
 

1 

Variations and sources of volatile organic compounds (VOCs) 1 

in urban region: insights from measurements on a tall tower 2 

Xiao-Bing Li1,2, Bin Yuan1,2,*, Sihang Wang1,2, Chunlin Wang3,4, Jing Lan3,4, Zhijie 3 

Liu1,2, Yongxin Song1,2, Xianjun He1,2, Yibo Huangfu1,2, Chenglei Pei5,6,7,8, Peng 4 

Cheng9, Suxia Yang1,2, Jipeng Qi1,2, Caihong Wu1,2, Shan Huang1,2, Yingchang You1,2, 5 

Ming Chang1,2, Huadan Zheng10, Wenda Yang9, Xuemei Wang1,2, and Min Shao1,2 6 

1 Institute for Environmental and Climate Research, Jinan University, Guangzhou 7 

511443, China 8 

2 Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for 9 

Environmental Quality, Guangzhou 511443, China 10 

3 Guangzhou Climate and Agrometeorology Center, Guangzhou, 511430, China 11 

4 Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 12 

519082, China 13 

5 State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of 14 

Environmental Protection and Resources Utilization, Guangzhou Institute of 15 

Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China 16 

6 CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China 17 

7 University of Chinese Academy of Sciences, Beijing 100049, China 18 

8 Guangzhou Ecological and Environmental Monitoring Center of Guangdong Province, 19 

Guangzhou 510060, China 20 

9 Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, 21 

Guangzhou 510632, Guangdong, China 22 

10 Guangdong Provincial Key Laboratory of Optical Fiber Sensing and 23 

Communications, and Department of Optoelectronic Engineering, Jinan University, 24 

Guangzhou, 510632, China 25 

* Corresponding authors: byuan@jnu.edu.cn 26 

https://doi.org/10.5194/acp-2022-116
Preprint. Discussion started: 8 March 2022
c© Author(s) 2022. CC BY 4.0 License.



 

2 

Abstract 27 

Volatile organic compounds (VOCs) are key precursors of ozone and particulate 28 

matter that are the two dominant air pollutants in urban environments. However, 29 

compositions and sources of VOCs in urban air aloft were rarely reported by far. To 30 

address this matter, highly time-resolved measurements of VOCs were made by proton-31 

transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) at a 450-m platform 32 

on the Canton Tower in Guangzhou, China. A combination of in-situ measurements and 33 

modeling techniques was used to characterize variations and sources of VOCs. Five 34 

sources were identified from positive matrix factorization (PMF) analysis, namely 35 

daytime-mixed (e.g., biogenic emissions and secondary formation), visitor-related (e.g., 36 

human breath and volatilization of ethanol-containing products), vehicular+industrial, 37 

regional transport, and volatile chemical product (VCP)-dominated (i.e., volatilization 38 

of personal care products), contributing on average to 22%, 30%, 28%, 10%, and 11% 39 

of total VOC (TVOC) mixing ratios, respectively. We observe that contributions of the 40 

visitor-related source, mainly composed of ethanol, followed well with the variation 41 

patterns of visitor number on the tower. The VCP-dominated source only had an 42 

average contribution of ~5.7 ppb during the campaign, accounting for a small fraction 43 

(11%) of TVOC mixing ratios. However, large fractions of some VOC species, e.g., 44 

monoterpenes (49%), were attributed to the VCP-dominated source, indicating 45 

significant contributions of VCPs to ambient concentrations of these species in urban 46 

environments. Vertical profiles of air pollutants (including NOx, ozone, Ox, and PM2.5), 47 

measured at 5 m, 118 m, 168 m, and 488 m, exhibited more evident gradients at night 48 

than in the daytime owing to stronger stability of the nocturnal boundary layer. Mixing 49 

ratios of VOC species during the nighttime generally decreased with time when the 50 

450-m platform was located in the nocturnal residual layer and significantly increased 51 

when impacted by emissions at ground. The results in this study demonstrated 52 

composition characteristics and sources of VOCs in urban air aloft, which could provide 53 
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valuable implications in making control strategies of VOCs and secondary air pollutants. 54 
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1 Introduction 55 

Volatile organic compounds (VOCs) are important trace gases in the atmosphere 56 

and are composed of myriad chemical species (Pallavi et al., 2019; Wang et al., 2020a; 57 

Gkatzelis et al., 2021). Except for their direct adverse impacts on human health (Zhang 58 

et al., 2013), VOCs also contributed significantly to the formation of secondary 59 

pollutants such as ozone and secondary aerosol (Vo et al., 2018; Zhou et al., 2019; Qin 60 

et al., 2021). Reduction in ambient VOCs concentrations is the key for synergistic 61 

control of both ozone and particle pollution. However, it is highly challenging for this 62 

target due to complex sources and chemical transformations of VOCs in urban 63 

environments (Yuan et al., 2012; Mo et al., 2016; Zhu et al., 2019). 64 

In addition to compiling accurate emission inventories (bottom-up method) 65 

(Zheng et al., 2013; An et al., 2021), the combination of in-situ measurements and 66 

receptor models (top-down method) was widely adopted to quantitatively apportion 67 

sources of ambient VOCs (Baudic et al., 2016; Liu et al., 2016; Fan et al., 2021; Pernov 68 

et al., 2021). Concentrations of various VOC species could be measured by offline and 69 

online techniques. Gas chromatography-flame ionization detector/mass spectrometry 70 

(GC-FID/MS) combined with stainless steel canisters were the most popular offline 71 

technique for VOCs measurements (Guo et al., 2011; Yuan et al., 2013; Zhang et al., 72 

2013; Qin et al., 2021). Automated online GC-FID system and high time resolution 73 

mass spectrometer, such as proton-transfer-reaction mass spectrometer (PTR-MS) and 74 

chemical ionization mass spectrometer (CIMS), were popular online techniques for 75 

VOCs measurements (de Gouw and Warneke, 2007; Wang et al., 2020a; Wang et al., 76 

2020c; Fan et al., 2021; Ye et al., 2021). However, VOCs measurements made by both 77 

online and offline instruments are significantly affected by very local emission sources, 78 

particularly in urban environments, when they are usually deployed at ground level. 79 

This is highly important for studies aiming to characterize variations and sources of 80 

ambient VOCs at large spatial scales (such as a city or city clusters) based on 81 
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measurements of only one site. To address this concern, VOCs measurements made in 82 

the upper part of the planetary boundary layer (PBL) may be a better choice due to the 83 

well mixing of surface emissions when being transported upward from sources to 84 

observation sites (Hu et al., 2015a; Hu et al., 2015b; Squires et al., 2020). 85 

As reported in the literature, in-situ measurements of VOCs at high altitudes (e.g., 86 

hundreds of meters or several kilometers above ground level) were predominantly made 87 

using the combination of offline techniques and samples collected by various platforms 88 

such as aircraft (Geng et al., 2009; Xue et al., 2011; Benish et al., 2020), tethered 89 

balloons (Zhang et al., 2018; Wu et al., 2020b; Wang et al., 2021; Wu et al., 2021), high 90 

buildings and towers (Ting et al., 2008; Mo et al., 2020), and unmanned aerial vehicles 91 

(UAVs) (Vo et al., 2018; Liu et al., 2021). These offline measurements were 92 

predominantly used to reveal vertical variations of VOCs concentrations, impacts of 93 

VOCs degradation chemistry on the formation of secondary pollutants, and source 94 

characteristics of the species of interest. Offline measurements made at high altitudes 95 

were generally not capable of fully characterizing temporal variations of concentrations 96 

and source characteristics of VOCs due to strict limitations in their time resolution and 97 

sample sizes. In this condition, online VOCs measurements with fast response at high 98 

altitudes are required. Lack of available platforms has been a key limited factor for 99 

conducting online VOCs measurements at high altitudes in China. For instance, the 100 

combined utilization of aircraft and online spectrometer (such as PTR-MS) has been 101 

widely used in North America to measure VOCs concentrations in the lower 102 

troposphere (Hornbrook et al., 2011; Müller et al., 2016; Yuan et al., 2016; Koss et al., 103 

2017; Fry et al., 2018; Chen et al., 2019), while it is quite difficult in China due to the 104 

lack of professional research aircraft and the strict control of airspace. Tethered balloons 105 

and UAVs are generally not suitable for online VOCs measurements due to their limited 106 

payloads (Dieu Hien et al., 2019). Tower-based platforms provide another path for 107 

online VOCs measurements at high altitudes in urban environments. However, tower-108 

based online measurements of VOCs were only reported in Beijing, China by far 109 
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(Squires et al., 2020; Zhang et al., 2020). 110 

In this study, continuous online VOCs measurements, including more than 200 111 

chemical species with a time resolution of 10 s, were made at a 450-m platform on the 112 

Canton Tower in the Pearl River Delta (PRD) region, China during August–November 113 

2020. A combination of the measurements and the positive matrix factorization (PMF) 114 

receptor model was used to provide new insights into the concentrations, temporal 115 

variations, and source contributions of VOCs in urban region. 116 

2 Methods and materials 117 

2.1 Site description and field campaign 118 

The PRD region is one of the most developed city clusters in China with more 119 

than 70 million residents by 2020 and is suffering from air pollution problems (e.g., 120 

ozone and secondary aerosol) (Wang et al., 2017; Wang et al., 2020b; Yan et al., 2020; 121 

Li et al., 2022). In this study, VOCs measurements were made at the Canton Tower 122 

(CTT, 23.11°N, 113.33°E) in Guangzhou, a large city in PRD (Figure S1), from August 123 

18 to November 5 in 2020. The CTT has a total height of 610 m including the shaft on 124 

the top. The observation was conducted in a room (Figure S1) at the 450-m Look Out 125 

platform (Jin et al., 2022). The 450-m Look Out platform is a famous tourist attraction 126 

with an opening time of local time (LT, UTC+8) 10:00–22:30, and visitors could walk 127 

around for a panorama of downtown Guangzhou. On each day, there are two busiest 128 

tourist hours, roughly at LT 11:00-14:00 and 18:00-21:00, on the 450-m platform. In 129 

addition, there are three restaurants between 376 and 423 m. The VOCs measurements 130 

were interrupted during October 8–12 due to instrument malfunction. 131 

2.2 VOCs measurements 132 

VOCs measurements were made using a high-resolution proton-transfer-reaction 133 

quadrupole interface time-of-flight mass spectrometer (PTR-QiToF-MS, Ionicon 134 

Analytik, Innsbruck, Austria) with both hydronium ion (H3O+) and nitric oxide ion 135 
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(NO+) chemistry (Yuan et al., 2017; Wang et al., 2020a; Wu et al., 2020a). The H3O+ 136 

and NO+ modes were automatically switched with 22 min for the H3O+ mode and 12 137 

min for the NO+ mode during the campaign. In this study, only VOCs measurements 138 

made in the H3O+ mode were used for analysis. The sampling inlet of the instrument 139 

was extended to the outside wall of the observation room using a ~5-m long 140 

Perfluoroalkoxy (PFA) Teflon tubing (OD: 1/4”), which is drawn by a pump at a flow 141 

rate of ~5 L min-1. Blank measurements were performed automatically at the last 2 min 142 

of the H3O+ mode by passing ambient air through a platinum catalyst heated to 365 ℃. 143 

Mass spectra of up to m/z = 510 were obtained at a time resolution of 10 s. 144 

A gas standard with 35 VOC species (Table S1) was used for calibrations of the 145 

PTR-ToF-MS once per day. Ten organic acids and nitrogen-containing VOC species 146 

were calibrated using a liquid calibration unit in the laboratory (Table S1). Sensitivities 147 

of the remaining VOC species were determined using the quantification method based 148 

on reaction kinetics of the PTR-ToF-MS (Wu et al., 2020a; He et al., 2022). Impacts of 149 

the change in ambient humidity on measured signals of the PTR-ToF-MS were removed 150 

using humidity-dependence curves of VOC species determined in the laboratory (Wang 151 

et al., 2020a; Wu et al., 2020a). The limit of detection (LOD) for a VOC species was 152 

defined as the concentration when the signal-to-noise ratio (SNR) equals to 3 (Yuan et 153 

al., 2017). Average mixing ratios, LOD, sensitivities, chemical formula, and suggested 154 

compounds of 225 VOC species used in this study are summarized in Table S1. 155 

2.3 Other measurements 156 

During the CTT campaign, a CO2 and H2O Gas Analyzer (Model: Li-840A, Licor 157 

Inc., USA) was deployed to measure carbon dioxide (CO2, ppm) and humidity (mmol 158 

mol-1). In addition, four air quality automatic monitoring stations are located at ground 159 

level (~5 m), 118 m, 168 m, and 488 m of the tower, which report hourly concentrations 160 

of O3, NO, NO2, NOx, and PM2.5 along with meteorological parameters including 161 

temperature (T), relatively humidity (RH), and pressure (Mo et al., 2020). Mass 162 

concentrations of gaseous pollutants were reported at 25 ℃ and 1013.25 hPa and were 163 
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converted to mixing ratios (ppb) accordingly. A ceilometer (CL31, Vaisala, Finland) 164 

deployed on the Panyu Campus of Jinan University (23.02°N, 113.41°E, Figure S1), 165 

approximately 13.5 km to the southeast of the CTT, was used to measure planetary 166 

boundary layer height (PBLH) during the camapign. In addition, measurements of 167 

VOCs and CO2 made on the campus of Guangzhou Institute of Geochemistry (GIG), 168 

Chinese Academy of Sciences (23.15°N, 113.36°E, ~25 m above ground level) during 169 

September–November 2018 (Wang et al., 2020a; Wang et al., 2020c; Wu et al., 2020a) 170 

were used for comparison with those measured on the CTT. The GIG site is located 171 

approximately 5.7 km to the northeast of the CTT. Measurements of VOCs and CO2 at 172 

the GIG site were made using the same instruments as those at the CTT site. 173 

2.4 PMF receptor model 174 

The PMF receptor model was used to quantitatively analyze sources of the VOC 175 

measurements made at the 450-m platform. The PMF model has been widely used to 176 

determine source contributions of measured VOCs concentrations in previous studies 177 

(Yuan et al., 2012; Pallavi et al., 2019; Pernov et al., 2021). A simple description of the 178 

PMF model was provided in the Supplementary Information (SI). 179 

The PMF model was performed on 225 VOC species in this study (Table S1). In 180 

preparation of PMF input data, measured concentrations of a VOC species below the 181 

LOD were replaced with half of the LOD and corresponding uncertainties were 182 

assigned to 5/6 of the LOD. Missing samples of a VOC species were replaced with its 183 

median value during the campaign and corresponding uncertainties were set as values 184 

equal to three times the median value (Zhang et al., 2013; Pernov et al., 2021; Qin et 185 

al., 2021). In this study, the measured ethanol concentrations on the 450-m platform 186 

were significantly impacted by the change in the number of visitors (a detailed 187 

discussion in Section 3.3) and exhibited strong variations during the campaign (Figure 188 

1). Thus, measurement uncertainties of ethanol calculated by Eq. (S3) were reduced by 189 

a factor of 5 to increase the weight of ethanol in PMF analysis, which successfully 190 

resolved factors representing visitor influences and significantly reduce residuals of 191 
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PMF solution from over 20% to ~14%. The PMF analysis was performed using the 192 

PMF Evaluation Tool (v3.05) with Igor Pro (Ulbrich et al., 2009). 193 

3 Results and discussion 194 

3.1 Overview of field measurements during the campaign 195 

As shown in Figure 1, concentrations of various species and meteorological 196 

parameters all exhibited strong variations during the campaign. Daily mean ozone 197 

mixing ratios varied in the range of 17.8–105.0 ppb with an average (± standard 198 

deviation) of 55.1 ± 18.3 ppb. Daily mean total VOC (TVOC) mixing ratios, including 199 

a total of 225 species, varied between 23.9–124.2 ppb with an average of 62.1 ± 21.8 200 

ppb. Daily mean NOx mixing ratios varied in the range of 7.9–31.6 ppb with an average 201 

of 13.6 ± 3.8 ppb. Measured CO2 mixing ratios exhibited strong variability with daily 202 

mean values ranging from 403.5 to 471.4 ppm. Ethanol was the most abundant VOC 203 

species, accounting on average for 23.5% of measured TVOC mixing ratios during the 204 

campaign. Daily mean ethanol mixing ratios varied between 4.3–53.4 ppb with an 205 

average of 15.3 ± 9.1 ppb. Toluene was the most abundant aromatic species and had an 206 

average mixing ratio of 1.4 ± 0.9 ppb during the campaign. Daily mean temperatures 207 

varied in the range of 17.7–29.0 ℃ with an average of 23.2 ± 3.0 ℃. Daily mean RH 208 

varied between 39.3%–85.0% with an average of 71.6% ± 10.3%. In general, the 209 

observation site was predominantly influenced by hot and moist air masses from August 210 

18 to October 4, but cooler and dryer air masses from October 5 to November 5. 211 

The most abundant 10 VOC species measured by PTR-ToF-MS during the 212 

campaign were ethanol, methanol, acetic acid, formaldehyde, acetone, ethyl acetate, 213 

acetaldehyde, hydroxyacetone+propionic acid, toluene, and C8 aromatics, contributing 214 

to over 70% of TVOC mixing ratios. As shown in Figure 2, the 225 VOC species were 215 

classified into six categories, namely CxHy (i.e., hydrocarbons), CxHyO1 (i.e., VOC 216 

species containing one oxygen atom), CxHyO2 (i.e., VOC species containing two 217 

oxygen atoms), CxHyO≥3 (i.e., VOC species containing more than three oxygen atoms), 218 
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N/S containing species (i.e., VOC species containing nitrogen or sulfur atoms), and 219 

siloxanes (Wu et al., 2020a; He et al., 2022). The most abundant category was CxHyO1, 220 

which had an average contribution of 62.2% to measured TVOC mixing ratios. The 221 

CxHyO2 and CxHyO≥3 categories contributed to 24.9% and 2.9% of measured TVOC 222 

mixing ratios, respectively. CxHy was the third abundant category, accounting for 6.4% 223 

of measured TVOC mixing ratios. Concentrations of N/S containing species and 224 

siloxanes were generally lower than 0.5 ppb and only contributed to 1.3% and 2.4% of 225 

measured TVOC mixing ratios, respectively. 226 

As shown in Figure 2, the majority of the CxHy, CxHyO3, and N/S containing 227 

species measured at 450 m (CTT campaign) had lower mixing ratios than those 228 

measured at ground level (GIG campaign), indicating their predominant contributions 229 

from surface emission sources. Most of the CxHyO1 and CxHyO2 species measured at 230 

450 m had comparable mixing ratios to those measured at the ground level. However, 231 

mixing ratios of some CxHyO2, CxHyO3, and N/S containing species measured at 450 m 232 

were significantly higher than at the ground level, which can be attributable to either 233 

enhancement of their emissions on the 450-m platform or more secondary formation 234 

from oxidation of VOCs (e.g., CxHy and CxHyO1 species). 235 

3.2 Diurnal variations in selected VOC species 236 

Average diurnal profiles of nine selected VOC species measured by PTR-ToF-MS 237 

during the campaign are demonstrated in Figure 3. Measurement results at GIG in 2018 238 

are also shown for comparison to investigate differences in their diurnal variation 239 

patterns and likely sources when measured at ground level and in urban upper air. In 240 

addition, average diurnal profiles of the selected VOC species on working and non-241 

working days (including weekends and public holidays when the 450-m platform had 242 

more visitors) during the CTT campaign are compared to explore potential emissions 243 

from visitors. Meteorological factors including temperature and RH exhibited 244 

insignificant differences between working and non-working days (Figure S2). Thus, 245 

differences of concentrations between working and non-working days for various 246 
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species were not caused by the change in meteorological conditions. 247 

Diurnal profiles of aromatic species, including benzene, toluene, and C8 aromatics 248 

measured at 450 m exhibited similar variability with minima occurring between LT 249 

12:00–16:00. Aromatics with higher chemical reactivity could be removed more rapidly 250 

by reactions with hydroxyl radicals (OH) in the daytime (Yuan et al., 2012; Wu et al., 251 

2020a). In addition, significant elevation of daytime PBL could enhance the dilution of 252 

chemical species, leading to rapid decreases in their concentrations (Sangiorgi et al., 253 

2011; Zhang et al., 2018). The two effects are the two most important factors for 254 

controlling diurnal profiles of aromatics measured at 450 m. By contrast, diurnal 255 

profiles of aromatics measured at ground displayed a different pattern with two peaks 256 

occurring in the morning (LT 07:00–08:00) and evening (LT 19:00–22:00), respectively. 257 

Diurnal patterns of aromatics are highly consistent with that of NOx (a typical tracer of 258 

traffic emissions in urban region) at the ground level but were significantly different 259 

from that of NOx at 450 m (Figure 4). Therefore, measured concentrations of aromatics, 260 

particularly for benzene, were significantly affected by traffic emissions at ground level, 261 

but contributed by more complex sources at 450 m. The diurnal profiles of aromatics 262 

on working and non-working days exhibited minor differences, implying insignificant 263 

contributions from visitor-related emissions. On working days, toluene concentrations 264 

measured at 450 m were more affected by traffic emissions as manifested by the two 265 

significant peaks in the morning and late afternoon. 266 

Isoprene and monoterpenes exhibited distinct diurnal variation patterns during the 267 

two campaigns. As reported in (Gómez et al., 2020; Tan et al., 2021), diurnal profiles 268 

of isoprene and monoterpenes concentrations in non-urban regions usually displayed 269 

unimodal patterns with a peak occurring at noon due to the strong light/temperature-270 

dependence of biogenic emissions. In this study, isoprene concentrations at 450 m 271 

plateaued during the daytime and were slightly higher on non-working days than those 272 

on working days, implying significant contributions from visitor-related emissions. The 273 

diurnal profile of monoterpenes measured at 450 m exhibited a bi-modal pattern with 274 
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two peaks at LT 14:00 and 20:00, which was roughly in accordance with diurnal peaks 275 

of visitor numbers on the 450-m platform. In addition, monoterpenes concentrations at 276 

450 m were significantly higher on non-working days (particularly during the busiest 277 

tourist hours) than on working days, confirming significant contributions from visitor-278 

related or cooking emissions (Klein et al., 2016). The diurnal profiles of methyl vinyl 279 

ketone (MVK) + methacrolein (MACR) demonstrated similar shapes to ozone at both 280 

450 m and ground level with maxima occurring between LT 13:00–15:00 (Figure 4), 281 

consistent with MVK+MACR as photooxidation products of isoprene (Greenberg et al., 282 

1999; Zhao et al., 2021). The concentrations of MVK+MACR during the daytime on 283 

non-working days were also evidently higher than those on working days, which are 284 

consistent with isoprene observations. 285 

Acetone, methanol, and ethanol are abundant OVOC species in urban atmosphere. 286 

Diurnal profiles of acetone measured at both 450 m and the ground level were 287 

characterized by higher concentrations in the daytime, suggesting significant 288 

contributions from daytime sources, such as vegetation emissions and photooxidation 289 

of hydrocarbons (Hu et al., 2013; Gkatzelis et al., 2021). In addition, acetone 290 

concentrations at 450 m were higher on non-working days than on working days, 291 

implying prominent contributions from visitor-related emissions. Diurnal profiles of 292 

methanol and ethanol measured at ground level were characterized by a bimodal pattern 293 

with two peaks occurring in the morning (LT 08:00) and evening (LT 20:00), 294 

respectively, confirming significant contributions from traffic emissions. However, 295 

methanol concentrations measured at 450 m exhibited insignificant diurnal variability 296 

and lower concentrations on non-working days, indicating that they were less affected 297 

by visitor-related emissions. The diurnal profile of ethanol at 450 m displayed two 298 

peaks at LT 13:00 and 19:00, respectively, which was in accordance with the two busiest 299 

tourist hours of the 450-m platform. In addition, ethanol concentrations at 450 m on 300 

non-working days were significantly higher than those on working days, particularly in 301 

the opening hours of the 450-m platform. These results suggest that the ethanol 302 
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concentrations measured at 450 m were largely contributed by visitor-related emissions. 303 

To further explore spatial scales of emission source regions for different VOC 304 

species, autocorrelation profiles of their time series were calculated by offsetting time 305 

from -120 to 120 min. As indicated in previous studies (Hayes et al., 2013; Hu et al., 306 

2016), species more affected by local sources would have a narrower autocorrelation 307 

profile. As shown in Figure 4, peak widths of autocorrelation profiles for different 308 

chemical species at 450 m varied significantly. Autocorrelation profiles of 309 

monoterpenes, toluene, ethanol, methanol, and isoprene were relatively narrower (even 310 

narrower than the autocorrelation profile of NOx), and thus sources of these species 311 

had more local characteristics. Autocorrelation profiles of benzene, C8 aromatics, 312 

acetone, and MVK+MACR were much flatter (but narrower than the autocorrelation 313 

profile of ozone and Ox), indicating that concentrations of these species were more 314 

contributed by sources at larger spatial scales. By contrast, peak widths of the 315 

autocorrelation profiles for different chemical species (except for ethanol) varied 316 

insignificantly at ground level and were similar to that of NOx. Therefore, 317 

concentrations of the selected VOC species were significantly contributed by local 318 

traffic emissions at ground level but contributed by more complex sources on larger 319 

spatial scales at 450 m. 320 

3.3 Impacts of visitor-related emissions on VOCs measurements 321 

As introduced in section 2.1, the CTT campaign was conducted in August- 322 

November of 2020, during which visitors were required to wear masks when visiting 323 

the CTT and ethanol-containing products were widely used to prevent the spread of the 324 

COVID-19 pandemic. For example, medicinal alcohol (75%) spray was widely used to 325 

wipe public utilities and 75%-ethanol bacteriostatic gel was extensively used as 326 

sanitizer for hands. Diurnal profiles of some VOC species (e.g., ethanol and 327 

monoterpenes) exhibited similar diurnal patterns to the number of visitors at the 450-m 328 

platform. Therefore, VOCs measurements made at the 450-m platform may be affected 329 

by visitor-related emissions, such as human breath and evaporation of personal care 330 
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products (Veres et al., 2013). 331 

As shown in Figure 5, the diurnal profile of CO2 measured at 450 m increased 332 

between LT 09:00–20:00, which was different from those measured at ground level. 333 

The higher CO2 mixing ratios at 450 m were predominantly contributed by human 334 

breath due to the absence of combustion sources. Measured ethanol mixing ratios were 335 

well correlated with those of CO2 (r=0.62) during the CTT campaign, indicating that 336 

ethanol concentrations, as well as its variations, were predominantly determined by the 337 

change in the number of visitors on the tower. In addition, the CO2 mixing ratios on 338 

non-working days, especially during the busiest tourist hours, were markedly higher 339 

than those on working days. As illustrated in Figure 5, the 450-m platform was closed 340 

during October 13-15 as the result of the influence of Typhoon Kompasu. On these days, 341 

mixing ratios of ethanol, CO2, and monoterpenes exhibited similar variation patterns to 342 

benzene (a typical tracer of traffic emissions). However, mixing ratios of ethanol, CO2, 343 

and monoterpenes exhibited quite different variation patterns from benzene when the 344 

450-m platform was re-open (October 16–21). For instance, mixing ratios of ethanol, 345 

CO2, and monoterpenes generally decreased from LT 12:00 to 18:00 between October 346 

13–15, but significantly increased during the same period between October 16–21. 347 

Therefore, it can be concluded that the VOCs measurements made at the 450-m 348 

platform were significantly affected by visitor-related emissions, which will be 349 

quantitatively assessed using the PMF analysis in following sections. 350 

3.4 Source analysis of VOCs measurements 351 

In this study, a five-factor solution for the PMF analysis was chosen as the optimal 352 

result. Figure 6 displays source profiles (m/z ≤ 150, the full range of the mass spectra 353 

is shown in Figure S5) of the five PMF factors along with average diurnal profiles of 354 

their contributions. The five factors were assigned to likely sources of daytime-mixed, 355 

visitor-related, vehicular+industrial, regional transport, and volatile chemical product 356 

(VCP)-dominated according to characteristics of their source profiles and temporal 357 

variations, which are detailed discussed in the SI. 358 
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The visitor-related source predominantly includes contributions from human 359 

breath and volatilization of personal care products. Contributions of the visitor-related 360 

source had the narrowest autocorrelation profile among the five factors (Figure 6), 361 

confirming its most local characteristics. As shown in Figure 7, the visitor-related 362 

source had the largest contributions (15.9 ± 19.6 ppb), accounting for 30% of the 363 

average TVOC mixing ratio. In addition, contributions of the visitor-related source 364 

accounted for a larger fraction of TVOC mixing ratios on non-working days (33%) than 365 

those on working days (28%). The vehicular+industrial source mainly includes 366 

contributions from vehicular exhausts and emissions of various industrial processes. 367 

Contributions of the vehicular+industrial source (15.1 ± 18.3 ppb) were comparable to 368 

those of the visitor-related source, accounting for 28% of the average TVOC mixing 369 

ratio. As also anticipated, the vehicular+industrial source contributed to a smaller 370 

fraction of TVOC mixing ratios on non-working days (26%) than those on working 371 

days (30%). The VCP-dominated source predominantly includes contributions from 372 

VCPs in urban environments. The VCP-dominated source had an average contribution 373 

of 5.7 ± 5.4 ppb, accounting for 11% of the average TVOC mixing ratio. The average 374 

contribution of the VCP-dominated source in this study was comparable to those (~6.0 375 

ppb) measured in New York City (Gkatzelis et al., 2021). However, VCPs contributed 376 

to over 50% of anthropogenic VOCs emissions in New York City, which is significantly 377 

greater than the fraction in this study (11%, and it will increase to 16% when 378 

contributions of the visitor-related source were removed). In comparison to large cities 379 

in U.S., traffic and industrial emissions were still dominant sources of ambient VOCs 380 

in Chinese cities. 381 

The daytime-mixed source predominantly includes contributions from biogenic 382 

emissions and photooxidation products of various VOCs. As shown in Figure 7, the 383 

daytime-mixed source had an average contribution of 11.6 ± 12.6 ppb, accounting for 384 

21% of the average TVOC mixing ratio. It exhibited consistent diurnal variation 385 

patterns on both working and non-working days but had larger contributions in the 386 
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daytime on non-working days (Figure 6). This may be attributed to the enhanced 387 

formation of secondary OVOC species as manifested by the higher ozone 388 

concentrations on non-working days (Figure S6). The regional transport source mainly 389 

includes contributions from advection transport of aged air masses. Contributions of 390 

the regional transport source had the flattest autocorrelation profile (Figure 6), implying 391 

its most regional characteristics. Only a small fraction (<5%) of reactive chemical 392 

species such as aromatics were attributed to this factor. Contributions of the regional 393 

transport source accounted for 13% of the TVOC mixing ratio when affected by 394 

continental airflows, but only accounted for 3% when affected by marine airflows 395 

(Figure S7). By contrast, contributions of the other factors displayed insignificant 396 

dependence on wind direction. 397 

As shown in Figure 8, source apportionment of the selected VOC species (Figure 398 

3) discussed in section 3.2 were further investigated. The vehicular+industrial source 399 

had the largest contribution (36%) to benzene. The daytime-mixed source also 400 

contributed to 18% of measured benzene mixing ratios. In addition, more than 20% of 401 

benzene was attributed to the VCP-dominated source. In contrast to benzene, toluene 402 

was predominantly attributed to the vehicular+industrial (93%) and visitor-related (7%) 403 

sources. The average ratio of toluene to benzene was 5.7 ppb/ppb during the CTT 404 

campaign (Figure S8), further confirming primary contributions of toluene from 405 

vehicular and industrial emissions (Wu et al., 2016; Zhou et al., 2019; Xia et al., 2021). 406 

The vehicular+industrial source also accounted for the largest fractions of C8 and C9 407 

aromatics. In addition, 26% of C8 aromatics and 38% of C9 aromatics were attributed 408 

to the VCP-dominated source. The other three sources in total contributed to less than 409 

10% of concentrations of C8 and C9 aromatics. These results indicate that VCPs are 410 

important sources of aromatics in urban environments but they were rarely identified 411 

in previous studies. 412 

Isoprene and monoterpenes are widely known tracers of biogenic emissions 413 

(Millet et al., 2016; Zhao et al., 2021). However, the daytime-mixed source only 414 
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contributed to 16% of measured isoprene mixing ratios. By contrast, more than 70% of 415 

isoprene were attributed to the visitor-related (38%) and VCP-dominated (35%) sources. 416 

As for monoterpenes, more than 95% of the measured mixing ratios were attributed to 417 

the visitor-related (47%) and VCP-dominated (49%) sources. The average ratio of 418 

monoterpene to isoprene mixing ratios at 450 m was 0.84 in the daytime (LT 08:00–419 

18:00), which was significantly greater than that at the ground level (0.05) (Figure S8). 420 

It further confirms significant contributions of monoterpenes from visitor-related 421 

emissions at the 450-m platform. The daytime-mixed source did not exhibit discernible 422 

contributions to monoterpenes. This agrees well with the results in New York City 423 

where monoterpene mixing ratios were primarily attributed to anthropogenic sources 424 

such as VCPs, cooking, and building materials (Coggon et al., 2021; Gkatzelis et al., 425 

2021). These results suggest that emission intensities of isoprene and monoterpenes 426 

may be highly underestimated in urban regions if their anthropogenic emissions are 427 

overlooked or less considered. This is exceedingly important for air quality models 428 

when estimating formation of ozone and secondary organic aerosol driven by the 429 

oxidation of isoprene and monoterpene. As the key photooxidation products of isoprene, 430 

nearly 60% of MVK+MACR were attributed to the daytime-mixed source. The visitor-431 

related, regional transport, and VCP-dominated sources contributed to comparable 432 

fractions (11%–15%) of MVK+MACR. Therefore, anthropogenic emissions are also 433 

important sources of MVK+MACR in urban environments. 434 

As shown in Figure 8, 39% of acetone was attributed to the daytime-mixed source. 435 

The vehicular+industrial (19%) and VCP-dominated (21%) sources accounted for 436 

comparable fractions of measured acetone mixing ratios. In addition, the visitor-related 437 

source also contributed (7%) significantly to acetone. As for methanol, the 438 

vehicular+industrial source accounted for the largest fraction (38%), followed by the 439 

daytime-mixed (22%), regional transport (17%), VCP-dominated (14%), and visitor-440 

related (9%) sources. These results reveal that VCPs also contributed significantly to 441 

ambient concentrations of acetone and methanol and should be carefully considered 442 
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when estimating their total emission intensities from anthropogenic sources. Ethanol 443 

was predominantly attributed to the visitor-related source. Therefore, the enhanced 444 

ethanol mixing ratios were not capable of representing its characteristic concentrations 445 

in urban environments. Although the absence of synchronous ground-level 446 

measurements, we can speculate that ethanol concentrations at ground level were also 447 

significantly increased during the outbreak of the COVID-19 pandemic due to the 448 

extensive usage of ethanol-containing products. The enhancement of ethanol 449 

concentrations may contribute significantly to atmospheric OH reactivity (Millet et al., 450 

2012; de Gouw et al., 2017; de Gouw et al., 2018) and then regulate the formation of 451 

secondary pollutants. Therefore, impacts of the ethanol enhancement on ambient air 452 

quality should be explicitly investigated in future studies due to the wide report of ozone 453 

enhancement during the outbreak of the COVID-19 pandemic (Huang et al., 2020; Qi 454 

et al., 2021). 455 

Acetonitrile is widely used as a typical tracer of biomass burning sources in 456 

previous studies (de Gouw et al., 2003; Zhang et al., 2020; Tan et al., 2021). However, 457 

biomass burning source was not identified in this study because acetonitrile was not 458 

predominantly attributed to a single factor (Figure 8). In addition to the visitor-related 459 

source, the other four sources also had significant contributions to acetonitrile. As 460 

indicated by (Huangfu et al., 2021), it is not always suitable, particularly in urban 461 

environments, to use absolute concentrations of acetonitrile as the indication of biomass 462 

burning sources. The ratio of acetonitrile to CO is a better indicator to identify whether 463 

VOC measurements are significantly contributed by biomass burning emissions. The 464 

average ratio of acetonitrile to CO was only 0.09 (ppb ppm-1) during the campaign 465 

(Figure S8), indicating insignificant contributions from biomass burning sources. In 466 

addition to the daytime-mixed (22%) and vehicular+industrial (26%) sources, the VCP-467 

dominated source (31%) was also an important source of acetonitrile in urban 468 

environments. 469 
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3.5 Vertical distributions of air pollutants concentrations 470 

As introduced in section 2.1, hourly concentrations of some air pollutants were 471 

routinely measured at four automatic sites on the CTT. Figure 9 shows time series of 472 

vertical profiles of NOx, ozone, Ox (O3+NO2), and PM2.5 concentrations in September 473 

2020. Concentrations of the four pollutants all exhibited significantly stratified 474 

structures between 488 m and the ground level. Higher mixing ratios of ozone and Ox 475 

predominantly occurred at higher altitudes, while higher NOx mixing ratios mainly 476 

occurred at ground level. By contrast, higher PM2.5 concentrations were observed at 477 

both middle altitudes and ground level. 478 

To further clarify vertical distribution patterns of air pollutants concentrations, 479 

their composite profiles for daytime (LT 08:00–18:00), nighttime (LT 19:00–05:00), 480 

and the whole day in the campaign were determined, respectively, as shown in Figure 481 

10. Vertical profiles of air pollutants concentrations exhibited similar shapes both in 482 

daytime and nighttime. NOx mixing ratios decreased from the ground level to 488 m, 483 

suggesting intensive surface emissions around the CTT. Ozone mixing ratios rapidly 484 

increased from the ground level to 488 m, which was consistent with the results reported 485 

in previous studies (Velasco et al., 2008; Li et al., 2018; Zhang et al., 2019; Li et al., 486 

2021b). The positive gradients of ozone profiles are mainly caused by enhanced NO 487 

titration (NO+O3=O2+NO2) and dry deposition near ground. Ox mixing ratios also 488 

increased from the ground level to 488 m but exhibited weaker gradients in comparison 489 

to ozone. Vertical profiles of PM2.5 concentrations exhibited similar shapes to NOx 490 

during the campaign. Daily mean concentrations of PM2.5 and Ox were well correlated 491 

at the four altitudes with r values varying in the range of 0.61–0.82, suggesting 492 

prominent contributions of secondary formation to ambient PM concentrations. 493 

Moreover, the correlation coefficients between Ox and PM2.5 concentrations at 488 m 494 

(0.82) were greater than those at ground level (0.78), as they were less affected by 495 

nearby vehicular emissions. This is consistent with the work by (Yan et al., 2020), who 496 

reported that secondary components contributed to ~80% of PM2.5 concentrations in 497 
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PRD over the 2008–2019 period. 498 

As shown in Figures 9 and 10, vertical profiles of air pollutants concentrations 499 

exhibited weaker gradients in the daytime than in the nighttime. Therefore, the daytime 500 

VOC chemistry may have minor differences between the ground level and the 450-m 501 

site due to strong vertical mixing of chemical species in the planetary boundary layer 502 

(PBLH>450 m, as shown in Figure S9). In the nighttime, the oxidative products (such 503 

as organic nitrates and OVOCs) of unsaturated hydrocarbons, predominantly initiated 504 

by nitrate radicals (NO3) and ozone, are also important precursors of secondary aerosol 505 

(Warneke et al., 2004; Brown et al., 2011; Ng et al., 2017; Liebmann et al., 2019). 506 

However, it is highly challenging to investigate the nighttime VOC chemistry with only 507 

ground-level measurements due to the rapid removal of NO3 radicals and ozone by 508 

enhanced NO titration in the near-surface atmosphere (Geyer and Stutz, 2004; Stutz et 509 

al., 2004; Brown et al., 2007). In this condition, the nocturnal residual layer, separated 510 

from nocturnal boundary layer and remained, to a large extent, the chemical 511 

composition of the daytime atmosphere, could provide an ideal place for investigating 512 

nighttime VOC chemistry. Oxidative products of VOCs in the residual layer could be 513 

mixed downward with the expansion of the PBL during the daytime (Geyer and Stutz, 514 

2004; Stutz et al., 2004; Li et al., 2021a), contributing to the formation of ozone and 515 

secondary aerosol at ground level. Investigation of the nighttime VOC chemistry was 516 

one of the initial purposes of this study. Unfortunately, the 450-m site was rarely located 517 

in the nocturnal residual layer during the campaign due to frequent occurrences of 518 

cloudy and rainy weather. The average nighttime PBLH in Guangzhou was 519 

approximately stabilized at 500 m during the campaign (Figure S9), implying 520 

significant impacts from surface emissions on the measurements made at 450 m. 521 

In addition to the measured PBLH data, formation of the residual layer at 450 m 522 

could be also identified by comparing differences of ozone mixing ratios between 488 523 

m and the ground level. Without fresh NO emissions, ozone mixing ratios in the 524 

nocturnal residual layer were markedly higher than at ground level and exhibited 525 
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insignificant variability throughout the nighttime (Caputi et al., 2019; Udina et al., 526 

2020). By contrast, surface ozone mixing ratios are generally very low (close to zero) 527 

due to enhanced titration by freshly emitted NO and strong inhibition of atmospheric 528 

vertical mixing (Ma et al., 2011; Chen et al., 2020). In this study, the data collected 529 

between September 27–30 was one of the cases discussed above and was used to briefly 530 

describe behaviors of some representative VOC species (including ethanol, 531 

monoterpene, styrene, phenol, and toluene) at 450 m. 532 

As shown in Figure 11, ozone mixing ratios measured at ground level (10.2 ± 10.4 533 

ppb) were significantly lower than those at 488 m (44.2 ± 19.6 ppb) on the nighttime 534 

of September 27–30, indicating formation of the nocturnal residual layer lower than 535 

450 m. On the nighttime of September 27–28, ozone mixing ratios at 488 m slightly 536 

fluctuated around 46.8 ppb between LT 19:00–00:00 and suddenly decreased to 28.4 537 

ppb at LT 01:00 on September 28. The sudden decrease in ozone at 488 m at LT 01:00 538 

was accompanied by slight increases in both NOx and VOCs but significant decreases 539 

in NOx and NO at ground level, indicating a transitory intrusion of surface fresh 540 

emissions into the residual layer. On September 28, ozone mixing ratios at 488 m 541 

slightly decreased from 33.0 to 31.5 ppb from LT 02:00 to 05:00, during which mixing 542 

ratios of NOx and VOCs all decreased in different degrees. The continuous decreases 543 

in both toluene and ethanol between LT 02:00–05:00 confirm that the VOCs 544 

measurements at 450 m were free of interferences by fresh emissions due to their 545 

significant contributions from vehicular exhausts (Figure 7). Toluene mixing ratios 546 

decreased by 43% from LT 02:00 to 05:00, which was significantly larger than those 547 

(12–27%) of the other VOC species shown in Figure 11. However, the NO3 reactivity 548 

(characterized by reaction rate constants of VOC species to NO3 radical, kNO3) of 549 

toluene (kNO3 = 7×10-17 cm-3 molecule-1 s-1) is exceedingly lower than those of the other 550 

unsaturated VOC species (kNO3 varies in the magnitudes of 10-12 cm-3 molecule-1 s-1) 551 

(Atkinson and Arey, 2003; Atkinson et al., 2006). Therefore, the decline of unsaturated 552 

VOC species in the nocturnal residual layer may not be all attributed to the degradation 553 
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chemistry initiated by NO3 radicals or ozone. 554 

On the nighttime of September 28–29, the PBLH was higher than 500 m between 555 

LT 19:00–00:00, resulting in significant decreases in ozone and increases in NOx and 556 

VOCs. As shown in Figure 11, the 450-m site may locate in the residual layer after LT 557 

01:00. However, the rapid decrease in mixing ratios of NOx and VOCs between LT 558 

01:00–05:00 were not likely caused by chemical removal due to the rapid increase in 559 

ozone. Regional transport of aged air masses (characterized by high ozone and low NOx 560 

mixing ratios) may be responsible for the rapid decline in various VOC species in the 561 

early morning of September 29. On the nighttime of September 29–30, the 450-m site 562 

may be significantly impacted by surface fresh emissions as mixing ratios of ozone, 563 

NOx, and VOCs all decreased between LT 19:00–01:00 and simultaneously increased 564 

between LT 02:00–05:00. NOx and toluene mixing ratios generally increased between 565 

LT 12:00–18:00 during September 27–29, which were quite different from their 566 

average diurnal variation patterns during the whole campaign (Figures 3 and 4). As 567 

discussed above, the 450-m site was located in the nocturnal residual layer during 568 

September 27–29. Therefore, emissions of pollutants from surface sources could be 569 

mixed upward to the measurement site only when the PBLH was higher than 450 m. 570 

Furthermore, the PBL was relatively lower and rapidly shrank in the afternoon, leading 571 

to the accumulation of chemical species at 450 m. 572 

In summary, the VOCs measurements made by PTR-ToF-MS at the 450-m site 573 

could be used to characterize variations in VOC species from their primary emissions 574 

during the nighttime. Nevertheless, the oxidative degradation processes of VOCs in the 575 

nighttime were not well captured. It is highly difficult to provide more information on 576 

the nighttime chemistry of VOC species solely depending on their temporal variations. 577 

We believe that the oxidative degradation of reactive VOC species did occur in the 578 

nocturnal residual layer due to the coexistence of high concentrations of NOx and ozone. 579 

Measurement techniques that targeting oxidation products (e.g., ToF-CIMS) and 580 

numerical models should be jointly used to deeply analyze the nighttime chemistry of 581 
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VOCs in the nocturnal residual layer and quantitatively evaluate their impacts on 582 

ambient air quality during the daytime. 583 

4 Conclusions 584 

Continuous measurements of VOCs mixing ratios were made by PTR-ToF-MS at 585 

450 m on the CTT in PRD, China from August 18–November 5, 2020. In addition to 586 

some specific VOC species (such as ethanol and monoterpenes) that were intensively 587 

emitted by visitor-related sources, mixing ratios of most VOC species at 450 m were 588 

generally lower than those at ground level. Due to intensive emissions from visitor-589 

related sources, mixing ratios of some VOC species were significantly higher on non-590 

working days than those on working days. The VOCs mixing ratios measured at 450 m 591 

also exhibited different diurnal variations from those at ground level, indicating that 592 

they were contributed by more mixed sources at larger spatial scales. Five sources, 593 

namely daytime-mixed, visitor-related, vehicular+industrial, regional transport, and 594 

VCP-dominated, were determined by the PMF model, contributing to 22%, 30%, 28%, 595 

10%, and 11% of the average TVOC mixing ratio, respectively. In addition to the 596 

daytime-mixed and visitor-related sources, the other three sources all had relatively 597 

lower contributions on non-working days than on working days. The VCP-dominated 598 

source contributed an average of 5.7 ppb to TVOC mixing ratios, which was 599 

comparable to those reported in American cities (Gkatzelis et al., 2021). However, the 600 

VCP-dominated source accounted for a much smaller fraction (11%) of measured 601 

TVOC mixing ratios in this study than in U.S. cities (>50%). Therefore, the reduction 602 

in anthropogenic VOC emissions from traffic and industrial sources are still priorities 603 

of current air pollution control for Chinese cities. However, though smaller fraction of 604 

VOCs contributed by VCPs was observed in this study compared to cities in U.S. 605 

(McDonald et al., 2018; Gkatzelis et al., 2021), large fractions of key VOC species 606 

(such as monoterpenes and some aromatic species) were attributed to the VCP-607 

dominated source. This may be important for formulating control strategies for specific 608 
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chemical species or when they are used as key tracers of certain emission sources. 609 

The vertical distribution patterns of NOx, ozone, Ox, and PM2.5 concentrations 610 

were investigated using measurements made at four different heights on the CTT. 611 

Vertical profiles of NOx and PM2.5 generally exhibited negative gradients, while 612 

vertical profiles of ozone generally demonstrated positive gradients. In addition, the 613 

vertical gradients of air pollutants concentrations were larger in the nighttime than in 614 

the daytime, predominantly owing to stronger stability of the nocturnal boundary layer. 615 

The 450-m site was rarely located in the nocturnal residual layer as cloudy and rainy 616 

weather dominated during the campaign. The selected case indicated that the NO3- or 617 

O3-initiated degradation chemistry may be not the sole path for the removal of 618 

unsaturated VOC species in the nocturnal residual layer. The degradation chemistry of 619 

reactive VOC species in the nocturnal residual layer and their impacts on ground-level 620 

air quality could be further investigated in combination with model simulations in 621 

future studies. 622 
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 1096 

Figure 1. Time series of concentrations of some typical chemical species along with 1097 

meteorological parameters during the CTT campaign. Temperature (T), relative 1098 

humidity (RH), concentrations of ozone and NOx were measured at 488 m. 1099 

Concentrations of VOCs, ethanol, and CO2 were measured at 450 m. 1100 
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 1101 

Figure 2. (a) Average mass spectra of VOCs (including 225 species) obtained by PTR-1102 

ToF-MS during the CTT campaign. (b) Scatter plots of the average VOC mixing ratios 1103 

at 450 m during the CTT campaign versus those measured at the ground level during 1104 

the GIG campaign; The black solid line indicates the ratio of 1:1; The dark grey shaded 1105 

areas indicate the ratios of 10:1 and 1:10; The light grey shaded areas indicate the ratios 1106 

of 100:1 and 1:100. CxHy refers to hydrocarbons. CxHyO1 refers to VOC species 1107 

containing one oxygen atom. CxHyO2 refers to VOC species containing two oxygen 1108 

atoms. CxHyO≥3 refers to VOC species containing more than three oxygen atoms. N/S 1109 

containing refers to VOC species containing nitrogen or sulfur atoms. 1110 
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 1111 

Figure 3. Diurnal variations in mixing ratios of selected VOC species measured by 1112 

PTR-ToF-MS. Thick blue solid lines and shaded areas represent averages and standard 1113 

deviations, respectively, during the CTT campaign (August 18–November 05, 2020). 1114 

Red solid lines represent averages during the GIG campaign (September 11–November 1115 

19, 2018). Thin blue solid and dashed lines represent averages in working days and 1116 

non-working (including weekends and public holidays) days, respectively, during the 1117 

CTT campaign. 1118 
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 1119 

Figure 4. (a) Diurnal profiles of ozone and NOx mixing ratios measured at the 488-m 1120 

site (mean ± standard deviation) and the surface site (mean ± 0.5 standard deviation) 1121 

on the CTT. (b) Autocorrelation of the time series of ozone (488 m), NOx (488 m), Ox 1122 

(488 m), and selected VOC species (450 m) during the CTT campaign. (c) 1123 

Autocorrelation of the time series of the selected VOC species at the ground level 1124 
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during the GIG campaign; Autocorrelation of the time series of ozone, NOx, and Ox in 1125 

panel (c) are calculated using the measurements made at the surface site of Canton 1126 

Tower during the CTT campaign. 1127 
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 1128 

Figure 5. (a) Diurnal variations in CO2 mixing ratios at 450 m and the ground level, 1129 

respectively. (b) Scatterplots of ethanol versus CO2 mixing ratios measured at 450 m 1130 

during the CTT campaign; The ground-level CO2 measurements were made in the GIG 1131 

campaign. (c) Time series of benzene, ethanol, CO2, and monoterpene mixing ratios 1132 

measured at 450 m from October 13 to 21; The grey shaded area indicates the period 1133 

(October 13–21) when the 450-m platform was closed due to the influence of Typhoon 1134 

Kompasu. 1135 

https://doi.org/10.5194/acp-2022-116
Preprint. Discussion started: 8 March 2022
c© Author(s) 2022. CC BY 4.0 License.



 

43 

 1136 

Figure 6. (a) Factor profiles (m/z ≤ 150) of the five PMF factors; Factor profiles with 1137 

a full range of the mass spectra are provided in Figure S5. (b-f) Average diurnal profiles 1138 

of the five PMF factors and source tracers. (g) Autocorrelation of the time series of the 1139 

five PMF factors along with Ox, ozone, and NOx mixing ratios at 488 m.1140 
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 1141 

Figure 7. (a-b) Stacked time series of factor fractions and factor contributions for the 1142 

PMF analysis; (c-e) Average contributions of the five PMF factors in the whole time, 1143 

working days, and non-working days.1144 
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 1145 

Figure 8. (a) Average contributions of the five PMF factors to the 9 selected VOC 1146 

species during the CTT campaign. 1147 
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 1148 

Figure 9. Time series of vertical profiles for O3, NOx, Ox (O3+NO2), and PM2.5 1149 

concentrations in September during the CTT campaign. The contour plots are made 1150 

using the measurements from the four CTT sites (5 m, 118 m, 168 m, and 488 m). 1151 
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 1152 

Figure 10. Average vertical profiles of O3, NOx, Ox (O3+NO2), and PM2.5 1153 

concentrations (mean ± 0.1 standard deviations) measured at the four CTT sites (5 m, 1154 

118 m, 168 m, 488 m) during the campaign. Daytime refers to the time between LT 1155 

08:00–18:00; nighttime refers to the time between LT 19:00–05:00. 1156 
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 1157 

Figure 11. Time series of O3, NOx, NO, ethanol, monoterpene, styrene, phenol, and 1158 

toluene mixing ratios along with planetary boundary layer height (PBLH) during 1159 

September 26–30. O3 difference refers to the differences in ozone mixing ratios 1160 

between 488 m and 5 m. Grey shaded areas indicate nighttime periods (LT 19:00–1161 

05:00). 1162 
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