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Abstract. We present a novel high-resolution inverse modelling system ("FLEXVAR") based on FLEXPART-COSMO
back trajectories driven by COSMO meteorological fields at 7 km x 7 km resolution over the European COSMO-7 domain
and the four-dimensional variational (4ADVAR) data assimilation technique. FLEXVAR is coupled offline with the global
inverse modelling system TM5-4DVAR to provide background mole fractions (“baselines") consistent with the global
observations assimilated in TM5-4DVAR. We have applied the FLEXVAR system for the inverse modelling of European
CH, emissions in 2018 using 24 stations with in situ measurements, complemented with data from five stations with discrete
air sampling (and additional stations outside the European COSMO-7 domain used for the global TM5-4DVAR inversions).
The sensitivity of the FLEXVAR inversions to different approaches to calculate the baselines, different parameterizations of

the model representation error, different settings of the prior error covariance parameters, different prior inventories and
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different observation data sets are investigated in detail. Furthermore, the FLEXVAR inversions are compared to inversions
with the FLEXPART extended Kalman filter ("FLExXKF") system and with TM5-4DVAR inversions at 1° x 1° resolution
over Europe. The three inverse modelling systems show overall good consistency of the major spatial patterns of the derived
inversion increments and in general only relatively small differences in the derived annual total emissions of larger country
regions. At the same time, the FLEXVAR inversions at 7 km x 7 km resolution allow to better reproduce the observations
than the TM5-4DVAR simulations at 1° x 1°. The three inverse models derive higher annual total CH4 emissions in 2018 for
Germany, France and BENELUX compared to the sum of anthropogenic emissions reported to UNFCCC and natural
emissions estimated from the Global Carbon Project CH,4 inventory, but the uncertainty ranges of top-down and bottom-up
total emission estimates overlap for all three country regions. In contrast, the top-down estimates for the sum of emissions
from the United Kingdom and lIreland agree relatively well with the total of anthropogenic and natural bottom-up

inventories.

1 Introduction

Atmospheric methane (CHa,) is the second most important anthropogenic greenhouse gas (GHG) after carbon dioxide (CO>)
with an estimated contribution of ~16.3% (0.520 W m-?) to the direct anthropogenic radiative forcing of all long-lived GHGs
in 2020 (NOAA Annual Greenhouse Gas Index (AGGI), evaluated relative to 1750 (Butler and Montzka, 2022)). Including
also additional indirect effects (e.g., production of tropospheric ozone), however, the total radiative forcing of CH4 is
considerably higher, with current estimates of the emission-based effective radiateradiative forcing (ERF) of 1.21 (0.90 to
1.51) W m (Naik et al., 2021). The current global average CHs mole fraction is 162% higher than preindustrial levels in
1750 (WMO, 2021) and continues to increase with recent growth rates (2014-2020: 10.1 + 3.2 ppb yr?) being again close to
the high growth rates observed during the 1980s (1984-1989: 11.9 + 0.9 ppb yr?), while lower growth rates were observed
during the 1990s and almost zero growth rates during 2000-2006 (Dlugokencky, 2022).

Reducing CH4 emissions plays an essential role to mitigate climate change, especially enin the near-term (Shindell et al.,
2017; Shindell et al., 2012; United Nations Environment Programme and Climate and Clean Air Coalition, 2021), due to the
CHy’s relatively short atmospheric lifetime of around 10 years combined with its high radiative efficiency (resulting in a
global warming potential (GWP) around 80 times higher compared to CO; on a 20-year timescale (Forster et al., 2021)). The
global emissions pathways to limit global warming to 1.5°C, compiled by IPCC (2018) include significant reductions of CH4
emissions after 2020 (for scenarios with no or limited overshoot of temperature above the 1.5°C target). The recognition of
the importance of CH,4 emission reductions to mitigate climate change has also led to the recent "Global Methane Pledge"
(European Commission, 2021) with the collective goal to reduce methane emissions by 2030 by at least 30% compared to
2020.

The development of emission reduction pathways as well as the control of international climate agreements requires the

accurate quantification of current (and past) GHG emissions. For CH4, however, the quantification of emissions and sinks is
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particularly challenging, mainly owing to the large spatial and temporal variability of emissions from many source sectors
and consequently large uncertainties in assumed mean emission factors (e.g., for natural emissions from wetlands and
anthropogenic emissions from fugitive sources such as fossil fuels (coal, oil, gas) (e.g., Brandt et al., 2014) or emissions
from the waste sector). Therefore, bottom-up inventories of CHa, which are compiled by scaling up emissions using activity
data and emission factors, have significant uncertainties. Complementary to bottom-up inventories, inverse modelling
provides top-down emission estimates using atmospheric measurements and atmospheric transport models, by optimizing
emissions from emission inventories (used as prior estimates) to get an optimal agreement between simulated and observed
CH4 mole fractions, taking into account the uncertainties of prior emission estimates, measurements, and model simulations
(e.g., Bergamaschi et al., 2018b; Houweling et al., 2017). The Global Carbon Project CH4 (GCP-CH.) provides synthesis
analyses of the global CH. cycle based on comprehensive sets of different bottom-up and top-down estimates from the
international science community working on this topic (Jackson et al., 2020; Saunois et al., 2020; Stavert et al., 2021). The
global inverse models used in these analyses have generally relatively coarse horizontal resolution, in the range of 2.5 - 6.0°
(longitude) x 1.9 - 4.0° (latitude) (Saunois et al., 2020). Therefore, such models are mainly suitable to provide information
on the global and larger regional scales.

In order to analyse in more detail (and more accurately) regional emissions, specific regional inversions have been
performed employing regional atmospheric transport models at higher horizontal resolution (typically in the range of ~20-
100 km) and making use of the increasing number of regional in situ GHG measurements, which became-have become
available in recent years in particular in Europe and North America (e.g., Bergamaschi et al., 2018a; Ganesan et al., 2015;
Lunt et al., 2021; Manning et al., 2011; Miller et al., 2013). The regional models generally require global boundary
conditions, which are usually provided from global inverse models. Alternatively, global models with zooming option for the
specific region of interest have been employed (Bergamaschi et al., 2018a). A specific purpose of such regional inversions is
to verify national bottom-up emission inventories reported to the United Nations Framework Convention on Climate Change
(UNFCCC), finally aiming at an emission monitoring and verification system to support the international climate agreements
using in situ and satellite observations (Bergamaschi et al., 2018b; Deng et al., 2021; National Research Council, 2010; Pinty
et al., 2019; Pinty et al., 2017). Within the European project VERIFY (https://verify.lsce.ipsl.fr/) a pre-operational GHG
verification system is—eurrenthy—has been developed, employing various state-of-the-art global and regional atmospheric
transport models (Petrescu et al., 2021a; Petrescu et al., 2021b).

In order to further improve the atmospheric modelling, it is essential to further increase the spatial resolution, aiming at
further improving the simulation of regional monitoring stations. A pioneering high-resolution study has been reported by
Henne et al. (2016), using the FLEXPART-COSMO back trajectories driven by meteorological fields from the Swiss
national weather service (MeteoSwiss) at horizontal resolution of approximately 7 km x 7 km, analysing the CH4 emissions
from Switzerland using continuous measurements from 6 atmospheric monitoring stations. The authors generated the
FLEXPART-COSMO sensitivity fields (based on the sampling of released particles) at even higher resolution (than the

resolution of the COSMO meteorological fields) of 0.02° x 0.015° (= 1.7 km) over the Alpine domain (but coarser horizontal
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resolution of 0.16° x 0.12° (= 13 km) outside the Alpine domain). Since they solved the inverse problem analytically
(denoted by the authors as "Bayesian method™), however, they applied a reduced grid by merging model grid cells in areas
with smaller average source sensitivities in order to reduce the size of the inversion problem to about 1000 unknowns. As an
alternative to the "Bayesian method", Henne et al. (2016) also applied also-the extended Kalman filter method described by
Brunner et al. (2012), which - in contrast to the "Bayesian method" - assimilates the observations sequentially, but for
computational reasons also requires the application of a reduced grid.

Aiming at high-resolution inversions of larger regions (such as the European domain), we have therefore developed a novel
inversion framework (denoted "FLEXVAR™) based on the four-dimensional variational (4DVAR) data assimilation
technique (Meirink et al., 2008; Talagrand and Courtier, 1987), which allows te-eptimize-the optimization of a much larger
number of parameters and therefore also avoids the need to apply reduced grids. As in the Henne et al. (2016) study, the new
system uses FLEXPART-COSMO back trajectories driven by COSMO meteorological fields at 7 km x 7 km resolution, but

is optimizing emissions ef-from individual grid cells over the whole European COSMO-7 domain with 393 (longitude) x 338
(latitude) grid cells. Furthermore, the new system uses background mole fractions (baselines) from global TM5-4DVAR
inversions (using two different approaches), i.e., it is coupling offline the FLEXPART-COSMO inversions with the global /
European TM5-4DVAR inversions.

The objective of this paper is to present the new FLEXVAR system and its application to the inversion of European CH4
emissions for 2018 using a comprehensive data set from 24 stations with in situ measurements, complemented with data
from 5 stations with discrete air sampling (and additional stations outside the European COSMO-7 domain used for the
global TM5-4DVAR inversions). We analyse in detail the sensitivity of the FLEXVAR inversions to internal
parameterizations and model settings, as well as the sensitivity to the main model input data, i.e., prior inventories and
observational data. Furthermore, we compare the FLEXVAR inversions with the extended Kalman filter ("FLEXKF")
method and with TM5-4DVAR inversions (at 1° x 1° resolution over Europe). Finally, we present an overall analysis of
derived European CH4 emissions and comparison with emissions reported to UNFCCC for some major countries (or group
of countries) which are best constrained by the available observations (Germany, France, BENELUX, and United Kingdom

and Ireland).

2 Modelling
2.1 FLEXPART-COSMO back trajectories

FLEXPART is a Lagrangian atmospheric transport model that simulates the advective, turbulent and convective transport by
tracking the positions of a large number of infinitesimally small air parcels, so-called particles, either forward or backward in
time (Pisso et al., 2019; Stohl et al., 2005). FLEXPART is an offline model that requires meteorological fields such as 3D
wind fields from a numerical weather prediction (NWP) model as input. FLEXPART-COSMO is a version of the model that
is driven by the output of the NWP model COSMO, which was jointly developed by a consortium of European weather
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services under the lead of the German meteorological service DWD (Baldauf et al., 2011). Different from all other
FLEXPART versions, FLEXPART-COSMO operates on the native vertical grid of the driving model COSMO, which
avoids potential loss of information and inaccuracies associated with the interpolation onto a different grid. More details on
the model are provided in Henne et al. (2016) and Pisso et al. (2019).

In the backward mode, particles are released at the locations of individual observations and followed backwards in time over
typically a few days. By sampling the near-surface residence times of the particles along their paths, a so-called source-
receptor sensitivity matrix or "footprint" is computed, which describes the relationship between the change in mole fraction
at the observation site and the fluxes discretized in space and time (Seibert and Frank, 2004). A time series of simulated
mole fractions can be obtained by integrating the time series of source-receptor matrices with a discretized flux estimate. The
simulations were driven by hourly output from the operational COSMO-7 analyses of the Swiss weather service MeteoSwiss
at a horizontal spatial resolution of about 7 km x 7 km, largely covering western and central Europe (Fig. 1). In the
simulations used here, 50000 virtual particles were released at all observation locations every 3 hours (evenly distributed
over each 3-hour time interval) and traced backwards in time for 10 days (or until individual particles left the COSMO-7
domain). Despite the high spatial resolution, the orography of the COSMO-7 model is smoothed for complex terrain, leading
to differences between the model surface altitude and the altitude of the observation site. When this difference is greater than
200 m, the release height of the particles has been chosen as the average between the measurement height above sea level
and the model surface altitude. This approach has been used in previous studies (Henne et al., 2016) and was found to be the

most representative release height (Brunner et al., 2013).
2.2 Coupled FLEXPART-COSMO TM5 4DVAR inverse modelling system FLEXVAR

2.2.1 Inversion framework

The new coupled FLEXPART-COSMO TM5 4DVAR inverse modelling system, denoted FLEXVAR, allows to-eptimize
the optimization of emissions at grid scale using the four-dimensional variational (4DVAR) data assimilation technique
(Meirink et al., 2008; Talagrand and Courtier, 1987), the FLEXPART-COSMO back trajectories described in Sect. 2.1, and
background mole fractions (“baselines”) from TM5-4DVAR (described in Sect. 2.2.2 and 2.4). The system follows the

classical Bayesian approach minimizing the cost function j(x):

J(x) = 3(x — x5)"B7H(x — xp) + 3(H(x) = y)"R™*(H(x) — y) @)
where x is the state vector, x;, the prior estimate of the state vector (in data assimilation usually called the "background"), y
the set of observations (measurements) to be assimilated, H(x) the observation operator (or model operator), representing
the model simulation of the observations, and B and R the error covariance matrices of the prior estimate and the
observations, respectively. For the regular inversions, a semi-lognormal probability density function (pdf) is applied for the

emissions e to be optimized (Bergamaschi et al., 2010), optimizing the emission deviation factors x; ; ,:
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for each element e; ; ., representing the emissions of an individual grid cell with longitude index i, latitude index j, and at
emission time step t (and ey ; ;. the prior estimate of the emission e; ;). In contrast, a linear expansion of the emission
deviation factors is used (resulting in a Gaussian pdf of the emissions) for additional inversions for the evaluation of
posterior uncertainties (as will be described in more detail below):

eie(Xije) = evije (1+xyc) ©))
For the prior estimate the emission deviation factors x; ;. are set to zero, i.e., e;.(x;;.) = ey (both for the semi-
lognormal and Gaussian pdf). In this study we present inversions optimizing the monthly total emissions of all FLEXPART-
COSMO grid cells (at 7 km x 7 km resolution) for one year (2018), hence the dimension of the state vector is:

Nstate = Mongitude X Matitude X Ntime = 393 X 338 X 12 = 1594008 4)
The background covariance matrix B is parameterized as the product

B=SCS (5)
where S is a diagonal matrix with the diagonal elements containing the uncertainty of emissions (standard deviations) and C
is the correlation matrix, which is parametrized as a Kronecker product of a horizontal correlation matrix Cy,,. and a
temporal correlation matrix C, (as in TM5-4DVAR (Meirink et al., 2008)):

C = Chor ® C; (6)
The spatial covariance between two grid cells is parametrized using a Gaussian function:

L 1 (d(igizj1i2))?
Chor(t1, B2, J1,J2) = exp (_;(ﬁ) ) )

where d(iy, i5, j1,j2) is the distance between two grid cells (with longitude indices i,, i, and latitude indices j;, j,), and Leorr

a pre-defined correlation length constant. The temporal correlation uses an exponential decay function:

d '
Ce(ty, ty) = exp (_ M) )

tCOlT

where d(t, t,) is the temporal distance between two emission time steps and t.,,. a pre-defined temporal correlation scale
constant.

The observation error covariance matrix R considers only diagonal elements (i.e., ignores any error correlation between
different observations) and takes into account the uncertainties of the measurements and the model representation error:

R = Rops + Rpod ©)
We use two different approaches to parameterize the model representation error, which are described in more detail in Sect.
2.2.3.

The observation operator H(x) simulates the measurements as a function of the state vector (i.e., as function of emission

deviation factors). For a given measurement m in time interval t,,, the simulation is computed as:
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(10)
using the 3-dimensional FLEXPART-COSMO footprints ¢;; , (¢t + &t) (units: [1/((kg air) m=3s71)]), described in Sect. 2.1.

e; j¢(x;;).are the CHy emissions (computed according Eq. (2) or Eqg. (3)) in units of kg CHs m* s, M,;, and Mcy, are the
molecular masses of air and CHa, respectively. &h,, is the layer thickness of vertical layer k (here we use the two lowermost
layers, each with thickness of 50 m) and wy, is the weighting of layer k (here 0.5 for the applied two layers). T,, represents
the time interval of the applied footprints (i.e., 10 days prior to the measurements), and &t the averaging time (3 hours) for
the single footprints (computed for the time interval between t and ¢t + §t). H,,,(x, t,,,) represents the simulated enhancement
of the CH,4 mole fraction above the baseline (which is evaluated by using 2 different approaches as described in Sect. 2.2.2).
The minimization of the cost function Eq. (1) requires the evaluation of the gradient of the cost function with respect to the
state vector:

VJ(x) =B~'(x — x) + HTR'(H(x) — ) (11)
where HT is the adjoint model operator, describing the sensitivity of the simulated observations with respect to changes of
the state vector. HT can be directly computed using the FLEXPART-COSMO footprints ¢k (&t + 6.

In order to achieve better convergence of the minimization algorithm, pre-conditioning is applied, transforming the state

vector x to the control vector w (similarly as e.g., in TM5-4DVAR (Meirink et al., 2008)):

w=B"12(x —xp) (12)
and in reverse direction:
x =x, +BY?w (13)

The square root of the submatrix C, is calculated by eigenvalue decomposition. However, this is not possible for the
submatrix Cy,, (in contrast to TM5-4DVAR) due to the large size of this matrix of:

Nepor = (Mongitude X Matirude) = 1328342 (14)
Therefore, an Arnoldi factorization (Arnoldi, 1951) is used, computing only the largest eigenvalues/eigenvectors.
Consequently, the square root matrix B'/2 and its inverse in Eq. (13) and Eq. (12) are replaced by corresponding
factorizations. As default setting, we use a fraction of 1% of the eigen pairs, which is reducing the size of the control vector
to 1% of the size of the state vector. Test inversions with higher fractions of eigen pairs (up to 3%) showed that a fraction of
1% is generally sufficient for the range of correlation lengths (Lo = 50 km ... 200 km) used in this study.

For the regular inversions, we use the limited memory quasi-Newton algorithm m1gn3 developed by Gilbert and Lemaréchal
(1989), which allows the optimization also of non-linear problems (as the semi-lognormal pdf Eq. (2) introduces a non-
linearity of our optimization problem). In order to evaluate the posterior uncertainties, additional inversions are performed

using a conjugate gradient algorithm (Fisher and Courtier, 1995; Lanczos, 1950; Meirink et al., 2008) for minimization and
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the linear expansion of the emission deviation factors (Eq. (3)). The posteriori covariance is then computed from the leading

eigenvalues of the Hessian of the cost function:
1 T
Bapos = B+ X, (a - 1) (BY/2y,)(BY/2v,) (15)

with v, and 6, the eigenvectors and eigenvalues of the Hessian of the cost function._The inversions based on the conjugate

gradient algorithm yield in general rather similar posterior emissions as the reqular inversions using the m1gn3 algorithm.

Derived aggregated annual total CH4 emissions agree on average (average over all sensitivity inversions) within -1.0% to

2.1% for the "country regions" discussed in this paper (Germany, France, BENELUX, UK+lreland; Fig. 2), and

within -6.4% to 6.5% for individual inversions.

2.2.2 Baselines

Since FLEXPART-COSMO is a limited domain model, providing the source-receptor relationship due to emissions in the
European COSMO-7 domain, it requires the provision of background mole fractions (“baselines™), representing the CH.
mole fractions of the air masses entering the COSMO-7 domain. Here, we simulate the baselines using the global TM5-
4DVAR inverse modelling system (described in Sect. 2.4), using two different approaches to couple the regional
FLEXPART-COSMO inversion with TM5-4DVAR. The first approach applies the method described by Rodenbeck et al.
(2009) (denoted in the following as "Rddenbeck baselines™), which is a flexible nesting scheme allowing the offline coupling
of regional models with global inversions. For this purpose, we use a manipulated version of TM5 which simulates only the
"cis" part of the CH, fields (representing the CH, enhancement due to emissions in the area to the FLEXPART-COSMO
model transported directly to the European measurement stations, without leaving the COSMO-7 domain), denoted
Acmod 1,cis- The baseline mole fractions, cpaseline, are then computed as difference of the TM5-4DVAR posterior simulation
(cmoda 1) @nd the "cis" part (Rodenbeck et al., 2009), both sampled at the location of the corresponding station:

Cbaseline = Cmod1 — ACmod 1,cis (16)
The second approach to couple FLEXPART-COSMO with TM5-4DVAR uses the particle positions of the FLEXPART-
COSMO back trajectories at the time of termination, i.e., either at the applied maximum termination time (set to 10 days in
our study), or when they leave the COSMO-7 domain (which can be well before the 10 days). For each individual particle
position, the CH4 mole fraction is then extracted from the 3-dimensional TM5-4DVAR CH;, fields. Since each 3-hourly
average FLEXPART-COSMO footprint is based on the release of 50000 particles, the corresponding (3-hourly average)
baseline mole fraction is computed as average of the CH4 mole fraction at the termination points of all individual 50000

particles. In the following, this approach is denoted "particle position baselines".

2.2.3 Model representation error

We applied two different approaches to estimate the model representation error. The first approach, denoted "OBS", is

similar to the method described by Henne et al. (2016), evaluating the residuals (difference between observations and model
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simulations) as function of CH4 enhancement. However, some details of our method are different from Henne et al. (2016).
Here, we use the following function to parameterize the model representation error, Ayyvop x,;, s a function of the absolute
observed CH4 enhancement (i.e., observed CH4 mole fraction minus CH4 background), |yk‘i|:

exp(_ak|yk,i|)_1) (17)

Aymop ki = fox + Pk (|Yk,i| + a
where K is the station index, i the index of the individual observational data point of the time series of station k, and fj x, px.
and a,, the three fit parameters evaluated for each station. These fit parameters are determined by calculating the fit curve of
the absolute residuals, |y, ; — (H,x);|, as function of |y, ;|. For large y,;, the curve becomes linear with slope p;; the
minimum value of the fit function is f, , and a,, defines how fast the function becomes linear. The evaluation of the fit
function is generally performed iteratively. In a first step, the fit parameters are computed using the prior model simulations,
while in subsequent iterations the posteriori simulations of the previous iteration are used. FLEXVAR includes an outer loop
system, which allows an arbitrary number of iterations. However, tests have shown that changes after the second iteration are
usually very small. Therefore, for the inversions presented in this paper, we used generally only two iterations. Figure S1
(left column) illustrates the fit functions for some selected stations.

As alternative to the model representation error "OBS" described above, a second approach, denoted "METEQ", has been
developed, parameterizing the model representation error as function of wind speed:

AYmob ki = foje + pPrexp(—awy,;) (18)
where wy ; is the wind speed (in m/s) extracted from the COSMO model corresponding to the data point yy ;, and fq ., pr.
and a, are the 3 fit parameters for station k. The rationale is that if wind speed at the measurement location is low, the
observed mole fraction might be more influenced by local sources of emissions and therefore less representative of the
modelled mole fractions. Again, the fit parameters are determined to get an optimal fit through the absolute residuals,
|Yk,i - (Hkx)i| and they are evaluated in 2 iterations. For large wind speeds, Ayyop ; CoOnverges towards fq ., while fo , +
D represents the model representation error at wind speed zero. The right column of Fig. S1 shows the fit functions for the

"METEO" model representation error for some selected stations.

2.3 Flexpart Extended Kalman Filter inverse modelling system

FLEXKEF is an inverse modelling system based on an extended Kalman filter as described in detail in Brunner et al. (2012)
and Brunner et al. (2017). Observations are assimilated sequentially (here day by day) to provide the best linear unbiased
estimate of the emissions and their uncertainties based on measurements up to the present time of the assimilation. Rather
than estimating monthly or annual mean emissions, the system adjusts the emissions continuously as the assimilation
proceeds, and in this way creates a smoothly varying emission field that later can be averaged to monthly or annual means.
The filter includes a forecast step, which predicts the evolution of the emissions from one assimilation time step to the next.

The simplest assumption is persistence (i.e., no change with time), but to incorporate seasonally varying a priori emissions, a
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non-zero forecast update was implemented that follows the linear change in a priori emissions from one month to the next.
Since the forecast step is associated with an uncertainty, the posterior uncertainty can become larger than the prior
uncertainty in regions that are poorly constrained by observations. In order to avoid an unrealistic growth of the uncertainties
in these regions, the posterior uncertainties are reset to the a priori uncertainty whenever they become larger.

The state vector consists of two components: (i) emissions on a reduced grid with a total of 3608 elements for inversions
with observation data set O1 and 6497 elements for inversions with observation data set O2 (Sect. 3.1 and Table 1), (ii)
coefficients of an AR(1) autoregressive process describing temporal correlations in the residuals at each individual site. As
described in Brunner et al. (2012), the reduced grid has high spatial resolution near the measurement sites and lower
resolution further away, reflecting the reduced contribution of emissions at larger distance to observed CH, variations. It was
constructed based on the combined total annual footprint of all measurement sites. The state vector may contain the
emissions directly or the logarithm of the emissions. The latter option was chosen here to enforce a positive solution, i.e.,
positive methane emissions in each grid cell.

Another option in FLEXKEF is to optimize baseline mole fractions at each observation site in addition to the gridded emission
field. However, in the configuration used here, the baselines ("Rddenbeck baselines™) described in Sect. 2.2.2 were used
directly without optimization. The results of FLEXKF should be readily comparable to those of FLEXVAR, since the same
FLEXPART-COSMO back trajectories, baselines, and observations were used. Spatial correlations in the prior emission
uncertainties were represented in the prior error covariance matrix with a correlation length scale of 200 km (exponential

decay as in Eq. (8)). The matrix was scaled such that the prior uncertainty of the total domain emissions was 20% (1c).

2.4 TM5-4DVAR inverse modelling system

TM5-4DVAR is a global inverse modelling system based on the 4DVAR data assimilation technique, and has been
described in detail by Meirink et al. (2008), while subsequent updates have been reported in Bergamaschi et al. (2018a;
2010). TM5-4DVAR uses the Eulerian atmospheric chemistry transport model TM5 (Krol et al., 2005), a two-way nested
zoom model, which allows the system to zoom in over specific regions of interest. Here, we apply the 1° x 1° zooming over
the European domain -18°~ _to 42° (longitude) x 32°~ to 64° (latitude) and an intermediate 3° (longitude) x 2° (latitude)
zooming over the extended European domain -30°~_to 48° (longitude) x 26°~ to 70° (latitude), while the remaining global
domain is simulated at a horizontal resolution of 6° (longitude) x 4° (latitude). TM5 is an offline transport model, driven by
external meteorological data, pre-processed to provide consistent meteorological fields for the different TM5 resolutions
(Krol et al., 2005). In this study, 3-hourly interpolated meteorological fields from the European Centre for Medium-Range
Weather Forecasts (ECMWF) ERA-Interim reanalysis (Dee et al., 2011) have been applied, using 25 vertical layers (defined

as a subset of the 60 layers of the ERA-Interim reanalysis)._About 5 layers represent the boundary layer, 10 layers the free

troposphere, and 10 layers the stratosphere (Krol et al., 2005).

As for the regular FLEXVAR inversions, a semi-lognormal pdf has been used (Eqg. (2)). Minimization of the cost function

Eq. (1) is performed using the m1gn3 algorithm (Gilbert and Lemaréchal, 1989) and the adjoint of the tangent linear TM5
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model (Krol et al., 2008; Meirink et al., 2008) for evaluation of the gradient of the cost function Eq. (11). Four groups of
CH,4 emissions are optimized independently: (1) wetlands, (2) rice, (3) biomass burning, and (4) all remaining sources
(Bergamaschi et al., 2018a). Uncertainties of 100% per grid-cell and month were applied for each source group with a spatial
correlation length scale of 200 km (Eq. (7)). The temporal correlation time scales Eq. (8) are set to 12 months for the

"remaining"” CH, sources (which are assumed to have no or only small seasonal variations) and to zero for the other source

groups (wetlands, rice, and biomass burning), which have pronounced seasonal cycles. The model representation error is

parameterized as a function of local emissions (i.e. emissions of the grid cell in which the corresponding monitoring station

is located) and 3-dimensional gradients of simulated mole fractions (Bergamaschi et al., 2010). The photochemical sinks of
CHy in the troposphere (OH), and stratosphere (OH, Cl, and O(:D)) are simulated as described in Bergamaschi et al. (2010).
For the coupling of the FLEXPART-COSMO inversions over the European COSMO domain with the global TM5-4DVAR
inversions, the baselines at the monitoring stations (within the COSMO-7 domain) have been computed using the two

different approaches described in Sect. 2.2.2.

3. Model input data and inversions
3.1 Atmospheric observations

The atmospheric observations used in this study (within the COSMO-7 domain) include ground-based CH, data for 2018
from 24 stations with in situ measurements, complemented with data from 5 stations with discrete air sampling, as compiled
in Table 1. Most of the in situ measurements (15 stations) are from the atmosphere network of the Integrated Carbon
Observation System (ICOS) (Heiskanen et al., 2021), a pan-European infrastructure providing harmonized atmospheric
measurements which are rigorously standardised in terms of instrumentation, calibration, air sampling and quality control,
including centralised data processing and data evaluation at the 1COS Atmospheric Thematic Centre (https://icos-
atc.Isce.ipsl.fr/) (Hazan et al., 2016; 1ICOS RI, 2020; Yver-Kwok et al., 2021). Here, we use the ICOS Atmosphere Release
of final, quality controlled data 2021-1 (ICOS RI, 2021). For station Lutjewad (LUT), the ICOS data start only on
13/08/2018. Data before that date were provided by University of Groningen, with data processing very similar to the ICOS
data. Data from the ICOS station Ispra (IPR) have been further processed using the robust extraction of baseline signal
(REBS) spike detection algorithm (El Yazidi et al., 2018; Ruckstuhl et al., 2012) in order to filter out data affected by nearby
farming activities. In addition to the ICOS measurements, further in situ measurements have been used from the UK
Deriving Emissions linked to Climate Change (DECC) network (Bilsdale (BSD), Tacolneston (TAC), Ridge Hill (RGL),
Heathfield (HFD)), from Advanced Global Atmospheric Gases Experiment (AGAGE) (Mace Head (MHD)), from
University of East Anglia (Weybourne (WAQ)), from Netherlands Organisation for Applied Scientific Research (TNO)
(Cabauw (CBW)), from Empa (Laegern Hochwacht (LHW)), and from University of Bern (Berominster (BRM)). The in
situ measurements are complemented by discrete air samples (which are usually collected weekly) from the NOAA Earth

System Research Laboratory (ESRL) global cooperative air sampling network (NOAA, 2022), with 5 stations within the
11
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COSMO-7 domain. Additional atmospheric data used for the TM5-4DVAR inversions are compiled in Table S1 and include
6 further ICOS stations with in situ measurements and 31 NOAA discrete air sampling sites located outside the COSMO-7
domain. The selected stations outside the European 1° x 1° or 3° x 2° TM5 zoom regions are mostly global background
stations in remote areas which can be reasonably well reproduced with the coarse global TM5 resolution of 6° x 4°,

The atmospheric CH,4 data are reported on the WMO X2004A calibration scale (Dlugokencky et al., 2005; NOAA, 2021),
except the AGAGE MHD data which are reported on the Tohoku University (TU) CH4 standard scale (Aoki et al., 1992;
Prinn et al., 2000). Comparison of parallel measurements by NOAA and AGAGE at 5 global sites over more than 25 years
showed that the two calibration scales are in close agreement, with an average ratio of 1.0002+0.0007. Therefore, no scale

correction has been applied.

Table 1: European monitoring stations used in this study. "alt" is the surface altitude (m above sea level), "'s.h." is the sampling
height (m) above ground, "'ST"* specifies the sampling type (*'I'": in situ measurements; ""D"": discrete air sample measurements).
"FLEX' is the release height (m) used for calculation of the FLEXPART-COSMO back trajectories (*'agl'': release height above

model surface; "asl": release height above sea level). The column '""M" indicates the stations which have been classified as

mountain stations. The last two columns indicate the use of the corresponding station data in the observation data sets O1 and O2.

ID station name data provider lat lon alt s.h. | ST FLEX | M |01 | 02
HTM Hyltemossa ICOS 56.10 13.42 115 150 | | 150 agl ° °
BSD Bilsdale DECC 54.36 -1.15 380 248 | | 248 agl °
LUT Lutjewad RUG/ICOS! 53.40 6.35 1 60 | | 60 agl °
MHD | Mace Head NOAA 53.33 -9.90 5 21 | D 10 agl °
AGAGE 53.33 -9.90 5 218 | | 10 agl °
GAT Gartow ICOS 53.07 11.44 70 341 | 1 341 agl ° °
WAO | Weybourne UEA 52.95 1.12 15 10 | | 10 agl °
TAC Tacolneston DECC 52.52 1.14 56 100 | | 100 agl °
LIN Lindenberg ICOS 52.17 14.12 73 98 | | 98 agl ° )
RGL Ridge Hill DECC 52.00 -2.54 204 90 | | 90 agl °
CBW | Cabauw TNO 51.97 4.93 0 200 | 1 200 agl °
TOH Torfhaus ICOS 51.81 10.53 801 147 | | 147 agl ° °
HFD Heathfield DECC 50.98 0.23 150 100 | | 100 agl °
OXK Ochsenkopf NOAA 50.03 11.82 1022 163 | D 1035 asl ° °
KRE Kresin u Pacova ICOS 49.57 15.08 534 250 | 1 250 agl ° °
KIT Karlsruhe ICOS 49.09 8.42 110 200 | 1 200 agl ° °
SAC Saclay ICOS 48.72 2.14 160 100 | | 100 agl ° °
OPE Observatoire Perenne® | ICOS 48.56 5.50 390 120 | | 120 agl ° °
TRN Trainou ICOS 47.96 211 131 180 | | 180 agl ° °
HPB Hohenpeissenberg ICOS 47.80 11.02 934 131 | | 938 asl ° °
NOAA 47.80 11.01 985 5|D 840 asl ° °
LHW | Laegern Hochwacht EMPA 47.48 8.40 840 32| 1 699 asl °
BRM Beromdinster UBE 47.19 8.18 797 212 | 1 212 agl °
HUN Hegyhatsal NOAA 46.95 16.65 248 9% | D 96 agl )
JFJ Jungfraujoch ICOS 46.55 7.98 3580 511 3137asl | e )
IPR Ispra ICOS/JRC? 45.81 8.64 210 100 | | 100 agl °
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PUY Puy de Dome ICOS 45.77 2.97 1465 10 | | 1168 asl

CMN Monte Cimone ICOS 44,19 10.70 2165 8|1 1753 asl | @
CiB CIBA* NOAA 41.81 -4.93 845 5|D 5 agl °

! data since 13/08/2018 from ICOS data release; before that date from University of Groningen
2 data filtered with REBS spike detection algorithm (see Sect. 3.1)

3 Observatoire Perenne de I'Environnement

4 Centro de Investigacion de la Baja Atmosfera

For the in situ measurements (which are available quasi-continuously in time) we assimilate only early afternoon data for
stations in the boundary layer and night time data for mountain stations (Bergamaschi et al., 2015), selecting the 3-hour time
interval of the FLEXPART back trajectories (which are provided for [0:00 - 3:00, 3:00 - 6:00, ...] UTC) which is closest to
the time interval [12:00 - 15:00] LT for the stations in the boundary layer, and [0:00 - 3:00] LT for the mountain stations

(indicated in Table 1 by column "M"), respectively. This procedure ensures consistent averaging of the FLEXPART back

trajectories and the assimilated observations over the same 3-hour time intervals. Discrete air samples were taken as

available, i.e., without any temporal selection. The measurement uncertainty is set to 3 ppb for all observations (for

observational part R, of the observation error covariance matrix Eq. (9)).

In this study, we investigate two observation data sets (Table 1). The first data set, denoted O1, is considered as the
observational base data set and uses only the ICOS and NOAA data, while the second data set, O2, includes also all
additional in situ measurements. The largest difference between the two data sets is the much better observational coverage
of the British Isles in O2 with 6 in situ measurement stations located in that area, compared to only one station with discrete
air sampling (MHD / NOAA) in O1.

3.2 Emission inventories

Three different emission inventories are used alternatively as prior estimate of the major anthropogenic CHs emissions
(Table 2). The first inventory is the Emissions Database for Global Atmospheric Research (EDGAR) v6.0 (EDGAR v6.0,
2021), which provides monthly sector-specific global grid maps of emissions at horizontal resolution of 0.1° x 0.1° for 2000-
2018. The second inventory, TNO-VERIFYV3.0, is the third version of the TNO greenhouse gas and co-emitted species
(GHGco) emission database, developed by TNO within the VERIFY project. TNO-VERIFYV3.0 provides annual European
CH4 emissions at a horizontal resolution of ~ 6 km x 6 km for the years 2005-2018, but includes monthly emission profiles.
The third emission inventory has been provided by GCP-CH4 (Saunois et al., 2020), globally at horizontal resolution of
1° x 1° for 2000-2017. In the absence of emission data for 2018 in the GCP-CH, inventory we use here the 2017 data of this
inventory. The resulting error of this 1-year inconsistency, however, is considered to be much smaller compared to the

overall uncertainties of the emission inventories.
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Natural CH4 emissions were generaly-used from the GCP-CH,4 data set (Saunois et al., 2020), providing estimates of the
climatological mean emissions of the major natural source categories. Furthermore, CH4 emissions from biomass burning
were taken from the Global Fire Emissions Database (GFED) version 4.1 (Van Der Werf et al., 2017). However, these were
included only when using the EDGAR v6.0 or TNO-VERIFYV3.0 inventories, while the GCP-CH4 (anthropogenic) data set
already includes emissions from biomass burning.

Using the above emission inventories, we have assembled the emission data sets E1, E2, and E3 as compiled in Table 2 and
used as prior for the different inversions described in Sect. 3.4. All emission data sets have been mapped on the COSMO-7
grid, using the Python package “emiproc” (J&hn et al., 2020), which has been integrated into the FLEXVAR inverse

modelling system.

Table 2: Emission inventories used in this study. The second column (‘total') lists the total CH4 emissions over the COSMO-7
domain in units of Tg CH4 yr! for the individual categories and the totals of each inventory. The last three columns indicate the
use of the corresponding inventory data in the emission data sets E1, E2, and E3. Data for EDGARV6.0, TNO-VERIFYV3.0, and
GFEDv4.1 are for 2018, GCP-CH4 (anthropogenic) data are for 2017, while GCP-CH4 (natural) data represent climatological
mean values.

inventory / category total | E1 | E2 | E3
EDGARV6.0

total 17.94

coal 074 | o

oil 024 | e

gas 220 | @

enteric fermentation 6.84 | o

manure management 218 | o

rice agriculture 008 | @

solid waste (landfills and incineration) 322 | e
wastewater treatment 141 | e

energy for buildings 071 | o

further minor anthropogenic sources 033 | e
TNO-VERIFYv3.0

total 15.67

fugitive emissions 1.86 °
waste 4.29 °
agriculture: livestock 8.37 °
agriculture: other 0.15 °
other stationary combustion 0.57 °
further minor anthropogenic sources 0.44 °
GCP-CHya (anthropogenic)

total 21.00

coal 0.98 °
oil gas industry 2.78 °
livestock 9.39 °
agriculture: rice 0.10 °
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waste 7.12

biofuels and biomass burning 0.63

GCP-CHa (natural)

total 2.15

wetlands 176 | e | | @
geological 048 | e | o | @
termites 010 | e ° °
ocean 055 | e ° °
soil sink -0.75 | o o °
GFEDv4.1

biomass burning | 002[e [e ]

3.3 Post-processing of gridded emission data

In order to extract from gridded emission data (on COSMO-7 grid) total emissions of countries (or group of countries),
country masks have been generated using the "Natural Earth dataset” (https://www.naturalearthdata.com/), attributing each
7 km x 7 km COSMO-7 grid cell to a certain country (or sea). Offshore emissions over the sea are not included in the
country totals.

Since the COSMO-7 domain does not cover the upper northern part of the UK, a correction factor of 1.057 is applied to
estimate the total emissions of the country region "UK+lreland", i.e., the "UK+Ireland" emissions extracted from the
corresponding grid cells within the COSMO-7 domain are multiplied by this factor (further details see Sect. S1 of the
supplementary material). Furthermore, small correction factors are applied when extracting country total emissions from the
gridded emissions of data set E3 (at horizontal resolution of 1° x 1°), since sampling of coastal 1° x 1° grid cells with the
corresponding 7 km x 7 km COSMO-7 grid cells leads to a loss of emissions attributed to the countries, if the emissions of

the coastal 1° x 1° grid cell originate mainly from land (further details see Sect. S1).

3.4 Sensitivity inversions

Table 3 compiles the different FLEXVAR inversions presented in this paper. INV-E1-O1 represents the base inversion,
using the emission data set E1 as prior, the observation data set O1, the "METEO" model representation error (Sect. 2.2.3),
the "Rdédenbeck baselines” (Sect. 2.2.2), and our default settings for the prior error covariance. A first set of sensitivity
inversions investigates the impact of using alternatively the "particle position baselines” and the alternative parameterization
"OBS" of the model representation error (and the combination of both). In a further inversion series, we analyse the
sensitivity of the inversions to the main settings of the prior error covariance matrix, i.e., for the spatial correlation length
constant, Lcor, the temporal correlation scale constant, teor, and the assumed uncertainty of emissions per grid cell and
month. Furthermore, we examine the sensitivity of the inversions to the use of the alternative emission inventories E2 and E3

as prior instead of E1, and the use of the extended observational data set O2 instead of O1.
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In addition to the FLEXVAR inversions compiled in Table 3, inversions with the FLEXKF system (described in Sect. 2.3)
and with TM5-4DVAR (described in Sect. 2.4) have been performed for comparison with FLEXVAR (and will be discussed
in Sect. 4.3). These inversions have been made for both observational data sets, O1 and 02, using the emission inventory E3
as prior. Furthermore, additional FLExKF inversions have been performed using alternatively E1 as prior.

Table 3: FLEXVAR sensitivity inversions. The column "prior' lists the emission data set used (Table 2) and column "obs" the
observation data set (Table 1). "mre™ is the applied model representation error (Sect. 2.2.3) and "baseline™ lists the applied
approach to calculate the baselines (Sect. 2.2.2). "Lcorr" is the applied spatial correlation length constant, "teor'" the temporal
correlation scale constant, and "unc' the assumed 1-sigma uncertainty of total emissions per grid cell and month (Sect. 2.2.1).

inversion prior | obs | mre baseline Leorr | teorr unc
INV-E1-01 El 01 | METEO | Rédenbeck 100 | 12m | 100%
sensitivity to baselines

INV-E1-01-S1  [E1 |01 | METEO | particle position | 100 | 12m | 100%
sensitivity to model representation error

INV-E1-01-S2.1 El 0Ol | OBS Rédenbeck 100 | 12m | 100%
INV-E1-01-S2.2 El 0Ol | OBS particle position 100 | 12m | 100%
sensitivity to spatial correlation length

INV-E1-01-S3.1 El 01 | METEO | Rédenbeck 50 | 12m | 100%
INV-E1-01-S3.2 El 01 | METEO | Rédenbeck 200 | 12m | 100%
sensitivity to prior uncertainty

INV-E1-01-54.1 El o1 METEO | Rodenbeck 100 | 12m 50%
INV-E1-01-S4.2 El o1 METEQO | Rodenbeck 100 | 12m | 200%
sensitivity to temporal correlation length

INV-E1-01-S5 |E1 |01 | METEO | Rédenbeck 100 | 1m | 100%
sensitivity to prior inventories

INV-E2-01 E2 01 | METEO | Rddenbeck 100 | 12m | 100%
INV-E3-01 E3 01 | METEO | Rddenbeck 100 | 12m | 100%
sensitivity to observations

INV-E1-02 El 02 METEQO | Rodenbeck 100 | 12m | 100%
INV-E1-02-S1 El 02 | METEO | particle position 100 | 12m | 100%
INV-E1-02-S2.1 El 02 | OBS Rodenbeck 100 | 12m | 100%
INV-E1-02-S2.2 El 02 | OBS particle position 100 | 12m | 100%
INV-E2-02 E2 02 | METEO | Rodenbeck 100 | 12m | 100%
INV-E3-02 E3 02 | METEO | Rodenbeck 100 | 12m | 100%
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4. Results and discussion
4.1 Sensitivity of FLEXVAR inversions to internal parameterizations and model settings
4.1.1 Sensitivity of FLEXVAR inversions to baselines

Figure 1 shows maps of European CH4 emissions derived for the base inversion INV-E1-O1 and the sensitivity inversion
INV-E1-01-S1, in which the "particle position baselines™ were used instead of the "Rddenbeck baselines”. Both inversions

display in general similar spatial patterns of the inversion increments (i.e., difference between posterior and prior emissions),

however in most regions INV-E1-O1-S1 shows somewhat lower CH4 emissions than INV-E1-O1, visible in the slightly
larger areas with negative inversion increments and slightly smaller areas with positive inversion increments. Consequently,
also the derived country total emissions (shown in Fig. 52 and compiled in Table S4) are lower in INV-E1-O1-S1,

e.g., -6.6% lower over Germany and -12.8% lower over France compared to INV-E1-O1.
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FLEXVAR INV-E1-01
posterior posterior

¥1.2.12_COSMO~7_£60_nGCP_G41m_R03w_20180107 20190107 _EUS23_L100Km_Ct1 2m_m_r_OL step-

FLEXVAR INV-E1-01-S1
posterior

posterior

¥1.2.12_COSMO~7_£60_nGCP_G4 1 m_R03w_201 8010120190101 _EUS23_C100Km_CL12m_m_p_OL step-02

FLEXVAR INV-E1-01-S2.1
posterior

+1.2.12_COSMO~7£60_nGCP G4 1m_703.20180101 20190107 _EUS23.C 100km_Gt12m_m_r_O1. step—02
-5 -40 -30 -20 -0 10 20 30 40 50 -50 -40 -30 -20 -10 10 20 30 40 50
2 2
460 CH, flux [mg CH, / m? / doy] CH, flux [mg CH, / m® / day]

Figure 1: Sensitivity of FLEXVAR inversions to different approaches to calculate the baselines and to parameterize the model
representation error. Upper left figure: prior emissions (emission data set E1). Second row: posterior emissions (left) and
difference between posterior and prior emissions (right) for base inversion INV-E1-O1 (using the Rddenbeck baselines and the
METEO model representation error). Third row: inversion INV-E1-O1-S1 using the particle position baselines. Fourth row:

465 inversion INV-E1-O1-S2.1 using the OBS model representation error. All figures show annual average CHs emissions (or change
in emissions, respectively) for 2018.

18



s T — T T e
—E—o.,5)50d 3buo)| — S 5)s00 8Buo. ——E—os50d s6uns, +—— RS Tsod-s o,
- ™ on - m oot — R —orrd-utooT
% Z0-£3-AN| —— 20-g3-AN —— Z0-£3-mn] —@—  zo-g3-mi
3 —o—— " o T3 €3
—@—_  zo-z3-m| —— 20-23-mN —@— _zo-z3-mi —&—  zo-z3-m
23 —O— £ © 3,
25-20~13-AN @uuou_uéz ~Bres-zo- 13- —@72-z0-13-m
13 L3 LEil 13
“ZS-20— L3-ANI T‘im.mmwwoluw)z —@'zs-z0-13-mNH ﬁim\woiuwé,
13 V3 TH 13
1S-20~ L 3-AN} —@— _ 15-20-13-mNi @ 15-20- 13- Iml,mlmoluiz,
13 —O— 13 T3 13
@ Z0=13-AN —— 20-13-AN ® 20=13-ANK —&—  z0-13-AN
— 0 13 —a— " 13 T 13
> 8- 10-£3-AN —— 10-£3-AN ¢ —@—  0-s3-m ——@—Toie3-an
eSS ——— & o —a— €3l T w 3
o —— 10-Z3-AN]| O —@— 10-Z3-ANI w —@—— _ |0-Z3-ANI o ———@—T3-z3-ANI
£ —e— m —O—— 3 w [£] | 23
= —a I —e— Zz —_—— x —a—
[T} 13 L3 w 3] 13
%) @& zvs-10-13-AN L —®—z¥s-10-13-AN o0 @275~ 10~ 13-ANI Ot ——— @
LE| A LE| s LE] T3
@& vs-10-13-AN| & J¥S=10=13=ANI @ v 10-13-ANi —@s= 10-13-ANI|
13 —o= 13 —e— —O— 13
© e o1 ‘@ Fro-10-13-Aq @ Zcs 1013 —— @rs=ro-13-a
LE 13| LE]
—O_— 13] 13 13 —— 13
~@2s-10-13-n) - 10=13~AN| 10— 1 3=ANI] ———Ms=To=15-nNi
13 13 LE) 13
ﬁmww.olu‘)z_ ﬁ.mmlolw‘)z Y|W\|\4mmr6lu\..,z_ —— @51t -
— o 13) = 13
—— —C— T3] = 13
& 10-13-ANI —— 10-13-AN —@—  10-13-M] ———@—To=T9-AN
13 —a— " = 13
sl bl | | | | | IRERE RN RENEE FNREN FE RS R ETSTATTI ARTSTATSA CATTARTE] AT ATTTATY FTRTITEL
N T M N - O N ¥ M N - O Qwn o n o n o n <« M o - ©°
r ¥ L4 L4 Mo N o o ¥ r
(144 "W B1] "HD [+ "Ho B1] "HD NI [\ "Ho B1] "HD
[,#A "HD B1] "HD
o o o o
s s SRS s
& « « I
> x
c [0} ) (]
m g o oI“_ N Nt =N
e~ Mo aied
= o zZ X VN b SR
) g ] =) BN R
o) o BT T T P L
R
MION == e = MO e
YT Y
S2SSS322522> 2>
£2Z2Z2zZ222-222 ZZ
© © © ©
wovvliilipebwsuli - e bbbl - bbb b b = bbb =
n ¥ ™M o~ - of N ¥ ™ N - 08 ow o n o naf n + M o - of
r L4 L4 L4 M N N — ~— OO L4 L4
[,#4 "D B1] "HO [,% "D 61] "HO [,%4 "Ho 61] WD

[44 "H2 61] "HD

19



Germany Germany
5 5
T4 1 o4
> >
3t 3 ¥ 3 bl D Sl Pl el P - o
o o ] m‘w n QL @S QS e
o o - SaY AN) Il AR AN I e e N =
= 2= 4 E 2Ho ololo|olo|o ololc|ooflo]o]lo 'S
. « f L Kl AR A P10 R QA R Rl Rty AT
I I "] wlw wilw wlw wWhw fw ] w ] w ] wfwtw ©
o 1F E o1 [ NN B I N e (i T o
> > > sl = 2| 2 > =2 = =2 =2 =272 =2 =
= = £ 2|2 Z|=2 Z Z Z Z Z Z = ZF 2
] 0
2018 2019
France France
6 6
=5 i -5t
5 5
4 E <4 ] e ' @ B + -~ N.%
55 1 55 LS TS AT |9 | [ [ o
o O - l J l l l‘:i — — o rL rL fll o | o §
=0 1 =, io ollo]olcolo]o olclo]olo[oPo|o TS
.2 o3 ) el e el kel Bk ) [
T T b ola Ol oo el ololo ) ote ©
S E Il | e e R -
z z 2 zlz z|z z| gl 2 2 £ £ 2 £ g
] 0
2018 2019
BENELUX BENELUX
3.0 3.0
— 250 1 =25
S ES
L7200 q 20y bl o |- | oy s el B
o 3 13 oS 190 | ﬁ ‘ ?Jw o 2 T
1.5 1.5 I HoNFORNGAl | IC*U\] <
(= = - -1 - -1 =T1= - ol oloalta | o o 5
= = olle ] ol o]lo]| o olo|lolo|lo|los0| O [}
1.0~ E 1.0 M S AN Al A A A A =
* - =l =1=|11= M=l = =]~ m
T T w | w | w| w]lw|w Wlw | wfow | ow | w| w | w »
Q 05 4 Q 0.5 J | 1 1 | ] | 1 I | I | I 1 E'\
zlz zl|z 2|z z z|z|z|zlz|z|g |[¢8
0.0L R— 0.0
2018 2019
UK+Ireland UK+Ireland
5 5
Tar 1 T4 0 I
> >
" 3c 3 "3 el e L Ll el
=] ] q GO R by o P
o o L e e e e | 4 T e <
- — — M= [T= IT= = = o P lev [Tew |Tev | e 3
=2 4 KB 2f|o o [fo llo/||e o ||lo ollelfe|elefe|o|o [14
. « L s LU L L PN .90 R IR A Rl Oty AT | =
T I o e ola o|s i il el il el Rl BN IE ©
o 1F - o1 | | | | ] | ] | | | | ] | | ] o
> = => = > = > = > = =2 = => 2 = c
z zZ 2 z||z z|z 2 z 2 z z 2z z z 8
0 0
2018 2019
- INV-E3-02 = .. prior E3 0 erior E3
— INV-E2-02 veee... prior E2 :
 INv-E1-02-S2.2 Z ' prior E1 & prior E2
 INV-E1-02-S2.1 O prior E1
— INV-E1-02-51
—_— INV-E1-02
—  INV-E3-O1
— INv-E2-O1
INV=-E1-01-54.2
—  INV-E1-01-54.1
— INV-E1-01-S53.2
— INV-E1-01-S3.1
— INV-E1-01-S2.2
— INV-E1-01-S2.1
— INV-E1-01

470 Figure 52: Total CH4 emissions for Germany, France, BENELUX, and UK+Ireland derived for different sensitivity inversions
(Table 3). Left: 3-month running mean total CH4 emissions of the corresponding country regions. Right: Annual total CH4
emissions. Open eireles-symbols show prior emissions, elesed-cirelessolid symbols show posterior emissions and the error bars are
the 2-sigma uncertainties of prior and posterior emissions, respectively. The solid blue and red rectangles on the right side of the
figures show the prior and posterior range from all individual inversions, and the error bars on these rectangles the minimum and

475 maximum values of the 2-sigma uncertainties of the individual inversions.
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Figure 23: Time series of simulated and observed CH4 mole fractions at stations GAT, KIT, SAC, and OPE for 3-month period
from 01 April until 01 July 2018. Blue curve shows the Rédenbeck baselines, green the particle position baselines, red the posterior
CHa4 mole fractions for inversion INV-E1-O1 (using the Rddenbeck baselines), violet the posterior CH4 mole fractions for inversion
INV-E1-O1-S1 (using the particle position baselines) (owing to the similarity of both posterior simulations, however, the results of
INV-E1-O1-S1 are largely overlayed by those of INV-E1-O1). Small black dots: hourly-averaged observations. Solid black circles:
assimilated observations. Coloured symbols show the corresponding assimilated values (solid circles: assimilated posterior mole
fractions; open circles: baseline values used for the assimilation).

Figure 2-3 illustrates the two different baselines at some example stations during the 3-month period from 01 April until 01
July 2018. In general, both baselines are rather similar, including their synoptic variability. However, there are certain
periods, during which the "particle position baselines" are somewhat higher than the "Rédenbeck baselines”, e.g., at KIT,
SAC and OPE during the period between day 140 and day 162. Consequently, the observational forcing (i.e., the
enhancement of the observations above baseline) is lower during such periods for the "particle position baselines", resulting
in lower derived emissions. One major difference between both approaches is that in case of the "Rddenbeck baselines" the
background mole fractions are transported to the stations by TM5, while in case of the "particle position baselines” they are
transported by FLEXPART. In order to further investigate which baselines are more realistic we have compared model

simulations and observations for "background conditions", defined as events when the contribution of European emissions
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(evaluated by Eq. (10)) is lower than a certain threshold (here set to 5 ppb). Figure S2 shows the comparison for 8 stations,
for which a sufficient number (>20) of events with "background conditions" has been found. For the "Rddenbeck baselines”
6 of these 8 stations show posteriori biases close to zero (< 2 ppb), while PUY shows a small negative bias (-5.3 ppb) and
CMN a small positive bias (3.7 ppb). In contrast, the "particle position baselines"” results in a smaller negative bias at PUY
(-3.3 pph), but larger positive biases at WAO (2.5 ppb), JFJ (5.5 ppb), and CMN (8.6 ppb). This analysis suggests that the
performance of the "Rddenbeck baselines" is slightly better compared to the "particle position baselines™ under "background
conditions". However, we note that differences of the baselines shown in Fig. 2-3 are mainly during periods of elevated CH4

enhancements, for which it is more difficult to evaluate (based on the observations) which baselines are more realistic.

4.1.2 Sensitivity of FLEXVAR inversions to parameterization of model representation error

Figure 1 illustrates the sensitivity of the derived emissions to the applied parameterization of the model representation error.
Inversion INV-E1-01-S2.1, for which the "OBS" model representation error has been used, results in overall lower CH4
emissions compared to the base inversion INV-E1-O1 with the "METEQO" parameterization, again reflected in the larger
extension of the areas with negative inversion increments and smaller extension (and magnitude) of the areas with positive
inversion increments. Accordingly, the annual total emissions derived in INV-E1-O1-S2.1 are lower compared to
INV-E1-O1 for all countries or group of countries (denoted in the following as "country regions") shown in Fig. 52.

The "OBS" model representation error increases with increasing observed CH. enhancement (i.e., observed CH4 mole
fraction minus CH4 background) (Sect. 2.2.3 and Fig. S1) and shows a large dynamic range at most stations, resulting in a
generally relative low weighting in the inversion of events with larger CH4 enhancements. In contrast, the dynamic range of
the "METEQ" model representation error is smaller at most stations, leading to a generally more equal weighting of all data
points. Using the "METEO" model representation error, the observations can be better reproduced achieving a higher
average correlation coefficient (r = 0.85) and lower average root mean square difference (rms = 30.0 ppb) compared to the
"OBS" model representation error (r = 0.80; rms = 35.4 ppb), as shown in Fig. S3. Apart from the better statistical
performance, the "METEO" model representation is probably better at estimating the capability of the model to reproduce
the observations (which largely depends on the specific meteorological situation), since wind speed might be a better
indicator of the representativeness of a certain data point than the observed CH4 enhancement, as the latter not only depends
on the meteorological situation, but also on the regional CH4 emissions.

Given the relatively large impact of the parameterization of the model representation error and the baselines, we have also
performed an inversion combining the "OBS" model representation error and the "particle position baselines" (inversion
INV-E1-01-S2.2), which yields further reduced country total emissions compared to INV-E1-01-S2.1 and INV-E1-O1-S1
(Fig. 52).
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4.1.3 Sensitivity of FLEXVAR inversions to model covariance settings

In the following, the sensitivity of the FLEXVAR inversions to the main parameters of the prior covariance are investigated,
i.e., horizontal correlation length constant, temporal correlation scale constant, and assumed uncertainties of emissions per
grid cell and emission time step. Figure S4 shows inversions for horizontal correlation length constants L., (EQ. (7)) of 50
km (INV-E1-0O1-S3.1), 100 km (default value; INV-E1-O1), and 200 km (INV-E1-O1-S3.2). As expected, the spatial
dimension of the inversion increments is increasing with increasing L.o... Despite these clearly visible differences in the
spatial patterns of the inversion increments, the impact on the annual total emissions of the country regions shown in Fig. 5-2
is relatively small, since apparently the differences in the smaller scale spatial patterns are largely averaged out over larger
areas. Associated with the increase of the horizontal correlation length constant is a significant increase of the prior
uncertainties of the annual total emissions per country, since increasing horizontal correlation length constant implies larger
error correlations between neighbouring grid cells and hence increasing aggregated uncertainties (as uncertainties per grid
cell and month were kept constant (at 100%) in this sensitivity inversion series). Analogously, the decrease in the temporal
correlation scale constant, t... (EQ. (8)), results in a decrease of the aggregated annual prior uncertainty, as illustrated by
inversion INV-E1-01-S5, in which t.,.. has been set to 1 month (instead of the default value of 12 months applied in all
other inversions). Again, however, the effect on the derived annual emissions of the country regions remains very small (Fig.
52).

Figure S5 shows the dependence of the inversions on the assumed uncertainties of prior emissions per grid cell and month
for values of 50% (INV-E1-01-S4.1), 100% (default value; INV-E1-O1) and 200% (INV-E1-01-S4.2). The increase of the
assumed prior uncertainty leads to a significant increase of the derived regional inversion increments. This effect is most
pronounced at larger distances from the monitoring stations where observational constraints are relatively weak. Especially
the large inversion increments visible in INV-E1-01-S4.2 at the eastern domain boundary are probably an artefact, since the
inversion may generate such patterns in regions far from the observations to compensate for systematic errors, e.g., in model
transport and with little penalty in the cost function in case of assumed very high prior uncertainties.

Despite the dependence of the smaller scale regional inversion increments on the assumed prior uncertainties, the impact on
the derived annual total emissions remains again very small for the country regions shown in Fig. 52, since their emissions
are relatively well constrained by the available observations and since differences in the smaller scale inversion increments

are averaged out over Iarger areas.
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Figure 34: Sensitivity of FLEXVAR inversions to applied prior emission inventories. Upper row: inversion INV-E1-O1 using
emission data set E1 as prior. Middle row: inversion INV-E2-O1 using emission data set E2 as prior. Lower row: inversion
INV-E3-O1 using emission data set E3 as prior. Left column: prior emissions. Middle column: posterior emissions. Right column:
difference between posterior and prior emissions. All figures show annual average CHs4 emissions (or change in emissions,
respectively) for 2018.
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4.2 Sensitivity of FLEXVAR inversions to model input data
4.2.1 Sensitivity of FLEXVAR inversions to prior emission inventories

Figure 3-4 shows maps of the European CH4 emissions for INV-E1-O1, INV-E2-01, and INV-E3-01, which use the three
different emission data sets E1, E2, and E3 (Sect. 3.2; Table 2) as prior emissions. While the major patterns of the spatial
prior emission distribution look relatively similar for the three inventories (e.g., the high emissions over the BENELUX
countries and the Po valley), there are significant differences in the prior country region total emissions (Fig. 52; Table S4).
E2 has lower emissions over Germany (16.1%), France (15.1%) and BENELUX (27.4%) compared to E1 (and 11.3% lower
over the whole COSMO-7 domain (Table 2)), while E3 has higher total emissions over the COSMO-7 domain (15.1% higher
than E1), and very high emissions especially for UK+Ireland (42.1% higher than E1). Despite these considerable differences

in the prior emissions, the annual total posteriori emissions of the country regions shown in Fig. 5-2 are very similar for the
three inversions. This indicates that the inversions are largely driven by the observations. For UK+Ireland this is somewhat
surprising, since only one measurement station (MHD / NOAA\) is located in this country region in the applied observation
data set O1, but apparently the continental stations provide some constraints for the emissions from UK+Ireland. We will see
in the next section, however, that including additional stations has a significant impact on the CH, emissions derived for
UK-+lIreland.

4.2.2 Sensitivity of FLEXVAR inversions to assimilated observations

While the base observation data set O1 uses only the ICOS in situ stations, complemented by the NOAA discrete air
sampling sites, nine further in situ stations from other networks / institutions are added in observation data set O2 (Table 1).
Six of the additional stations are located on the British Isles, two in Switzerland, and one in the Netherlands. Figure 4-5
displays the inversions INV-E1-O1 and INV-E1-O2 using the two different observation data sets. As expected, the largest
differences are visible in the regions around the additional stations. For UK+lIreland, the annual total emissions are 23.0%
higher in INV-E1-02 (2.99 CH, yr') compared to INV-E1-01 (2.43 CH, yr) (Fig. 52; Table S4). The significant additional
observational constraints for UK+Ireland are also reflected in the significantly lower posterior uncertainty for INV-E1-O2
(2-sigma uncertainty: 0.6 Tg CH4 yr't) compared to INV-E1-O1 (2-sigma uncertainty: 1.6 Tg CH, yr; Fig. 52; Table S4).

For the BENELUX country region only a moderate change in the annual total emissions is calculated (INV-E1-O1: 1.71 Tg
CH, yr; INV-E1-02: 1.82 Tg CH,4 yr; Fig. 52; Table S4), but the spatial distribution of posteriori emissions is somewhat

different, with higher emissions around the additional station CBW in INV-E1-O2 (Fig. 45). For Switzerland a larger
(relative) difference of posteriori emissions is calculated, with annual total emission increasing from 0.15 Tg CH4 yr! (INV-
E1-01) to 0.22 Tg CH4 yr (INV-E1-02).

Using the extended observation data set O2, we have performed additional inversions, using alternatively the prior emission
data sets E2 or E3 instead of E1. As for observation data set O1 (discussed in Sect. 4.2.1), the sensitivity of derived annual

total emissions to the applied prior emission data set is relatively small (Fig. 52).
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Figure 45: Sensitivity of FLEXVAR inversions to assimilated observations. Upper left figure: prior emission. Middle row:
posterior emissions (left) and difference between posterior and prior emissions (right) for inversion INV-E1-O1 (using observation
data set O1). Lower row: inversion INV-E1-O2 (using observation data set O2). Solid black circles show locations of stations with
in situ data, open circles locations of stations with discrete air sampling. All figures show annual average CH4 emissions (or change
in emissions, respectively) for 2018.
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Furthermore, additional inversions (of observation data set O2) have been performed using alternatively the "particle
position baselines” (INV-E1-O2-S1) or the alternative parameterization "OBS" of the model representation error
(INV-E1-02-S2.1). Simiar-In a similar way, as fer-shown with observation data set O1 (discussed in Sect. 4.1.1. and 4.1.2.),

the use of these alternative parameterizations results in generally lower posteriori emissions, with lowest posteriori emission

calculated in inversion INV-E1-O2-S2.2 (combining the "OBS" model representation error and the "particle position

baselines").

4.3 Model comparison and analysis of European CH4 emissions

In the following we compare the FLEXVAR inversions with inversions using the extended Kalman filter ("FLEXKF")
system (Sect. 2.3) and TM5-4DVAR (Sect. 2.4). Figure 6 shows the results of these three models using the emission data set
E3 as prior and the observation data set O2. Overall, all three inverse models show relatively good consistency of the major
spatial patterns of the derived inversion increments, e.g., the increase of emissions over the BENELUX region and north-

western France, and-the decrease of emissions around Paris, and the decrease of offshore emissions over the North Sea

compared to the prior emissions. Since FLEXKF uses the same atmospheric transport as FLEXVAR, it is to be expected that
the inversions of these two models should give similar results. Nevertheless, there are also some significant differences
visible between the two models, especially for the southern part of France, for which FLEXKF yields overall lower emissions
than FLEXVAR. This difference is also clearly visible in the derived country total emissions (Fig. 7; Table S4), with 10.3%
lower annual total CH4 emission for France calculated by FLEXKF (FLExKF E3-02: 3.82 CH, yr') compared to FLEXVAR
(INV-E3-02: 4.26 CH4 yr1). In contrast, FLEXKF derives somewhat higher CH4 emissions for BENELUX (6.3%) and

UK+Ireland (6.8%) than FLEXVAR, while emissions derived for Germany are very similar (within 1.4%). One major
difference between FLEXKF and FLEXVAR is the different parameterization of the model representation error, leading to a
different weighting of the individual observational data points, which can cause differences in the calculated regional
inversion increments as shown for FLEXVAR in Section 4.1.2. Another difference is the magnitude of the prior
uncertainties, though this was shown for FLEXVAR to have a rather small impact on total emissions for the country regions
presented in Fig. 52. Furthermore, it is likely that the different inversion techniques have some impact on the calculated
solutions. For example, FLEXKF yields generally smoother seasonal variations of derived emissions, while FLEXVAR
shows larger month-to-month variability. The latter are, however, largely filtered out by the use of 3-month running mean
values for the seasonal variation of the total emissions of country regions shown in Fig. 7 (left column).

The spatial emission patterns derived by TM5-4DVAR are in general similar to those calculated by FLEXVAR and FLExKF
(Fig. 6), but show also some differences, e.g., around the stations PUY and HPB, where TM5-4DVAR calculates higher
emissions than FLEXVAR and FLExKF, probably related to the particular challenge to simulate mountain sites and sites in
complex topography. Further differences between the models are the different derived seasonal variations of emissions, with
larger variations calculated by TM5-4DVAR for Germany, France, and UK+Ireland compared to FLEXVAR and FLEXKF
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(while the FLEXVAR inversions using the observation data set O2 show larger variations for BENELUX than the other

models). In addition to the different model representation error in TM5-4DVAR, very likely the fundamentally different

nature of the models (Eulerian vs. Lagrangian) and the related different simulation of transport plays an essential role.
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Figure 6: Annual average CH4 emissions derived for year 2018 using FLEXVAR (upper row), FLEXKF (middle row), and TM5-
4DVAR (lower row). Left column: prior emissions. Middle column: posterior emissions. Right column: difference between
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645 posterior and prior emissions. All three inversions shown here use the same inventory data set E3 as prior and the observation
data set O2.
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Figure 7: Total CH4 emissions for Germany, France, BENELUX, and UK+Ireland derived by the three different inverse modelling
systems FLEXVAR, FLExKF, and TM5-4DVAR. For FLEXVAR only a subset of inversions is displayed here, while the whole
range from all FLEXVAR sensitivity inversions is shown by the first pair (from left to right) of solid rectangles which is identical
to the pair of rectangles shown in Fig. 52. The second pair of rectangles shows the range of prior (blue) and posterior (red) CH4
emissions from all three models (and the error bars the minimum and maximum values of the 2-sigma uncertainties of all
individual inversions). The black symbols show the anthropogenic CHs emissions reported to UNFCCC (and their estimated
2-sigma uncertainties), blue symbols the natural emissions estimated from the GCP CH4 inventory, and the violet symbols the sum

of anthropogenic and natural bottom-up inventories.
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Nevertheless, the differences in the annual total emissions for the country regions are only moderate. For Germany,
somewhat higher emissions are calculated by TM5-4DVAR compared to FLEXVAR and FLExKF, while the posterior
emissions for France, BENELUX, and UK+lreland derived by TM5-4DVAR are in the range of emissions calculated by
FLEXVAR and FLEXKF.

Figure 7 also includes inversions of the three models using the base observation data set O1. As discussed for FLEXVAR in
Sect. 4.2.2., also FLEXKF and TM5-4DVAR show higher emissions for UK+Ireland, when using O2 instead of O1 due to
the 6 additional stations in data set O2 in that area. Furthermore, FLEXKF inversions have also been performed using E1
instead of E3 as prior emissions (Fig. 7). As for FLEXVAR (Sect. 4.2.1), the impact on derived emissions is enly-relatively
small.

In order to evaluate the quality of the derived emissions it is useful to analyse how well the observations are reproduced by
the models. Figure S6 compares the statistics (correlation coefficient and rms difference) for the three models (using prior
emission data set E3 and observation data set O2). At most stations relatively high correlation coefficients and low rms
differences are obtained by all three models. However, stations with larger regional emissions (e.g., LUT, CBW, BRM, IPR)
or complex topography (e.g., OXK, IPR) show generally poorer statistical performance. Figure S6 also shows that the best
statistical performance is achieved by FLEXVAR with a mean correlation coefficient of r=0.86 (FLExKF: r=0.84,
TM5-4DVAR: r=0.81) and a mean rms difference of 28.21 ppb (FLExKF: 30.53 ppb, TM5-4DVAR: 31.82 ppb). This
finding demonstrates that the high spatial resolution of FLEXVAR and FLEXKF at 7 km x 7 km allows to somewhat better
reproduce the observations than the TM5-4DVAR simulations at 1° x 1°, although - beside the different spatial resolution -
also other factors (such as fundamental differences in the modelling of transport) are likely to play a role. The slightly better
statistical performance of FLEXVAR compared to FLEXKF could be due to the higher degree of freedom to optimize the
emissions in FLEXVAR, but may also be partly related to other factors, such as different weighting of observations due to

different parameterizations of the model representation error and differences in the model covariance settings.

Figure S7 shows the time series of observed and simulated CHs mole fractions for all stations (inversion INV-E1-02),
illustrating that in general the synoptic variability is well reproduced at most sites. Furthermore, FLEXVAR also simulates
the average diurnal cycle at most sites realistically.

In the following, we compare the annual total CH4 emissions derived by the inverse models with the anthropogenic CH,4
emissions reported by the countries to UNFCCC (UNFCCC, 2021). For a consistent comparison, it is necessary to take into
account also estimates of the natural CH4 emissions, for which we use the bottom-up inventories of natural sources from the
GCP-CH, data set (Saunois et al., 2020) (Table 2). Furthermore, the comparison of top-down and bottom-up emission
estimates requires te—include-the inclusion of estimates of their uncertainties. For the uncertainty estimate of the inverse
models, we use the range of results from the individual inversions (shown by the red solid rectangles in Fig. 7) and the
minimum-maximum values of the 2-sigma uncertainty ranges based on the uncertainties computed for the individual
inversions (shown by the error bars). The total uncertainty ranges are evaluated separately (1) for the whole set of

FLEXVAR sensitivity inversions (as shown in Fig. 52) and (2) for the whole set of all inversions, i.e., including also all
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FLEXKF and TM5-4DVAR inversions. The uncertainties of the UNFCCC emissions are based on the uncertainties reported
by the countries for the major CH4 source categories, while estimates of the uncertainty of total CH. emissions are not
provided by the countries. As in Bergamaschi et al. (2015), we estimate the total uncertainties from the reported uncertainties
per category, assuming - among other things - uncorrelated uncertainties for the different major source categories (for further
details see section S2 in the supplementary material). The uncertainties of natural CH4 emissions from wetlands were
estimated from the ensemble of wetland models used for the GCP-CH, wetland emissions, taking the minimum-maximum
range of the 11 individual wetland models (Poulter et al., 2017). For other natural CH4 emissions, we assume an uncertainty
of 100%.

Figure 7 shows that the CH, emissions estimated by the inverse models are higher than the sum of anthropogenic
(UNFCCC) and natural bottom-up inventories for Germany, France and BENELUX, but the uncertainty ranges of top-down
and bottom-up estimates overlap for all three country regions. The smallest overlap, however, is found for BENELUX. In
contrast, the top-down estimates for UK+Ireland agree relatively well with the total of anthropogenic and natural bottom-up
inventories. A tendency to higher top-down emissions compared to the total (anthropogenic and natural) bottom-up
inventories for Germany, France and BENELUX has also been found in the analysis reported by Bergamaschi et al. (2018a)
for the period 2006-2012, but also in that study uncertainty ranges of bottom-up and top-down estimates were overlapping.
Similar tendencies to higher top-down emissions are apparent in the VERIFY analyses for the period 2005-2017 (VERIFY,
2021) using a larger ensemble of regional inversions, while global inversions (with coarser resolution) showed in general
lower emissions, closer to the UNFCCC estimates for these country regions. Based on the observation that several models
showed clear seasonal cycles of the derived emissions with maximum during summer, Bergamaschi et al. (2018a) suggested
that higher natural emissions could explain the difference between top-down and bottom-up estimates. The FLEXVAR and
FLEXKF inversions analysed in this study, however, show in general only relatively small seasonal variations for Germany,
France and UK+lIreland compared to TM5-4DVAR. The use of seasonal cycles to disentangle anthropogenic and natural
sources is further hampered by the fact that the seasonal cycles of major anthropogenic sources are still not well
characterized. Also, the anthropogenic emission inventories used in this study show rather different seasonal cycles. Most of
the anthropogenic GCP-CH4 emission categories (which are largely based on EDGARvV4.3.2, except biomass burning
(Saunois et al., 2020)) have no seasonality, except emissions from rice agriculture and biomass burning, which however play
only a minor role in Europe. EDGARV6.0 (used for E1) has small seasonal variations of most energy related source
categories, but assumes constant emissions for the agricultural sources (except rice) and for waste emission. In contrast, most
sectors of the TNO-VERIFYV3.0 inventory (used for E2) show seasonal variations, including significant seasonal variations
of all agricultural sources, resulting in significant seasonal variations of the total anthropogenic emissions with maximum

emissions in September (Fig. 52).
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5. Conclusions

We have presented the novel inverse modelling system FLEXVAR based on the 4DVAR assimilation technique and
FLEXPART-COSMO back trajectories driven by COSMO meteorological fields at 7 km x 7 km resolution over the
European COSMO-7 domain. A major advantage of the 4ADVAR technique is that it allows to constrain a much larger
number of variables (in our study about 1.6 million) compared to analytical inversion techniques. The offline coupling with
TM5-4DVAR ensures that the background mole fractions ("baselines™) used in FLEXVAR are consistent with the global
observations assimilated in TM5-4DVAR. We have applied the FLEXVAR system for inversions of European CH,
emissions in 2018 using 24 stations with in situ measurements, complemented with data from 5 stations with discrete air
sampling (and additional stations outside the European COSMO-7 domain used for the global TM5-4DVAR inversions).

We have investigated the sensitivity of the FLEXVAR inversions to internal parameterizations, model settings, and main
model input data. Using the "particle position baselines" yields in general lower derived emissions compared to inversions
which apply the "Rdédenbeck baselines”, resulting in differences in the annual total emissions of 5 - 14 % for the analysed
country regions (Germany, France, BENELUX, UK+Ireland). Furthermore we found a significant impact of the applied
parameterization of the model representation error. Inversions using the "OBS™ model representation error derive, over large
parts of the domain, somewhat lower emissions compared to the "METEO" model representation error, with differences in
the annual total emissions of 0 - 15 % for the analysed country regions. Varying the main parameters of the prior covariance
(i.e., horizontal correlation length constant, temporal correlation scale constant, and assumed uncertainties of emissions per
grid cell and month) has clearly visible effects on the smaller scale regional inversion increments, but the impact on the
derived annual total emissions remains very small for the analysed country regions, since the differences in the smaller scale
spatial patterns are largely averaged out over larger areas. Furthermore, the dependence of derived emissions on the applied
prior emission inventory has been found to be relatively small for the country regions which are well constrained by the
observations. Changing these observational constraints by including additional sites, however, has a significant impact on the
inversions especially in the surreundings-vicinity of these sites. Using the extended observation data set O2 (which includes
6 additional in situ stations located on the British Isles) yields 23 - 28 % higher emissions for UK+Ireland compared to
inversions using only the base observation data set Ol. At the same time, the calculated uncertainty of the posteriori
emissions for UK+Ireland is significantly reduced by these additional observational constraints.

The comparison of the FLEXVAR inversions with inversions using the extended Kalman filter ("FLEXKF") system (which
both use the same atmospheric transport model) shows overall good consistency of major spatial patterns of the derived
inversion increments, but some difference (7-10%) for the derived total CH. emission of France, probably mostly related to
the use of different parameterizations of the model representation error. TM5-4DVAR also shows in general similar
inversion increments and derives posterior emissions for France, BENELUX, and UK+Ireland in the range of emissions
calculated by FLEXVAR and FLExKF. For Germany, however, TM5-4DVAR estimates 5-11% higher emissions than the

other two models.
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The FLEXVAR and FLEXKF inversions at high spatial resolution of 7 km x 7 km allow te-a better reproduee-reproduction
of the observations than-compared to the TM5-4DVAR simulations at 1° x 1°, reflected in the achieved higher correlation
coefficient and lower rms difference between simulations and observations. Furthermore, the statistical performance of
FLEXVAR is slightly better than that of FLEXKF, which could be due to the higher degree of freedom to optimize the
emissions in FLEXVAR, but could be partly related also to other differences ef-in the inversions, as-e.g., the different

parameterizations of the model representation error and differences in the model covariance settings.

The inverse models derive higher annual total CH, emissions in 2018 for Germany, France and BENELUX compared to the
sum of emissions reported to UNFCCC and natural emissions (estimated from the GCP-CHy inventory), but the uncertainty
ranges of top-down and bottom-up estimates overlap for all three country regions. In contrast, the top-down estimates for
UK-+lIreland agree relatively well with the total of anthropogenic and natural bottom-up inventories.

Our study demonstrates that the new FLEXVAR system can be applied for verification of reported emissions, as planned

e.g., by Empa for its quasi-operational system to estimate Switzerland's annual CH, emissions as contribution to the Swiss

National Inventory Reporting. FLEXVAR inversions with the configuration presented in this paper could be performed for

the years 2002 to 2021, the period for which meteorological fields from the COSMO-7 model at 7 km x 7 km resolution are

available. For analysis periods after 2021, the use of different high-resolution meteorological input fields could be

considered, such as e.qg., the operational analysis data from the ECMWEF IFS model at high resolution (0.1° x 0.1°) or the

operational MeteoSwiss COSMO-1 analysis at horizontal resolution of 1 km x 1 km. COSMO-1, however, is limited to the
larger Alpine area, but can be nested into FLEXPART-IFS. A FLEXPART-COSMO modelling system using COSMO-1 has

already been developed by Empa, including a modification of the turbulence parameterization [Katharopoulos et al., 2022],

which is required owing to the very high resolution of 1 km x 1 km.

While the relatively good agreement among the three models used in this study gives some confidence in the robustness of

the inverse modelling results, further specific studies should be performed to assess independently the quality of the top-

down estimates. Such assessments should include the comparison with further inverse models, comparison with independent

regional emission estimates (e.g., based on aircraft or satellite measurements), and a more detailed validation of the applied

atmospheric transport models (especially regarding the simulation of boundary layer height dynamics and vertical transport).

Code and data availability

The code of the FLEXVAR inverse modelling system is available upon request. The atmospheric observations from ICOS
are available at: https://www.icos-cp.eu/data-products/atmosphere-release. NOAA data are available at:
https://gml.noaa.gov/aftp/data/greenhouse_gases/ch4/flask/, AGAGE data at:
https://agage2.eas.gatech.edu/data_archive/agage/, UK DECC data at https://archive.ceda.ac.uk/
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