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Abstract. Aerosol–cloud interaction is the most uncertain component of the overall anthropogenic forcing of the climate, in

which the Twomey effect plays a fundamental role. Satellite-based estimates of the Twomey effect are especially challeng-

ing, mainly due to the difficulty in disentangling aerosol effects on cloud droplet number concentration (Nd) from possible

confounders. By combining multiple satellite observations and reanalysis, this study investigates the impacts of a) updraft, b)

precipitation, c) retrieval errors, as well as (d) vertical co-location between aerosol and cloud, on the assessment of Nd-to-5

aerosol sensitivity (S) in the context of marine warm (liquid) clouds. Our analysis suggests that S increases remarkably with

both cloud base height and cloud geometric thickness (proxies for vertical velocity at cloud base), consistent with stronger

aerosol-cloud interactions at larger updraft velocity. In turn, introducing the confounding effect of aerosol–precipitation in-

teraction can artificially amplify S by an estimated 21 %, highlighting the necessity of removing precipitating clouds from

analyses on the Twomey effect. It is noted that the retrieval biases in aerosol and cloud appear to underestimate S, in which10

cloud fraction acts as a key modulator, making it practically difficult to balance the accuracies of aerosol–cloud retrievals at

aggregate scales (e.g., 1◦× 1◦ grid). Moreover, we show that using column-integrated sulfate mass concentration (SO4C) to

approximate sulfate concentration at cloud base (SO4B) can result in a degradation of correlation with Nd, along with a nearly

twofold enhancement of S, mostly attributed to the inability of SO4C to capture the full spatio-temporal variability of SO4B.

These findings point to several potential ways forward to account for the major influential factors practically by means of15

satellite observations and reanalysis, aiming at an optimal observational estimate of global radiative forcing due to the Twomey

effect.

1 Introduction

Aerosol particles, by acting as cloud condensation nuclei (CCN), can modify cloud properties and precipitation formation,

altering the radiative flux at the top-of-atmosphere, which is known as effective radiative forcing from aerosol-cloud interac-20

tions (ERFaci) (Boucher et al., 2014; Forster et al., 2021). ERFaci may be further subdivided into (i) the radiative forcing due
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to aerosol-cloud interactions (RFaci), also known as the Twomey effect, describing the increased cloud albedo resulted from

enhancement in cloud droplet number concentration (Nd) due to an increase in anthropogenic aerosol emissions (Twomey,

1974), and (ii) rapid adjustments, which are essentially the consequent responses of liquid water path and cloud horizontal

extent to changed Nd via the Twomey effect (Albrecht, 1989; Ackerman, 2004; Bellouin, 2020). This study will focus on the25

Twomey effect only due to its fundamental role in aerosol-cloud interactions. Although extensive investigations have been

made to quantify the Twomey effect, significant uncertainties remain on its magnitude.

Current climate models suggest diverse magnitudes of the Twomey effect even with identical anthropogenic aerosol emission

perturbation (Gryspeerdt et al., 2020; Smith et al., 2020). Thus, observational data at the climate-relevant scale, i.e., satellite re-

trievals, are required to quantify and constrain the Twomey effect globally, basically the sensitivity of Nd to CCN perturbations30

(Seinfeld et al., 2016). As reviewed recently by Quaas et al. (2020), there are, however, several uncertainties in inferring the

Nd-to-CCN sensitivity (S= d lnNd
d lnNCCN

, where NCCN means proxies for CCN number concentration) from satellite observations,

hindering its applicability to further evaluate climate models or quantify RFaci from data. Most of them have been reported

to bias S toward a lower value, in turn leading to an overall underestimated ERFaci, including (i) the instrument detectability

limitations on aerosol loading in pristine environments (Ma et al., 2018), (ii) the inadequate proxy (such as aerosol optical35

depth (AOD) or a variant thereof) for CCN owing to the lack of information on the aerosol size and chemical composition

(Stier, 2016; Hasekamp et al., 2019), (iii) the limited usability of AOD–Nd relationship under present day (PD) to determine

the change in Nd caused by anthropogenic aerosol emission due to the differing preindustrial (PI) and PD aerosol environ-

ments (Penner et al., 2011; Gryspeerdt et al., 2017), and (iv) the satellite sampling biases, which tends to discard clouds with

high cloud fraction due to the inability of aerosol retrievals under cloudy conditions and thereby results in an artificial cloud40

regime selection (i.e., omitting more retrieval-reliable stratiform clouds; Gryspeerdt and Stier, 2012; Jia et al., 2021). Beyond

the aforementioned aspects of the problem, another key difficulty in interpreting satellite observed aerosol–Nd relationships is

to isolate the causal impact of aerosols on Nd from other confounding factors modifying the variations of aerosol and cloud

simultaneously, specifically (i) updraft, determining cloud development as well as the maximum supersaturation at cloud base

and thus aerosol population that can be activated, (ii) precipitation processes, depleting cloud droplets via coagulation and45

scavenging sub-cloud aerosol particles (iii) retrieval errors, biasing retrieved aerosol and cloud properties concurrently.

In terms of the updraft, in-situ aircraft measurements (Berg et al., 2011; Jia et al., 2019a), ground-based remote sensing

(McComiskey et al., 2009; Schmidt et al., 2015), as well as detailed parcel model simulations (Reutter et al., 2009; Chen

et al., 2016) clearly showed the dependency of S on updraft, with generally larger S at stronger updraft. In particular, co-

variability of updrafts and aerosol concentrations has been found to result in a stronger Twomey effect than keeping vertical50

velocity (w) constant (Bougiatioti et al., 2020; Kacarab et al., 2020). As noted by Gryspeerdt et al. (2017), the updraft may

roughly explain 20 % of the variability in ∆Nd from its PI-PD difference, adding to the uncertainty of the ERFaci estimate.

Despite of the importance of dynamical constraint, it is not easily applicable to the analysis of satellite data due to the lack of

updraft observation near cloud base at a global scale. As an alternative, cloud base height (CBH) may potentially serve as a

practical proxy for the updraft at the base of liquid cloud because of their strong correlation illustrated by in-situ observations55

of cumuliform clouds (Zheng and Rosenfeld, 2015). Therefore, recently developed CBH retrievals (Mülmenstädt et al., 2018;
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Böhm et al, 2019) offer an opportunity to gain some insight into the potential role updraft variability may play in the global

ERFaci assessment.

In addition to the updraft, precipitation formation further complicates the derivation of the strength of the Twomey effect,

since it can efficiently deplete cloud droplets and scavenge aerosols from clouds (Gryspeerdt et al., 2015). In such case, the60

change of Nd is not necessarily related to actual aerosol perturbations (Chen et al., 2014) but rather to the intensity of cloud

sink, thus in principle, should not be directly applied to infer ∆Nd driven by anthropogenic emissions. However, due to the

lack of simultaneous observations of precipitation and aerosol/cloud properties from passive satellite remote sensing alone,

most of ACI estimates did not consider the influence of precipitation (Quaas et al., 2008; Ma et al., 2014; Gryspeerdt et al.,

2017; Jia et al., 2021) or just roughly identify the occurrence of rain relying on some simplified metrics, such as the threshold65

of 14 µm cloud effective radius (CER) for rain initiation (Rosenfeld et al., 2019; Zhang et al., 2021) or the difference of CER

between retrievals employing the bands of 2.1 and 3.7 µm (Saponaro et al., 2017; Jia et al., 2019b). Even though few studies

have explicitly accounted for this by combining simultaneous precipitation observations from active remote sensing (Chen et

al., 2014), how different treatments could influence the assessment of the Twomey effect remains unclear, which is helpful to

reconcile the current diverse ACI estimates in order to achieve a more confident observational constraint.70

For the satellite-based investigations, it is crucial but difficult to disentangle any physically meaningful attributable factors

from artificial aerosol-cloud linkage induced by retrieval biases. In terms of Nd, retrievals for 3-D-shaped clouds and partially

cloudy pixels deviate from the retrieval assumptions of overcast homogenous cloud and 1-D plane-parallel radiative transfer,

thereby appear to lead to an overestimation of CER (Coakley et al., 2005; Matheson et al., 2006; Zhang and Platnick, 2011),

in turn, an underestimated Nd (Grosvenor et al., 2018). This issue was reported to be more pronounced for broken cloud75

regimes, and could to some extent be addressed by only sampling Nd for pixels with either high cloud fraction (Painemal et

al., 2020) or large cloud optical depth (COT; Zhu et al., 2018). Meanwhile, the retrieved AOD or aerosol index (AI) can be

biased to a larger value due to the inability to detect thin clouds in an aerosol-retrieval scene (Kaufman et al., 2005) or due

to enhanced reflectance from neighbouring clouds (Várnai and Marshak, 2009). It is noteworthy that the overestimation of

AOD tends to enhance with increasing cloud fraction (Zhang et al., 2005) and COT (Várnai and Marshak, 2021) as a result80

of both retrieval problems and aerosol swelling (Quaas et al., 2010). Therefore, the potential covariations between biases in

Nd and AOD (AI) modulated by cloud macrophysical properties could incur a spurious correlation between the two variables,

obscuring the causal interpretation. While a few studies pointed out that the AOD(AI)-Nd correlation is substantially enhanced

when analyzing reliable Nd retrievals (Jia et al., 2019b; Painemal et al., 2020), how and to which extent the satellite-diagnosed

Twomey effect varies with the retrieval biases in terms of both aerosol and Nd, respectively, has not been fully understood.85

Such understanding is quite important for reconciling the previous estimates and proposing a meaningful method applicable to

satellite-based investigations.

While the problem of vertical co-location between retrieved CCN proxy and clouds has been noticed in many previous

studies, most of them placed focus on its influence on the correlation between aerosol and cloud (Stier, 2016; Painemal et

al., 2020), i.e., a much higher correlation between Nd and aerosol extinction coefficients near cloud base compared to Nd90

vs. column-integrated aerosol quantity (AOD/AI), rather than the influence on S. The later is usually quantified as regression
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coefficient (regression slope in log-log space) between Nd and CCN proxy and is a key determinant of radiative forcing

estimates. Using AI as a CCN proxy, Costantino and Bréon (2010) demonstrated a weaker cloud susceptibility for the case

with separated aerosol-cloud layers than well-mixed ones. However, it is unclear how the S would change when switching

commonly used column aerosol quantities to aerosol measures at cloud base. This understanding is particularly important95

for the inter-comparison and further reconciliation between current ACI metrics relying on diverse CCN proxies, including

column-integrated, near-surface, and cloud level aerosol quantities.

In this study, we focus on the quantification of the impacts of three major confounders mentioned above, namely updraft,

precipitation, and retrieval errors, as well as the problem of vertical co-location between aerosol and cloud, on the assessment of

the Twomey effect in the context of marine warm clouds by combining multiple active/passive satellite sensors and reanalysis100

products. On the basis on current findings, this study further suggests several potential ways forward to account for, to the

extent possible, the major influencing factors practically for the satellite-based quantification of the Twomey effect.

2 Data and method

This work is based on observational data from multiple instruments on board Terra, Aqua and CloudSat platforms as well as

reanalysis data from the Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) product105

(Randles et al., 2017). Table 1 summarizes the aerosol, cloud, and precipitation parameters and their corresponding sources,

temporal-spatial resolutions, and time periods analyzed in the present study. Note that due to the requirement for co-located

aerosol-cloud-precipitation observations, the data used in section 3.2 are obtained from the A-Train constellation of satellites

(Aqua and CloudSat), which are then interpolated to 5×5 km2 resolution for analysis, while the remaining parts are based on

the observations from Terra, where all data are interpolated to 1◦× 1◦ resolution. This study is restricted to global ocean with110

latitude between 60◦S and 60◦N because of limited quality of retrievals over land and polar regions.

Aerosol properties (Levy et al., 2013) are basically obtained from the level 3 Moderate Resolution Imaging Spectroradiome-

ter (MODIS) Dark Target product (MOD08 and MYD08; Platnick et al., 2017a). In addition to commonly used AOD, aerosol

index (AI = AOD × Ångström exponent) containing the information of aerosol size, is also employed since it is considered as a

better proxy for CCN (Nakajima et al., 2001). The Ångström exponent is calculated from AOD at wavelengths of 460 and 660115

nm. To eliminate 1◦ by 1◦ scenes where the aerosol distribution is heterogeneous, retrievals with a standard deviation higher

than the mean values are discarded. In addition, the lowest 15 % of data for AOD (AI) at a global scale are excluded to avoid

large retrieval uncertainty at low aerosol concentrations (Ma et al., 2018).

Cloud optical properties, including CER and COT at 3.7 µm (Platnick et al., 2017b), are obtained from the MODIS level 2

cloud products (MOD06 and MYD06; Platnick et al., 2017c), and then applied to compute Nd based on the adiabatic approx-120

imation (Quaas et al., 2006). Note that Nd is calculated on the level of the satellite pixel (order 1 km) before aggregated to

larger scales. Thus, the aggregation bias caused by the derivation of Nd from the highly non-linear function of CER and COT

as shown by (Feingold et al., 2021), does not affect the results presented here. To ensure confident retrievals, the Nd is filtered

to include only single-layer liquid clouds with top temperature higher than 268 K. Pixels where CER < 4 µm and COT < 4 are
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discarded due to the large uncertainty of retrievals (Sourdeval et al., 2016). In addition, only pixels with cloud fraction at 5 km125

resolution (CF5x5km2 ) > 0.9, and with a sub-pixel inhomogeneity index (cloud_mask_SPI) < 30 are used to reduce the retrieval

errors induced by cloud edges and broken clouds (Zhang and Platnick, 2011). Further, we only consider pixels with a solar

zenith angle of less than 65◦ and a sensor zenith angle of less than 41.4◦ to minimize the influence of known biases as detailed

in Grosvenor et al. (2018).

To overcome the lack of the global updraft observation, we utilize satellite-based retrievals for CBH and cloud geometrical130

thickness (CGT) as proxies. To obtain CBH and cloud top height (CTH), we apply a recently developed retrieval algorithm

(0.25◦ × 0.25◦ resolution, Böhm et al, 2019) based on Multi-angle Imaging SpectroRadiometer (MISR)/Terra observations,

i.e. the MISR Level 2 Cloud Product (MIL2TCSP; NASA/LARC/SD/ASDC, 2012). While CBH is applied here as a proxy for

vertical velocity at cloud base, CGT derived as the difference between CTH and CBH is utilized as as an alternative proxy for

in-cloud vertical velocity. It is important to note that the MISR cloud-base height retrieval is limited to CBH > 560 m (Böhm135

et al, 2019).

To identify the role of precipitation, CloudSat radar precipitation observations co-located with AOD/AI and Nd from

MODIS/Aqua are adopted as well. Here, we use the precipitation flag from the 2B-CLDCLASS product (Sassen and Wang,

2008) to distinguish precipitating (with the flags of ‘liquid precipitation’ and ‘possible drizzle’) and non-precipitation clouds

(with the flag of ‘no precipitation’). The CloudSat data at a 1.4 × 2.5 km2 resolution are matched to the nearest MYD06 5-km140

pixels for further analyses.

The MERRA-2 product assimilates observations of the atmospheric state as well as remotely sensed AOD so that it can

generate reasonable aerosol horizontal and vertical distributions (Buchard et al., 2017). The use of aerosol reanalysis also

largely avoids the spuriously high AOD near clouds caused by the retrieval artifacts from satellite (Jia et al., 2021). Here, we

utilize vertically resolved sulfate mass concentrations from MERRA-2 reanalysis in combination with the MISR CBH retrieval145

to obtain sulfate mass concentrations near cloud base (SO4B). In addition, sulfate surface mass concentrations (SO4S) and

column mass density (SO4C) are also used to investigate if there will be different behaviors of Nd-to-CCN sensitivity when

applying CCN proxies at different levels. The MERRA-2 3-hour averaged fields are interpolated to 10:30 local solar time to

approximate the overpass time of the Terra satellite.

Figure 1 illustrates the regression procedure for calculating the sensitivity of Nd to CCN proxy. After excluding the lowest150

15 % AOD (AI), the data are then divided into 20 bins of CCN proxy, where each bin has an equal number of samples. The

same number of samples ensures the same statistical representativeness within each bin. The values of Nd and CCN proxy

to a certain bin are the medians of all values in that bin. The generated 20 paired values of Nd and CCN proxy are then

used in linear regression to determine S unless otherwise stated. We also tried 100 and 1000 bins, and found that the derived

sensitivities do not change significantly with number of bins. Additionally, the linear regression on all data points is also155

shown (white dashed line) in Fig. 1 for comparison with the pre-binned approach. Since the median is more robust regarding

outliers (e.g. heavy aerosol load associated with low Nd) giving outliers less weight, the binned approach is preferable to avoid

unnecessary complications. Figure 1 shows that the binned approach has a larger slope than lumping together all data points,

suggesting that attention should be paid when comparing S derived from different approaches.
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3 Results160

3.1 Dependence on updraft

In adiabatic clouds, Nd is essentially a function of both CCN and updraft. To quantify how Nd responds to CCN perturbations,

the variation of updraft must be constrained. In a practical term, however, the observation of in-cloud vertical velocity is pos-

sible only from in-situ aircraft measurements or ground-based remote sensing, limiting the estimations to individual locations

and sites. In order to obtain S at a global scale, only possible from satellite, meteorological parameters (Ma et al., 2018) or165

cloud regimes (Gryspeerdt and Stier, 2012) were generally employed to roughly approximate cloud dynamics. However, it

should be noted that even in similar meteorological backgrounds and cloud regimes, the vertical velocity within individual

clouds can still vary significantly (Hudson and Noble, 2014). Instead, our study utilizes CBH as a proxy of cloud base updraft

based on the finding that these two quantities exhibit an approximate linear correlation, at least for convective clouds (Zheng

and Rosenfeld, 2015). Additionally, CGT is also used here to denote the averaged upward motion throughout a cloud, as CCN170

activation is not fully limited to cloud base for convective clouds, in some situations it could also occur above cloud base in

case the large vertical velocity exists there (Slawinska et al., 2012).

Figure 2 shows the dependence of linear regression slopes of ln Nd versus ln AOD (ln AI), i.e., SAOD (SAI), on CBH and

CGT, respectively. To constrain the variation of cloud dynamics, the data are grouped over CBH and CGT bins with intervals of

80 and 100 m, respectively. It is clear that SAOD and SAI exhibit evident increases with both CBH and CGT, consistent with the175

expectation of stronger aerosol-cloud interactions under larger in-cloud vertical velocity conditions. The result is in accord with

previous findings based on surface remote sensing under stratus (McComiskey et al., 2009) and altocumulus clouds (Schmidt et

al., 2015). Also, using ground-based observations, Feingold et al. (2003) quantified this linkage and gave a correlation of 0.67

between S and column maximum updraft. In our study, the correlation coefficients are 0.95 (0.90) for CBH–SAOD (SAI) and

0.95 (0.96) for CGT–SAOD (SAI). The higher correlations likely stem from the large volume of data used to stratify CBH(CGT),180

which enhances the representability of samples from a statistical perspective compared to the more limited number of cases

used in Feingold et al. (2003).

It is also noted that, unlike the monotonic increase with CBH, SAOD (SAI) increases remarkably with CGT at small-to-

moderate CGT range (< 900 m) and then levels off (Fig. 2b). This is likely due to the tighter linkage between the occurrence

of precipitation and CGT than CBH. Specifically, larger CGT is an indicator of strong updraft, tending to generate larger185

SAOD (SAI), whereas at the meantime it is also associated with the higher possibility of precipitation, which acts as an efficient

sink of droplets (see section 3.2), thereby partly offsets the increase of Nd induced by CCN, i.e., smaller SAOD (SAI). In

short, the situation of SAOD (SAI) at larger CGT (Fig. 2b) is a result of the competition between the effects of updraft and

precipitation. Comparing the different CCN proxies, we see that in agreement with previous results (Hasekamp et al., 2019),

SAI is consistently higher than SAOD for both all data cases (dashed lines) and each CBH (CGT) bin. For the remainder of the190

paper, only AI that is a better CCN proxy is used unless otherwise stated.

To gain insight into the mechanism underlying the apparent dependence of the Twomey effect on CBH (CGT), we contrast

AI–Nd (CER) joint histograms for weak and strong updraft conditions (Fig. 3). Here, the subsets of data with CBH (CGT)

6

https://doi.org/10.5194/acp-2021-999
Preprint. Discussion started: 7 January 2022
c© Author(s) 2022. CC BY 4.0 License.



lower than the 25th percentile and higher than the 75th percentile are defined as weak and strong updrafts, respectively. It is

known that the aerosol–Nd relationship is nonlinear and, particularly, regime dependent (Reutter et al., 2009). They proposed195

three distinct regimes according to the ratio of vertical velocity and aerosol concentration: a) aerosol-limited regime, being

characterized by high ratio value, nearly linear dependence of Nd on aerosol, and insensitivity of Nd to updraft, b) updraft-

limited regime, being characterized by low ratio value and weak dependence of Nd on aerosol but quite strong dependence on

updraft, and c) transitional regime, falling between the above two regimes. Since we have limited the proxy of updraft (CBH

/CGT) to a certain range, AI is thus assumed as an indicator of regime. Specifically, the low AI zone is more likely aerosol-200

limited while the high AI zone is close to updraft-limited regime. As illustrated in the difference plots in Fig. 3, under the

polluted condition with AI > 0.4, the samples of the strong updraft case tend to concentrate in the larger Nd bins compared to

the weak updraft (Fig. 3c, i), reflecting the critical role of updraft on facilitating activation of cloud droplets. Nevertheless, the

distributions of CER do not exhibit systematic difference, except for less scattering for the strong updraft (Fig. 3f, l). As for the

clean condition, what should be expected is the similar distribution of Nd between different cloud dynamics as determined by205

the nature of aerosol-limited regime, or at least a slightly higher Nd for the strong updraft case. However, looking at the clean

zone (AI < 0.15) in Fig. 3, it is clear that the strong updraft is associated with much lower Nd as well as larger CER (generally

larger than 14 µm, the threshold for drizzle initiation suggested by Freud and Rosenfeld (2012)) compared to the weak updraft,

indicating a higher possibility of precipitation and/or drizzle. Consequently, the strong sink of droplets via precipitation at

low AI and the enhanced activation of droplets at high AI will jointly create a much larger regression slope of ln Nd versus210

ln AI for the strong updraft compared to the weak updraft condition. Moreover, these results also imply that the interference

of precipitation tends to amplify realistic dependence of SAI on the updraft, highlighting the need to remove the influence of

precipitation on Nd budget.

3.2 Dependence on precipitation

In this section, the role of precipitation on the quantification of the Twomey effect will be explicitly accounted for by using215

the simultaneous aerosol-cloud-precipitation observations from CloudSat-MODIS combined datasets (see section 2). The hy-

pothesis is that for precipitating clouds, a sink to Nd exists (via the coagulation) that is not reflecting the Twomey effect, so

that the CCN - Nd relationship is biased low in cases of precipitation formation. Figure 4 shows the AI-Nd joint histograms for

non-raining, raining and all clouds as well as the difference between non-raining and raining cases. As expected, the raining

clouds exhibit a much lower Nd relative to non-raining clouds over all AI bins, caused by the intensive sink of cloud droplets by220

collision–coalescence when precipitation forms (Fig. 4b,c,d). In addition, as the droplet sink and aerosol removal by precipita-

tion can act together to veil the actual effect of aerosol on Nd, the Nd in raining clouds shows a weaker response to increasing

AI than that in non-raining clouds, with the corresponding SAI of 0.45 versus 0.56, respectively. The result is in agreement with

Chen et al. (2014), who reported a consistently smaller CER-to-AI sensitivity in precipitating case than in non-precipitating

case throughout different environmental conditions.225

Interestingly, the regression slope of ln (AI) versus ln (Nd) is evidently enhanced after lumping all cloud scenes together

regardless of whether it rains or not (Fig. 4a). The corresponding SAI (0.68) increases by 21 % relative to the non-raining case
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(0.56). This phenomenon was also noted by Painemal et al. (2020), and they speculated that drizzle appears to strengthen the

aerosol–Nd relationship, which is, however, contrary to the obviously weaker SAI for raining clouds as illustrated above. For a

clearer comparison of the SAI for non-raining, raining and all clouds, the fitting lines for these three cases are put into one single230

plot (Fig. 4e), with clean and polluted zones marked as blue and red, and the corresponding sample distributions are presented in

Fig. 4f,g. It is clearly shown that, the fitting line for all clouds nearly coincides with that for the non-raining case under polluted

conditions, but closer to the raining case under clean conditions (Fig. 4e), consequently leading to a much steeper slope. This

behavior is further corroborated by the difference of Nd distributions, i.e., the polluted clouds consist predominately of the non-

raining clouds as a result of the suppression of precipitation by aerosols (Fig. 4g), thus maintaining a high value of Nd, while235

the majority of the clean clouds are raining ones that are significantly subjected to the sink processes for Nd and/or aerosol

scavenging (Boucher and Quaas , 2013) (Fig. 4f), hence corresponding to a lower Nd. The results presented here imply that

introducing the dependence of possibility of precipitation on aerosols (i.e., cloud lifetime effect) into the estimation of Twomey

effect, as commonly done in most previous studies, would perturb the statistical analysis and artificially bias the strength of the

Twomey effect to a higher value. Moreover, it should be noted that a more extensive zone with Nd being insensitive to aerosol240

is evident under low aerosol conditions after raining clouds being included (Fig. 4a), which means that, in addition to the

overestimation of regression slope, the interference of precipitation also gives rise to an apparent non-linearity of the aerosol-

Nd relationship, hence adding substantial complexity in quantifying Twomey effect using a linear regression (Gryspeerdt et al.,

2017).

3.3 Dependence on retrieval biases in AOD (AI) and Nd245

Satellite retrieval errors in aerosol and cloud properties, and sampling biases, have been shown to artificially introduce biases

in the estimation of the Twomey effect (Jia et al., 2019b, 2021), but the understanding on how S varies with retrieval errors

due to 3D radiative effects, aerosol swelling, and cloud detection issues (e.g. Quaas et al., 2010) is lacking. Here, we define

two metrics in order to characterize some of the known retrieval biases quantitatively. In terms of aerosol retrieval, the metric

is the distance to nearest cloudy pixel from clear pixels for aerosol retrieval (∆L) as the aerosol retrieval gets unreliable in250

cloudy environment, which is provided directly by MODIS L3 aerosol product. As for the cloud retrieval, the metric is the

difference between Nd retrieved from all cloudy pixels (NdAll) and that retrieved from favorable situations for reliable cloud

retrieval (see Methods for details), which is tightly related to the degree of cloud inhomogeneity. Generally, a negative value

of ∆Nd (NdAll-Nd) is expected since a positive bias in CER and a negative bias in COT for spatially inhomogeneous scenes act

together to generate negatively biased NdAll according to the Equation 1 in Quaas et al. (2006).255

Figure 5a shows the dependences of both AOD (AI) and linear regression slopes of ln Nd (NdAll) versus ln AOD (ln AI) on

∆L. We note that AOD (AI) is the largest for the first ∆L bin with a value of 0.24 (0.17), and then drops rapidly to around

0.16 (0.13) for the other distances from clouds, indicating a quite strong near-cloud enhancement of AOD (AI) induced by

either retrieval bias or aerosol swelling. As AE was found to increase with ∆L (Várnai and Marshak, 2015), the reduction of

AI with ∆L is thus less strong than AOD. Correspondingly, SAOD and SAI for the first ∆L bin are quite low relative to other260

bins, especially for AOD, suggesting that the retrieval bias in aerosol near clouds could result in a severe underestimation in the
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Twomey effect. These results imply that screening out the aerosol retrievals within the first ∆L bin (i.e., the average distance to

the nearest cloud pixel less than 10 km) could be an applicable approach to sidestep the interference of aerosol retrieval biases.

It is also noted that SAOD (SAI) shows an increase first and then decrease from the second ∆L bin; this cannot be, however,

interpreted as the aerosol retrieval bias due to the unchanged AOD (AI) (Fig. 5a), but probably associated to other factors265

modulated by CF (such as retrieval error in Nd as demonstrated in the following analysis) as ∆L is negatively correlated with

CF (Várnai and Marshak, 2015), and/or the fact that AOD/AI is not as representiative for the Nd near cloud anymore, especially

for precipitating pixels where aerosol is not as homogeneous as assumed.

Interestingly, Fig. 5a also depicts that the SAOD (SAI) calculated from NdAll is consistently lower than that from Nd for each

∆L bin, indicating that the cloud retrieval biases for partly cloudy pixels appears to lead to an underestimation of the Twomey270

effect. The increase of the difference between them with ∆L reveals that more serious underestimation occurs for high ∆L

(typically low CF) conditions, where clouds are more partially cloudy and 3-D-shaped, thereby deviate from the retrieval

assumptions of overcast homogenous cloud and 1-D plane-parallel radiative transfer. As aforementioned, ∆Nd can act as a

measure of some of the retrieval errors in cloud; the more negative ∆Nd, the larger retrieval error in Nd. As shown in Fig.

5b, the SAOD (SAI) calculated from NdAll increases sharply with ∆Nd, and then reaches its maximum when ∆Nd approaches 0,275

demonstrating that the satellite-diagnosed Twomey effect highly depends on the retrieval bias in cloud. In terms of the quality-

assured Nd, the corresponding SAOD (SAI) is not anticipated to be affected by retrieval issues, thus independent on ∆Nd, but it

is obviously not the case; the SAOD (SAI) also significantly increases with ∆Nd, which means that the criteria used for selecting

homogeneous clouds within a 5 km × 5 km grid would not be as sufficient for an optimal performance of retrieval (Grosvenor

et al., 2018) as we thought.280

Figure 6 depicts relationships between ∆L and ∆Nd, where the data are grouped as a function of CF for 50 cloud fraction

bins containing same number of samples. It is clearly illustrated that CF regulates the negative correlation between ∆L and

∆Nd. This means that it is practically difficult to balance the accuracies of retrievals on both aerosol and cloud, since the aerosol

retrieval should stay away from clouds, requiring low CF, whereas the Nd retrieval should be performed in more homogeneous

clouds (high CF) in order to satisfy the retrieval assumption of 1-D plane-parallel radiative transfer. To avoid the spuriously285

high AOD (AI) retrieval near clouds, the use of aerosol reanalysis would be a way forward (Jia et al., 2021). In terms of Nd,

however, the situation is more complicated. Given that CF also correlates closely with cloud dynamics (CGT; Fig. 6), it does

not make sense to simply restrict the analysis to low ∆Nd (thus high CF) to reduce the retrieval uncertainty of Nd; in doing so,

a selection of cloud regime could be artificially applied.

3.4 Dependence on vertical co-location between aerosol and cloud290

Currently, the use of reanalyzed/modeled aerosol vertical profiles seems the only feasible alternative to exploit the problem

of vertical co-location since it is impossible yet to obtain aerosol retrievals below or within clouds from satellite (Stier, 2016;

McCoy et al., 2017). Thus, unlike the previous sections based on satellite retrieved AOD/AI, vertically resolved SO4 from

the MERRA-2 reanalysis is utilized here to obtain the CCN proxies for different altitudes. The SO4C and SO4S are used to

mimic the behaviors of AOD/AI and surface aerosol extinction coefficient, which are commonly used as CCN proxies in the295
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satellite-based and ground-based methods, respectively. The SO4B, derived in combination with CBH, is considered to be

more relevant to the amount of CCNs actually activated at cloud base than SO4C and SO4S. The comparison of the Twomey

effect inferred from these three proxies helps to understand whether the uses of column-integrated and near-surface aerosol

quantities make sense, and more importantly, to reconcile the large range of existing estimates of the Twomey effect from

different observational methods.300

Figure 7 shows the two-dimensional probability density functions of ln (Nd) and ln (SO4) along with fitting lines. We note

that the pre-binend method yields similar high correlation coefficients (R) for SO4B (0.96), SO4S (0.95), and SO4C (0.98)

due to the data stratification. When moving to the regression on all data points (Table S1), we can see that the R for SO4B

is the highest (0.6), followed by SO4S (0.57), and the R for SO4C is the lowest (0.54), consistent with the results reported

by (Stier, 2016) and (Painemal et al., 2020). In contrast, the regression slopes for SO4C (0.88) are, however, nearly twice as305

large as that for SO4B (0.47) and SO4S (0.46) (Fig. 7), implying that the strength of the Twomey effect derived on a basis

of column-integrated aerosol quantity, which is often the case for most previous satellite-based estimates, is overestimated by

nearly a factor of two. Note that to explain the same change in ln (Nd), ln (SO4B) and ln (SO4S) increase by about 5, while

ln (SO4C) only increases by 2 (Fig. 7). Translating to the linear scale, this means that SO4B (SO4S) increases by 148-fold,

whereas only a tenfold increase can be seen in SO4C, resulting in the much larger slope of ln (Nd) versus ln (SO4C). The310

underlying reason would be that the variability of SO4C is insufficient to explain the variabilities of SO4B (SO4S) .

In order to verify whether SO4C has the capability to capture the variability of SO4B quantitatively, the coefficient of

variation (CV; calculated as the ratio of the standard deviation to the mean) is employed, which is a measure of relative

variability, and particularly useful for the comparison among quantities with different magnitudes and units, e.g., SO4C (in

units of µg m−2) versus SO4B or SO4S (in units of µg m−3) here. Since the Twomey effect is generally inferred from the315

spatiotemporal variability of aerosol and cloud properties, here we calculate the temporal and spatial CVs, respectively; the

temporal CV is calculated from the daily time series for the period 2006–2009 for each 1° × 1° grid box, and the spatial CV

is derived from the multi-annual averaged geographical distribution. As shown in Fig. 8a,b,c, the temporal CVs of SO4C are

much smaller than those of SO4B and SO4S almost everywhere, with globally averaged CVs of 0.52 versus 1.02 and 1.03.

Spatially, the larger CVs are generally located over the aerosol outflow regions, such as western North Pacific and the Atlantic,320

indicative of an impact of the strong variation of continental, and specifically anthropogenic emissions. Similarly, the spatial

CV of SO4C exhibits a much smaller (0.88) value than those of SO4B and SO4S (1.84 and 1.79). In other words, the variability

of SO4C is only able to reflect about half of the variability of SO4 near cloud base. This is mainly due to the important role

of SO4 above cloud in total column SO4. However, above-cloud aerosol is much more homogeneous compared to SO4B and

SO4S that are directly driven by rapid change of anthropogenic emissions near surface.325

This is demonstrated in Fig. 8d, which shows that the ratio of SO4C below cloud (SO4BC) to SO4C is quite low, with a

global average of 11.89 %. Spatially, the ratio can be up to 35 % over aerosol outflow regions, but generally below 10 % over

vast remote oceans. The low ratio confirms the comparatively small sub-cloud aerosols in determining the aerosol loading

within a column. Interestingly, there is also a good consistency between the spatial patterns of the ratio of SO4BC to SO4C

and the correlation coefficient of SO4C with SO4B (Fig. 8d,e), i.e., loose correlations (R < 0.3) over the regions with low ratio,330
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while there are strong relations (R > 0.7) over the high-ratio regions. Therefore, with regard to the vertical co-location, it is

comparatively sensible to use column-integrated quantities such as AOD/AI to represent CCN near cloud base over polluted

continents and its immediate outflow region, but this is obviously not the case over remote oceans. The loose correlation

between cloud-base and column-integrated aerosols found here, in combination with the detectability limitations of satellite

instrument on aerosol loading (Ma et al., 2018), makes it more challenging to detect any meaningful aerosol-cloud associations335

in pristine environments from retrieved AOD/AI. Nevertheless, unlike the SO4C, rather strong correlations between SO4S and

SO4B (R > 0.7) can be generally found with the only exception of high latitude oceans (Fig. 8f), which in combination with

the highly similar aerosol-Nd slopes and CVs between SO4S and SO4B, hints at surface observations as a promising way in

terms of the vertical co-location issue.

4 Discussion340

Although this study has clearly demonstrated the significant impacts of major confounders on the estimation of the Twomey

effect, some caveats remain. In order to achieve an optimal estimate of radiative forcing from the remote-sensing perspective,

the following sources of uncertainty should be accounted for in future investigations.

The retrieved AOD (AI) as well as reanalyzed SO4 were treated as CCN proxies in this study. However, the usability is

limited due to the lack of information on the aerosol size and/or hygroscopicity for AOD (AI), and also due to the fact that SO4345

cannot fully explain the variability of CCN since organic aerosols also contribute significantly (Ruehl et al., 2016), particularly

in the remote marine boundary layer (Zheng et al., 2020). Therefore, the application of direct CCN retrievals from polarimetric

satellite (Hasekamp et al., 2019) is promising in future investigations of aerosol-cloud interactions. However, it would need

to be combined with an estimate of the contribution of above-cloud aerosol especially in regions unaffected by continental

outflow. More importantly, the PD CCN–Nd relationship has been shown to be a better approximation of the PI and hence350

the “actual” sensitivity of Nd to aerosol perturbations than AOD (AI)–Nd relationship, as it is not affected by the differing PI

and PD aerosol environments (Gryspeerdt et al., 2017). This highlights again the importance of directly retrieved CCN in the

assessment of the radiative forcing from the Twomey effect.

Notably, using a linear regression slope from an ordinary least-squares (OLS) line fitting method to describe the actual

nonlinear aerosol–Nd (Fig. 1), can introduce additional uncertainties related to the problem of regression dilution (Pitkänen et355

al., 2016; Quaas et al., 2020). The OLS method is also likely to overestimate the change in Nd from PI to PD over polluted

continents, as a saturation effect will occur as aerosols keep rising under a polluted background. A joint-histograms method

proposed by Gryspeerdt et al. (2017) can be useful to account for the nonlinearity.

In addition to the precipitation, entrainment mixing is a crucial droplet sink process (Blyth et al., 1988). However, given that

it is practically difficult to infer a quantitative measure of the strength of entrainment mixing from satellite observations, its360

impacts were not considered explicitly here. It has been proven that entrainment mixing process is associated with dynamical

and cloud regimes (Warner, 1969; de Roode and Wang, 2007), so the updraft-constraint in this study would also incorporate

the effect of entrainment mixing to some extent. Although there have been some attempts to characterize entrainment mixing
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via the combination of lower tropospheric stability and relative humidity near cloud top (Chen et al., 2014; Jia et al., 2019b)

or the Nd-LWP relationship at a certain phase relaxation time scale describing evaporation-entrainment feedback (Zhang et al.,365

2021), they are relatively rough approximations or qualitative differentiation. An updated approach for deriving measures of

entrainment mixing at the global scale would be highly beneficial.

It has been demonstrated that conducting analysis over large regions could induce spurious aerosol-cloud correlations,

mainly owing to the spatial co-variations in aerosol type, cloud regime, and meteorological conditions (Grandey and Stier,

2010). Despite the global analyses employed in this study, the applied updraft constraint may make our results less susceptible370

to this issue. It is expected that, with joint use of updraft constraint and CCN retrieval that greatly eliminates the spatial gradient

effects, the global analysis would be preferable compared to regional or local method, since the later could lead to a large bias

in the aerosol–Nd slope over pristine oceans where either the instrument detectability limitations on aerosol (Ma et al., 2018)

or the inability of column-integrated measure to represent aerosol near cloud base for low-aerosol condition (see section 3.4),

could play a major role.375

5 Conclusions

By employing a statistically robust data set from multiple active/passive satellite sensors and reanalysis product, we systemati-

cally assessed the aerosol impact on marine warm clouds, and found that the measure of the Twomey effect (S) shows a strong

dependence on (a) updraft proxy, (b) precipitation, (c) satellite retrieval biases, as well as (d) vertical co-location between

aerosol and cloud layer. The key results and the corresponding implications are summarized as follows, and the impacts of380

issues highlighted here on the overall estimation of S are listed in Table 2.

1. SAOD and SAI are found to increase remarkably with both CBH and CGT (treated as proxies for vertical velocity at cloud

base), suggesting that stronger aerosol-cloud interactions generally occur under larger updraft velocity conditions. Although a

similar dependency has been reported by some previous studies utilizing in situ aircraft measurements or ground-based remote

sensing, they were limited to certain time periods and regions. Instead, the Twomey effect here is characterized as a function385

of CBH (CGT) based on 4 years of global satellite observations, which thus can reflect the full variability of cloud dynamic

conditions. This functional relationship, as a better alternative of large scale meteorological conditions constraints (less directly

linked to cloud dynamics in a cloud scale) could be promising in application to the estimation of global aerosol-cloud radiative

forcing, by which the change in Nd from the PI to the PD may be inferred based on CBH (CGT) climatology from satellite and

anthropogenic aerosol emission perturbation assuming to first order un-changed CBH distributions.390

2. There exists an intensive sink of cloud droplets by precipitation, thereby leading to a much lower Nd in raining clouds (55

cm−3) compared to non-raining clouds (125 cm−3). In turn, a weaker Twomey effect was found in raining clouds than that in

non-raining clouds, with the corresponding SAI of 0.45 versus 0.56, respectively. Surprisingly, after lumping all cloud scenes

together, the derived SAI (0.68) is amplified by 21 % (51 %) relative to the non-raining (raining) case, and also a more non-linear

aerosol-Nd relationship is diagnosed. We showed that this amplification is just an artifact governed by the joint impacts of the395

suppression of precipitation by aerosols and the aerosol removal by precipitation. That is, introducing the confounding effect
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of aerosol-precipitation interactions into the estimation of the Twomey effect can artificially bias the S to a higher value. The

finding highlights the necessity of removing precipitating clouds from statistical analyses when assessing the Twomey effect.

To achieve this, the only way would be simultaneous aerosol-cloud-precipitation retrievals (e.g., from the A-Train satellite

constellation). However, due to the fact that most of existing estimates of the Twomey effect and its radiative forcing did not400

take this aspect into consideration, the relative change of SAI from the all clouds to non-raining clouds presented here could

serve as a useful reference for the inter-comparison of the Nd-to-CCN sensitivities from different studies.

3. The retrieval biases in both aerosol and cloud retrievals tend to underestimate the strength of the Twomey effect. It is

noted that the CF can act as a key modulator of these two kinds of retrieval issues, i.e., an increase in CF enhances the aerosol

retrieval biases via intensifying near-cloud enhancement of AOD (AI) but reduces cloud retrieval errors via alleviating the405

cloud inhomogeneity, making it practically difficult to balance the accuracies of both retrievals within a same grid. In terms of

aerosol, the use of aerosol reanalysis is a potential way to avoid the near-cloud enhancement of AOD (AI), but note that the

issue of aerosol swelling remains to some extent. As for Nd, the retrievals under high CF (over a 1°×1° grid) condition would

be preferable even though strict criteria for cloud screening (Grosvenor et al., 2018) have been applied, which, however, could

incur an artificial selection of cloud regime since CF also covaries with cloud dynamics. Therefore, applying a CF-updraft410

constraint in the Nd screening would be a path forward.

4. Use of vertically integrated SO4 (SO4C) as a proxy of CCN near cloud base results in a degradation of correlation with

Nd, with an approximately two-fold enhancement of S as compared to using SO4 near cloud base (SO4B). This is mostly

attributed to the inability of SO4C to capture the full variability of SO4B. Generally, SO4C is dominated by SO4 above cloud,

which is relatively homogeneous compared to SO4B that is tightly linked to rapid changes of anthropogenic but also natural415

emissions near surface. As a result, to explain the same change of Nd, the corresponding fractional change in SO4C is much

smaller than SO4B, hence leading to a higher regression slope that, however, is not associated with physically meaningful

enhancement of the Twomey effect. The quite similar aerosol-Nd slopes, correlation coefficients as well as relative variability

between SO4S and SO4B, suggest that the use of near-surface aerosol measurements, such as particulate matter (Guo et al.,

2018) or aerosol extinction coefficients (Liu et al., 2018), is an effective solution to the problem of vertical co-location in420

the case that observations of vertical profile of aerosol and cloud base height are unavailable, although its suitability would

depend on the degree of coupling of boundary layer (Painemal et al., 2020). Moreover, the result further raises complications to

compare and reconcile the diverse Nd-to-CCN sensitivities from studies utilizing CCN proxies at different altitudes. It should

be noted that the derivation of Nd change from PI to PD (thus radiative forcing) is expected to be less affected, given that the

vertical co-location issue also applies to fractional change of aerosol due to anthropogenic emissions, thus partly compensating425

the enhancement of the Nd-to-CCN sensitivity; nevertheless, the net effect on radiative forcing still needs further exploration.
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Figure 1. Schematic diagram of the procedure for calculating the sensitivity (linear regression coefficient in log–log space) of Nd-to-CCN,

where AI is taken as a example. Upper panel shows the global joint Nd–AI histogram, where each column is normalized so that it sums

to 1. The blue line is a linear regression on the 20 paired Nd-AI (blue dots) that are the medians of each AI bin with an equal number of

samples, and the white dashed line shows a linear regression on all data points. Note that the lowest 15 % AI have been left out according to

its occurrence (bottom) before binning data.

.
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Figure 2. Dependence of the linear regression slopes of ln Nd versus ln AOD (blue) and ln AI (green) on (a) CBH and (b) CGT. Data are taken

over the global ocean (60◦S – 60◦N), and then grouped into 10 fixed CBH (CGT) intervals. The corresponding regression slopes computed

from the data over all CBH (CGT) bins are shown as horizontal dashed lines (green for AI and blue for AOD). The gray bars denote the total

number of samples for each CBH (CGT) bin.
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Figure 3. Joint histograms between AI and Nd (CER) created for weak and strong updraft conditions, as defined by the lowest and the highest

CBH (CGT) quartiles, respectively. The difference plots between strong and weak cases are shown at the end of each row. The histograms

are normalized so each column sums to 1, such that the histograms show the probability of observing a specific Nd (CER), given a certain

AI.
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Figure 4. Joint histograms between AI and Nd created for (a) all clouds, (b) non-raining, and (c) raining clouds, as well as (d) the difference

of joint histograms between the raining and non-raining cases. The fitting lines for three cases are merged into one single plot (e), with clean

and polluted zones marked as blue and red, and the corresponding sample distributions are also shown (f, g).
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Figure 5. Dependence of the linear regression slopes of ln Nd (ln NdAll) versus ln AOD (ln AI) on (a) ∆L and (b) ∆Nd. Data are grouped

into 10 fixed ∆L (∆Nd) intervals for the calculation of slopes. The total number of samples for each bin is denoted as gray bar. The change

of AOD (AI) with ∆L is also shown in the panel (a)

Figure 6. Relationships between ∆L and ∆Nd, where the data are grouped as a function of CF with each CF bin containing same number of

samples. Variation of CGT with CF is shown in the inner plot, where the CGT and CF are the medians of all values in each CF bin.
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Figure 7. Two-dimensional probability density functions of ln (Nd) versus (a) ln (SO4B), (b) ln (SO4S), and (c) ln (SO4C), respectively, for

the period 2006-2009. Regression results and corresponding statistics (sample numbers and correlation coefficients) for pre-binned SO4-Nd

pairs are displayed in the upper left of each plot.

Figure 8. Map of coefficients of variations (CV) of (a) SO4B, (b) SO4S, and (c) SO4C, (d) ratio of column mass of SO4 below clouds

(SO4BC) to SO4C (%), Pearson’s correlation coefficients of SO4B with (e) SO4C and (f) SO4S, which are calculated for each 1°×1° grid

box over the period 2006–2009.
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Table 1. The list of the parameters, sources, and their corresponding temporal-spatial resolutions applied in present study.

Source Time period Resolution Parameters

MYD08/MOD08 Jan 2008–Dec 2008 for MYD08 Daily, 1°× 1° AOD at 460/550/660 nma

Jan 2006–Dec 2009 for MOD08 Distance to nearest cloudy pixel (∆L)

CF

MYD06/MOD06 Jan 2008–Dec 2008 for MYD06 Daily, 1 × 1 km2 COT at 3.7 µm

Jan 2006–Dec 2009 for MOD06 CER at 3.7 µm

Cloud_Mask_SPI

Cloud multi-layer flag

Cloud phase flag

Daily, 5 × 5 km2 CF5x5km2

Cloud top temperature

Solar zenith angle

Sensor zenith angle

CloudSat Jan 2008–Dec 2008 Daily, 1.4 × 2.5 km2 Precipitation flag

MISR Jan 2006–Dec 2009 Daily, 0.25° × 0.25° CBH

CTH

MERRA-2 Jan 2006–Dec 2009 3-hourly, 0.5°×0.625° Sulfate mass mixing ratio profile

Air density

Table 2. Issues highlighted in this study and their impacts on the overall estimation of S.

Process not considered Impact on S

Updraft dependency To be assessed

Precipitation Biased high

Retrieval biases Biased low

Vertical co-location between aerosol and cloud Biased high
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