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Abstract 27 

Volatile organic compounds (VOCs) are key precursors of ozone and particulate 28 

matter, that which are the two dominant air pollutants in urban environments. However, 29 

compositions and sources of VOCs in urban air aloft were rarely reported by so far. To 30 

address this matter, highly time-resolved measurements of VOCs were made by proton-31 

transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) at a 450-m platform 32 

on the Canton Tower in Guangzhou, China. A combination of in-situ measurements and 33 

modeling techniques was used to characterize variations and sources of VOCs. Five 34 

sources were identified from positive matrix factorization (PMF) analysis, namely 35 

daytime-mixed (e.g., biogenic emissions and secondary formation), visitor-related (e.g., 36 

human breath, cooking, and volatilization of ethanol-containing products), 37 

vehicular+industrial, regional transport, and volatile chemical product (VCP)-38 

dominated (i.e., volatilization of personal care products), contributing on average to 39 

2221%, 30%, 28%, 10%, and 11% of total VOCs (TVOC) mixing ratios, respectively. 40 

We observe that contributions of the visitor-related source, mainly composed of ethanol, 41 

followed well with the variation patterns ofin visitor numbers on the tower. The VCP-42 

dominated source only had an average contribution of ~5.7 ppb during the campaign, 43 

accounting for a small fraction (11%) of TVOC mixing ratios but a large fraction (22%) 44 

of the total OH reactivity. However, large fractions of some reactive VOC species, e.g., 45 

monoterpenes (49%), were attributed to the VCP-dominated source, indicating 46 

significant important contributions of VCPs to ambient concentrations of these species 47 

in urban environments. Vertical profiles of air pollutants (including namely NOx, ozone, 48 

Ox, and PM2.5), measured at 5 m, 118 m, 168 m, and 488 m, exhibited more evident 49 

gradients at night than in the daytime owing to the stronger stability of the nocturnal 50 

boundary layer. Mixing ratios of VOC species during the nighttime generally decreased 51 

with time when the 450-m platform was located in the nocturnal residual layer and 52 

significantly markedly increased when impacted by emissions at ground. The results in 53 
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this study demonstrated composition characteristics and sources of VOCs in urban air 54 

aloft, which could provide valuable implications in making control strategies of VOCs 55 

and secondary air pollutants. 56 
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1 Introduction 57 

Volatile organic compounds (VOCs) are important trace gases in the atmosphere 58 

and are composed of myriad chemical species (Pallavi et al., 2019; Wang et al., 2020a; 59 

Gkatzelis et al., 2021). Except for their direct adverse impacts on human health (Zhang 60 

et al., 2013), VOCs are also contributed significantly to the formationimportant 61 

precursors of secondary pollutants such as ozone and secondary aerosol (Vo et al., 2018; 62 

Zhou et al., 2019; Qin et al., 2021). Reduction in ambient VOCs concentrations is the 63 

key for synergistic control of both ozone and particle pollution. However, it is highly 64 

challenging for this target due to complex sources and chemical transformations of 65 

VOCs in urban environments (Yuan et al., 2012; Mo et al., 2016; Zhu et al., 2019). 66 

In addition to compiling accurate emission inventories (bottom-up method) 67 

(Zheng et al., 2013; An et al., 2021), the combination of in-situ measurements and 68 

receptor models (top-down method) was widely adopted to quantitatively apportion 69 

sources of ambient VOCs (Baudic et al., 2016; Liu et al., 2016; Fan et al., 2021; Pernov 70 

et al., 2021). Concentrations of various VOC species could can be measured by offline 71 

and online techniques. Gas chromatography-flame ionization detector/mass 72 

spectrometry (GC-FID/MS) combined with stainless steel canisters were are the most 73 

popular offline technique for VOCs measurements (Guo et al., 2011; Yuan et al., 2013; 74 

Zhang et al., 2013; Qin et al., 2021). Automated online GC-FID system and high time 75 

resolution mass spectrometer, such as proton-transfer-reaction mass spectrometer 76 

(PTR-MS) and chemical ionization mass spectrometer (CIMS), were are popular online 77 

techniques for VOCs measurements (de Gouw and Warneke, 2007; Wang et al., 2020a; 78 

Wang et al., 2020c; Fan et al., 2021; Ye et al., 2021). However, VOCs measurements 79 

made by both online and offline instruments are significantly markedly affected by very 80 

local emission sources, particularly in urban environments, when they are usually 81 

deployed at ground level. This is highly important for studies aiming to characterize 82 

variations and sources of ambient VOCs at large spatial scales (such as a city or city 83 
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clusters) based on measurements of only one site. To address this concern, VOCs 84 

measurements made in the upper part of the planetary boundary layer (PBL) may be a 85 

better choice due to the well mixing of surface emissions when being transported 86 

upward from sources to observation sites (Hu et al., 2015a; Hu et al., 2015b; Squires et 87 

al., 2020). 88 

As reported in the literature, in-situ measurements of VOCs at high altitudes (e.g., 89 

hundreds of meters or several kilometers above ground level) were predominantly made 90 

using the combination of offline techniques and samples collected by various platforms 91 

such as aircrafts (Geng et al., 2009; Xue et al., 2011; Benish et al., 2020), tethered 92 

balloons (Zhang et al., 2018; Wu et al., 2020b; Wang et al., 2021; Wu et al., 2021), high 93 

buildings and towers (Ting et al., 2008; Mo et al., 2020), and unmanned aerial vehicles 94 

(UAVs) (Vo et al., 2018; Liu et al., 2021). These offline measurements were 95 

predominantly used to reveal vertical variations of VOCs concentrations, impacts of 96 

VOCs degradation chemistry on the formation of secondary pollutants, and source 97 

characteristics of the species of interest. Offline measurements made at high altitudes 98 

were generally not capable of fully characterizing temporal variations of concentrations 99 

and source characteristics of VOCs due to strict limitations in their time resolution and 100 

sample sizes. In this condition, online VOCs measurements with fast response at high 101 

altitudes are required. Lack of available platforms has been a key limited factor for 102 

conducting online VOCs measurements at high altitudes in China. For instance, the 103 

combined utilization of aircraft and online spectrometer (such as PTR-MS) has been 104 

widely used in North America to measure VOCs concentrations in the lower 105 

troposphere (Hornbrook et al., 2011; Müller et al., 2016; Yuan et al., 2016; Koss et al., 106 

2017; Fry et al., 2018; Chen et al., 2019), while it is quite difficult in China due to the 107 

lack of professional research aircraft and the strict control of airspace. Tethered balloons 108 

and UAVs are generally not suitable for online VOCs measurements due to their limited 109 

payloads (Dieu Hien et al., 2019). Tower-based platforms provide another path for 110 

online VOCs measurements at high altitudes in urban environments. However, tower-111 
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based online measurements of VOCs were only reported in Beijing, China by so far 112 

(Squires et al., 2020; Zhang et al., 2020). 113 

In this study, continuous online VOCs measurements, including more than 200 114 

chemical species with a time resolution of 10 s, were made at a 450-m platform on the 115 

Canton Tower in the Pearl River Delta (PRD) region, China during August–November 116 

2020. A combination of the VOCs measurements and the positive matrix factorization 117 

(PMF) receptor model was used to provide new insights into the concentrations, 118 

temporal variations, and source contributions of VOCs in urban region. 119 

2 Methods and materials 120 

2.1 Site description and field campaign 121 

The PRD region is one of the most developed city clusters in China with more 122 

than 70 million residents by 2020 and is suffering from air pollution problems (e.g., 123 

ozone and secondary aerosol) (Wang et al., 2017; Wang et al., 2020b; Yan et al., 2020; 124 

Li et al., 2022). In this study, VOCs measurements were made at the Canton Tower 125 

(CTT, 23.11°N, 113.33°E) in Guangzhou, a large city in PRD (Figure S1), from August 126 

18 to November 5 in 2020. The CTT has a total height of 610 m including the shaft on 127 

the top (Figure S1(c)). The observation was conducted in a room (Figure S1) at the 450-128 

m Look Out platform (Jin et al., 2022), which is a ramp with stairs and is located on the 129 

top of the main body of the CTT. The observation room is located below the ramp and 130 

a sampling port is reserved on the wall outside the tower.  has aA louver is located ~3 131 

m below the sampling port. The 450-m Look Out platform is a famous tourist attraction 132 

with an opening time of local time (LT, UTC+8) 10:00–22:30, and visitors could walk 133 

around for a panorama of downtown Guangzhou. On each day, there are two busiest 134 

tourist hours, roughly at LT 11:00–-14:00 and 18:00–-21:00, on the 450-m platform. In 135 

addition, there are three restaurants between 376 and 423 m. The VOCs measurements 136 

were interrupted during October 8–12 due to instrument malfunction. 137 
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2.2 VOCs measurements 138 

VOCs measurements were made using a high-resolution proton-transfer-reaction 139 

quadrupole interface time-of-flight mass spectrometer (PTR-QiToF-MS, Ionicon 140 

Analytik, Innsbruck, Austria) with both hydronium ion (H3O+) (Yuan et al., 2017; Wu 141 

et al., 2020a) and nitric oxide ion (NO+) chemistry (Wang et al., 2020a). The H3O+ and 142 

NO+ modes were automatically switched with 22 min for the H3O+ mode and 12 min 143 

for the NO+ mode during the campaign. In this study, only VOCs measurements made 144 

in the H3O+ mode were used for analysis. In H3O+ mode, the PTR-QiToF-MS was 145 

operated with a drift tube pressure of 3.8 mbar, a drift tube temperature of 120 ℃, and 146 

a drift tube voltage of 760 V, resulting in an E/N (E refers to electric field and N refers 147 

to number density of buffer gas in the drift tube) value of ~120 Td (Townsend). Raw 148 

data of PTR-ToF-MS were processed and analyzed using Tofware software (Tofwerk 149 

AG, v3.0.3) and please refer to our previous works (Wang et al., 2020a; Wu et al., 2020a) 150 

for more details. Signals of 3035 ions with m/z up to 510 were obtained at time 151 

resolutions of 10 s. To measure VOCs concentrations outside the tower, The sampling 152 

inlet of the instrument was extended to the outside wall of the observation room using 153 

a ~5 -m long Perfluoroalkoxy (PFA) Teflon tubing (OD: 1/4”) was used to connect the 154 

inlet of the instrument and  a reservedthe sampling port on the wall of the observation 155 

room (Figure S1). The PFA Teflon tubing has been proven to be effective in measuring 156 

ambient concentrations of VOCs (Deming et al., 2019; Liu et al., 2019) and has been 157 

widely used in field studies (de Gouw et al., 2003a; Hu et al., 2011; Wu et al., 2020a). , 158 

whichAir sample is in the tubing was drawn by a pump at a flow rate of ~5 L min-1. 159 

Blank measurements were performed automatically at the last 2 min of the H3O+ mode 160 

by passing ambient air through a platinum catalyst heated to 365 ℃. Mass spectra of 161 

up to m/z = 510 were obtained at a time resolution of 10 s. 162 

A gas standard with 35 VOC species (Table S1) was used for calibrations of the 163 

PTR-ToF-MS once per day. Ten organic acids and nitrogen-containing VOC species 164 

were calibrated using a liquid calibration unit in the laboratory (Table S1). Sensitivities 165 
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of the remaining VOC species were determined using the quantification method based 166 

on reaction kinetics of the PTR-ToF-MS (Wu et al., 2020a; He et al., 2022). Impacts of 167 

the change in ambient humidity on measured signals of the PTR-ToF-MS were removed 168 

using humidity-dependence curves of VOC species determined in the laboratory (Wang 169 

et al., 2020a; Wu et al., 2020a). The limit of detection (LOD) for a VOC species was 170 

defined as the concentration when the signal-to-noise ratio (SNR) equals to 3 (Yuan et 171 

al., 2017). Average mixing ratios, LODs, sensitivities, chemical formula, and suggested 172 

compounds of 225 VOC species used in this study are summarized in Table S1. 173 

2.3 Other measurements 174 

During the CTT campaign, a CO2 and H2O Gas Analyzer (Model: Li-840A, Licor 175 

Inc., USA) was deployed to measure carbon dioxide (CO2, ppm in dry air) and humidity 176 

(mmol mol-1). In addition, four air quality automatic monitoring stations are located at 177 

ground level (~5 m), 118 m, 168 m, and 488 m of the towerCTT, which report hourly 178 

concentrations of O3ozone, NO, NO2, NOx, and PM2.5 along with meteorological 179 

parameters, including namely temperature (T), relatively humidity (RH), and pressure 180 

(Mo et al., 2020). Mass concentrations of gaseous pollutants were reported at 25 ℃ and 181 

1013.25 hPa and were converted to mixing ratios (ppb) accordingly. Contour plots of 182 

vertical profiles of NOx, ozone, Ox (O3+NO2), and PM2.5 concentrations were made 183 

using the bilinear method in Igor software (v8.04). Linear interpolations for 184 

concentrations of these pollutants were performed on both spatial (altitude) and 185 

temporal scales. A ceilometer (CL31, Vaisala, Finland) deployed on the Panyu Campus 186 

of Jinan University (23.02°N, 113.41°E, Figure S1), approximately 13.5 km to the 187 

southeast of the CTT, was used to measure planetary boundary layer height (PBLH) 188 

during the camapign. In addition, measurements of VOCs and CO2 made on the campus 189 

of Guangzhou Institute of Geochemistry (GIG), Chinese Academy of Sciences 190 

(23.15°N, 113.36°E, ~25 m above ground level) during September–November 2018 191 

(Wang et al., 2020a; Wang et al., 2020c; Wu et al., 2020a) were used for comparison 192 

with those measured on the CTT. p values were obtained using the Student's t-test to 193 
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determine statistical significance levels of differences. The GIG site is located 194 

approximately 5.7 km to the northeast of the CTT. Measurements of VOCs and CO2 at 195 

the GIG site were made using the same instruments as those at the CTT site. 196 

2.4 PMF receptor model 197 

The PMF receptor model was used to quantitatively analyze sources of the VOCs 198 

measurements made at the 450-m platform. The PMF model has been widely used to 199 

determine source contributions of measured VOCs concentrations in previous studies 200 

(Yuan et al., 2012; Pallavi et al., 2019; Pernov et al., 2021). A simple description of the 201 

PMF model was provided in the Supplementary Information (SI). 202 

The PMF model was performed on 225 VOC species (Table S1) in this study 203 

(Table S1). In preparation of PMF input data, measured concentrations of a VOC 204 

species below the LOD were replaced with half of the LOD and corresponding 205 

uncertainties were assigned to 5/6 of the LOD. Missing samples of a VOC species were 206 

replaced with its median value during the campaign and corresponding uncertainties 207 

were set as values equal to three times the median value (Zhang et al., 2013; Pernov et 208 

al., 2021; Qin et al., 2021). In this studyDuring the CTT campaign, the measured 209 

ethanol concentrations on the 450-m platform were significantly impacted by the 210 

change in the number of visitors (a detailed discussion in Section 3.3) and exhibited 211 

strong variations during the campaign (Figure 1). Thus, measurement uncertainties of 212 

ethanol calculated by Eq. (S3) were reduced by a factor of 5 to increase the its weight 213 

of ethanol in PMF analysis, which successfully resolved factors representing visitor 214 

influences and significantly reduce residuals of PMF solution from over 20% to ~14%. 215 

The PMF analysis was performed using the PMF Evaluation Tool (v3.05) with Igor Pro 216 

(Ulbrich et al., 2009). 217 
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3 Results and discussion 218 

3.1 Overview of field measurements during the campaign 219 

As shown in Figure 1, concentrations of various species and meteorological 220 

parameters all exhibited strong variations during the campaign. Daily mean ozone 221 

mixing ratios varied in the range of 17.8–105.0 ppb with an average (± standard 222 

deviation) of 55.1 ± 18.3 ppb. Daily mean total VOCs (TVOC) mixing ratios, including 223 

a total of 225 species, varied between 23.9–124.2 ppb with an average of 62.1 ± 21.8 224 

ppb. Daily mean NOx mixing ratios varied in the range of 7.9–31.6 ppb with an average 225 

of 13.6 ± 3.8 ppb. Measured CO2 mixing ratios exhibited strong variability with daily 226 

mean values ranging from 403.5 to 471.4 ppm. Ethanol was the most abundant VOC 227 

species, accounting on average for 23.5% of measured TVOC mixing ratios during the 228 

campaign. Daily mean ethanol mixing ratios varied between 4.3–53.4 ppb with an 229 

average of 15.3 ± 9.1 ppb. Toluene was the most abundant aromatic species and had an 230 

average mixing ratio of 1.4 ± 0.9 ppb during the campaign. Daily mean temperatures 231 

varied in the range of 17.7–29.0 ℃ with an average of 23.2 ± 3.0 ℃. Daily mean RH 232 

varied between 39.3%–85.0% with an average of 71.6% ± 10.3%. In general, the 233 

observation site was predominantly influenced by hot and moist air masses from August 234 

18 to October 4, but cooler and dryer air masses from October 5 to November 5. 235 

The most abundant 10 VOC species measured by PTR-ToF-MS during the CTT 236 

campaign were ethanol, methanol, acetic acid, formaldehyde, acetone, ethyl acetate, 237 

acetaldehyde, hydroxyacetone+propionic acid, toluene, and C8 aromatics, contributing 238 

to over 70% of TVOC mixing ratios. As shown in Figure 2, the 225 VOC species were 239 

classified into six categories, namely CxHy (i.e., hydrocarbons), CxHyO1 (i.e., VOC 240 

species containing one oxygen atom), CxHyO2 (i.e., VOC species containing two 241 

oxygen atoms), CxHyO≥3 (i.e., VOC species containing more than three or more oxygen 242 

atoms), N/S containing species (i.e., VOC species containing nitrogen or sulfur atoms), 243 

and siloxanes (Wu et al., 2020a; He et al., 2022). The most abundant category was 244 
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CxHyO1, which had an average contribution of 62.267% to measured TVOC mixing 245 

ratios, but only contributed to 40% of total OH reactivity. The CxHyO2 and CxHyO≥3 246 

categories contributed to 24.92% and 2.91% of measured TVOC mixing ratios, 247 

respectively. CxHy was the third abundant category, only accounting accounted for 6.49% 248 

of measured TVOC mixing ratios but contributed to 37% of the total OH reactivity, 249 

indicating more reactive VOC species in this category. Concentrations of N/S 250 

containing species and siloxanes were generally lower than 0.5 ppb and only totally 251 

contributed to 1.3% and 2.4~1% of measured TVOC mixing ratios, respectively. 252 

At ground level, each VOCs category accounted for comparable fractions in 253 

TVOC mixing ratios and the total OH reactivity to those measured at 450 m. 254 

HoweverAs shown in Figure 2, the majority of the CxHy, CxHyO≥3CxHyO3, and N/S 255 

containing species measured at 450 m (CTT campaign) had lower mixing ratios than 256 

those measured at ground level (GIG campaign) (Figures 2(b) and S2), indicating 257 

implying their predominant contributions from surface emission sources. Most of the 258 

CxHyO1 and CxHyO2 species measured at 450 m had comparable mixing ratios to those 259 

measured at the ground level. However, mixing ratios of some CxHyO2, 260 

CxHyO≥3CxHyO3, and N/S containing species measured at 450 m were significantly 261 

higher than those measured at the ground level, which can be attributable to either 262 

enhancement of their emissions on the 450-m platform or more secondary formation 263 

from oxidation of VOCs (e.g., CxHy and CxHyO1 species). The differences in 264 

contributions of VOCs categories to the total concentrations and OH reactivity imply 265 

that sources of the VOCs measurements made at 450 m and the ground level are 266 

different. 267 

3.2 Diurnal variations in selected VOC species 268 

Average diurnal profiles of nine selected VOC species measured by PTR-ToF-MS 269 

during the CTT campaign are demonstrated in Figure 3. Measurement results at GIG in 270 

2018 are also shown for comparison to investigate differences in their diurnal variation 271 

patterns and likely sources when measured at ground level and in urban upper air. In 272 



 

12 

addition, average diurnal profiles of the selected VOC species on working and non-273 

working days (including weekends and public holidays when the 450-m platform had 274 

more visitors) during the CTT campaign are compared to explore potential emissions 275 

from visitors. Average diurnal variations in ratios of concentrations of selected VOC 276 

species measured on non-working days to those measured on working days were also 277 

calculated, as shown in Figure S3. Meteorological factors, including namely 278 

temperature and RH, exhibited insignificant differences between working and non-279 

working days (Figure S2S4). Thus, the differences of in VOCs concentrations between 280 

working and non-working days for various species were not caused notably impacted 281 

by the change in meteorological conditions. 282 

Diurnal profiles of aromatic species, including benzene, toluene, and C8 aromatics 283 

measured at 450 m exhibited similar variability with minima occurring between LT 284 

12:00–16:00. Aromatics with higher chemical reactivity could be removed more rapidly 285 

by reactions with hydroxyl radicals (OH) in the daytime (Yuan et al., 2012; Wu et al., 286 

2020a). In addition, significant rapid elevation of the daytime PBL could enhance the 287 

dilution of chemical species, leading to rapid decreases in their concentrations 288 

(Sangiorgi et al., 2011; Zhang et al., 2018). The two effects are the two most important 289 

factors for controlling diurnal profiles of aromatics measured at 450 m. By contrast, 290 

diurnal profiles of aromatics measured at ground displayed a different pattern with two 291 

peaks occurring in the morning (LT 07:00–08:00) and evening (LT 19:00–22:00), 292 

respectively. Diurnal patterns of aromatics are highly consistent with that of NOx (a 293 

typical tracer of traffic emissions in urban region) at the ground level but were 294 

significantly different from that of NOx at 450 m (Figure 4). Therefore, measured 295 

concentrations of aromatics, particularly for benzene, were significantly markedly 296 

affected by traffic emissions at ground level, but contributed by more complex sources 297 

at 450 m. The differences in diurnal profiles of aromatics on between working and non-298 

working days exhibited minorwere insignificant (p>0.05) differences, implying 299 

insignificant minor contributions from visitor-related emissions. On working days, 300 
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toluene concentrations measured at 450 m were more affected by traffic emissions as 301 

manifested by the two significant remarkable peaks in the morning and late afternoon. 302 

Isoprene and monoterpenes exhibited distinct diurnal variation patterns during the 303 

two campaigns. As reported in (Gómez et al., 2020; Tan et al., 2021), diurnal profiles 304 

of isoprene and monoterpenes concentrations in non-urban regions usually displayed 305 

unimodal patterns with a peak occurring at noon due to the strong light/temperature-306 

dependence of biogenic emissions. In this study, isoprene concentrations at 450 m 307 

plateaued during the daytime and were slightly higher on non-working days than those 308 

on working days, implying significant large contributions from visitor-related 309 

emissions. The diurnal profile of monoterpenes measured at 450 m exhibited a bi-modal 310 

pattern with two peaks at LT 14:00 and 20:00, which was roughly in accordance with 311 

diurnal peaks of visitor numbers on the 450-m platform. In addition, monoterpenes 312 

concentrations at 450 m were significantly (p<0.01) higher on non-working days 313 

(particularly during the busiest tourist hours) than on working days, confirming 314 

significant contributions from visitor-related or cooking emissions (Klein et al., 2016). 315 

The diurnal profiles of methyl vinyl ketone (MVK) + methacrolein (MACR) 316 

demonstrated similar shapes to ozone at both 450 m and ground level with maxima 317 

occurring between LT 13:00–15:00 (Figure 4), consistent with MVK+MACR as 318 

photooxidation products of isoprene (Greenberg et al., 1999; Zhao et al., 2021). The 319 

concentrations of MVK+MACR during the daytime on non-working days were also 320 

evidently significantly (p<0.01) higher than those on working days, which are 321 

consistent with isoprene observations. 322 

Acetone, methanol, and ethanol are abundant OVOC species in urban atmosphere. 323 

Diurnal profiles of acetone measured at both 450 m and the ground level were 324 

characterized by higher concentrations in the daytime, suggesting significant 325 

predominant contributions from daytime sources, such as vegetation emissions and 326 

photooxidation of hydrocarbons (Hu et al., 2013; Gkatzelis et al., 2021). In addition, 327 

acetone concentrations at 450 m were higher on non-working days than on working 328 
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days, implying prominent contributions from visitor-related emissions. Diurnal profiles 329 

of methanol and ethanol measured at ground level were characterized by a bimodal 330 

pattern with two peaks occurring in the morning (LT 08:00) and evening (LT 20:00), 331 

respectively, confirming significant strong contributions from traffic emissions. 332 

However, methanol concentrations measured at 450 m exhibited insignificant weak 333 

diurnal variability and lower concentrations on non-working days, indicating that they 334 

were less affected by visitor-related emissions. The diurnal profile of ethanol at 450 m 335 

displayed two peaks at LT 13:00 and 19:00, respectively, which was in accordance with 336 

the two busiest tourist hours of the 450-m platform. In addition, ethanol concentrations 337 

at 450 m on non-working days were significantly (p<0.01) higher than those on working 338 

days, particularly in the opening hours of the 450-m platform. These results suggest 339 

that the ethanol concentrations measured at 450 m were largely contributed by visitor-340 

related emissions. 341 

To further explore spatial scales of emission source regions for different VOC 342 

species, autocorrelation profiles of their time series were calculated by offsetting time 343 

from -120 to 120 min. As indicated in previous studies (Hayes et al., 2013; Hu et al., 344 

2016), concentrations of a species that is more affected by local sources would have a 345 

narrower autocorrelation profile. As shown in Figure 4, peak widths of autocorrelation 346 

profiles for different chemical species at 450 m strongly varied significantly. 347 

Autocorrelation profiles of monoterpenes, toluene, ethanol, methanol, and isoprene 348 

were relatively narrower (even narrower than the autocorrelation profile of NOx), and 349 

thus sources of these species had more local characteristics. Autocorrelation profiles of 350 

benzene, C8 aromatics, acetone, and MVK+MACR were much flatter (but narrower 351 

than the autocorrelation profile of ozone and Ox), indicating that concentrations of these 352 

species were more contributed by sources at larger spatial scales. By contrast, peak 353 

widths of the autocorrelation profiles for different chemical species (except for ethanol) 354 

varied insignificantly at ground level and were similar comparable to that of NOx. 355 

Therefore, concentrations of the selected VOC species were significantly notably 356 
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contributed by local traffic emissions at ground level but contributed by more complex 357 

sources on larger spatial scales at 450 m. 358 

3.3 Impacts of visitor-related emissions on VOCs measurements 359 

As introduced in section 2.1, the CTT campaign was conducted in August- 360 

November of 2020, during which visitors were required to wear masks when visiting 361 

the CTT and ethanol-containing products were widely used to prevent the spread of the 362 

COVID-19 pandemic. For example, medicinal alcohol (75%) spray was widely used to 363 

wipe public utilities and 75%-ethanol bacteriostatic gel was extensively used as 364 

sanitizer for hands. The total usage of ethanol-containing products was closely 365 

associated with the number of visitors. This can be manifested by the Ddiurnal profiles 366 

of some VOC species (e.g., ethanol and monoterpenes) that exhibited similar diurnal 367 

variation patterns to that of the number of visitors at the 450-m platform, as shown in 368 

Figure 3. In addition, the restaurants are located ~30 m below the observation site and 369 

emission intensities of VOCs (e.g., monoterpenes) from cooking-related sources were 370 

also closely associated with the number of visitors. Therefore, the VOCs measurements 371 

made at the 450-m platform may bewere inevitably affected by visitor-related emissions, 372 

such as human breath, cooking, and volatilization evaporation of ethanol-containing 373 

and personal care products (Veres et al., 2013). 374 

As shown in Figure 5(a), the diurnal profile of CO2 measured at 450 m increased 375 

between LT 09:00–20:00, which was different from those measured at ground level. 376 

The higher CO2 mixing ratios at 450 m were predominantly contributed by human 377 

breath due to the absence of combustion sources. Measured ethanol mixing ratios were 378 

well correlated with those of CO2 (rR2=0.6236, p<0.01) during the CTT campaign 379 

(Figure 5(b)), indicating that ethanol concentrations, as well as its variations, were 380 

predominantly determined by the change in the number of visitors on the tower. In 381 

addition, the CO2 mixing ratios on non-working days, especially during the busiest 382 

tourist hours, were markedly significantly (p<0.01) higher than those on working days. 383 

As illustrated in Figure 5, the The 450-m platform was closed during October 13-15 as 384 
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the result of the influence of Typhoon Kompasu. On these days, mixing ratios of ethanol, 385 

CO2, and monoterpenes exhibited similar variation patterns to benzene (a typical tracer 386 

of traffic emissions), as shown in Figure 5(c). However, mixing ratios of ethanol, CO2, 387 

and monoterpenes exhibited quite different variation patterns from benzene when the 388 

450-m platform was re-open (October 16–21). For instance, mixing ratios of ethanol, 389 

CO2, and monoterpenes generally decreased from LT 12:00 to 18:00 between October 390 

13–15, but significantly markedly increased during the same period between October 391 

16–21. Therefore, it can be concluded that the VOCs measurements made at the 450- 392 

m platform were significantly affected by visitor-related emissions, which will be 393 

quantitatively assessed using the PMF analysis in following sections. 394 

3.4 Source analysis of VOCs measurements 395 

In this study, a five-factor solution for the PMF analysis was chosen as the optimal 396 

result. Figure 6 displays source profiles (m/z ≤ 150, the full range of the mass spectra 397 

is shown in Figure S5S7) of the five PMF factors along with average diurnal profiles 398 

of their contributions. The five factors were assigned to likely sources of daytime-mixed, 399 

visitor-related, vehicular+industrial, regional transport, and volatile chemical product 400 

(VCP)-dominated according to characteristics of their source profiles and temporal 401 

variations, which are detailedly discussed in the SI. 402 

The visitor-related source predominantly includes contributions from human 403 

breath and volatilization of ethanol-containing and personal care products. 404 

Contributions of the visitor-related source had the narrowest autocorrelation profile 405 

among the five factors (Figure 6(g)), confirming its most local characteristics. As shown 406 

in Figure 7, the visitor-related source had the largest contributions (15.9 ± 19.6 ppb), 407 

accounting for 30% of the average TVOC mixing ratio. In addition, contributions of the 408 

visitor-related source accounted for a larger fraction of TVOC mixing ratios on non-409 

working days (33%) than those on working days (28%), as shown in Figures 7 and S8. 410 

The vehicular+industrial source mainly includes contributions from vehicular exhausts 411 

and emissions of various industrial processes. Contributions of the vehicular+industrial 412 
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source (15.1 ± 18.3 ppb) were comparable to those of the visitor-related source, 413 

accounting for 28% of the average TVOC mixing ratio. As also anticipated, the 414 

vehicular+industrial source contributed to a smaller fraction of TVOC mixing ratios on 415 

non-working days (26%) than those on working days (30%). The VCP-dominated 416 

source predominantly includes contributions from the volatilization of VCPs in urban 417 

environments. The VCP-dominated source had an average contribution of 5.7 ± 5.4 ppb, 418 

accounting for 11% of the average TVOC mixing ratio. The average contribution of the 419 

VCP-dominated source in this study was comparable to those (~6.0 ppb) measured in 420 

New York City (Gkatzelis et al., 2021). However, VCPs contributed to over 50% of 421 

anthropogenic VOCs emissions in New York City, which is significantly much greater 422 

than the fraction in this study (11%, and it will increase to 16% when contributions of 423 

the visitor-related source were removed). In comparison to large cities in U.S., traffic 424 

and industrial emissions were still dominant sources of ambient VOCs in Chinese cities. 425 

However, VCPs emissions should also be given more attention as the VCP-dominated 426 

(22%) and vehicular+industrial (23%) sources had comparable contributions to the total 427 

OH reactivities, as shown in Figure 7(f). 428 

The daytime-mixed source predominantly includes contributions from biogenic 429 

emissions and photooxidation products of various VOCs. As shown in Figure 7, tThe 430 

daytime-mixed source had an average contribution of 11.6 ± 12.6 ppb, accounting for 431 

21% of the average TVOC mixing ratio. It exhibited consistent diurnal variation 432 

patterns on both working and non-working days but had larger contributions in the 433 

daytime on non-working days (Figure 6). This may be attributed to the enhanced 434 

formation of secondary OVOC species as manifested by the higher ozone 435 

concentrations on non-working days (Figure S6S9). The regional transport source 436 

mainly includes contributions from advection transport of aged air masses. 437 

Contributions of the regional transport source had the flattest autocorrelation profile 438 

(Figure 6), implying its most regional characteristics. Only a small fraction (<5%) of 439 

reactive chemical species such as aromatics were attributed to this factor, leading to the 440 
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lowest contribution to the total OH reactivity. Contributions of the regional transport 441 

source accounted for 13% of the TVOC mixing ratio when affected by continental 442 

airflows, but only accounted for 3% when affected by marine airflows (Figure S7S10). 443 

By contrast, contributions of the other factors displayed insignificant weak 444 

dependences on wind direction. 445 

As shown in Figure 8, source apportionment of the selected VOC species (Figure 446 

3) discussed in section 3.2 were further investigated. The vehicular+industrial source 447 

had the largest contribution (36%) to benzene. The daytime-mixed source also 448 

contributed to 18% of measured benzene mixing ratios. In addition, more than 20% of 449 

benzene was attributed to the VCP-dominated source. In contrast to benzene, toluene 450 

was predominantly attributed to the vehicular+industrial (93%) and visitor-related (7%) 451 

sources. The average ratio of toluene to benzene was 5.7 ppb/ppb during the CTT 452 

campaign (Figure S8S11), further confirming primary contributions of toluene from 453 

vehicular and industrial emissions (Wu et al., 2016; Zhou et al., 2019; Xia et al., 2021). 454 

The vehicular+industrial source also accounted for the largest fractions of C8 and C9 455 

aromatics. In addition, 26% of C8 aromatics and 38% of C9 aromatics were attributed 456 

to the VCP-dominated source. The other three sources in total contributed to less than 457 

10% of concentrations of C8 and C9 aromatics. These results indicate that VCPs are 458 

important sources of aromatics in urban environments but they were rarely identified 459 

in previous studies. 460 

Isoprene and monoterpenes are widely known tracers of biogenic emissions 461 

(Millet et al., 2016; Zhao et al., 2021). However, the daytime-mixed source only 462 

contributed to 16% of measured isoprene mixing ratios. By contrast, more than 70% of 463 

isoprene were attributed to the visitor-related (38%) and VCP-dominated (35%) sources. 464 

As for monoterpenes, more than 95% of the measured mixing ratios were attributed to 465 

the visitor-related (47%) and VCP-dominated (49%) sources. The average ratio of 466 

monoterpene to isoprene mixing ratios at 450 m was 0.84 in the daytime (LT 08:00–467 

18:00), which was significantly (p<0.01) greater than that at the ground level (0.05) 468 
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(Figure S8S11). It further confirms significant strong contributions of monoterpenes 469 

from visitor-related emissions at the 450-m platform. The daytime-mixed source did 470 

not exhibit discernible contributions to monoterpenes. This agrees well with the results 471 

in New York City where monoterpene mixing ratios were primarily attributed to 472 

anthropogenic sources such as VCPs, cooking, and building materials (Coggon et al., 473 

2021; Gkatzelis et al., 2021). These results suggest that emission intensities of isoprene 474 

and monoterpenes may be highly underestimated in urban regions if their anthropogenic 475 

emissions are overlooked or less considered. This is exceedingly important for air 476 

quality models when estimating formation of ozone and secondary organic aerosol 477 

driven by the oxidation of isoprene and monoterpene. As the key photooxidation 478 

products of isoprene, nearly 60% of MVK+MACR were attributed to the daytime-479 

mixed source. The visitor-related, regional transport, and VCP-dominated sources 480 

contributed to comparable fractions (11%–15%) of MVK+MACR. Therefore, 481 

anthropogenic emissions are also important sources of MVK+MACR in urban 482 

environments. 483 

As shown in Figure 8, 39% of acetone was attributed to the daytime-mixed source. 484 

The vehicular+industrial (19%) and VCP-dominated (21%) sources accounted for 485 

comparable fractions of measured acetone mixing ratios. In addition, tThe visitor-486 

related source also had the lowest contribution contributed (7%) significantly to acetone. 487 

As for methanol, the vehicular+industrial source accounted for the largest fraction 488 

(38%), followed by the daytime-mixed (22%), regional transport (17%), VCP-489 

dominated (14%), and visitor-related (9%) sources. These results reveal that VCPs also 490 

contributed significantly to ambient concentrations of acetone and methanol and should 491 

be carefully considered when estimating their total emission intensities from 492 

anthropogenic sources. Ethanol was predominantly attributed to the visitor-related 493 

source. Therefore, the enhanced ethanol mixing ratios were not capable of representing 494 

its characteristic concentrations in urban environments. Although the absence of 495 

synchronous ground-level measurements, we can speculate that ethanol concentrations 496 
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at ground level were also significantly increased during the outbreak of the COVID-19 497 

pandemic due to the extensive usage of ethanol-containing products. The enhancement 498 

of ethanol concentrations may can contribute significantly to the increase in 499 

atmospheric OH reactivity (Millet et al., 2012; de Gouw et al., 2017; de Gouw et al., 500 

2018) and then regulate the formation of secondary pollutants. Therefore, impacts of 501 

the ethanol enhancement on ambient air quality should be explicitly investigated in 502 

future studies due to the wide report of ozone enhancement during the outbreak of the 503 

COVID-19 pandemic (Huang et al., 2020; Qi et al., 2021). 504 

Acetonitrile is widely used as a typical tracer of biomass burning sources in 505 

previous studies (de Gouw et al., 2003b; Zhang et al., 2020; Tan et al., 2021). However, 506 

biomass burning source was not identified in this study because acetonitrile was not 507 

predominantly attributed to a single factor (Figure 8). In addition to the visitor-related 508 

source, the other four sources also had significant large contributions to acetonitrile. As 509 

indicated by (Huangfu et al., 2021), it is not always suitable, particularly in urban 510 

environments, to use absolute concentrations of acetonitrile as the indication of biomass 511 

burning sources. The ratio of acetonitrile to CO is a better indicator to identify whether 512 

VOCs measurements are significantly predominantly contributed by biomass burning 513 

emissions. The average ratio of acetonitrile to CO was only 0.09 (ppb ppm-1) during the 514 

CTT campaign (Figure S8S11), indicating insignificant negligible contributions from 515 

biomass burning sources. In addition to the daytime-mixed (22%) and 516 

vehicular+industrial (26%) sources, the VCP-dominated source (31%) was also an 517 

important source ofhad large contributions to acetonitrile in urban environments. 518 

3.5 Vertical distributions of air pollutants concentrations 519 

As introduced in section 2.1, hourly concentrations of some air pollutants were 520 

routinely measured at four automatic sites on the CTT. Figure 9 shows time 521 

seriescontour plots of vertical profiles of NOx, ozone, Ox (O3+NO2), and PM2.5 522 

concentrations in September 2020. Concentrations of the four pollutants all exhibited 523 

significantly stratified structures between 488 m and the ground level. Higher mixing 524 
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ratios of ozone and Ox predominantly occurred at higher altitudes, while higher NOx 525 

mixing ratios mainly occurred at ground level. By contrast, higher PM2.5 concentrations 526 

were observed at both middle altitudes and ground level. 527 

To further clarify vertical distribution patterns of air pollutants concentrations, 528 

their composite profiles for daytime (LT 08:00–18:00), nighttime (LT 19:00–05:00), 529 

and the whole day in the campaign were determined, respectively, as shown in Figure 530 

10. Vertical profiles of air pollutants concentrations exhibited similar shapes both in 531 

daytime and nighttime. NOx mixing ratios decreased from the ground level to 488 m, 532 

suggesting intensive surface emissions around the CTT. Ozone mixing ratios rapidly 533 

increased from the ground level to 488 m, which was consistent with the results reported 534 

in previous studies (Velasco et al., 2008; Li et al., 2018; Zhang et al., 2019; Li et al., 535 

2021b). The positive gradients of ozone profiles are mainly caused by enhanced NO 536 

titration (NO+O3=O2+NO2) and dry deposition near ground. Ox mixing ratios also 537 

increased from the ground level to 488 m but exhibited weaker gradients in comparison 538 

to ozone. Vertical profiles of PM2.5 concentrations exhibited similar shapes to NOx 539 

during the campaign. Daily mean concentrations of PM2.5 and Ox were well correlated 540 

at the four altitudes with r values varying in the range of 0.61–0.82, suggesting 541 

prominent contributions of secondary formation to ambient PM concentrations. 542 

Moreover, the correlation coefficients between Ox and PM2.5 concentrations at 488 m 543 

(0.82) were greater than those at ground level (0.78), as they were less affected by 544 

nearby vehicular emissions. This is consistent with the work by (Yan et al., 2020), who 545 

reported that secondary components contributed to ~80% of PM2.5 concentrations in 546 

PRD over the 2008–2019 period. 547 

As shown in Figures 9 and 10, vertical profiles of air pollutants concentrations 548 

exhibited weaker gradients in the daytime than in the nighttime. Therefore, the daytime 549 

VOCs chemistry may have minor differences between the ground level and the 450-m 550 

site due to strong vertical mixing of chemical species in the planetary boundary layer 551 

(PBLH>450 m, as shown in Figure S9S12). In the nighttime, the oxidative products 552 
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(such as organic nitrates and OVOCs) of unsaturated hydrocarbons, predominantly 553 

initiated by nitrate radicals (NO3) and ozone, are also important precursors of secondary 554 

aerosol (Warneke et al., 2004; Brown et al., 2011; Ng et al., 2017; Liebmann et al., 555 

2019). However, it is highly challenging to investigate the nighttime VOCs chemistry 556 

with only ground-level measurements due to the rapid removal of NO3 radicals and 557 

ozone by enhanced NO titration in the near-surface atmosphere (Geyer and Stutz, 2004; 558 

Stutz et al., 2004; Brown et al., 2007). In this condition, the nocturnal residual layer, 559 

separated from nocturnal boundary layer and remained, to a large extent, the chemical 560 

composition of the daytime atmosphere, could provide an ideal place for investigating 561 

nighttime VOCs chemistry. Oxidative products of VOCs in the residual layer could be 562 

mixed downward with the expansion of the PBL during the daytime (Geyer and Stutz, 563 

2004; Stutz et al., 2004; Li et al., 2021a), contributing to the formation of ozone and 564 

secondary aerosol at ground level. Investigation of the nighttime VOCs chemistry was 565 

one of the initial purposes of this study. Unfortunately, the 450-m site was rarely located 566 

in the nocturnal residual layer during the CTT campaign due to frequent occurrences of 567 

cloudy and rainy weather. The average nighttime PBLH in Guangzhou was 568 

approximately stabilized at 500 m during the campaign (Figure S9S12), implying 569 

significant notable impacts from surface emissions on the measurements made at 450 570 

m. 571 

In addition to the measured PBLH data, formation of the residual layer at 450 m 572 

could be also identified by comparing differences of ozone mixing ratios between 488 573 

m and the ground level. Without fresh NO emissions, ozone mixing ratios in the 574 

nocturnal residual layer were markedly higher than at ground level and exhibited 575 

insignificant weak variability throughout the nighttime (Caputi et al., 2019; Udina et 576 

al., 2020). By contrast, surface ozone mixing ratios are generally very low (close to 577 

zero) due to enhanced titration by freshly emitted NO and strong inhibition of 578 

atmospheric vertical mixing (Ma et al., 2011; Chen et al., 2020). In this study, the data 579 

collected between September 27–30 was one of the cases discussed above and was used 580 
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to briefly describe behaviors of some representative VOC species (including namely 581 

ethanol, monoterpene, styrene, phenol, and toluene) at 450 m. 582 

As shown in Figure 11, ozone mixing ratios measured at ground level (10.2 ± 10.4 583 

ppb) were significantly (p<0.01) lower than those at 488 m (44.2 ± 19.6 ppb) on the 584 

nighttime of September 27–30, indicating formation of the nocturnal residual layer 585 

lower than 450 m. On the nighttime of September 27–28, ozone mixing ratios at 488 m 586 

slightly fluctuated around 46.8 ppb between LT 19:00–00:00 and suddenly decreased 587 

to 28.4 ppb at LT 01:00 on September 28. The sudden decrease in ozone at 488 m at 588 

LT 01:00 was accompanied by slight increases in both NOx and VOCs but significant 589 

notable decreases in NOx and NO at ground level, indicating a transitory intrusion of 590 

surface fresh emissions into the residual layer. On September 28, ozone mixing ratios 591 

at 488 m slightly decreased from 33.0 to 31.5 ppb from LT 02:00 to 05:00, during which 592 

mixing ratios of NOx and VOCs all decreased in different degrees. The continuous 593 

decreases in both toluene and ethanol between LT 02:00–05:00 confirm that the VOCs 594 

measurements at 450 m were free of interferences by fresh emissions due to their 595 

significant large contributions from vehicular exhausts (Figure 78). Toluene mixing 596 

ratios decreased by 43% from LT 02:00 to 05:00, which was significantly larger than 597 

those (12–27%) of the other VOC species shown in Figure 11. However, the NO3 598 

reactivity (characterized by reaction rate constants of VOC species to NO3 radical, kNO3) 599 

of toluene (kNO3 = 7×10-17 cm-3 molecule-1 s-1) is exceedingly lower than those of the 600 

other unsaturated VOC species (kNO3 varies in the magnitudes of 10-12 cm-3 molecule-1 601 

s-1) (Atkinson and Arey, 2003; Atkinson et al., 2006). Therefore, the decline of 602 

unsaturated VOC species in the nocturnal residual layer may not be all attributed to the 603 

degradation chemistry initiated by NO3 radicals or ozone. 604 

On the nighttime of September 28–29, the PBLH was higher than 500 m between 605 

LT 19:00–00:00, resulting in significant notable decreases in ozone and increases in 606 

NOx and VOCs. As shown in Figure 11, the 450-m site may locate in the residual layer 607 

after LT 01:00. However, the rapid decrease in mixing ratios of NOx and VOCs 608 
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between LT 01:00–05:00 were not likely caused by chemical removal due to the rapid 609 

increase in ozone. Regional transport of aged air masses (characterized by high ozone 610 

and low NOx mixing ratios) may be responsible for the rapid decline in various VOC 611 

species in the early morning of September 29. On the nighttime of September 29–30, 612 

the 450-m site may be significantly impacted by surface fresh emissions as mixing 613 

ratios of ozone, NOx, and VOCs all decreased between LT 19:00–01:00 and 614 

simultaneously increased between LT 02:00–05:00. NOx and toluene mixing ratios 615 

generally increased between LT 12:00–18:00 during September 27–29, which were 616 

quite different from their average diurnal variation patterns during the whole campaign 617 

(Figures 3 and 4). As discussed above, the 450-m site was located in the nocturnal 618 

residual layer during September 27–29. Therefore, emissions of pollutants from surface 619 

sources could be mixed upward to the measurement site only when the PBLH was 620 

higher than 450 m. Furthermore, the PBL was relatively lower and rapidly shrank in 621 

the afternoon, leading to the accumulation of chemical species at 450 m. 622 

In summary, the VOCs measurements made by PTR-ToF-MS at the 450-m site 623 

could can be used to characterize variations in VOC species from their primary 624 

emissions during the nighttime. Nevertheless, the oxidative degradation processes of 625 

VOCs in the nighttime were not well captured. It is highly difficult to provide more 626 

information on the nighttime chemistry of VOC species solely depending on their 627 

temporal variations. We believe that the oxidative degradation of reactive VOC species 628 

did occur in the nocturnal residual layer due to the coexistence of high concentrations 629 

of NOx and ozone. Measurement techniques that targeting oxidation products (e.g., 630 

ToF-CIMS) and numerical models should be jointly used to deeply analyze the 631 

nighttime chemistry of VOCs in the nocturnal residual layer and quantitatively evaluate 632 

their impacts on ambient air quality during the daytime. 633 

4 Conclusions 634 

Continuous measurements of VOCs mixing ratios were made by PTR-ToF-MS at 635 
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450 m on the CTT in PRD, China from August 18–November 5, 2020. In addition to 636 

some specific VOC species (such as ethanol and monoterpenes) that were intensively 637 

emitted by visitor-related sources, mixing ratios of most VOC species at 450 m were 638 

generally lower than those at ground level. Due to intensive emissions from visitor-639 

related sources, mixing ratios of some VOC species were significantly higher on non-640 

working days than those on working days. The VOCs mixing ratios measured at 450 m 641 

also exhibited different diurnal variations from those at ground level, indicating that 642 

they were contributed by more mixed sources at larger spatial scales. Five sources, 643 

namely daytime-mixed, visitor-related, vehicular+industrial, regional transport, and 644 

VCP-dominated, were determined by the PMF model, contributing to 2221%, 30%, 645 

28%, 10%, and 11% of the average TVOC mixing ratio, respectively. In addition to the 646 

daytime-mixed and visitor-related sources, the other three sources all had relatively 647 

lower contributions on non-working days than on working days. The VCP-dominated 648 

source contributed an average of 5.7 ppb to TVOC mixing ratios, which was 649 

comparable to those reported in American cities (Gkatzelis et al., 2021). However, the 650 

VCP-dominated source accounted for a much smaller fraction (11%) of measured 651 

TVOC mixing ratios in this study than in U.S. cities (>50%). Therefore, the reduction 652 

in anthropogenic VOC emissions from traffic and industrial sources are still priorities 653 

of current air pollution control for Chinese cities. However, tThough smaller fraction 654 

of VOCs contributed by VCPs was observed in this study compared to cities in U.S. 655 

(McDonald et al., 2018; Gkatzelis et al., 2021), large fractions of key VOC species 656 

(such as monoterpenes and some aromatic species) were attributed to the VCP-657 

dominated source. In addition, the VCP-dominated (22%) and vehicular+industrial 658 

sources (23%) had comparable contributions to the total OH reactivity. Therefore, 659 

VCPs emissions should be given more attentions when making control strategies for 660 

VOCs in urban region.This may be important for formulating control strategies for 661 

specific chemical species or when they are used as key tracers of certain emission 662 

sources. 663 
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The vertical distribution patterns of NOx, ozone, Ox, and PM2.5 concentrations 664 

were investigated using measurements made at four different heights on the CTT. 665 

Vertical profiles of NOx and PM2.5 generally exhibited negative gradients, while 666 

vertical profiles of ozone generally demonstrated positive gradients. In addition, the 667 

vertical gradients of air pollutants concentrations were larger in the nighttime than in 668 

the daytime, predominantly owing to stronger stability of the nocturnal boundary layer. 669 

The 450-m site was rarely located in the nocturnal residual layer as cloudy and rainy 670 

weather dominated during the campaign. The selected case indicated revealed that the 671 

NO3- or O3-initiated degradation chemistry may be not the sole path for the removal of 672 

unsaturated VOC species in the nocturnal residual layernighttime. The degradation 673 

chemistry of reactive VOC species in the nocturnal residual layer and their impacts on 674 

ground-level air quality could be further investigated in combination with model 675 

simulations in future studies. 676 
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 1155 

Figure 1. Time series of concentrations of some typical chemical species along with 1156 

meteorological parameters (hourly averages) during the CTT campaign. Temperature 1157 

(T), relative humidity (RH), concentrations of ozone and NOx were measured at 488 1158 

m. Concentrations of VOCs, ethanol, and CO2 were measured at 450 m. 1159 



 

40 

 1160 

Figure 2. (a) Average mass spectra of VOCs (including 225 species) obtained by PTR-1161 

ToF-MS measured at 450 m during the CTT campaign. (b) Scatter plots of the average 1162 

VOC mixing ratios measured at 450 m during the CTT campaign versus those measured 1163 

at the ground level during the GIG campaign; The black solid line indicates the ratio of 1164 

1:1; The dark grey shaded areas indicate the ratios of 10:1 and 1:10; The light grey 1165 

shaded areas indicate the ratios of 100:1 and 1:100. CxHy refers to hydrocarbons. 1166 

CxHyO1 refers to VOC species containing one oxygen atom. CxHyO2 refers to VOC 1167 

species containing two oxygen atoms. CxHyO≥3 refers to VOC species containing more 1168 

than three oxygen atoms. N/S containing refers to VOC species containing nitrogen or 1169 

sulfur atoms.(c-d) Average contribution percentages of the six VOCs categories to their 1170 

total concentrations and OH reactivities at 450 m and the ground level, respectively; 1171 

Only the VOCs species that have known reaction rate constants with OH radical (Table 1172 

S1) were used for calculation. 1173 
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 1174 

Figure 3. Diurnal variations in mixing ratios of selected VOC species measured by 1175 

PTR-ToF-MS. Thick blue solid lines and shaded areas represent averages and standard 1176 

deviations, respectively, during the CTT campaign (August 18–November 05, 2020). 1177 

Red solid lines represent averages during the GIG campaign (September 11–November 1178 

19, 2018). Thin blue solid and dashed lines represent averages in working days and 1179 

non-working (including weekends and public holidays) days, respectively, during the 1180 

CTT campaign. 1181 
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 1182 

Figure 4. (a) Diurnal profiles of ozone and NOx mixing ratios measured at the 488-m 1183 

site (mean ± standard deviation) and the surface site (mean ± 0.5 standard deviation) 1184 

on the CTT. (b) Autocorrelation of the time series of ozone (488 m), NOx (488 m), Ox 1185 

(488 m), and selected VOC species (450 m) during the CTT campaign. (c) 1186 

Autocorrelation of the time series of the selected VOC species at the ground level 1187 
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during the GIG campaign; Autocorrelation of the time series of ozone, NOx, and Ox in 1188 

panel (c) are calculated using the measurements made at the surface site of Canton 1189 

Tower during the CTT campaign. 1190 



 

44 

 1191 

Figure 5. (a) Diurnal variations in CO2 mixing ratios at 450 m and the ground level, 1192 

respectively. (b) Scatterplots of 10-min mean mixing ratios of ethanol versus CO2 1193 

mixing ratios measured at 450 m during the CTT campaign.; The ground-level CO2 1194 

measurements were made in the GIG campaign. (c) Time series of benzene, ethanol, 1195 

CO2, and monoterpene mixing ratios measured at 450 m from October 13 to 21; The 1196 

grey shaded area indicates the period (October 13–21) when the 450-m platform was 1197 

closed due to the influence of Typhoon Kompasu. 1198 
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 1199 

Figure 6. (a) Factor profiles (m/z ≤ 150) of the five PMF factors; Factor profiles with 1200 

a full range of the mass spectra are provided in Figure S6S7. (b-f) Average diurnal 1201 

profiles of the five PMF factors and source tracers. (g) Autocorrelation of the time series 1202 

of the five PMF factors along with Ox, ozone, and NOx mixing ratios at 488 m; Colors 1203 

of lines are consistent with the five factors in panel (a).1204 
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 1205 

Figure 7. (a-b) Stacked time series of factor fractions and factor contributions for the 1206 

PMF analysis.; (c-e) Average contribution percentagess of the five PMF factors to (c-e) 1207 

the total VOCs concentrations in the whole time, working days, and non-working days 1208 

and (f) the total OH reactivities during the CTT campaign. In panel (d), only the VOCs 1209 

species that have known reaction rate constants with OH radical (Table S1) were used. 1210 
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 1211 

Figure 8. (a) Average contribution percentagess of the five PMF factors to 1212 

concentrations of the 9 selected VOC species during the CTT campaign. 1213 
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 1214 

Figure 9. Time series of vertical profiles for O3, NOx, Ox (O3+NO2), and PM2.5 1215 

concentrations in September during the CTT campaign. The contour plots are made 1216 

using the measurements from the four CTT sites (5 m, 118 m, 168 m, and 488 m). 1217 
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 1218 

Figure 10. Average vertical profiles of O3, NOx, Ox (O3+NO2), and PM2.5 1219 

concentrations (mean ± 0.1 standard deviations) measured at the four CTT sites (5 m, 1220 

118 m, 168 m, 488 m) during the campaign. Daytime refers to the time between LT 1221 

08:00–18:00; nighttime refers to the time between LT 19:00–05:00. 1222 
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 1223 

Figure 11. Time series of O3, NOx, NO, ethanol, monoterpene, styrene, phenol, and 1224 

toluene mixing ratios along with planetary boundary layer height (PBLH) during 1225 

September 26–30. O3 difference refers to the differences in ozone mixing ratios 1226 

between 488 m and 5 m. Grey shaded areas indicate nighttime periods (LT 19:00–1227 

05:00). 1228 


