

1 **Supplement of**
2 **Radical chemistry in the Pearl River Delta: observations and**
3 **modeling of OH and HO₂ radicals in Shenzhen 2018**

4 Xinping Yang^{1,2}, Keding Lu^{1,2,*}, Xuefei Ma^{1,2}, Yue Gao^{1,2}, Zhaofeng Tan³, Haichao Wang⁴, Xiaorui
5 Chen^{1,2}, Xin Li^{1,2}, Xiaofeng Huang⁵, Lingyan He⁵, Mengxue Tang⁵, Bo Zhu⁵, Shiying Chen^{1,2}, Huabin
6 Dong^{1,2}, Limin Zeng^{1,2}, Yuanhang Zhang^{1,2,*}

7 ¹State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and
8 Engineering, Peking University, Beijing, China

9 ²State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, Peking University, Beijing, China

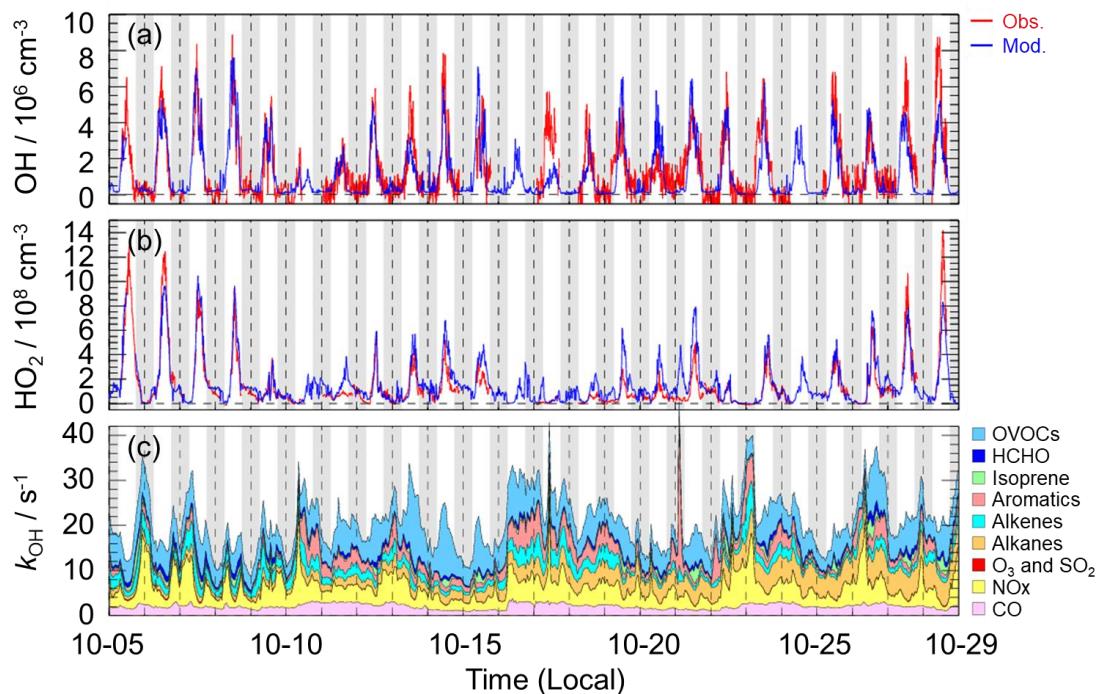
10 ³Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Juelich GmbH, Juelich, Germany

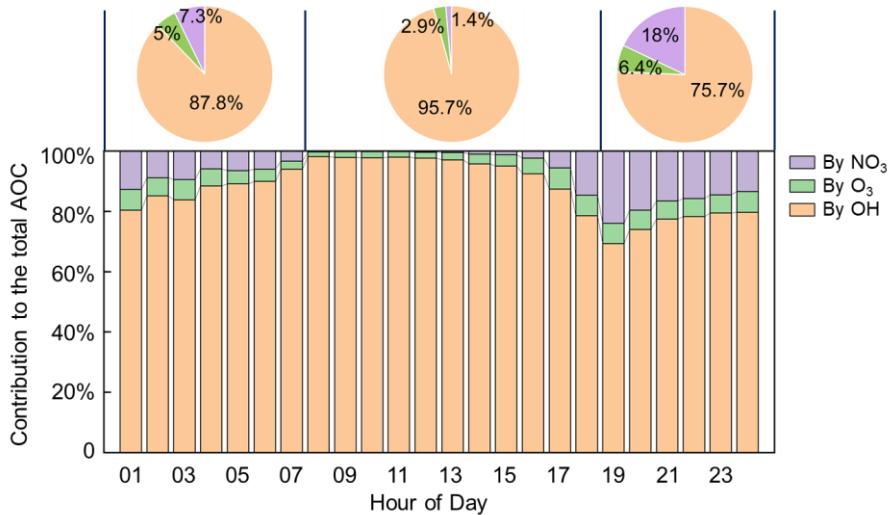
11 ⁴School of Atmospheric Sciences, Sun Yat-Sen University, Zhuhai, China

12 ⁵Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen
13 Graduate School, Shenzhen, China

14

15 Correspondence to: Keding Lu (k.lu@pku.edu.cn), Yuanhang Zhang (yhzhang@pku.edu.cn)


16


Table S1: Information on the instruments at Shenzhen in autumn 2018.

Parameters	Measurement technique	Time resolution	Detection limit ^a	Accuracy
OH	LIF ^b	30 s	$5.0 \times 10^5 \text{ cm}^{-3}$	$\pm 11\%$
HO ₂	LIF ^{b,c}	30 s	$1.0 \times 10^7 \text{ cm}^{-3}$	$\pm 15\%$
Photolysis frequencies	Spectroradiometer	10 s	^d	$\pm 5\%$
O ₃	UV photometry	60 s	500 ppt	$\pm 5\%$
NO	Chemiluminescence	60 s	50 ppt	$\pm 10\%$
NO ₂	Chemiluminescence ^e	60 s	50 ppt	$\pm 10\%$
HONO	LOPAP ^f	60 s	12 ppt	$\pm 20\%$
CO	IR absorption	60 s	50 ppt	$\pm 5\%$
SO ₂	Pulsed UV fluorescence	60 s	100 ppt	$\pm 10\%$
HCHO	Hantzsch fluorimetry	60 s	25 ppt	$\pm 5\%$
VOCs ^g	GC-MS/FID ^h	1 h	(20-300) ppt	$\pm 15\%$

18 Note that:

19 ^a Signal-to-noise ratio = 1. ^b Laser-Induced Fluorescence. ^c Chemical conversion via NO reaction before detection. ^d
20 Process-specific, 5 orders of magnitude lower than the maximum at noon. ^e Photolytic conversion to NO before detection,
21 home-built converter. ^f Long-path absorption photometry. ^g C₂-C₁₂ VOCs. ^h Gas Chromatography with Mass Spectrometry /
22 with Flame Ionization Detection.

24 **Figure S1: Timeseries of the observed and modeled OH (a) and HO₂ (b) concentrations, and the modeled k_{OH} (c) in**
25 **this study. The grey areas denote nighttime.**

26

27 **Fig S2: The Histogram denotes the fractional composition of the total AOC. The left, middle and right pie charts**
 28 **denote the mean contribution of OH, O₃, and NO₃ to the total AOC during the second half of night (00:00-08:00),**
 29 **daytime (08:00-18:00), and the first half of night (18:00-24:00), respectively.**