘𝒙)𝑖|, as function of |𝑦𝑘,𝑖|. For large 𝑦𝑘,𝑖 , the curve becomes linear with slope 𝜌𝑘 ; the 

minimum value of the fit function is 𝑓0,𝑘, and 𝑎𝑘 defines how fast the function becomes linear. The evaluation of the fit 260 
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function is generally performed iteratively. In a first step, the fit parameters are computed using the prior model simulations, 

while in subsequent iterations the posteriori simulations of the previous iteration are used. FLEXVAR includes an outer loop 

system, which allows an arbitrary number of iterations. However, tests have shown that changes after the second iteration are 

usually very small. Therefore, for the inversions presented in this paper, we used generally only two iterations. Figure S1 

(left column) illustrates the fit functions for some selected stations.  265 

As alternative to the model representation error "OBS" described above, a second approach, denoted "METEO", has been 

developed, parameterizing the model representation error as function of wind speed: 

∆𝑦MOD 𝑘,𝑖 = 𝑓0,𝑘 + 𝜌𝑘𝑒𝑥𝑝(−𝑎𝑘𝑤𝑘,𝑖)                                                                                                                                       (18) 

where 𝑤𝑘,𝑖 is the wind speed (in m/s) extracted from the COSMO model corresponding to the data point 𝑦𝑘,𝑖, and 𝑓0,𝑘, 𝜌𝑘, 

and 𝑎𝑘 are the 3 fit parameters for station k. The rationale is that if wind speed at the measurement location is low, the 270 

observed mole fraction might be more influenced by local sources of emissions and therefore less representative of the 

modelled mole fractions. Again, the fit parameters are determined to get an optimal fit through the absolute residuals, 

|𝑦𝑘,𝑖 − (𝐇𝑘𝒙)𝑖| and they are evaluated in 2 iterations. For large wind speeds, ∆𝑦MOD 𝑘,𝑖 converges towards 𝑓0,𝑘, while 𝑓0,𝑘 +

𝜌𝑘 represents the model representation error at wind speed zero. The right column of Fig. S1 shows the fit functions for the 

"METEO" model representation error for some selected stations. 275 

2.3 Flexpart Extended Kalman Filter inverse modelling system 

FLExKF is an inverse modelling system based on an extended Kalman filter as described in detail in Brunner et al. (2012) 

and Brunner et al. (2017). Observations are assimilated sequentially (here day by day) to provide the best linear unbiased 

estimate of the emissions and their uncertainties based on measurements up to the present time of the assimilation. Rather 

than estimating monthly or annual mean emissions, the system adjusts the emissions continuously as the assimilation 280 

proceeds, and in this way creates a smoothly varying emission field that later can be averaged to monthly or annual means. 

The filter includes a forecast step, which predicts the evolution of the emissions from one assimilation time step to the next. 

The simplest assumption is persistence (i.e., no change with time), but to incorporate seasonally varying a priori emissions, a 

non-zero forecast update was implemented that follows the linear change in a priori emissions from one month to the next. 

Since the forecast step is associated with an uncertainty, the posterior uncertainty can become larger than the prior 285 

uncertainty in regions that are poorly constrained by observations. In order to avoid an unrealistic growth of the uncertainties 

in these regions, the posterior uncertainties are reset to the a priori uncertainty whenever they become larger.  

The state vector consists of two components: (i) emissions on a reduced grid with a total of 3608 elements for inversions 

with observation data set O1 and 6497 elements for inversions with observation data set O2 (Sect. 3.1 and Table 1), (ii) 

coefficients of an AR(1) autoregressive process describing temporal correlations in the residuals at each individual site. As 290 

described in Brunner et al. (2012), the reduced grid has high spatial resolution near the measurement sites and lower 

resolution further away, reflecting the reduced contribution of emissions at larger distance to observed CH4 variations. It was 
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constructed based on the combined total annual footprint of all measurement sites. The state vector may contain the 

emissions directly or the logarithm of the emissions. The latter option was chosen here to enforce a positive solution, i.e., 

positive methane emissions in each grid cell.  295 

Another option in FLExKF is to optimize baseline mole fractions at each observation site in addition to the gridded emission 

field. However, in the configuration used here, the baselines ("Rödenbeck baselines") described in Sect. 2.2.2 were used 

directly without optimization. The results of FLExKF should be readily comparable to those of FLEXVAR, since the same 

FLEXPART-COSMO back trajectories, baselines, and observations were used.  Spatial correlations in the prior emission 

uncertainties were represented in the prior error covariance matrix with a correlation length scale of 200 km (exponential 300 

decay as in Eq. (8)). The matrix was scaled such that the uncertainty of the total domain emissions was 20% (1σ). 

2.4 TM5-4DVAR inverse modelling system 

TM5-4DVAR is a global inverse modelling system based on the 4DVAR data assimilation technique, and has been 

described in detail by Meirink et al. (2008), while subsequent updates have been reported in Bergamaschi et al. (2018a; 

2010). TM5-4DVAR uses the Eulerian atmospheric chemistry transport model TM5 (Krol et al., 2005), a two-way nested 305 

zoom model, which allows to zoom in over specific regions of interest. Here, we apply the 1° × 1° zooming over the 

European domain -18°... 42° (longitude) × 32°...64° (latitude) and an intermediate 3° (longitude) × 2° (latitude) zooming 

over the extended European domain -30°... 48° (longitude) × 26°...70° (latitude), while the global domain is simulated at a 

horizontal resolution of 6° (longitude) × 4° (latitude). TM5 is an offline transport model, driven by external meteorological 

data, pre-processed to provide consistent meteorological fields for the different TM5 resolutions (Krol et al., 2005). In this 310 

study, 3-hourly interpolated meteorological fields from the European Centre for Medium-Range Weather Forecasts 

(ECMWF) ERA-Interim reanalysis (Dee et al., 2011) have been applied, using 25 vertical layers (defined as a subset of the 

60 layers of the ERA‐Interim reanalysis). 

As for the regular FLEXVAR inversions, a semi-lognormal pdf has been used (Eq. (2)). Minimization of the cost function 

Eq. (1) is performed using the m1qn3 algorithm (Gilbert and Lemaréchal, 1989) and the adjoint of the tangent linear TM5 315 

model (Krol et al., 2008; Meirink et al., 2008) for evaluation of the gradient of the cost function Eq. (11). Four groups of 

CH4 emissions are optimized independently: (1) wetlands, (2) rice, (3) biomass burning, and (4) all remaining sources 

(Bergamaschi et al., 2018a). Uncertainties of 100% per grid-cell and month were applied for each source group with a spatial 

correlation length scale of 200 km (Eq. (7)). The temporal correlation time scales Eq. (8) are set to 12 months for the 

"remaining" CH4 sources and to zero for wetlands, rice, and biomass burning. The model representation error is 320 

parameterized as a function of local emissions and 3-dimensional gradients of simulated mole fractions (Bergamaschi et al., 

2010). The photochemical sinks of CH4 in the troposphere (OH), and stratosphere (OH, Cl, and O(1D)) are simulated as 

described in Bergamaschi et al. (2010). For the coupling of the FLEXPART-COSMO inversions over the European COSMO 

domain with the global TM5-4DVAR inversions, the baselines at the monitoring stations (within the COSMO-7 domain) 

have been computed using the two different approaches described in Sect. 2.2.2. 325 
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3. Model input data and inversions 

3.1 Atmospheric observations 

The atmospheric observations used in this study (within the COSMO-7 domain) include ground-based CH4 data for 2018 

from 24 stations with in situ measurements, complemented with data from 5 stations with discrete air sampling, as compiled 

in Table 1. Most of the in situ measurements (15 stations) are from the atmosphere network of the Integrated Carbon 330 

Observation System (ICOS) (Heiskanen et al., 2021), a pan-European infrastructure providing harmonized atmospheric 

measurements which are rigorously standardised in terms of instrumentation, calibration, air sampling and quality control, 

including centralised data processing and data evaluation at the ICOS Atmospheric Thematic Centre (https://icos-

atc.lsce.ipsl.fr/) (Hazan et al., 2016; ICOS RI, 2020; Yver-Kwok et al., 2021). Here, we use the ICOS Atmosphere Release 

of final, quality controlled data 2021-1 (ICOS RI, 2021). For station Lutjewad (LUT), the ICOS data start only on 335 

13/08/2018. Data before that date were provided by University of Groningen, with data processing very similar to the ICOS 

data. Data from the ICOS station Ispra (IPR) have been further processed using the robust extraction of baseline signal 

(REBS) spike detection algorithm (El Yazidi et al., 2018; Ruckstuhl et al., 2012) in order to filter out data affected by nearby 

farming activities. In addition to the ICOS measurements, further in situ measurements have been used from the UK 

Deriving Emissions linked to Climate Change (DECC) network (Bilsdale (BSD), Tacolneston (TAC), Ridge Hill (RGL), 340 

Heathfield (HFD)), from Advanced Global Atmospheric Gases Experiment (AGAGE) (Mace Head (MHD)), from 

University of East Anglia (Weybourne (WAO)), from Netherlands Organisation for Applied Scientific Research (TNO) 

(Cabauw (CBW)), from Empa (Laegern Hochwacht (LHW)), and from University of Bern (Beromünster (BRM)). The in 

situ measurements are complemented by discrete air samples (which are usually collected weekly) from the NOAA Earth 

System Research Laboratory (ESRL) global cooperative air sampling network (NOAA, 2022), with 5 stations within the 345 

COSMO-7 domain. Additional atmospheric data used for the TM5-4DVAR inversions are compiled in Table S1 and include 

6 further ICOS stations with in situ measurements and 31 NOAA discrete air sampling sites located outside the COSMO-7 

domain. The selected stations outside the European 1° × 1° or 3° × 2° TM5 zoom regions are mostly global background 

stations in remote areas which can be reasonably well reproduced with the coarse global TM5 resolution of 6° × 4°. 

The atmospheric CH4 data are reported on the WMO X2004A calibration scale (Dlugokencky et al., 2005; NOAA, 2021), 350 

except the AGAGE MHD data which are reported on the Tohoku University (TU) CH4 standard scale (Aoki et al., 1992; 

Prinn et al., 2000). Comparison of parallel measurements by NOAA and AGAGE at 5 global sites over more than 25 years 

showed that the two calibration scales are in close agreement, with an average ratio of 1.0002±0.0007. Therefore, no scale 

correction has been applied.  

 355 
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Table 1: European monitoring stations used in this study. "alt" is the surface altitude (m above sea level), "s.h." is the sampling 

height (m) above ground, "ST" specifies the sampling type ("I": in situ measurements; "D": discrete air sample measurements). 

The last two columns indicate the use of the corresponding station data in the observation data sets O1 and O2. 360 

ID station name data provider lat lon alt s. h. ST O1 O2 

HTM Hyltemossa ICOS 56.10 13.42 115 150 I ● ● 

BSD Bilsdale DECC 54.36 -1.15 380 248 I  ● 

LUT Lutjewad RUG/ICOS1 53.40 6.35 1 60 I ● ● 

MHD Mace Head NOAA 53.33 -9.90 5 21 

 

D ● ● 

  AGAGE 53.33 -9.90 5 21 

 

I  ● 

GAT Gartow ICOS 53.07 11.44 70 341 I ● ● 

WAO Weybourne 

Atmospheric 

Observatory 

UEA 52.95 1.12 15 10 I  ● 

TAC Tacolneston DECC 52.52 1.14 56 100 I  ● 

LIN Lindenberg ICOS 52.17 14.12 73 98 I ● ● 

RGL Ridge Hill DECC 52.00 -2.54 204 90 I  ● 

CBW Cabauw TNO 51.97 4.93 0 200 I  ● 

TOH Torfhaus ICOS 51.81 10.53 801 147 I ● ● 

HFD Heathfield DECC 50.98 0.23 150 100 I  ● 

OXK 

 

Ochsenkopf NOAA 

 

50.03 11.82 1022 163 D ● ● 

KRE Kresin u Pacova ICOS 49.57 15.08 534 250 I ● ● 

KIT Karlsruhe ICOS 49.09 8.42 110 200 I ● ● 

SAC Saclay ICOS 48.72 2.14 160 100 I ● ● 

OPE Observatoire Perenne3 

de d'Environnement 

ICOS 48.56 5.50 390 120 I ● ● 

TRN Trainou ICOS 47.96 2.11 131 180 I ● ● 

HPB Hohenpeissenberg ICOS 47.80 11.02 934 131 I ● ● 

  NOAA 47.80 11.01 985 5 D ● ● 

LHW Laegern Hochwacht EMPA 47.48 8.40 840 32 I  ● 

BRM Beromünster UBE 47.19 8.18 797 212 I  ● 

HUN Hegyhatsal NOAA 46.95 16.65 248 96 D ● ● 

JFJ Jungfraujoch ICOS 46.55 7.98 3580 5 I ● ● 

IPR Ispra ICOS/JRC2 45.81 8.64 210 100 I ● ● 

PUY Puy de Dome ICOS 45.77 2.97 1465 10 I ● ● 

CMN Monte Cimone ICOS 44.19 10.70 2165 8 I ● ● 

CIB CIBA4 NOAA 41.81 -4.93 845 5 D ● ● 

 
1 data since 13/08/2018 from ICOS data release; before that date from University of Groningen 
2 data filtered with REBS spike detection algorithm (see Sect. 3.1) 
3 Observatoire Perenne de l'Environnement 
4 Centro de Investigacion de la Baja Atmosfera 365 

 

 

For the in situ measurements (which are available quasi-continuously in time) we assimilate only early afternoon data for 

stations in the boundary layer and night time data for mountain stations (Bergamaschi et al., 2015), selecting the 3-hour time 

interval of the FLEXPART back trajectories (which are provided for [0:00 - 3:00, 3:00 - 6:00, ...] UTC) which is closest to 370 

the time interval [12:00 - 15:00] LT for the stations in the boundary layer, and [0:00 - 3:00] LT for the mountain stations, 
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respectively. This procedure ensures consistent averaging of the FLEXPART back trajectories and the assimilated 

observations over the same 3-hour time intervals. The measurement uncertainty is set to 3 ppb for all observations (for 

observational part 𝐑obs of the observation error covariance matrix Eq. (9)). 

In this study, we investigate two observation data sets (Table 1). The first data set, denoted O1, is considered as 375 

observational base data set and uses only the ICOS and NOAA data, while the second data set, O2, includes also all 

additional in situ measurements. The largest difference between the two data sets is the much better observational coverage 

of the British Isles in O2 with 6 in situ measurement stations located in that area, compared to only one station with discrete 

air sampling (MHD / NOAA) in O1. 

3.2 Emission inventories 380 

Three different emission inventories are used alternatively as prior estimate of the major anthropogenic CH4 emissions 

(Table 2). The first inventory is the Emissions Database for Global Atmospheric Research (EDGAR) v6.0 (EDGAR v6.0, 

2021), which provides monthly sector-specific global grid maps of emissions at horizontal resolution of 0.1° × 0.1° for 2000-

2018. The second inventory, TNO-VERIFYv3.0, is the third version of the TNO greenhouse gas and co-emitted species 

(GHGco) emission database, developed by TNO within the VERIFY project. TNO-VERIFYv3.0 provides annual European 385 

CH4 emissions at a horizontal resolution of ~ 6 km × 6 km for the years 2005-2018, but includes monthly emission profiles. 

The third emission inventory has been provided by GCP-CH4 (Saunois et al., 2020), globally at horizontal resolution of 

1° × 1° for 2000-2017. In the absence of emission data for 2018 in the GCP-CH4 inventory we use here the 2017 data of this 

inventory. The resulting error of this 1-year inconsistency, however, is considered to be much smaller compared to the 

overall uncertainties of the emission inventories.  390 

Natural CH4 emissions were generally used from the GCP-CH4 data set (Saunois et al., 2020), providing estimates of the 

climatological mean emissions of the major natural source categories. Furthermore, CH4 emissions from biomass burning 

were taken from the Global Fire Emissions Database (GFED) version 4.1 (Van Der Werf et al., 2017). However, these were 

included only when using the EDGAR v6.0 or TNO-VERIFYv3.0 inventories, while the GCP-CH4 (anthropogenic) data set 

already includes emissions from biomass burning.  395 

Using the above emission inventories, we have assembled the emission data sets E1, E2, and E3 as compiled in Table 2 and 

used as prior for the different inversions described in Sect. 3.4. All emission data sets have been mapped on the COSMO-7 

grid, using the Python package “emiproc” (Jähn et al., 2020), which has been integrated into the FLEXVAR inverse 

modelling system. 

 400 
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Table 2: Emission inventories used in this study. The second column ('total') lists the total CH4 emissions over the COSMO-7 405 
domain in units of Tg CH4 yr-1 for the individual categories and the totals of each inventory. The last three columns indicate the 

use of the corresponding inventory data in the emission data sets E1, E2, and E3. Data for EDGARv6.0, TNO-VERIFYv3.0, and 

GFEDv4.1 are for 2018, GCP-CH4 (anthropogenic) data are for 2017, while GCP-CH4 (natural) data represent climatological 

mean values.   

inventory / category total E1 E2 E3 

EDGARv6.0 

 

 

total 17.94  

coal 0.74 ●   

oil 0.24 ●   

gas 2.20 ●   

enteric fermentation 6.84 ●   

manure management 2.18 ●   

rice agriculture 0.08 ●   

solid waste (landfills and incineration) 3.22 

 

●   

wastewater treatment 1.41 

 

●   

energy for buildings 0.71 

 

●   

further minor anthropogenic sources 0.33 ●   

TNO-VERIFYv3.0 

total 15.67  

fugitive emissions 1.86 

 

 ●  

waste 4.29  ●  

agriculture: livestock 8.37 

 

 ●  

agriculture: other 0.15  ●  

other stationary combustion 0.57 

 

 ●  

further minor anthropogenic sources 0.44 

 

 ●  

GCP-CH4 (anthropogenic) 

total 21.00  

coal 0.98   ● 

oil gas industry 2.78   ● 

livestock 9.39   ● 

agriculture: rice 0.10   ● 

waste 7.12   ● 

biofuels and biomass burning 0.63   ● 

GCP-CH4 (natural) 

total 2.15  

wetlands 1.76 ● ● ● 

geological 0.48 ● ● ● 

termites 0.10 ● ● ● 

ocean 0.55 ● ● ● 

soil sink -0.75 ● ● ● 

GFEDv4.1 

biomass burning 0.02 ● ●  

 410 
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3.3 Post-processing of gridded emission data 

In order to extract from gridded emission data (on COSMO-7 grid) total emissions of countries (or group of countries), 

country masks have been generated using the "Natural Earth dataset" (https://www.naturalearthdata.com/), attributing each 

7 km × 7 km COSMO-7 grid cell to a certain country (or sea). Offshore emissions over the sea are not included in the 415 

country totals. 

Since the COSMO-7 domain does not cover the upper northern part of the UK, a correction factor of 1.057 is applied to 

estimate the total emissions of the country region "UK+Ireland", i.e., the "UK+Ireland" emissions extracted from the 

corresponding grid cells within the COSMO-7 domain are multiplied by this factor (further details see Sect. S1 of the 

supplementary material). Furthermore, small correction factors are applied when extracting country total emissions from the 420 

gridded emissions of data set E3 (at horizontal resolution of 1° × 1°), since sampling of coastal 1° × 1° grid cells with the 

corresponding 7 km × 7 km COSMO-7 grid cells leads to a loss of emissions attributed to the countries, if the emissions of 

the coastal 1° × 1° grid cell originate mainly from land (further details see Sect. S1).  

3.4 Sensitivity inversions 

Table 3 compiles the different FLEXVAR inversions presented in this paper. INV-E1-O1 represents the base inversion, 425 

using the emission data set E1 as prior, the observation data set O1, the "METEO" model representation error (Sect. 2.2.3), 

the "Rödenbeck baselines" (Sect. 2.2.2), and our default settings for the prior error covariance. A first set of sensitivity 

inversions investigates the impact of using alternatively the "particle position baselines" and the alternative parameterization 

"OBS" of the model representation error (and the combination of both). In a further inversion series, we analyse the 

sensitivity of the inversions to the main settings of the prior error covariance matrix, i.e., for the spatial correlation length 430 

constant, Lcorr, the temporal correlation scale constant, tcorr, and the assumed uncertainty of emissions per grid cell and 

month. Furthermore, we examine the sensitivity of the inversions to the use of the alternative emission inventories E2 and E3 

as prior instead of E1, and the use of the extended observational data set O2 instead of O1. 

In addition to the FLEXVAR inversions compiled in Table 3, inversions with the FLExKF system (described in Sect. 2.3) 

and with TM5-4DVAR (described in Sect. 2.4) have been performed for comparison with FLEXVAR (and will be discussed 435 

in Sect. 4.3). These inversions have been made for both observational data sets, O1 and O2, using the emission inventory E3 

as prior. Furthermore, additional FLExKF inversions have been performed using alternatively E1 as prior.  

 

 

 440 
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Table 3: FLEXVAR sensitivity inversions. The column "prior" lists the emission data set used (Table 2) and column "obs" the 

observation data set (Table 1). "mre" is the applied model representation error (Sect. 2.2.3) and "baseline" lists the applied 

approach to calculate the baselines (Sect. 2.2.2). "Lcorr" is the applied spatial correlation length constant, "tcorr" the temporal 445 
correlation scale constant, and "unc" the assumed 1-sigma uncertainty of total emissions per grid cell and month (Sect. 2.2.1). 

inversion prior obs mre baseline Lcorr tcorr unc 

INV-E1-O1 E1 O1 METEO Rödenbeck 100 

km 

12 m 100% 

sensitivity to baselines 

INV-E1-O1-S1 E1 O1 METEO particle position 100 

km 

12 m 100% 

sensitivity to model representation error 

INV-E1-O1-S2.1 E1 O1 OBS Rödenbeck 100 

km 

12 m 100% 

INV-E1-O1-S2.2 E1 O1 OBS particle position 100 

km 

12 m 100% 

sensitivity to spatial correlation length 

INV-E1-O1-S3.1 E1 O1 METEO Rödenbeck   50 

km 

12 m 100% 

INV-E1-O1-S3.2 E1 O1 METEO Rödenbeck 200 

km 

12 m 100% 

sensitivity to prior uncertainty 

INV-E1-O1-S4.1 E1 O1 METEO Rödenbeck 100 

km 

12 m   50% 

INV-E1-O1-S4.2 E1 O1 METEO Rödenbeck 100 

km 

12 m 200% 

sensitivity to temporal correlation length 

INV-E1-O1-S5 E1 O1 METEO Rödenbeck 100 

km 

 1 m 100% 

sensitivity to prior inventories 

INV-E2-O1 E2 O1 METEO Rödenbeck 100 

km 

12 m 100% 

INV-E3-O1 E3 O1 METEO Rödenbeck 100 

km 

12 m 100% 

sensitivity to observations 

INV-E1-O2 E1 O2 METEO Rödenbeck 100 

km 

12 m 100% 

INV-E1-O2-S1 E1 O2 METEO particle position 100 

km 

12 m 100% 

INV-E1-O2-S2.1 E1 O2 OBS Rödenbeck 100 

km 

12 m 100% 

INV-E1-O2-S2.2 E1 O2 OBS particle position 100 

km 

12 m 100% 

INV-E2-O2 E2 O2 METEO Rödenbeck 100 

km 

12 m 100% 

INV-E3-O2 E3 O2 METEO Rödenbeck 100 

km 

12 m 100% 

4. Results and discussion 

4.1 Sensitivity of FLEXVAR inversions to internal parameterizations and model settings 

4.1.1 Sensitivity of FLEXVAR inversions to baselines 

Figure 1 shows maps of European CH4 emissions derived for the base inversion INV-E1-O1 and the sensitivity inversion 450 

INV-E1-O1-S1, in which the "particle position baselines" were used instead of the "Rödenbeck baselines". Both inversions 

display in general similar spatial patterns of the inversion increments, however in most regions INV-E1-O1-S1 shows 

somewhat lower CH4 emissions than INV-E1-O1, visible in the slightly larger areas with negative inversion increments and 

slightly smaller areas with positive inversion increments. Consequently, also the derived country total emissions (shown in 

Fig. 5) are lower in INV-E1-O1-S1, e.g., -6.6% lower over Germany and -12.8% lower over France compared to 455 

INV-E1-O1.  
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Figure 1: Sensitivity of FLEXVAR inversions to different approaches to calculate the baselines and to parameterize the model 

representation error. Upper left figure: prior emissions (emission data set E1). Second row: posterior emissions (left) and 

difference between posterior and prior emissions (right) for base inversion INV-E1-O1 (using the Rödenbeck baselines and the 460 
METEO model representation error). Third row: inversion INV-E1-O1-S1 using the particle position baselines. Fourth row: 

inversion INV-E1-O1-S2.1 using the OBS model representation error. All figures show annual average CH4 emissions (or change 

in emissions, respectively) for 2018. 
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Figure 2: Time series of simulated and observed CH4 mole fractions at stations GAT, KIT, SAC, and OPE for 3-month period 465 
from 01 April until 01 July 2018. Blue curve shows the Rödenbeck baselines, green the particle position baselines, red the posterior 

CH4 mole fractions for inversion INV-E1-O1 (using the Rödenbeck baselines), violet the posterior CH4 mole fractions for inversion 

INV-E1-O1-S1 (using the particle position baselines) (owing to the similarity of both posterior simulations, however, the results of 

INV-E1-O1-S1 are largely overlayed by those of INV-E1-O1). Small black dots: hourly-averaged observations. Solid black circles: 

assimilated observations. Coloured symbols show the corresponding assimilated values (solid circles: assimilated posterior mole 470 
fractions; open circles: baseline values used for the assimilation). 

 

Figure 2 illustrates the two different baselines at some example stations during the 3-month period from 01 April until 01 

July 2018. In general, both baselines are rather similar, including their synoptic variability. However, there are certain 

periods, during which the "particle position baselines" are somewhat higher than the "Rödenbeck baselines", e.g., at KIT, 475 

SAC and OPE during the period between day 140 and day 162. Consequently, the observational forcing (i.e., the 

enhancement of the observations above baseline) is lower during such periods for the "particle position baselines", resulting 

in lower derived emissions. One major difference between both approaches is that in case of the "Rödenbeck baselines" the 

background mole fractions are transported to the stations by TM5, while in case of the "particle position baselines" they are 

transported by FLEXPART. In order to further investigate which baselines are more realistic we have compared model 480 

simulations and observations for "background conditions", defined as events when the contribution of European emissions 
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(evaluated by Eq. (10)) is lower than a certain threshold (here set to 5 ppb). Figure S2 shows the comparison for 8 stations, 

for which a sufficient number (>20) of events with "background conditions" has been found. For the "Rödenbeck baselines" 

6 of these 8 stations show posteriori biases close to zero (< 2 ppb), while PUY shows a small negative bias (-5.3 ppb) and 

CMN a small positive bias (3.7 ppb). In contrast, the "particle position baselines" results in a smaller negative bias at PUY 485 

(-3.3 ppb), but larger positive biases at WAO (2.5 ppb), JFJ (5.5 ppb), and CMN (8.6 ppb). This analysis suggests that the 

performance of the "Rödenbeck baselines" is slightly better compared to the "particle position baselines" under "background 

conditions". However, we note that differences of the baselines shown in Fig. 2 are mainly during periods of elevated CH4 

enhancements, for which it is more difficult to evaluate (based on the observations) which baselines are more realistic.  

4.1.2 Sensitivity of FLEXVAR inversions to parameterization of model representation error 490 

Figure 1 illustrates the sensitivity of the derived emissions to the applied parameterization of the model representation error. 

Inversion INV-E1-O1-S2.1, for which the "OBS" model representation error has been used, results in overall lower CH4 

emissions compared to the base inversion INV-E1-O1 with the "METEO" parameterization, again reflected in the larger 

extension of the areas with negative inversion increments and smaller extension (and magnitude) of the areas with positive 

inversion increments. Accordingly, the annual total emissions derived in INV-E1-O1-S2.1 are lower compared to 495 

INV-E1-O1 for all countries or group of countries (denoted in the following as "country regions") shown in Fig. 5. 

The "OBS" model representation error increases with increasing observed CH4 enhancement (i.e., observed CH4 mole 

fraction minus CH4 background) (Sect. 2.2.3 and Fig. S1) and shows a large dynamic range at most stations, resulting in a 

generally relative low weighting in the inversion of events with larger CH4 enhancements. In contrast, the dynamic range of 

the "METEO" model representation error is smaller at most stations, leading to a generally more equal weighting of all data 500 

points. Using the "METEO" model representation error, the observations can be better reproduced achieving a higher 

average correlation coefficient (r = 0.85) and lower average root mean square difference (rms = 30.0 ppb) compared to the 

"OBS" model representation error (r = 0.80; rms = 35.4 ppb), as shown in Fig. S3. Apart from the better statistical 

performance, the "METEO" model representation is probably better at estimating the capability of the model to reproduce 

the observations (which largely depends on the specific meteorological situation), since wind speed might be a better 505 

indicator of the representativeness of a certain data point than the observed CH4 enhancement, as the latter not only depends 

on the meteorological situation, but also on the regional CH4 emissions. 

Given the relatively large impact of the parameterization of the model representation error and the baselines, we have also 

performed an inversion combining the "OBS" model representation error and the "particle position baselines" (inversion 

INV-E1-O1-S2.2), which yields further reduced country total emissions compared to INV-E1-O1-S2.1 and INV-E1-O1-S1 510 

(Fig. 5). 
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4.1.3 Sensitivity of FLEXVAR inversions to model covariance settings 

In the following, the sensitivity of the FLEXVAR inversions to the main parameters of the prior covariance are investigated, 

i.e., horizontal correlation length constant, temporal correlation scale constant, and assumed uncertainties of emissions per 

grid cell and emission time step. Figure S4 shows inversions for horizontal correlation length constants 𝐿corr (Eq. (7)) of 50 515 

km (INV-E1-O1-S3.1), 100 km (default value; INV-E1-O1), and 200 km (INV-E1-O1-S3.2). As expected, the spatial 

dimension of the inversion increments is increasing with increasing 𝐿corr. Despite these clearly visible differences in the 

spatial patterns of the inversion increments, the impact on the annual total emissions of the country regions shown in Fig. 5 

is relatively small, since apparently the differences in the smaller scale spatial patterns are largely averaged out over larger 

areas. Associated with the increase of the horizontal correlation length constant is a significant increase of the prior 520 

uncertainties of the annual total emissions per country, since increasing horizontal correlation length constant implies larger 

error correlations between neighbouring grid cells and hence increasing aggregated uncertainties (as uncertainties per grid 

cell and month were kept constant (at 100%) in this sensitivity inversion series). Analogously, the decrease in the temporal 

correlation scale constant, 𝑡corr (Eq. (8)), results in a decrease of the aggregated annual prior uncertainty, as illustrated by 

inversion INV-E1-O1-S5, in which 𝑡corr has been set to 1 month (instead of the default value of 12 months applied in all 525 

other inversions). Again, however, the effect on the derived annual emissions of the country regions remains very small (Fig. 

5). 

Figure S5 shows the dependence of the inversions on the assumed uncertainties of prior emissions per grid cell and month 

for values of 50% (INV-E1-O1-S4.1), 100% (default value; INV-E1-O1) and 200% (INV-E1-O1-S4.2). The increase of the 

assumed prior uncertainty leads to a significant increase of the derived regional inversion increments. This effect is most 530 

pronounced at larger distances from the monitoring stations where observational constraints are relatively weak. Especially 

the large inversion increments visible in INV-E1-O1-S4.2 at the eastern domain boundary are probably an artefact, since the 

inversion may generate such patterns in regions far from the observations to compensate for systematic errors, e.g., in model 

transport and with little penalty in the cost function in case of assumed very high prior uncertainties.  

Despite the dependence of the smaller scale regional inversion increments on the assumed prior uncertainties, the impact on 535 

the derived annual total emissions remains again very small for the country regions shown in Fig. 5, since their emissions are 

relatively well constrained by the available observations and since differences in the smaller scale inversion increments are 

averaged out over larger areas. 

 

 540 
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 545 

 

 

Figure 3: Sensitivity of FLEXVAR inversions to applied prior emission inventories. Upper row: inversion INV-E1-O1 using 

emission data set E1 as prior. Middle row: inversion INV-E2-O1 using emission data set E2 as prior. Lower row: inversion 

INV-E3-O1 using emission data set E3 as prior. Left column: prior emissions. Middle column: posterior emissions. Right column: 550 
difference between posterior and prior emissions. All figures show annual average CH4 emissions (or change in emissions, 

respectively) for 2018. 
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4.2 Sensitivity of FLEXVAR inversions to model input data 

4.2.1 Sensitivity of FLEXVAR inversions to prior emission inventories 555 

Figure 3 shows maps of the European CH4 emissions for INV-E1-O1, INV-E2-O1, and INV-E3-O1, which use the three 

different emission data sets E1, E2, and E3 (Sect. 3.2; Table 2) as prior emissions. While the major patterns of the spatial 

prior emission distribution look relatively similar for the three inventories (e.g., the high emissions over the BENELUX 

countries and the Po valley), there are significant differences in the country region total emissions (Fig. 5). E2 has lower 

emissions over Germany (16.1%), France (15.1%) and BENELUX (27.4%) compared to E1 (and 11.3% lower over the 560 

whole COSMO-7 domain (Table 2)), while E3 has higher total emissions over the COSMO-7 domain (15.1% higher than 

E1), and very high emissions especially for UK+Ireland (42.1% higher than E1). Despite these considerable differences in 

the prior emissions, the annual total posteriori emissions of the country regions shown in Fig. 5 are very similar for the three 

inversions. This indicates that the inversions are largely driven by the observations. For UK+Ireland this is somewhat 

surprising, since only one measurement station (MHD / NOAA) is located in this country region in the applied observation 565 

data set O1, but apparently the continental stations provide some constraints for the emissions from UK+Ireland. We will see 

in the next section, however, that including additional stations has a significant impact on the CH4 emissions derived for 

UK+Ireland. 

4.2.2 Sensitivity of FLEXVAR inversions to assimilated observations 

While the base observation data set O1 uses only the ICOS in situ stations, complemented by the NOAA discrete air 570 

sampling sites, nine further in situ stations from other networks / institutions are added in observation data set O2 (Table 1). 

Six of the additional stations are located on the British Isles, two in Switzerland, and one in the Netherlands. Figure 4 

displays the inversions INV-E1-O1 and INV-E1-O2 using the two different observation data sets. As expected, the largest 

differences are visible in the regions around the additional stations. For UK+Ireland, the annual total emissions are 23.0% 

higher in INV-E1-O2 compared to INV-E1-O1 (Fig. 5). The significant additional observational constraints for UK+Ireland 575 

are also reflected in the significantly lower posterior uncertainty for INV-E1-O2 (2-sigma uncertainty: 0.6 Tg CH4 yr-1) 

compared to INV-E1-O1 (2-sigma uncertainty: 1.6 Tg CH4 yr-1; Fig. 5). For the BENELUX country region only a moderate 

change in the annual total emissions is calculated (INV-E1-O1: 1.71 Tg CH4 yr-1; INV-E1-O2: 1.82 Tg CH4 yr-1; Fig. 5), but 

the spatial distribution of posteriori emissions is somewhat different, with higher emissions around the additional station 

CBW in INV-E1-O2 (Fig. 4). For Switzerland a larger (relative) difference of posteriori emissions is calculated, with annual 580 

total emission increasing from 0.15 Tg CH4 yr-1 (INV-E1-O1) to 0.22 Tg CH4 yr-1 (INV-E1-O2). 

Using the extended observation data set O2, we have performed additional inversions, using alternatively the emission data 

sets E2 or E3 instead of E1. As for observation data set O1 (discussed in Sect. 4.2.1), the sensitivity of derived annual total 

emissions to the applied prior emission data set is relatively small (Fig. 5). 

 585 
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Figure 4: Sensitivity of FLEXVAR inversions to assimilated observations. Upper left figure: prior emission. Middle row: posterior 

emissions (left) and difference between posterior and prior emissions (right) for inversion INV-E1-O1 (using observation data set 

O1). Lower row: inversion INV-E1-O2 (using observation data set O2). Solid black circles show locations of stations with in situ 

data, open circles locations of stations with discrete air sampling. All figures show annual average CH4 emissions (or change in 590 
emissions, respectively) for 2018. 
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Figure 5: Total CH4 emissions for Germany, France, BENELUX, and UK+Ireland derived for different sensitivity inversions 

(Table 3). Left: 3-month running mean total CH4 emissions of the corresponding country regions. Right: Annual total CH4 

emissions. Open circles show prior emissions, closed circles show posterior emissions and error bars the 2-sigma uncertainties of 595 
prior and posterior emissions, respectively. The solid blue and red rectangles on the right side of the figures show the prior and 

posterior range from all individual inversions, and the error bars on these rectangles the minimum and maximum values of the 

2-sigma uncertainties of the individual inversions. 
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Furthermore, additional inversions (of observation data set O2) have been performed using alternatively the "particle 

position baselines" (INV-E1-O2-S1) or the alternative parameterization "OBS" of the model representation error 600 

(INV-E1-O2-S2.1). Similar as for observation data set O1 (discussed in Sect. 4.1.1. and 4.1.2.), the use of these alternative 

parameterizations results in generally lower posteriori emissions, with lowest posteriori emission calculated in inversion 

INV-E1-O2-S2.2 (combining the "OBS" model representation error and the "particle position baselines"). 

4.3 Model comparison and analysis of European CH4 emissions 

In the following we compare the FLEXVAR inversions with inversions using the extended Kalman filter ("FLExKF") 605 

system (Sect. 2.3) and TM5-4DVAR (Sect. 2.4). Figure 6 shows the results of these three models using the emission data set 

E3 as prior and the observation data set O2. Overall, all three inverse models show relatively good consistency of major 

spatial patterns of the derived inversion increments, e.g., the increase of emissions over the BENELUX region and north-

western France, and the decrease of emissions around Paris compared to the prior emissions. Since FLExKF uses the same 

atmospheric transport as FLEXVAR, it is to be expected that the inversions of these two models should give similar results. 610 

Nevertheless, there are also some significant differences visible between the two models, especially for the southern part of 

France, for which FLExKF yields overall lower emissions than FLEXVAR. This difference is also clearly visible in the 

derived country total emissions (Fig. 7), with 10.3% lower annual total CH4 emission for France calculated by FLExKF 

(FLExKF E3-O2) compared to FLEXVAR (INV-E3-O2). In contrast, FLExKF derives somewhat higher CH4 emissions for 

BENELUX (6.3%) and UK+Ireland (6.8%) than FLEXVAR, while emissions derived for Germany are very similar (within 615 

1.4%). One major difference between FLExKF and FLEXVAR is the different parameterization of the model representation 

error, leading to a different weighting of the individual observational data points, which can cause differences in the 

calculated regional inversion increments as shown for FLEXVAR in Section 4.1.2. Another difference is the magnitude of 

the prior uncertainties, though this was shown for FLEXVAR to have a rather small impact on total emissions for the 

country regions presented in Fig. 5. Furthermore, it is likely that the different inversion techniques have some impact on the 620 

calculated solutions. For example, FLExKF yields generally smoother seasonal variations of derived emissions, while 

FLEXVAR shows larger month-to-month variability. The latter are, however, largely filtered out by the use of 3-month 

running mean values for the seasonal variation of the total emissions of country regions shown in Fig. 7 (left column).  

The spatial emission patterns derived by TM5-4DVAR are in general similar to those calculated by FLEXVAR and FLExKF 

(Fig. 6), but show also some differences, e.g., around the stations PUY and HPB, where TM5-4DVAR calculates higher 625 

emissions than FLEXVAR and FLExKF, probably related to the particular challenge to simulate mountain sites and sites in 

complex topography. Further differences between the models are the different derived seasonal variations of emissions, with 

larger variations calculated by TM5-4DVAR for Germany, France, and UK+Ireland compared to FLEXVAR and FLExKF 

(while the FLEXVAR inversions using the observation data set O2 show larger variations for BENELUX than the other 

models). In addition to the different model representation error in TM5-4DVAR, very likely the fundamentally different 630 

nature of the models (Eulerian vs. Lagrangian) and the related different simulation of transport plays an essential role.  
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Figure 6: Annual average CH4 emissions derived for year 2018 using FLEXVAR (upper row), FLExKF (middle row), and TM5-

4DVAR (lower row). Left column: prior emissions. Middle column: posterior emissions. Right column: difference between 635 
posterior and prior emissions. All three inversions shown here use the same inventory data set E3 as prior and the observation 

data set O2. 

https://doi.org/10.5194/acp-2022-118
Preprint. Discussion started: 16 March 2022
c© Author(s) 2022. CC BY 4.0 License.



27 

 

 

Figure 7: Total CH4 emissions for Germany, France, BENELUX, and UK+Ireland derived by the three different inverse modelling 

systems FLEXVAR, FLExKF, and TM5-4DVAR. For FLEXVAR only a subset of inversions is displayed here, while the whole 640 
range from all FLEXVAR sensitivity inversions is shown by the first pair (from left to right) of solid rectangles which is identical 

to the pair of rectangles shown in Fig. 5. The second pair of rectangles shows the range of prior (blue) and posterior (red) CH4 

emissions from all three models (and the error bars the minimum and maximum values of the 2-sigma uncertainties of all 

individual inversions). The black symbols show the anthropogenic CH4 emissions reported to UNFCCC (and their estimated 

2-sigma uncertainties), blue symbols the natural emissions estimated from the GCP CH4 inventory, and the violet symbols the sum 645 
of anthropogenic and natural bottom-up inventories. 
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Nevertheless, the differences in the annual total emissions for the country regions are only moderate. For Germany, 

somewhat higher emissions are calculated by TM5-4DVAR compared to FLEXVAR and FLExKF, while the posterior 

emissions for France, BENELUX, and UK+Ireland derived by TM5-4DVAR are in the range of emissions calculated by 

FLEXVAR and FLExKF.  650 

Figure 7 also includes inversions of the three models using the base observation data set O1. As discussed for FLEXVAR in 

Sect. 4.2.2., also FLExKF and TM5-4DVAR show higher emissions for UK+Ireland, when using O2 instead of O1 due to 

the 6 additional stations in data set O2 in that area. Furthermore, FLExKF inversions have also been performed using E1 

instead of E3 as prior emissions (Fig. 7). As for FLEXVAR (Sect. 4.2.1), the impact on derived emissions is only relatively 

small. 655 

In order to evaluate the quality of the derived emissions it is useful to analyse how well the observations are reproduced by 

the models. Figure S6 compares the statistics (correlation coefficient and rms difference) for the three models (using 

emission data set E3 and observation data set O2). At most stations relatively high correlation coefficients and low rms 

differences are obtained by all three models. However, stations with larger regional emissions (e.g., LUT, CBW, BRM, IPR) 

or complex topography (e.g., OXK, IPR) show generally poorer statistical performance. Figure S6 also shows that the best 660 

statistical performance is achieved by FLEXVAR with a mean correlation coefficient of r=0.86 (FLExKF: r=0.84, 

TM5-4DVAR: r=0.81) and a mean rms difference of 28.21 ppb (FLExKF: 30.53 ppb, TM5-4DVAR: 31.82 ppb). This 

finding demonstrates that the high spatial resolution of FLEXVAR and FLExKF at 7 km × 7 km allows to somewhat better 

reproduce the observations than the TM5-4DVAR simulations at 1° × 1°, although - beside the different spatial resolution -

also other factors (such as fundamental differences in the modelling of transport) are likely to play a role. The slightly better 665 

statistical performance of FLEXVAR compared to FLExKF could be due to the higher degree of freedom to optimize the 

emissions in FLEXVAR, but may also be partly related to other factors, such as different weighting of observations due to 

different parameterizations of the model representation error.  

Figure S7 shows the time series of observed and simulated CH4 mole fractions for all stations (inversion INV-E1-O2), 

illustrating that in general the synoptic variability is well reproduced at most sites. Furthermore, FLEXVAR also simulates 670 

the average diurnal cycle at most sites realistically. 

In the following, we compare the annual total CH4 emissions derived by the inverse models with the anthropogenic CH4 

emissions reported by the countries to UNFCCC (UNFCCC, 2021). For a consistent comparison, it is necessary to take into 

account also estimates of the natural CH4 emissions, for which we use the bottom-up inventories of natural sources from the 

GCP-CH4 data set (Saunois et al., 2020) (Table 2). Furthermore, the comparison of top-down and bottom-up emission 675 

estimates requires to include estimates of their uncertainties. For the uncertainty estimate of the inverse models, we use the 

range of results from the individual inversions (shown by the red solid rectangles in Fig. 7) and the minimum-maximum 

values of the 2-sigma uncertainty ranges based on the uncertainties computed for the individual inversions (shown by the 

error bars). The total uncertainty ranges are evaluated separately (1) for the whole set of FLEXVAR sensitivity inversions 

(as shown in Fig. 5) and (2) for the whole set of all inversions, i.e., including also all FLExKF and TM5-4DVAR inversions. 680 
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The uncertainties of the UNFCCC emissions are based on the uncertainties reported by the countries for the major CH4 

source categories, while estimates of the uncertainty of total CH4 emissions are not provided by the countries. As in 

Bergamaschi et al. (2015), we estimate the total uncertainties from the reported uncertainties per category, assuming - among 

other things - uncorrelated uncertainties for the different major source categories (for further details see section S2 in the 

supplementary material). The uncertainties of natural CH4 emissions from wetlands were estimated from the ensemble of 685 

wetland models used for the GCP-CH4 wetland emissions, taking the minimum-maximum range of the 11 individual wetland 

models (Poulter et al., 2017). For other natural CH4 emissions, we assume an uncertainty of 100%. 

Figure 7 shows that the CH4 emissions estimated by the inverse models are higher than the sum of anthropogenic 

(UNFCCC) and natural bottom-up inventories for Germany, France and BENELUX, but the uncertainty ranges of top-down 

and bottom-up estimates overlap for all three country regions. The smallest overlap, however, is found for BENELUX. In 690 

contrast, the top-down estimates for UK+Ireland agree relatively well with the total of anthropogenic and natural bottom-up 

inventories. A tendency to higher top-down emissions compared to the total (anthropogenic and natural) bottom-up 

inventories for Germany, France and BENELUX has also been found in the analysis reported by Bergamaschi et al. (2018a) 

for the period 2006-2012, but also in that study uncertainty ranges of bottom-up and top-down estimates were overlapping. 

Similar tendencies to higher top-down emissions are apparent in the VERIFY analyses for the period 2005-2017 (VERIFY, 695 

2021) using a larger ensemble of regional inversions, while global inversions (with coarser resolution) showed in general 

lower emissions, closer to the UNFCCC estimates for these country regions. Based on the observation that several models 

showed clear seasonal cycles of the derived emissions with maximum during summer, Bergamaschi et al. (2018a) suggested 

that higher natural emissions could explain the difference between top-down and bottom-up estimates. The FLEXVAR and 

FLExKF inversions analysed in this study, however, show in general only relatively small seasonal variations for Germany, 700 

France and UK+Ireland compared to TM5-4DVAR. The use of seasonal cycles to disentangle anthropogenic and natural 

sources is further hampered by the fact that the seasonal cycles of major anthropogenic sources are still not well 

characterized. Also, the anthropogenic emission inventories used in this study show rather different seasonal cycles. Most of 

the anthropogenic GCP-CH4 emission categories (which are largely based on EDGARv4.3.2, except biomass burning 

(Saunois et al., 2020)) have no seasonality, except emissions from rice agriculture and biomass burning, which however play 705 

only a minor role in Europe. EDGARv6.0 (used for E1) has small seasonal variations of most energy related source 

categories, but assumes constant emissions for the agricultural sources (except rice) and for waste emission. In contrast, most 

sectors of the TNO-VERIFYv3.0 inventory (used for E2) show seasonal variations, including significant seasonal variations 

of all agricultural sources, resulting in significant seasonal variations of the total anthropogenic emissions with maximum 

emissions in September (Fig. 5). 710 
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5. Conclusions 

We have presented the novel inverse modelling system FLEXVAR based on the 4DVAR assimilation technique and 

FLEXPART-COSMO back trajectories driven by COSMO meteorological fields at 7 km × 7 km resolution over the 

European COSMO-7 domain. A major advantage of the 4DVAR technique is that it allows to constrain a much larger 

number of variables (in our study about 1.6 million) compared to analytical inversion techniques. The offline coupling with 715 

TM5-4DVAR ensures that the background mole fractions ("baselines") used in FLEXVAR are consistent with the global 

observations assimilated in TM5-4DVAR. We have applied the FLEXVAR system for inversions of European CH4 

emissions 2018 using 24 stations with in situ measurements, complemented with data from 5 stations with discrete air 

sampling (and additional stations outside the European COSMO-7 domain used for the global TM5-4DVAR inversions).  

We have investigated the sensitivity of the FLEXVAR inversions to internal parameterizations, model settings, and main 720 

model input data. Using the "particle position baselines" yields in general lower derived emissions compared to inversions 

which apply the "Rödenbeck baselines", resulting in differences in the annual total emissions of 5 - 14 % for the analysed 

country regions (Germany, France, BENELUX, UK+Ireland). Furthermore we found a significant impact of the applied 

parameterization of the model representation error. Inversions using the "OBS" model representation error derive over large 

parts of the domain somewhat lower emissions compared to the "METEO" model representation error, with differences in 725 

the annual total emissions of 0 - 15 % for the analysed country regions. Varying the main parameters of the prior covariance 

(i.e., horizontal correlation length constant, temporal correlation scale constant, and assumed uncertainties of emissions per 

grid cell and month) has clearly visible effects on the smaller scale regional inversion increments, but the impact on the 

derived annual total emissions remains very small for the analysed country regions, since the differences in the smaller scale 

spatial patterns are largely averaged out over larger areas. Furthermore, the dependence of derived emissions on the applied 730 

prior emission inventory has been found to be relatively small for the country regions which are well constrained by the 

observations. Changing these observational constraints by including additional sites, however, has a significant impact on the 

inversions especially in the surroundings of these sites. Using the extended observation data set O2 (which includes 6 

additional in situ stations located on the British Isles) yields 23 - 28 % higher emissions for UK+Ireland compared to 

inversions using only the base observation data set O1. At the same time, the calculated uncertainty of the posteriori 735 

emissions for UK+Ireland is significantly reduced by these additional observational constraints. 

The comparison of the FLEXVAR inversions with inversions using the extended Kalman filter ("FLExKF") system (which 

both use the same atmospheric transport model) shows overall good consistency of major spatial patterns of the derived 

inversion increments, but some difference (7-10%) for the derived total CH4 emission of France, probably mostly related to 

the use of different parameterizations of the model representation error. TM5-4DVAR also shows in general similar 740 

inversion increments and derives posterior emissions for France, BENELUX, and UK+Ireland in the range of emissions 

calculated by FLEXVAR and FLExKF. For Germany, however, TM5-4DVAR estimates 5-11% higher emissions than the 

other two models. 
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The FLEXVAR and FLExKF inversions at high spatial resolution of 7 km × 7 km allow to better reproduce the observations 

than the TM5-4DVAR simulations at 1° × 1°, reflected in the achieved higher correlation coefficient and lower rms 745 

difference between simulations and observations. Furthermore, the statistical performance of FLEXVAR is slightly better 

than that of FLExKF, which could be due to the higher degree of freedom to optimize the emissions in FLEXVAR, but could 

be partly related also to other differences of the inversions, as e.g., the different parameterizations of the model 

representation error. 

The inverse models derive higher annual total CH4 emissions in 2018 for Germany, France and BENELUX compared to the 750 

sum of emissions reported to UNFCCC and natural emissions (estimated from the GCP-CH4 inventory), but the uncertainty 

ranges of top-down and bottom-up estimates overlap for all three country regions. In contrast, the top-down estimates for 

UK+Ireland agree relatively well with the total of anthropogenic and natural bottom-up inventories. 

Code and data availability 

The code of the FLEXVAR inverse modelling system is available upon request. The atmospheric observations from ICOS 755 

are available at: https://www.icos-cp.eu/data-products/atmosphere-release. NOAA data are available at: 

https://gml.noaa.gov/aftp/data/greenhouse_gases/ch4/flask/, AGAGE data at: 

https://agage2.eas.gatech.edu/data_archive/agage/, UK DECC data at https://archive.ceda.ac.uk/ 
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