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Abstract 12 

 Large uncertainties remain when estimating the radiative forcing by black carbon 13 

(BC) because the corresponding microphysical properties have not been well addressed. 14 

In this study, the BC size distributions were studied based on three different field 15 

campaigns at an urban site, a suburban site, and a background site in China using a 16 

single particle soot photometer (SP2) in tandem with a differential mobility diameter. 17 

Measurement results indicate that the BC particles were composed of either thinly or 18 

thickly coated aerosols. The mean number fractions of the thinly coated BC aerosols 19 

were 51%, 67%, and 21% for the urban, suburban, and background sites, respectively. 20 

The corresponding thickly coated ( thinly coated) core mass median diameters were 187 21 

nm (154 nm), 182 nm (146 nm), and 238 nm (163 nm), respectively. The mean diameter 22 

of the thickly coated BC-containing aerosols was larger than that of the thinly coated 23 
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BC-containing aerosols, while the mean BC core diameter of the thickly coated BC-24 

containing aerosols was smaller than that of the thinly coated BC-containing aerosols. 25 

About 10% of the BC-containing aerosols with the BC core are attached to the other 26 

non-BC components, which were mainly generated by coagulation between the BC and 27 

non-BC components. The measurement results in our study can be further used in 28 

modeling studies to help with constraining the uncertainties of the BC radiative effects. 29 

Introduction 30 

Black carbon (BC) plays an important role in the climate system by absorbing solar 31 

radiation (Ramanathan and Carmichael, 2008), interacting with the cloud (Roberts et al., 32 

2008), and changing the albedo of the snow (Menon et al., 2002). It is the second most 33 

important aerosol component after carbon dioxide, contributing to global warming 34 

(Bond et al., 2013). The solar absorption of BC has a significant influence on the 35 

development of the boundary layer and then aggravates the air pollution (Ding et al., 36 

2016). The turbulence in the atmospheric boundary layer can be suppressed due to the 37 

existence of BC (Wilcox et al., 2016). The BC also plays a remarkable role in driving 38 

the formation and trend of regional haze (Zhang et al., 2020). 39 

 BC is mainly generated by the incomplete combustion of biofuels and fossil fuels 40 

(Bond and Bergstrom, 2006). After emission, the morphology of BC transforms from 41 

fractal to spherical and subsequently grows to a fully compact particle with other 42 

chemical components coating it (Peng et al., 2016). During the aging process, the BC 43 

optical properties change significantly up to a factor of 3 and then the corresponding 44 

magnitude of climate forcing contributed by BC is increased by up to a factor of 2 45 

(Zhang et al., 2008). Large uncertainties remain in estimating the BC radiative effects 46 

due to the large variation in BC microphysical properties, such as size distributions and 47 

mixing states during the aging process (Zhao et al., 2019; Moffet et al., 2016; Matsui et 48 
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al., 2018). Therefore, characterizing the differences in size distributions and mixing 49 

states between the thinly and thickly coated BC particles can help better constrain the 50 

uncertainties of BC aerosol radiative effects. To our best understanding, few studies 51 

have specified the mixing states and size distributions of both the thinly and thickly 52 

coated BC aerosols.  53 

The thickly coated BC particles can also be classified into two morphological types: 54 

bare BC on the surface of non-BC particles or partially coated by non-BC particles 55 

(attached type) and BC embedded within or coated by non-BC components (coated 56 

type). With the same amount of non-BC components, the mass absorption cross-sections 57 

of BC by the attached type are much smaller than those by the coated type (Moteki and 58 

Kondo, 2008; Moteki and Kondo, 2010; Moteki et al., 2014). Therefore, the impact of 59 

BC on climate can be better estimated when accurately identifying the two types of 60 

ambient BC-containing particles. Observations are required to constrain the spatial and 61 

temporal microphysical properties of the atmospheric BC. 62 

The single-particle soot photometer (SP2) is always used to measure the mixing 63 

states and size distributions of ambient BC particles. In the previous study, advanced 64 

technology was used to study the coating over different BC core size diameters on the 65 

ground (Liu et al., 2019a) and for vertical profiles (Ding et al., 2019). The measured 66 

signals from SP2 can be used to distinguish the BC-containing aerosols as thinly and 67 

thickly coated ones. The measured results can also be employed to distinguish the BC-68 

containing particles between attached and coated types, which were described in detail 69 

in the methodology part.  70 

  In this study, the tandem SP2 and differential mobility analyzer (DMA) was 71 

employed at an urban site, a suburban site, and a background site in China to investigate 72 

the microphysical properties of the BC particles. The size distributions and mixing states 73 
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of both the thinly coated and thickly coated BC aerosols at different atmospheres were 74 

characterized. We also investigated the corresponding morphology properties of the 75 

BC-containing aerosols. The measured microphysical properties provide the basis for 76 

future modeling studies of the BC radiative effects in different environments in China. 77 

2 Methodology 78 

2.1 Measurement sites 79 

 The measurements were conducted at three different atmospheric sites in China, 80 

namely the urban site of Peking University Urban Atmosphere Environment Monitoring 81 

Station (PKU, 39.9oN,116.1oE, 58m a.s.l) in Beijing between 20 January and 4 February 82 

2016, the suburban site of Changping (CP, 40.3oN,116.2oE, 70m a.s.l)) in Beijing 83 

between 15 May and 5 June 2016, and the background site of Lijiang (LJ, 84 

27.2oN,100.2oE, 3410 m a.s.l) in Yunnan Province between 22 March and 4 April 2015.  85 

The PKU site is located northwest of Beijing. This site could characterize the air 86 

pollution of urban Beijing (Hu et al., 2017; Hu et al., 2021b). The CP site locates in the 87 

northwest of the Beijing urban area, representing a regional atmosphere (Zhao et al., 88 

2021; Wang et al., 2019b). The LJ site represents the background areas, located in the 89 

Mountain Yulong, in the Yunan Province of China (Shang et al., 2018; Zheng et al., 90 

2017; Wang et al., 2019a). The aerosol optical depth at the wavelength of 550 nm during 91 

the year 2020 indicated that the LJ site was very clean and the PKU and CP sites were 92 

more polluted as shown in Fig. S1 in the supplement. 93 

2.2 Instruments 94 

2.2.1 DMA-SP2 system 95 
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As for the SP2, the continuous Nd: YAG laser beam with the wavelength of 1064 96 

nm is generated intensively in the instrument chamber. When the BC-containing 97 

particles pass through the laser beam, they absorb the radiation and then are heated to 98 

around 3500-5000 K. The intensity of the emitted incandescent light from the heated 99 

BC particle is then transformed to the BC mass concentration. The scattering signals of 100 

the BC particle are recorded to estimate the BC particle mixing state. 101 

 In this study, the SP2 (Droplet Measurement Technology, Inc., USA) was placed 102 

after the DMA (Model 3081, TSI, USA) to measure the size-resolved BC mixing states, 103 

and the instrument setup is schematically shown in Fig. S2. The DMA was set to scan 104 

the aerosol over the size range between 12.3 and 697 nm every five minutes. The flow 105 

rate leading to the SP2 and the condensation particle counter (CPC, Model 3776, TSI, 106 

USA) were 0.12 and 0.28 L/min, respectively. The sheath flow of the DMA was 4 L/min.  107 

The Aquadag was used to calibrate the measured incandescence signal of the SP2 108 

using the DMA-SP2 system. The formula from Gysel et al. (2011) was used to convert 109 

the mobility diameter into the mass of Aquadag. A correction factor of 0.75 was applied 110 

to account for the different response sensitivity of SP2 to Aquadag and ambient BC 111 

(Moteki et al., 2010). 112 

In this study, the coating thickness of the BC-containing aerosols was calculated by 113 

the difference between the total mobility diameter measured by the DMA and the optical 114 

equivalent diameters of the BC core. Details of calculating the optical equivalent coating 115 

thickness can refer to Zhang et al. (2018b) and can be found in section 3 in the 116 

supplementary material. 117 

2.2.2 Other instruments 118 
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 The submicron particles (PM1) chemical compositions were measured using a high-119 

resolution time-of-flight aerosol mass spectrometer (AMS; Aerodyne Research Inc., 120 

Billerica, MA, USA). The data processing software PIKA (version 1.16) was used for 121 

data analysis. The positive matrix factorization (PMF) analysis was conducted for the 122 

source appointment of the organic aerosols (Ulbrich et al., 2009). More details on the 123 

measurement of the aerosol chemical compositions and data processing can be found in 124 

Zheng et al. (2017). 125 

 The mass concentrations of O3 were measured using UV absorption (model 49i, 126 

Thermo Fischer Inc. USA) with a time resolution of 1 minute. The mass concentrations 127 

of NO and NO2 were measured using the chemiluminescence technique (NO-NO2-NOx 128 

Analyzer, Model 42i, Thermo Scientific, USA). The mass concentrations of SO2 were 129 

measured using the ultraviolet fluorescence method (SO2 analyzer, model 43i-TLE， 130 

Thermo Scientific, USA). The temperature (T), relative humidity (RH), wind speed 131 

(WS), and wind direction (WD) were monitored continuously during these campaigns. 132 

2.3 Methodology 133 

For the BC-containing aerosol, there is a lag between the peak time of the scattering 134 

and the incandescence signal (Metcalf et al., 2012). The lag time between the peak 135 

scattering signal and the peak incandescence signal can be employed to describe the 136 

coating thickness (Moteki and Kondo, 2007; Schwarz et al., 2006) and further used to 137 

distinguish the BC-containing aerosols as thinly and thickly coated ones. Despite that, 138 

the time-lag method may not effectively distinguish the BC particles between fresh or 139 

aged ones because some BC particles are sourced from biomass burning (Schwarz et al., 140 

2008b) and solid fuel burning (Liu et al., 2014; Liu et al., 2019b) initially have a higher 141 

coating and were not aged ones. However, the lag-time probability distribution at our 142 

measurement sites shows two modes which will be shown in section 3.2, and thus the 143 
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lag-time can be used to efficiently distinguish the BC-containing aerosols as thinly and 144 

thickly coated ones. 145 

For the thickly coated BC particles, the measured scattering and incandescence 146 

signal can also be employed to distinguish the BC-containing particles as attached and 147 

coated types (Moteki et al., 2014) by calculating the time-dependent scattering cross-148 

sections of BC-containing particles (Moteki and Kondo, 2007). For the coated type, all 149 

of the coating material will evaporate and the scattering cross-sections will decrease to 150 

zero after passing through the laser beam, while the scattering cross-section of the 151 

attached BC-containing aerosol will not decrease to zero (Moteki and Kondo, 2008). 152 

The method adopted by Dahlkötter et al. (2014) was employed here to characterize the 153 

morphology of the BC-containing aerosols. Details of distinguishing the BC-containing 154 

particles as attached and coated types can also refer to section 4 in the supplementary 155 

materials. 156 

3 Results and discussions 157 

3.1 Overview of the measurement results in different atmospheres 158 

 The time series of the measurement results are shown in Fig. S6, Fig. S7, and Fig. 159 

S8 for the PKU, CP, and LJ sites, respectively. For the PKU site, the wind was mainly 160 

from the north and the wind speed was low with a mean value of 2.2 m/s. The ambient 161 

atmosphere was very dry with a mean RH of 27.6%, with minimum and maximum 162 

values of 5.8% and 72.6%, respectively. The temperature in the winter in Beijing had a 163 

mean value of 0.8 oC between -5.9 oC and 9.2 oC. The mean mass concentration of PM2.5 164 

was 49.3±55.4 µg/m3. The concentration of SO2 and NOx (NOx=NO + NO2) had the 165 

same trends as PM2.5, with mean values of 16.3± 11.9 ppb and 68.2 ±63.4 ppb, 166 

respectively. The O3 concentration is anti-correlated with PM2.5. For the suburban site 167 
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CP, the wind showed obvious diurnal cycles with high-speed west wind during the day 168 

and low-speed east wind during the night. The mean wind speed was 2.4±1.6 m/s. The 169 

RH during the campaign was 38.8±16.0%, with a maximum value of 80.5%. The 170 

temperature during the campaign was 21.8±5.2 oC with a maximum value of 33.2 oC. 171 

As for the NOx, the mean concentration was 21.4±17.7 ppb. The mean concentration of 172 

SO2 was 2.89±1.10 ppb. The measured mean O3 concentration was 54.5±38.8 ppb. The 173 

mean PM2.5 concentration was 22.6±16.8 µg/m3, with a maximum value of 71.8 µg/m3. 174 

As for the background LJ site, The mean value of the wind speed, RH, and T were 3.13 175 

m/s, 50.23%, and 6.5 oC, respectively. The mean PM2.5 mass concentration was 6.2±176 

5.7 µg/m3. The mean NOx and SO2 concentrations were 0.05 ppb and 0.97 ppb 177 

respectively.  178 

 The characteristics of the measurement sites are summarized and shown in Fig. 1. 179 

The differences in the temperature and RH among these sites mainly resulted from the 180 

that the measurements were conducted in different seasons. The concentrations of SO2, 181 

NOx, and PM2.5 indicated that the urban site PKU was the most polluted. The suburban 182 

site CP was slightly polluted and the background LJ was the cleanest. 183 

 The air mass back trajectories as shown in Fig. S9 during the measurement at PKU 184 

show that the measurement site was mainly influenced by the polluted air from the south 185 

and southeast, and the relatively clean air from the northwest. The CP site was mainly 186 

influenced by the clean air from the northwest and the polluted air from the southeast. 187 

The air mass of the LJ site was mainly from the southwest and west. 188 

3.2 Mixing states of the  thinly coated and  thickly coated BC-containing aerosols 189 
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The measured lag time probability distributions for the PKU, CP, and LJ sites are 190 

shown in Fig. 2 (a), (b), and (c), respectively. The lag time had two modes for each 191 

measurement site. The BC particles are sorted as thinly or thickly coated BC.  A two 192 

log-normal distribution was used for the probability distribution of the lag time for BC-193 

containing particles as: 194 

PDF(∆𝑡𝑡) = ∑ 𝐴𝐴𝑖𝑖
√2𝜋𝜋log (𝜎𝜎𝑔𝑔,𝑖𝑖)

𝑒𝑒𝑒𝑒𝑒𝑒 �− log(∆𝑡𝑡)−log (∆𝑡𝑡𝑖𝑖)
2𝑙𝑙𝑙𝑙𝑙𝑙2�𝜎𝜎𝑔𝑔,𝑖𝑖�

�𝑖𝑖=1,2 , 195 

Where ∆𝑡𝑡 is the lag time, 𝐴𝐴𝑖𝑖, 𝜎𝜎𝑙𝑙,𝑖𝑖, ∆𝑡𝑡𝑖𝑖 are the scale factor, geometric standard 196 

deviation, and geometric mean lag time of mode i respectively. The critical lag time that 197 

distinguishes the thinly and thickly BC particles was determined by calculating the value 198 

when the probability distribution values of mode 1 and mode 2 are equal. In this study, 199 

the BC-containing aerosols with a lag time larger than 1.4 µs were classified as thickly 200 

coated particles for the LJ site. The other BC-containing aerosols were classified as 201 

thinly coated particles. Our critical lag time of 1.4 µs is smaller than the previous studies 202 

that distinguished the BC-containing aerosols between thinly coated BC and thickly 203 

coated BC with a lag time of 2 µs (Moteki and Kondo, 2007; Metcalf et al., 2012),1.8 204 

µs (Metcalf et al., 2012), and 4.2 µs (Liu et al., 2010), which was determined by the 205 

internal setup up of the SP2. The critical lag time for the PKU and CP sites were 1.3 µs 206 

and 1.7 µs, respectively. 207 

For each type of BC-containing aerosols, we calculated the coating thickness 208 

probabilities and the results are shown in Fig. 2(d), (e) and (f) for the PKU, CP, and LJ 209 

sites, respectively. Results showed that the BC-containing aerosols were mainly 210 

composed of thickly coated BC aerosols and thinly coated BC aerosols. The coating 211 

thickness for the thinly coated BC-containing aerosol was smaller than that of the thickly 212 
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coated BC-containing aerosols. However, the coating thickness of the thickly coated 213 

BC-containing aerosols spread wider than that of the thinly coated ones. 214 

The number fractions of the thickly coated BC-containing aerosols were 215 

significantly different for different atmospheres as shown in Fig. 2 (g), (h), and (i). At 216 

the polluted urban site, the number concentration of the thickly coated BC-containing 217 

aerosols was comparable to that of the thinly coated BC-containing aerosols with the 218 

number fractions of 56% and 44% for the thinly coated and thickly coated BC particles, 219 

respectively. The number fraction of the thickly coated BC aerosols at the CP site was 220 

67 %. However, the BC-containing aerosols at the background LJ site were dominated 221 

by thickly coated ones with a number fraction of 81%.  222 

The difference in the number fraction of the thickly coated BC particles was 223 

synthetically influenced by the ambient pollution levels and the sources of the BC 224 

aerosols. The suburban site CP had the largest number fraction of the thinly coated BC 225 

particles. The CP site is not far from the urban, and thus the thinly coated BC particles 226 

from the traffic contribute a large amount of the total ones. The urban site PKU had a 227 

larger number fraction of the thickly coated BC than that of the CP site. This might be 228 

resulted from the PKU site being more polluted than the CP site and then the aging 229 

processing at the PKU site was faster than that at the CP site. The LJ site is far from the 230 

traffic sources. The measured BC particles at the LJ site were mainly from long-range 231 

transportation and experienced a long time of aging process than that at the CP and PKU 232 

sites. Therefore, the BC-containing aerosols were dominated by the thickly coated ones 233 

at the LJ sites. 234 

We compared the number fraction of the thickly coated BC at different measurement 235 

sites from literature (Ueda et al., 2016; Schwarz et al., 2008a; Wang et al., 2017c; Wang 236 

et al., 2017a; Wu et al., 2017; Wang et al., 2017b; Wang et al., 2014; Huang et al., 2012; 237 



11 

 

Metcalf et al., 2012; Wang et al., 2016; Shiraiwa et al., 2007; Mcmeeking et al., 2012; 238 

Subramanian et al., 2010; Schwarz et al., 2008b; Saha et al., 2018; Krasowsky et al., 239 

2018; Holder et al., 2014) and the results are shown in Fig. 3. The number fraction 240 

values were divided into three different kinds of groups, namely the roadside, urban or 241 

suburban, and background. Results from Fig. 3 show that the number fractions at the 242 

roadside tend to be the lowest. These sites were close to the traffic sources and the 243 

measured BC-containing aerosols were mainly from the traffic. The left part of the green 244 

circles corresponds to the relatively clean urban or suburban sites with the number 245 

fractions of the thickly coated BC around 30%. However, the number fractions of the 246 

relative polluted urban or suburban sites had a larger number fraction of the thickly 247 

coated BC around 50%. The number fractions of the thickly coated BC at the 248 

background sites were the largest. Therefore, the number fractions of the thickly coated 249 

BC-containing aerosols were synthetically influenced by the distance from the primary 250 

source and the pollution levels of the ambient atmosphere. The number fraction of the 251 

thickly coated BC-containing aerosols increased with the distance from the primary 252 

emission sources and the pollution levels. Our results were consistent with the aerial 253 

measurement by Metcalf et al. (2012), who found that the number fraction of the thickly 254 

coated BC was 29%~41% at the top of the Los Angeles city and 47%-54% for the out 255 

plume of this city.  256 

For a better understanding of the source of the thinly coated and thickly coated BC, 257 

we compared the number concentrations of the BC-containing aerosols with the source 258 

apportionment results from the AMS data for the CP site. Among the PMF results, the 259 

factor of hydrocarbon-like organic aerosol (HOA) is mainly composed of long-chain 260 

hydrocarbon, and oxygenated organic aerosol (OOA) is mainly from the secondary 261 

formation. HOA is mainly from the diesel exhaust, gasoline exhaust, and lubricating oil 262 

emission. From Fig. 4(a), the number concentration of the thinly coated BC and mass 263 
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concentration of HOA showed good consistency, with R2 equaling 0.69 as shown in Fig. 264 

S10, which further proved the evidence that the thinly coated BC-containing aerosols 265 

were from the traffic sources. The time series of the thickly coated BC and OOA showed 266 

good consistency as shown in Fig. 4 (b), with R2 equaling 0.87. Therefore, the aging 267 

processing of the ambient BC was accompanied by the ambient OA. The mass 268 

concentration of OOA and the number concentration of thickly coated BC can be used 269 

as good indicators for each other. 270 

3.3 Size distributions of the  thinly coated and  thickly coated BC-containing 271 

aerosols 272 

 The size distributions of the BC-containing aerosols exert a significant influence on 273 

their corresponding radiative effects (Zhao et al., 2019; Matsui et al., 2018). We 274 

calculated the number size distribution (NSD) of BC-containing aerosols for the thinly 275 

coated and thickly coated ones at different sites, and the results are shown in Fig. 5. It 276 

should be noted that the Dp in Fig. 5 corresponds to the mobility diameter from the 277 

DMA. The BC-containing aerosol NSD was further fit using the log-normal distribution. 278 

As for the thinly coated BC-containing aerosols, the geometric mean diameters were 279 

193, 161, and 162 nm for the PKU, CP, and LJ sites, respectively. The geometric 280 

standard deviations (GSD) of the BC-containing aerosol NSD were 1.50, 1.63, and 1.91 281 

for the PKU, CP, and LJ sites, respectively. The GSD to some extent reflects the 282 

diversity of the BC sources. The LJ site had the largest GSD, which indicated multiple 283 

sources of thinly coated BC-containing aerosols. The LJ site was highly influenced by 284 

atmospheric transportation, due to the high altitude of this location (Zheng et al., 2017; 285 

Tan et al., 2021). Therefore, the thinly coated BC-containing aerosols could be 286 

originated from different orientations. As for the urban site PKU, the thinly coated BC 287 

aerosols were mainly from urban lifestyle emissions. Therefore, the thinly coated BC 288 
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aerosols at the PKU site had the lowest value of the GSD. However, the thinly coated 289 

BC aerosols at the suburban site CP were influenced synthetically by urban lifestyle 290 

sources and some other sources from suburban, and thus had a larger value of GSD than 291 

that of PKU. 292 

As for the thickly coated BC, it is obvious that they had larger diameters than those 293 

of the thinly coated BC due to the coating of other non-BC components. The geometric 294 

mean Dp values of the thickly coated BC were 294, 244, and 257 nm for the PKU, CP, 295 

and LJ sites, respectively. The corresponding GSD values were 1.37, 1.41, and 1.46.  296 

Based on the above results, the geometric mean Dp values of the thickly coated BC 297 

aerosols were larger than that of the thinly coated BC aerosols by 52%, 52%, and 59% 298 

for the PKU, CP, and LJ sites, respectively. The GSD values of the thickly coated BC 299 

were consistent with that of the thinly coated BC with the lowest value at the PKU site 300 

and highest value at the LJ site, which is consistent with the diversity of the sources of 301 

BC-containing aerosols. For each site, the GSD values of the thickly coated BC aerosols 302 

were smaller than that of the thinly coated ones. The GSD of BC-containing aerosols 303 

tends to be smaller during the aging processing because the increment of the diameter 304 

should decrease with the diameter. 305 

3.4 Size distribution of the  thinly coated and  thickly coated BC core 306 

The number and mass concentrations of the BC core under different mass equivalent 307 

diameters were calculated and the results are shown in Fig. 6 and Table 1. It should be 308 

noted here that, when it comes to the BC size distribution, the mass-equivalent diameter 309 

of BC cores (D𝑚𝑚𝑚𝑚) (assuming a density of 1.8 g/cm3) was adopted in this study for direct 310 

comparison with previous studies.  311 
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As for the number size distribution of the BC core, the geometric mean D𝑚𝑚𝑚𝑚 of the 312 

thinly coated BC particles were 115, 107, and 127 nm, for the PKU, CP, and LJ sites 313 

respectively. The corresponding GSD values are 1.58 1.53 and 1.68, respectively. The 314 

D𝑚𝑚𝑚𝑚 for the thickly coated BC particles were 114, 95, and 111 nm for the PKU, CP, 315 

and LJ sites respectively and the corresponding GSD values were 1.40, 1.45, and 1.43, 316 

respectively. Both the GSD and the D𝑚𝑚𝑚𝑚 of the thickly coated BC were smaller than 317 

that of the thinly coated BC. The overall geometric mean diameter of the BC core 318 

number size distributions are 114, 100, and 111 nm for the PKU, CP, and LJ sites 319 

respectively. 320 

There are mainly three possible reasons that may lead to the smaller geometric mean 321 

diameter for the thinly coated BC than the thickly coated BC. First, the smaller BC core 322 

tends to have a higher time lag as a smaller BC core will take a longer time to evaporate 323 

the coating on it and thus the thinly coated particles tend to have smaller core diameters. 324 

Second, it takes less time for the smaller BC particles to grow the same amount of 325 

coating thickness when the increment of the BC particles was dominated by 326 

condensation Thirdly, the small BC particles may have a longer life than the large BC 327 

particles. 328 

As for the mass size distribution of the BC core, the geometric mean D𝑚𝑚𝑚𝑚 of the 329 

thinly coated BC were 187, 182, and 238 nm for the PKU, CP, and LJ sites respectively 330 

and the corresponding GSD values were 1.35, 1.48, and 1.47. The overall geometric 331 

mean diameter of the BC core mass distributions are 172, 169, and 181 nm for the PKU, 332 

CP, and LJ sites respectively. The geometric mean diameter of the BC core mass 333 

distributions of 172 nm in PKU was slightly smaller than that of Liu et al. (2019a), with 334 

a geometric mean diameter of 195 nm in another measurement in the urban environment 335 
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in Beijing and comparable to the of Zhang et al. (2018a) with a geometric mean diameter 336 

of the BC core around 180 nm. 337 

3.5 Morphology of the BC-containing aerosols 338 

 The time series of the number fractions of the attached BC-containing aerosols to 339 

the total BC- containing aerosols (fattached) are shown in Fig. 7. From Fig. 7, the fattached 340 

ranged between 0 and 0.21 with a mean value of 7.2±3.7%, 11.0±3.7%, and 10.1±341 

4.1%. Moteki et al. (2014) found that the fattached was generally less than 0.1 in Tokyo. 342 

The fattached ranged between 3% and 16% in suburban London (Liu et al., 2015). A mean 343 

value of 12% was found for biomass burning particles using electron microscopy (China 344 

et al., 2013). Our measurement results were consistent with the previous studies. The 345 

fattached tend to increase with the PM2.5 for different sites, which may indicate that the 346 

attached BC-containing aerosols were generated from the coagulation of BC and non-347 

BC aerosols. 348 

 We calculated the fattached under different aerosol diameters and the results are shown 349 

in Fig. 8. There were few attached BC-containing aerosols when the diameter was 350 

smaller than 250 nm with fattached lowing than 2%. The fattached increased with the diameter 351 

for all of the measurement sites. It could reach 30% for the LJ sites. Based on the results 352 

from the electron microscopy, the BC volume fractions are smaller than those of the 353 

non-BC volume fractions in the attached BC aerosols (Moteki et al., 2014). The 354 

increment of fattached with Dp is essentially consistent with the results from Hu et al. 355 

(2021a) that larger Dp contains more fractal BC, which is hard to be enveloped by 356 

coatings. Our results further indicate that the attached BC aerosols were formed from 357 

coagulation, as the coagulation efficiency of the two particles increased with the 358 

difference between their sizes (Cai and Jiang, 2017; Kim et al., 2016; Mahfouz and 359 

Donahue, 2021).  360 
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 Under the heavier pollution, more secondary aerosol forms and more condensation 361 

process would on one hand increase the coating of the previously coated BC particles, 362 

which would not increase the number fraction of coated BC. On the other hand, the 363 

condensation process would coat the attached BC particle and to some content would 364 

lead to the transformation from the attached BC to coated BC particles. Based on our 365 

measurement results, the above process of transformation from attached BC to coated 366 

BC may not comparable to the process of coagulation between thinly coated BC and 367 

non-BC particles, which would lead to the increment of the fraction of attached BC with 368 

the pollution levels. 369 

 The fattached under different aerosol number concentrations (N) and different ratios of 370 

the BC-free aerosol number concentrations to the BC-containing aerosol number 371 

concentrations are shown in Fig. 9. Results showed that the fattached increased with the 372 

above two factors. The results were consistent with the fact that the coagulation between 373 

BC and non-BC components is more likely to happen with the increment of the BC-free 374 

aerosol number concentrations. Based on the analysis above, we concluded that the 375 

attached BC- containing aerosols are mainly formed through coagulation. 376 

4 Conclusions 377 

 In this study, the BC microphysical properties were studied based on field 378 

measurement using the DMA-SP2 system at the urban site PKU, suburban site CP and 379 

a background site LJ in China. 380 

 The number fractions of the thickly coated BC-containing aerosols were 49%, 33%, 381 

and 79% for the PKU, CP, and LJ sites respectively. The mass concentrations of the 382 

thinly coated BC-containing aerosols showed good consistency with that of HOA, 383 

which indicated that the thinly coated BC-containing aerosols were mainly generated 384 
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from the emission of vehicles. The thickly coated BC-containing aerosols are highly 385 

correlated with the OOA. 386 

 The geometric diameter of the thinly coated BC-containing aerosols ranged between 387 

160 nm and 200 nm, while the corresponding range was 240~300 nm for the thickly 388 

coated BC-containing aerosols. The GSD of the BC-containing aerosols decreased 389 

during the aging process. The corresponding mobility diameters of these thickly coated 390 

( thinly coated) BC-containing aerosols were 294 (193), 244 (161), and 257 (162) nm. 391 

The measured thickly coated ( thinly coated) BC core number median diameters were 392 

115 (114), 107 (95), and 127 (111) nm for the urban, suburban, and background sites, 393 

respectively. The corresponding thickly coated ( thinly coated) core mass median 394 

diameters were 187 (154), 182 (146), and 238 (163) nm respectively. The mean diameter 395 

of the thickly coated BC-containing aerosols was larger than that of the thinly coated 396 

BC-containing aerosols, while the mean BC core diameter of the thickly coated BC-397 

containing aerosols was smaller than that of the thinly coated BC-containing aerosols. 398 

There are about 10% of the BC-containing aerosols with the BC core attached to the 399 

other non-BC components. We concluded that these attached BC-containing aerosols 400 

were mainly generated by coagulation between the BC and non-BC components even 401 

though the aging of the ambient BC aerosols was driven by condensation. 402 
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 669 

Figure 1. The measured distribution of (a) temperature, (b) RH, (c) SO2, (d) NOx, (e) 670 

O3 and (f) PM2.5 for PKU (orange), CP (green) and LJ (red) sites, respectively. The box 671 

and whisker plots represent the 5th, 25th, 75th, and 95th percentiles. The width of the 672 

filled colors represents the probability distributions of the corresponding measured 673 

values. 674 
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 676 

Figure 2. (a) The measured probability distribution of the lag time for the PKU site. 677 

Panel (d) shows the corresponding coating thickness distributions of thinly coated 678 

(orange) and thickly coated (green) BC-containing aerosols. Panel (g) gives the number 679 

fraction of the thinly coated (orange) and thickly coated (green) BC-containing aerosols. 680 

Panel (b), (e), and (h) are the corresponding values for the CP site. Panel (c), (f), and (g) 681 

give the results for LJ sites.  682 
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 684 

Figure 3. Measured number fraction of the thickly coated BC under different 685 

atmospheric environments based on literature. Our measured values are shown as 686 

triangles. 687 
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 689 

Figure 4. The time series of (a) the number concentration of the thinly coated BC 690 

(orange) and the mass concentration of HOA (green), (b) the number concentration of 691 

thickly coated BC (orange), and the mass concentration of OOA (green) for the CP site. 692 
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 694 

Figure 5. The number size distributions of the thinly coated BC-containing aerosols 695 

at (a) PKU, (c) CP, and (e) LJ sites. Panels (b), (d), and (f) are the number size 696 

distributions of the thickly coated BC-containing aerosols for the PKU, CP, and LJ sites, 697 

respectively. The dots in the figure are the measurement results and the lines are the 698 

corresponding fit results with a log-normal distribution. 699 
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 701 

Figure 6. The BC core number size distributions of the thinly coated (orange), thickly 702 

coated (green), and overall (red) BC aerosols for the (a) PKU, (c) CP, and (e) LJ sites. 703 

Panel (b), (d) (f) show the BC core mass distributions of the thinly coated (orange),  704 

thickly coated (orange), and overall (red) BC aerosols for the PKU, CP, and LJ sites, 705 

respectively. 706 
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 708 

Figure 7. The time series of the number fractions of the attached BC (black) and PM2.5 709 

mass concentrations (orange) for the (a) PKU, (b) CP, and (c) LJ sites. 710 
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 712 

 713 

Figure 8. The number fractions of the coated and attached BC under different 714 

diameters for the (a) PKU, (b) CP, and (C) LJ sites. 715 
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 717 

Figure 9. The number fractions of the attached BC aerosols under different total 718 

aerosol number concentrations for the CP sites. The filled colors represent the ratios 719 

between the BC-fee aerosol number concentrations to the BC-containing aerosol 720 

number concentrations. 721 
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Table 1. The D𝑚𝑚𝑚𝑚 and GSD values of the BC core at different sites. 723 

 724 

Site Value 

Number Distribution Mass Distribution 

thinly 

coated 

thickly 

coated 
All 

thinly 

coated 

thickly 

coated 
All 

PKU 
D𝑚𝑚𝑚𝑚 (nm) 115 114 114 187 154 172 

GSD 1.58 1.40 1.47 1.35 1.34 1.37 

CP 
D𝑚𝑚𝑚𝑚 (nm) 107 95 100 182 146 169 

GSD 1.53 1.45 1.51 1.48 1.47 1.47 

LJ 
D𝑚𝑚𝑚𝑚 (nm) 127 111 112 238 163 181 

GSD 1.68 1.43 1.48 1.47 1.41 1.42 


