Radical chemistry in the Pearl River Delta: observations and modeling of OH and HO$_2$ radicals in Shenzhen 2018

Xinping Yang1,2, Keding Lu1,2,*, Xuefei Ma1,2, Yue Gao1,2, Zhaoferg Tan3, Haichao Wang4, Xiaoru Chen1,2, Xin Li1,2, Xiaofeng Huang5, Lingyan He5, Mengxue Tang5, Bo Zhu5, Shiyi Chen1,2, Huabin Dong1,2, Limin Zeng1,2, Yuanhang Zhang1,2,*

1State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China
2State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, Peking University, Beijing, China
3Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Juelich GmbH, Juelich, Germany
4School of Atmospheric Sciences, Sun Yat-Sen University, Zhuhai, China
5Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China

Correspondence to: Keding Lu (k.lu@pku.edu.cn), Yuanhang Zhang (yhzhang@pku.edu.cn)

Abstract. The ambient OH and HO$_2$ concentrations were measured continuously during the STORM (STudy of the Ozone foRmation Mechanism) campaign at the Shenzhen site, located in the Pearl River Delta in China, in autumn 2018. The diurnal maximum OH and HO$_2$ concentrations, measured by laser-induced fluorescence, were 4.5×10^6 cm$^{-3}$ and 4.5×10^8 cm$^{-3}$, respectively. The state-of-the-art radical chemical mechanism underestimated the observed OH concentration, similar to the other warm-season campaigns in China. The OH underestimation was attributable to the missing OH sources, which can be explained by the X mechanism. Good agreement between the observed and modeled OH concentrations was achieved when an additional numerical X equivalent to 0.1 ppb NO concentrations was added to the base model. The modeled HO$_2$ could reproduce the observed HO$_2$, indicating the HO$_2$ heterogeneous uptake on HO$_2$ chemistry was negligible. Photolysis reactions dominated the ROx primary production rate. The HONO, O$_3$, HCHO, and carbonyls photolysis accounted for 29%, 16%, 16%, and 11% during the daytime, respectively. The ROx termination rate was dominated by the reaction of OH + NO$_2$ in the morning, and thereafter the radical self-combination gradually became the major sink of ROx in the afternoon. The atmospheric oxidation capacity was evaluated, with a peak of 0.75×10^8 molecules cm$^{-3}$ s$^{-1}$ around noon time. A strong positive correlation between O$_3$ formation rate and atmospheric oxidation capacity was achieved, illustrating the atmospheric oxidation capacity was the potential tracer to indicate the secondary pollution.
1 Introduction

Severe ambient ozone (O$_3$) pollution is one of China’s most significant environmental challenges, especially in urban areas (Shu et al., 2020; Li et al., 2019; Wang et al., 2020; Ma et al., 2019b; Wang et al., 2017). Despite the reduction in emissions of O$_3$ precursors, O$_3$ concentration is increasing, especially in urban cities. The O$_3$ average trends for the focus megacity clusters are 3.1 ppb a$^{-1}$, 2.3 ppb a$^{-1}$, 0.56 ppb a$^{-1}$, and 1.6 ppb a$^{-1}$ for North China Plain (NCP), Yangtze River Delta (YRD), Pearl River Delta (PRD), and Szechwan Basin (SCB), respectively (Li et al., 2019). The nonlinearity between O$_3$ and precursors illustrates that it is necessary to explore the cause of O$_3$ production. The tropospheric O$_3$ is only generated in the photolysis of nitrogen dioxide (NO$_2$), produced as the by-product within the radical cycling. Thus, the investigation of radical chemistry is critical to controlling secondary pollution.

Hydroxyl radicals (OH), the dominant oxidant, control the atmospheric oxidation capacity (AOC) in the troposphere. The OH radicals convert primary pollutants to secondary pollutants and are simultaneously transformed into peroxy radicals (HO$_2$ and RO$_2$). Within the interconvert of ROx (= OH, HO$_2$, and RO$_2$), secondary pollutants are generated, and thus the further exploration of radical chemistry is significant. The radical closure experiment, an effective indicator for testing our understanding of radical chemistry, has been conducted since the central role of OH radicals was recognized in the 1970s (Levy, 1971; Hofzumahaus et al., 2009). The underestimation of OH radicals at environments characterized by low nitrogen oxides (NO) and high volatile organic compounds (VOCs) has been identified (Lu et al., 2013; Lu et al., 2012; Tan et al., 2017; Tan et al., 2019; Yang et al., 2021; Hofzumahaus et al., 2009; Lelieveld et al., 2008; Whalley et al., 2011). New radical mechanisms involving unclassical OH regeneration have been proposed, including Leuven Isoprene Mechanism (LIM) and X mechanism (Peeters and Muller, 2010; Peeters et al., 2014; Peeters et al., 2009; Hofzumahaus et al., 2009). The LIM has been cooperated with the current mechanism and is still not sufficient to explain the OH missing sources. The X mechanism was identified several times, but the amount of the numerical species, X, varied in different environments, and the nature of X is unknown (Hofzumahaus et al., 2009; Lu et al., 2013; Lu et al., 2012; Tan et al., 2017; Tan et al., 2019; Yang et al., 2021). Therefore, further exploration of radical regeneration sources is necessary.

Owing to the strong photochemistry influenced by high temperatures, high O$_3$ pollution appeared to occur in YRD and PRD, especially in PRD (Ma et al., 2019b; Wang et al., 2017). Radicals, the dominant oxidant in the troposphere, have been measured during warm seasons in NCP (Yufa 2006, Wangdu 2014, and Beijing 2016), YRD (Taizhou 2018), SCB (Chengdu 2019), and PRD (Backgarden 2006, and Heshan 2014) in China (Lu et al., 2013; Lu et al., 2012; Tan et al., 2017; Tan et al., 2019; Yang et al., 2021; Tan et al., 2021). The radical observations in PRD, where the cities are suffering from severe O$_3$ pollution, have not been conducted since 2014, and thus the oxidation capacity here has not been clear in recent years. Therefore, we carried out a continuous comprehensive field campaign (STudy of the Ozone forRnation Mechanism - STORM) involving radical observations in Shenzhen, one of the megacities in PRD, in autumn 2018. Overall, the following will be reported in this study.
1. The observed OH and HO$_2$ radicals, and the comparison between the observed and modeled radical concentrations.
2. The exploration of the unclassical OH regeneration sources based on the experimental budget.
3. The sources and sinks of radicals.
4. The evaluation of AOC and the quantitative relationship between O$_3$ formation and AOC.

2 Methodology

2.1 Measurement site and instrumentation

The STORM campaign was conducted from September to October 2018 in Peking University Shenzhen Graduate School (22°60 N, 113°97 E), in the west of Shenzhen, Guangdong province. As shown in Fig. 1, this site was located in the university town, which was surrounded by residential and commercial areas. The northwest of the site is close to the Shenzhen Wildlife Park, and the northeast is close to the Xili Golf Club (Yu et al., 2020). The Tanglang Mountain Park with active biogenic emissions is located about 1 km southeast of the site.

Most instruments were set up on the top of a four-story academic building (about 20 m). Besides HOx radicals measured by the Peking University Laser-Induced Fluorescence system (PKU-LIF) (see the details in Sect. 2.2), a comprehensive set of trace gases was conducted to support the exploration of the radical chemistry, including meteorological parameters (temperature, pressure, relative humidity), photolysis frequency, and the trace gases (NO, NO$_2$, O$_3$, VOCs, etc.). Most of the inorganic trace gases (O$_3$, CO, NO, NO$_2$, and SO$_2$) were simultaneously measured by two sets of instruments, and good agreement was achieved within the uncertainty. VOCs (aldehydes, alkenes, aromatics, isoprene, and oxygenated VOCs (OVOCs)) were measured using a gas chromatograph following a mass spectrometer (GC-MS). In addition, HONO and HCHO were measured as well. Table S1 in the Supplementary Information describes the experimental details of the meteorological and chemical parameters during this campaign.
2.2 The OH and HO₂ measurements

The OH and HO₂ radicals were measured by Peking University laser-induced fluorescence system (PKU-LIF) based on the fluorescence assay by gas expansion (FAGE) technique. The principle has been reported in previous studies (Lu et al., 2012; Tan et al., 2017; Heard and Pilling, 2003; Lu et al., 2013; Ma et al., 2019a; Tan et al., 2019; Tan et al., 2018; Yang et al., 2021), only a brief description of the instrument is presented here.

In principle, OH resonance fluorescence is released in the OH excitation by a 308 nm pulsed laser, and then OH radicals are detected directly. HO₂ radicals are converted into OH via NO, and then they are detected. The system contains a laser module and a detection module. Ambient air was drawn into two independent, parallel, low-pressure (3.5 mBar) cells through two parallel nozzles with 0.4 mm diameter pinhole. The OH radicals are excited into resonance fluorescence in the OH detection cell and detected by micro-channel plate detectors (MCP). In the HO₂ detection cell, NO is injected and converts HO₂ to OH radicals, which then are excited by the laser and release resonance fluorescence. Besides, an OH reference cell in which a large OH concentration is generated by pyrolysis of water vapor on a hot filament is applied to automatically correct the laser wavelength.

Owing to the failure of the reference cell in this study, the NO mixing ratios injected into the HO₂ cell were set to be higher than that in other campaigns in China because the HO₂ cell needed to be used as a reference cell to correct laser wavelength. Here, NO mixing ratios were switched between 10 ppm and 20 ppm. There was no obvious difference in HO₂ signals under the above two NO mixing ratios, indicating that the interference of RO₂ to HO₂ measurements was negligible despite the higher NO mixing ratio than other campaigns in China.

2.3 Closure experiment

As an effective tool to explore the atmospheric radical chemistry, the radical closure experiment can investigate the state-of-the-art chemical mechanism because of the extremely short lifetime of radicals (Stone et al., 2012; Lu et al., 2019). A zero-dimensional box model was used to conduct the radical closure experiment, and the overall framework was reported by Lu et al. (2019). In this work, we conducted the radical closure experiment based on the Regional Atmospheric Chemical Mechanism updated with the latest isoprene chemistry (RACM2-LIM1), as Tan et al. (2017) described in detail. The model was constrained to the measured meteorological, photolysis frequency, and the critical chemical parameters (CO, NO, NO₂, VOCs, etc.). The H₂ and CH₄ mixing ratios were set to 550 ppb and 1900 ppb, respectively. The model was operated in time-dependent mode with a 5-min time resolution, and a 2-d spin-up time was used to reach steady-state conditions for long-lived species.

As Lu et al. (2012) described, there are two types of radical closure experiment. One is the comparison of observed and modeled radical concentrations, and the other is the comparison of radical production and destruction rates. The most significant difference between the above is that the latter is conducted with the radical concentrations and kOH constrained. The comparison of radical production and destruction rates, also called radical experimental budget, can test the accuracy of the
state-of-the-art chemistry mechanisms based on the equivalent relationship between the radical production and destruction rates. The production rates of OH, HO\(_2\), and RO\(_2\) radicals are quantified from all the known sources. The destruction rates of HO\(_2\) and RO\(_2\) radicals are the sum of the known sources. The OH destruction rate can be directly calculated as the product of the observed OH concentrations and the observed \(k_{OH}\) (Tan et al., 2019; Yang et al., 2021). The OH destruction rate is the total sinks of OH radicals because of the direct \(k_{OH}\) observation, and thus the discrepancy between the OH destruction and production rates denotes the missing OH sources. The detailed reactions and the reaction rate constants related to OH, HO\(_2\), and RO\(_2\) radicals can be found in Tan et al. (2019) and Yang et al. (2021).

2.4 AOC evaluation

The life time of the trace gases is controlled not only by the oxidant concentration but also by its second-order rate constant, so the atmospheric oxidation capacity (AOC) proposed by Geyer et al. (2001) is most suitable to evaluate the relative importance of each oxidant (Elshorbany et al., 2009). AOC is the core driving force of complex air pollution, and determines the removal rate of trace gases and the production rates of secondary pollutants (Liu et al., 2021). As an effective indicator for atmospheric oxidation intensity, the evaluation of AOC can provide crucial information on the atmospheric composition of harmful and climate forcing species (Elshorbany et al., 2009). AOC is defined as the sum of the respective oxidation rates of the pollutants via reactions with oxidants (Elshorbany et al., 2009; Geyer et al., 2001). According to the definition of AOC, it can be calculated by the Eq. (1).

\[
\text{AOC} = \sum_i k_Y Y_i [X] \tag{1}
\]

where \(Y_i\) are the pollutants (CO, NO, NO\(_2\), and VOCs), \(X\) are the main atmospheric oxidants (OH, O\(_3\), NO\(_3\)), and \(k_{Y_i}\) is the bi-molecular rate constant for the reaction of \(Y_i\) with \(X\). The higher AOC, the higher removal rate of the most pollutants, and thus the higher production rate of secondary pollutants (Yang et al., 2020a). Simultaneous measurements of OH and the key trace gases are available in the study. NO\(_3\) concentration could be simulated by the box model with the observed parameters constrained.

3. Results

3.1 Meteorological and chemical conditions

Figure 2 gives an overview of the meteorological and chemical parameters from 05 October to 28 October 2018, when OH and HO\(_2\) radicals were measured. The diurnal variations of the temperature (T), relative humidity (RH), \(j(O^1D)\), and \(j(NO_2)\) followed a regular pattern from day to day. The overall meteorological conditions were characterized by high temperature (about 20–30 °C), high relative humidity (60–80%), and intensive radiation with \(j(O^1D)\) up to \(2.0 \times 10^{-5} \text{ s}^{-1}\) and \(j(NO_2)\) up to \(6.0 \times 10^{-3} \text{ s}^{-1}\). The relative humidity and photolysis-frequency in this autumn campaign were similar to those in the summer.
campaign conducted at Chengdu site (Yang et al., 2021). The temperature in this campaign was lower than that at Chengdu site, but similar to that in the autumn campaign at Heshan site located in PRD as well (Tan et al., 2019; Yang et al., 2021).

The concentration of CO showed weak diurnal variation, indicating there was the non-obvious accumulation of anthropogenic emissions on a regional scale. NO concentration peaked at 12 ppb during morning rush hour when the traffic emission was severe, and thereafter, O₃ concentration started to increase with the decreasing of NO concentration. The maxima of O₃ hourly concentration were high up to 120 ppb. According to the updated National Ambient Air Quality Standard of China (GB3095-2012), O₃ concentration exceeded the Class-II limit values (hourly averaged limit 93 ppb) on several days (6, 7, 8, and 26 October) when the environmental condition was characterized by high temperature and low relative humidity. NO₂ concentration was high at night because of the titration effect of O₃ with NO.

Along with the high O₃ concentration on 6, 7, 8, and 26 October, high HCHO concentration was also recorded during the corresponding periods, indicating HCHO was mainly produced as secondary pollutants because of the active photochemistry in this campaign. Isoprene, mostly derived from biogenic emissions and mainly affected by temperature, peaked around noontime. Tan et al. (2019) reported the median concentration of HCHO and isoprene concentrations were 6.8 ppb and 0.6 ppb during 12:00-18:00 at Heshan site. Similarly, the median concentration of HCHO and isoprene concentrations in this study were 4.9 ppb and 0.4 ppb during the corresponding periods, respectively. As a proxy for traffic intensity, the toluene to benzene ratio (T/B), which is below 2, means the traffic emissions are the major sources of VOCs (Brocco et al., 1997). The T/B gradually dropped from 07:00 until it reached the minimum value at 09:00, indicating traffic emission contributed more to VOCs during morning rush hour than during other periods. However, the T/B, which varied within a range of 7-12, was above 2, and thus VOCs emission during this campaign was mainly from other sectors such as those involving solvent evaporation.
Figure 2: Timeseries and diurnal profiles of the observed meteorological and chemical parameters in STORM campaign. The grey areas denote nighttime.

3.2 Observed and modeled OH and HO$_2$ radicals

The OH and HO$_2$ radicals were measured during 05-28 October 2018. The timeseries of the observed and modeled HOx concentrations are displayed in Fig. S1 (a and b) in the Supplementary Information. Data gaps were caused by the rain, calibration, and maintenance. The daily maxima of the observed OH and HO$_2$ concentrations varied in the range of $(2-9) \times 10^6$ cm$^{-3}$ and $(2-14) \times 10^6$ cm$^{-3}$, respectively. As in previous campaigns, the largest OH concentrations appeared around noontime and showed a high correlation with j(O3D), a proxy for the solar UV radiation driving much of the primary radical production (Tan et al., 2019).

Figure 3 shows the diurnal profiles of the observed and modeled HOx concentrations (a and b). The HOx radicals showed similar diurnal behavior to those reported in other campaigns (Ma et al., 2019a; Tan et al., 2017; Tan et al., 2019; Tan et al., 2018; Yang et al., 2021). The observed OH and HO$_2$ concentration reached a maximum around 12:00 and 13:30, respectively. The diurnal maximum of the observed and modeled OH concentration was 4.5×10^6 cm$^{-3}$ and 3.5×10^6 cm$^{-3}$. There was an
agreement between the diurnal profiles of the observed and modeled OH concentrations within their errors of 11% and 40%, respectively. A systematic difference existed with the decreasing of NO concentration. The model could reproduce the observed OH concentrations well only in the early morning before 10:00. However, the model would underestimate the observed OH concentration after 10:00 when NO concentration dropped 2 ppb. The OH concentrations observed in the environments with low NO levels were underestimated by the state-of-the-art models at Backgarden (summer) and Heshan (autumn) sites in PRD as well, and the OH underestimation was identified to be universal at low NO conditions in China (Lu et al., 2013; Lu et al., 2012; Ma et al., 2019a; Tan et al., 2017; Yang et al., 2021).

The diurnal maximum of the observed HO2 concentration was 4.5×10^8 cm$^{-3}$, and the modeled HO2 concentration could match well with the observed HO2 concentration within the uncertainties, indicating the HO2 heterogeneous uptake on HO2 chemistry was negligible. The observed HO2 concentration around noontime (11:00-15:00) was high, thereby yielding a mean HO2 to OH ratio (HO2/OH) of about 112, which was similar to that at Backgarden site and was higher than that at Chengdu site (Lu et al., 2012; Yang et al., 2021). The modeled HO2/OH ratio was about 138. Prior studies indicated that the measured HO2/OH ratios were agreed well with the simulations under polluted conditions, but under clean conditions, the measured ratios were lower than simulated (Stevens et al., 1997). The comparison of the measured HO2/OH ratio and the modeled HO2/OH ratio in this campaign indicated the pollution was not severe during the observation period. As an indicator that can reflect the interconversion reaction between OH and HO2, the conversion efficiency in this campaign was equal to that at Backgarden site and was slightly slower than that at Chengdu site.
3.3 Modeled k_{OH}

k_{OH} is the pseudo-first-order loss rate coefficient of OH radicals, and it is equivalent to the reciprocal OH lifetime (Fuchs et al., 2017; Lou et al., 2010; Yang et al., 2019). In this campaign, k_{OH} was not measured continuously, so we only showed the timeseries of modeled values in Fig. S1 (c) in the Supplementary Information, the diurnal profile of the modeled k_{OH} in Fig. 3 (c), and the composition of k_{OH} in Fig. 3 (d). The modeled k_{OH} showed weak diurnal variation and varied from 18 s⁻¹ to 22 s⁻¹. The inorganic compounds contributed approximately 32% to k_{OH}, in which the CO and NOx reactivity accounted for 10% and 22%, respectively. The NOx reactivity is displayed versus time, with a maximum during the morning peak. The peak concentration during the morning peak is associated with traffic emissions. The larger fraction of k_{OH} comes from the VOCs group compared with inorganics reactivity, with a contribution of 68% to k_{OH}. OVOCs reactivity was equivalent to the other VOCs reactivity, and the contributions of them to k_{OH} were both 34%. The contribution of alkanes, alkenes, and aromatics were 13%, 10%, and 8%, respectively. The isoprene reactivity related to temperature was mainly concentrated during the daytime, whereas the aromatics reactivity at night was higher. As for OVOCs species, about 4% of k_{OH} could be attributed to HCHO. The remaining OVOCs was attributed to the simulated species in the box model, with a contribution of up to 30% of k_{OH}. High OVOCs reactivity occurred in the afternoon, which was attributed to the strong photochemical activity during this period.

4. Discussion

4.1 Radical closure experiment

In this study, we conducted OH radical closure experiment which is called OH experimental budget. The exploration of OH experimental budget was based on the premise that the modeled k_{OH} could matched well with the observed k_{OH} due to the lack of the continuous k_{OH} observations in this campaign. Several studies in China indicated that the modeled k_{OH} which has included OVOCs reactivity could match well with the observed k_{OH}, especially during daytime (Fuchs et al., 2017; Lou et al., 2010), but missing k_{OH} existed in some environmental conditions despite the inclusion of OVOCs (Whalley et al., 2021; Yang et al., 2017). Thus, the OH destruction rate is the lower limit due to the possible missing k_{OH} in this study, so the missing OH source, which is the difference between the OH destruction and production rates, is the lower limit as well. The diurnal profiles of OH production and destruction rates, and compositions of OH production rate were displayed in Fig. 4, with maxima of 14 ppb h⁻¹ and 17 ppb h⁻¹ around noontime, respectively. The OH production rate from known sources is quantified from the primary sources (photolysis of HONO, photolysis of O₃, ozonolysis of alkenes) and secondary sources (dominated by HO₂ + NO, and HO₂ + O₃). The primary and secondary sources were account for 78% and 22% of the total calculated production rate, respectively. Similar with the prior studies, the largest fraction of OH production rate comes from HO₂ + NO, with a contribution up to 76% of the known OH production rate. The contributions of HONO and O₃ photolysis were 13% and 7% to
The OH production rate matched well with the destruction rate only in the early morning to about 10:00. Thereafter, the OH destruction rate was larger than the production rate, which could explain the underestimation of OH concentration by the model. The discrepancy between the OH production and destruction rates was attributed to the missing OH source. The biggest additional OH source was approximately 4.6 ppb h\(^{-1}\), which occurred at about 12:00, when the OH production and destruction rates were 11.9 ppb h\(^{-1}\) and 16.5 ppb h\(^{-1}\), respectively. The unknown OH source could explain about one third of the total OH production rate, indicating the exploration of missing OH source was significant to study the radical chemistry. Details are given below (Sect. 4.2).

Figure 4: The diurnal profiles of OH production and destruction rates and the proportions of different known sources in the calculated production rate during the daytime. The blue line denotes the OH destruction rate, and the colored areas denote the calculated OH production rates from the known sources. The grey areas denote nighttime.

4.2 Radical chemistry in low NO regime

4.2.1 Influencing factors of OH underestimation

As analyzed in Sect. 4.1, the underestimation of OH concentration was attributable to the missing OH source. It is necessary to explore the influencing factor for gaining further insight into the missing source. Scientists reported that more significant OH underestimation would appear with the decreasing NO concentration and increasing isoprene concentration (Lu et al., 2012; Ren et al., 2008; Hofzumahaus et al., 2009; Elievel et al., 2008; Whalley et al., 2011; Tan et al., 2017; Yang et al., 2021). A new OH source was suggested, such as the LIM, which was proposed based on ab initio calculation (Peeters et al., 2014; Peeters et al., 2009). We have applied the latest LIM into the base model in this study, and Tan et al. (2017) described the modified LIM in detail. However, the model was not sufficient to explain the higher OH observations after 10:00.

We further explored the effect of NO concentration on missing OH source. NO dependence of OH and HO\(_2\) radicals was illustrated in Fig. 5. The base model can reproduce the observed OH concentration at high NO conditions (above 1 ppb) and underestimate OH concentration at low NO conditions (below 1 ppb). As for HO\(_2\) radical, the modeled HO\(_2\) concentration by the base model matched well with the observed HO\(_2\) concentration within the whole NO regime. Therefore, NO concentration...
played the significant role in the OH underestimation, especially under low NO regime.

Figure 5: NO dependence of OH and HO$_2$ radicals. The red box-whisker plots give the 10%, 25%, median, 75%, and 90% of the HOx observations. The blue circles show the median values of the HOx simulations by the base model, and the green circles show the HOx simulations by the model with X mechanism. The OH concentrations were normalized by the averaged j(O1D) to eliminate the influence of radiation on the OH radicals. Only daytime values and NO concentration above the detection limit of the instrument were chosen.

4.2.2 Quantification of missing OH sources

Hofzumahaus et al. (2009) proposed an existence of a pathway for the regeneration of OH independent of NO, including the conversions of RO$_2$ → HO$_2$ and HO$_2$ → OH by a numerical species called X. With a retrospective analysis, the unclassical OH recycling pathway was identified to be universal at low NO conditions in China. The amount of X varies with environmental conditions, and the X concentrations were 0.8 ppb, 0.4 ppb, 0.1 ppb, 0.4 ppb, and 0.25 ppb at Backgarden, Yufa, Wangdu, Heshan, and Chengdu sites (Hofzumahaus et al., 2009; Lu et al., 2012; Lu et al., 2013; Tan et al., 2017; Yang et al., 2021).

In this study, we tested this unclassical X mechanism. Good agreement between observations and simulations of both OH and HO$_2$ was achieved when a constant mixing ratio of 0.1 ppb of X was added into the base model. As shown in Fig. 5, the model with X mechanism could agree with the observed OH concentrations even at low NO conditions. Unclassical OH recycling was identified again in this study. However, X is an artificial species that behaves like NO, and thus the nature of X is still unknown to us. Further exploration on this unclassical OH recycling is needed to improve our understanding of radical chemistry.

4.3 Sources and sinks of ROx

The detailed analysis of radical sources and sinks was crucial to exploring radical chemistry. The experimental budget for HO$_2$ and RO$_2$ radicals could not be conducted because RO$_2$ was not measured during this campaign. Herein, we showed the simulated results by the base model. Figure 6 illustrates the diurnal profiles of ROx primary production rate (P(ROx)) and termination rate (L(ROx)), and the contributions of different channels during the daytime.
Figure 6: The diurnal profiles of ROx primary production rate (a) and termination rate (b) simulated by the base model, and the contributions of different channels to ROx primary production rate (c) and termination rate (d) during the daytime (08:00–18:00).

The grey areas denote nighttime.

The ROx primary production and termination rates were basically in balance for the entire day, with maxima of 4 ppb h\(^{-1}\) around noontime. The ROx primary production rate was similar to those at Heshan (4 ppb h\(^{-1}\)) and Wangdu (5 ppb h\(^{-1}\)) sites, but lower than those at Backgarden (11 ppb h\(^{-1}\)), Yufa (7 ppb h\(^{-1}\)), and Chengdu (7 ppb h\(^{-1}\)) sites (Lu et al., 2013; Lu et al., 2012; Tan et al., 2017; Tan et al., 2019; Yang et al., 2021). During daytime, the main constitution of \(P(\text{ROx})\) was OH and HO\(_2\) primary production rate. HONO and O\(_3\) photolysis mainly dominated the OH primary production rate, and HCHO photolysis constituted the major HO\(_2\) primary production rate. \(P(\text{ROx})\) was dominated by photolysis reactions, in which the photolysis of HONO, O\(_3\), HCHO, and carbonyls accounted for 29%, 16%, 16%, and 11% during the daytime. In the early morning, HONO photolysis was the most important primary source of ROx, and the contribution of O\(_3\) photolysis became progressively larger and was largest at noontime. A large discrepancy between the ratio of HONO photolysis rate to O\(_3\) photolysis rate in summer/autumn and that in winter occurs generally. The vast majority of OH photolysis source is attributed to HONO photolysis in winter because of the higher HONO concentration and lower O\(_3\) concentration. About half of \(L(\text{ROx})\) came from OH termination, which occurred mainly in the morning, and thereafter, radical self-combination gradually became the major sink of ROx in the afternoon. OH + NO\(_2\), OH + NO, and OH + others contributed 35%, 5%, and 9% to \(L(\text{ROx})\), respectively.

\[\text{HO}_2 + \text{HO}_2 \text{ and } \text{HO}_2 + \text{RO}_2 \text{ accounted for 8% and 16% in } L(\text{ROx}). \]

4.4 AOC evaluation

AOC controls the abundance of precursors and the production of secondary pollutants (Yang et al., 2020b; Elshorbany et al., 2009). It is necessary to quantify AOC for understanding photochemical pollution. The AOC has been evaluated in previous studies, as shown in Table 1. Overall, the AOC values in summer are higher than those in autumn and winter, and the values...
at lower latitudes are higher than those at higher latitudes for the same reason. The vast majority of AOC in previous studies are evaluated based on the non-observed radical concentrations.

Table 1: Summary of OH concentrations and AOC values reported in previous field campaigns.

<table>
<thead>
<tr>
<th>Location</th>
<th>Season, year</th>
<th>Site</th>
<th>Observed or non-observed of OH radicals</th>
<th>AOC / 10^8 molecules cm$^{-3}$ s$^{-1}$</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beijing, China</td>
<td>summer, 2018</td>
<td>urban</td>
<td>non-observed values</td>
<td>0.89a</td>
<td>(Liu et al., 2021)</td>
</tr>
<tr>
<td>Beijing, China</td>
<td>summer, 2018</td>
<td>suburban</td>
<td>non-observed values</td>
<td>0.85a</td>
<td>(Liu et al., 2021)</td>
</tr>
<tr>
<td>Beijing, China</td>
<td>winter, 2018</td>
<td>urban</td>
<td>non-observed values</td>
<td>0.21a</td>
<td>(Liu et al., 2021)</td>
</tr>
<tr>
<td>Beijing, China</td>
<td>winter, 2018</td>
<td>suburban</td>
<td>non-observed values</td>
<td>0.16a</td>
<td>(Liu et al., 2021)</td>
</tr>
<tr>
<td>Hong Kong, China</td>
<td>summer, 2011</td>
<td>suburban</td>
<td>non-observed values</td>
<td>2.04ab</td>
<td>(Xue et al., 2016)</td>
</tr>
<tr>
<td>Santiago, Chile</td>
<td>summer, 2005</td>
<td>urban</td>
<td>non-observed values</td>
<td>3.4a</td>
<td>(Elshorbany et al., 2009)</td>
</tr>
<tr>
<td>Hong Kong, China</td>
<td>late summer, 2012</td>
<td>coastal</td>
<td>non-observed values</td>
<td>1.4c</td>
<td>(Li et al., 2018)</td>
</tr>
<tr>
<td>Hong Kong, China</td>
<td>autumn, 2012</td>
<td>coastal</td>
<td>non-observed values</td>
<td>0.62c</td>
<td>(Li et al., 2018)</td>
</tr>
<tr>
<td>Hong Kong, China</td>
<td>winter, 2012</td>
<td>coastal</td>
<td>non-observed values</td>
<td>0.41c</td>
<td>(Li et al., 2018)</td>
</tr>
<tr>
<td>Shanghai, China</td>
<td>summer, 2018</td>
<td>urban</td>
<td>non-observed values</td>
<td>1.0c</td>
<td>(Zhu et al., 2020)</td>
</tr>
<tr>
<td>Berlin, Germany</td>
<td>summer, 1998</td>
<td>suburban</td>
<td>non-observed values</td>
<td>0.14d</td>
<td>(Geyer et al., 2001)</td>
</tr>
<tr>
<td>Xianghe, China</td>
<td>autumn, 2019</td>
<td>suburban</td>
<td>non-observed values</td>
<td>0.49e</td>
<td>(Yang et al., 2020b)</td>
</tr>
<tr>
<td>Beijing, China</td>
<td>summer, 2014</td>
<td>urban</td>
<td>non-observed values</td>
<td>1.7a</td>
<td>(Feng et al., 2021)</td>
</tr>
</tbody>
</table>

Note that:

- a Peak values in the diurnal profiles;
- b Values on 25 August 2021;
- c Maximum over a period of time;
- d Maximum on some day.

Herein, we explored the AOC in Shenzhen based on the observed radical concentrations for the first time. As illustrated in Fig. 7 (a), the diurnal profile of AOC exhibits a unimodal pattern, which is the same as the diurnal profile of OH concentration and λ(NO$_2$), with a peak around noontime. The diurnal peak of AOC was 0.75×10^8 molecules cm$^{-3}$ s$^{-1}$. Comparatively, AOC in this study can be comparable to those evaluated in Beijing (summer, 2018) and Hong Kong (autumn, 2012) (Li et al., 2018; Liu et al., 2021), but much lower than those evaluated in Hong Kong (summer, 2011) and Santiago (summer, 2005) (Xue et al., 2016; Elshorbany et al., 2009).
As expected, the dominant contributor to the AOC during this campaign was OH, followed by O$_3$ and NO$_3$. Figure S2 shows the fractional composition of the total AOC. The OH radical contributed about 95.7% of AOC during the daytime (08:00-18:00). O$_3$, as the second important oxidant, accounted for only 2.9% of AOC during the daytime. The contribution of NO$_3$ to AOC during the daytime can be ignored, with a contribution of 1.4%. At night, the contributions of O$_3$ and NO$_3$ to AOC were higher. OH, O$_3$ and NO$_3$ accounted for 75.7%, 6.4%, and 18% in the first half of night (18:00-24:00), and they accounted for 87.8%, 5%, and 7.3% in the second half of night (00:00-08:00).

As an indicator for secondary pollution, O$_3$ formation rate, $F(O_3)$, can be estimated from the production of NO$_2$ via the reactions of HO$_2$ and RO$_2$ with NO, as shown in Eq. (2).

$$F(O_3) = 9 \times 10^{-12}[HO_2][NO] + 9 \times 10^{-12}[RO_2][NO] \quad (2)$$

where the units of HO$_2$, RO$_2$, and NO are all cm$^{-3}$.

The correlation between $F(O_3)$ and AOC during the daytime (08:00-18:00) was explored, as shown in Fig. 7 (b). A strong positive correlation between $F(O_3)$ and AOC was found, indicating AOC plays a significant role in driving secondary pollution.

Most data points in this campaign focused on low AOC (the median values below 0.7×10^8 molecules cm$^{-3}$ s$^{-1}$) and low $F(O_3)$ (the median values below 17 ppb h$^{-1}$) regimes. The correlation between $F(O_3)$ and AOC by fitting the median was denoted by Eq. (3).

$$F(O_3) = 19.8 \times AOC + 2.0, \ R^2 = 0.98 \quad (3)$$

where the $F(O_3)$ and AOC units are ppb h$^{-1}$ and 10^8 molecules cm$^{-3}$ s$^{-1}$, respectively.

To explore the correlation between $F(O_3)$ and AOC in other regions, we have taken Wangdu and Chengdu sites as examples.
to demonstrate the AOC values in NCP and SCB based on the observed radical concentrations reported by Tan et al. (2017) and Yang et al. (2021) in Fig. 7 (c), respectively. Surprisingly, the relationships between $F(O_3)$ and AOC in Wangdu and Chengdu were similar to those in the Shenzhen campaign. The vast majority of data points at Wangdu and Chengdu sites were distributed within the standard deviation of Shenzhen site. The similarity of the gradients between $F(O_3)$ and AOC in different regions indicates that AOC powerfully drives the production of O_3, and the quantification of $F(O_3)$ can be achieved based on the AOC values.

5 Conclusions

The STORM field campaign was carried out at Shenzhen site in autumn 2018, providing the continuous OH and HO$_2$ observations in PRD since the Heshan campaign in 2014. The maximum diurnal OH and HO$_2$ concentrations, measured by laser-induced fluorescence (LIF), were 4.5×10^6 cm$^{-3}$ and 4.5×10^5 cm$^{-3}$, respectively. The observed OH concentration was equal to that measured at Heshan site but was lower than those measured in summer campaigns in China (Backgarden, Yufa, Wangdu, and Chengdu campaigns).

The base model (RACM2-LIM1) could reproduce the observed OH concentration before 10:00, and thereafter, OH was underestimated by the model when NO concentration dropped to low levels. The results of the radical experimental budget indicated that OH underestimation was likely attributable to an unknown missing OH source at low NO conditions. We diagnosed the missing OH source by sensitivity runs, and unclassical OH recycling was identified again. A constant mixing ratio of the numerical species, X, equivalent to 0.1 ppb NO, was added to the base model to achieve the agreement between the modeled and observed OH concentrations. The amount of X related to the environmental conditions varied from 0.1 ppb to 0.85 ppb in China, and thus the unclassical OH recycling needs further exploration. As for HO$_2$ radicals, good agreement between the observed and modeled HO$_2$ concentrations was achieved for the entire day during this campaign, indicating the HO$_2$ heterogeneous uptake on HO$_2$ chemistry was negligible.

The quantification of production and destruction channels of ROx radicals is essential to explore the chemical processes of radicals. The ROx primary production and termination rates were balanced for the entire day, with maxima of 4 ppb h$^{-1}$, similar to those in the Heshan and Wangdu campaigns. Photolysis channels dominated the ROx primary production rate. HONO, O$_3$, HCHO, and carbonyls photolysis accounted for 29%, 16%, 16%, and 11% during the daytime, respectively. The most fraction of ROx termination rate came from the reaction of OH + NO$_2$ in the morning. The radical self-combination gradually became the major sink of ROx in the afternoon with the decreasing of NO concentrations. The reaction of OH + NO$_2$ and radical self-combination accounted for 35% and 24% during the daytime, respectively.

In this campaign, AOC exhibited well-defined diurnal patterns, with a peak of 0.75×10^3 molecules cm$^{-3}$ s$^{-1}$. As expected, OH was the dominant oxidant accounting for 95.7% of the total AOC during the daytime. O_3 and NO$_3$ contributed 2.9% and...
1.4% to total AOC during the daytime, respectively. The gradients at Shenzhen (PRD), Wangdu (NCP), and Chengdu (SBC) sites were similar. The strong positive correlation between \(F(O_3) \) and AOC makes the quantification of \(F(O_3) \) achieved, indicating AOC is the core driving force for the generation of secondary pollutants.

Data availability. The data used in this study are available from the corresponding author upon request (k.lu@pku.edu.cn).

Author contributions. YH Zhang and KD Lu conceived the study. XP Yang analyzed the data and wrote the manuscript with inputs from KD Lu. XP Yang, XF Ma, Y Gao contributed to the measurements of the HOx concentrations. All authors contributed to the discussed results and commented on the manuscript.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgment. The authors thank the science teams of the STORM-2018 campaign. This work was supported by the Beijing Municipal Natural Science Foundation for Distinguished Young Scholars (JQ19031), the National Research Program for Key Issue in Air Pollution Control (2019YFC0214800), and the National Natural Science Foundation of China (Grants No. 91544225, 21522701, 91844301).

Appendix A. Supplementary data

References

