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Abstract.  11 

Bayesian state estimation in the form of Kalman smoothing was applied to Differential Mobility Analyser Train (DMA-12 

train) measurements of aerosol size distribution dynamics. Four experiments were analysed in order to estimate the aerosol 13 

size distribution, formation rate and size-dependent growth rate, as functions of time. The first analysed case was a 14 

synthetic one, generated by a detailed aerosol dynamics model, and the other three chamber experiments performed at the 15 

CERN CLOUD facility. The estimated formation and growth rates were compared with other methods used earlier for 16 

the CLOUD data and with the true values for the computer-generated synthetic experiment. The agreement in the growth 17 

rates was remarkably good for all studied cases. The formation rates matched also well, especially considering the fact 18 

that they were estimated from data given by two different instruments, the other being the Particle Size magnifier (PSM). 19 

The presented Fixed Interval Kalman Smoother (FIKS) method has clear advantages compared with earlier methods that 20 

have been applied to this kind of data. First, FIKS can reconstruct the size distribution between possible size gaps in the 21 

measurement in such a way that it is consistent with aerosol size distribution dynamics theory, and second, the method 22 

gives rise to direct and reliable estimation of size distribution and process rate uncertainties if the uncertainties in the 23 

kernel functions and numerical models are known. 24 

1 Introduction 25 

Atmospheric new particle formation and growth are important phenomena when considering global aerosol 26 

concentrations. Their concentration together with their size distribution and chemical composition determines how 27 

aerosols affect visibility, health and climate (Albrecht, 1989; Appel et al., 1985; Daellenbach et al., 2020; Pope and 28 

Dockery, 2006; Twomey, 1974). These are determined by atmospheric dynamics and aerosol dynamics such as new 29 

particle formation and growth as well as removal rates. Nieminen et al. (2018) reviewed the existing literature on the 30 

formation and growth rates ranging from polar sites, with very small aerosol concentrations to polluted urban sites with 31 

extremely high concentrations. The rates have been typically estimated using the methodology reviewed in Kulmala et 32 

al. (2012), based on rather simple regression or balance equation approaches, suffering from potentially crude 33 

approximations and permitting no proper estimation of the uncertainties. At the same time, however, instrument 34 

development, especially advances in particle detection efficiency and mass spectrometry, has developed rapidly 35 
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(Kangasluoma et al., 2020). Potentially superior advanced data analysis methods have not been used, and, it is likely that 36 

there are significant inaccuracies in the estimated particle formation and growth rates estimated previously (Kürten et al., 37 

2018).  38 

There have been some attempts to estimate aerosol formation and growth rates with different inverse methods (Henze et 39 

al., 2004; Kuang et al., 2012; Lehtinen et al., 2004; Sandu et al., 2005; Verheggen and Mozurkewich, 2006; Viskari et al., 40 

2012). We are, however, not aware of any of the above-mentioned methodology being used widely. The most promising 41 

ones in our view, that include also estimations of uncertainties, have been the ones by Kupiainen-Määttä (2016) and 42 

Shcherbacheva et al. (2020), who used Markov Chain Monte Carlo methodology to estimate evaporation rates as well as 43 

their uncertainties from synthetic cluster dynamics data. In addition, the INSIDE-method by Pichelstorfer et al. (2018), 44 

which is based on numerical solution of the aerosol general dynamic equation and matching the solution optimally to 45 

integrated measured concentrations of selected size intervals, has been successfully applied to determining growth rates 46 

at the CLOUD (Cosmics Leaving OUtdoor Droplets) experiments at CERN (European Organization for Nuclear 47 

Research) (Stolzenburg et al., 2020). Furthermore, the results in very recent manuscript by McGuffin et al. (2020), in 48 

which nucleation, growth and emission rates of are estimated using techniques from the field of nonlinear process control, 49 

seem promising. 50 

In a recent paper, Ozon et al. (2020) presented BAYROSOL, a Julia software package that combines a finite difference 51 

solution to the general dynamic equation for aerosols (GDE; Seinfeld and Pandis, 2016) to Bayesian state estimation in 52 

order to estimate unknown size dependent process rates (nucleation, condensation, losses) from known time evolution of 53 

the aerosol size distribution. Using synthetic SMPS measurements Ozon et al., (2020) showed that the Fixed Interval 54 

Kalman Smoother (FIKS; Kaipio and Somersalo, 2005) performed very well in estimating the process rates of the GDE 55 

in two distinct cases. First in a case in which continuous nucleation, growth and losses lead to a nearly steady state size 56 

distribution and second also in a case in which there is a growing nucleation mode after a nucleation burst. In the method, 57 

the unknowns (such as the discretized particle size distribution) are modeled as random variables, and their prior 58 

probability distributions are incorporated in the solution of the inverse problem. One important key feature of the Kalman 59 

smoother method is that it estimates also the error covariance matrices of the process rates that is their uncertainties, if 60 

the uncertainties of the measurement device are known. 61 

In this manuscript, we show results of applying BAYROSOL, for the first time to real experimental data. We use 62 

experiments performed with the differential mobility analyser-train ( DMA-train; Stolzenburg et al., 2017) measuring 63 

new particle formation and growth at the CERN CLOUD chamber (Duplissy et al., 2016; Kirkby et al., 2011). In addition 64 

to testing the method with synthetic DMA-train data (in which the ‘correct’ results are known), we estimate formation 65 

and growth rates from three different formation and growth experiments: sulphuric-ammonia (Stolzenburg et al., 2020), 66 

alpha-pinene ozonolysis (Heinritzi et al., 2020) and iodic acid (He et al., 2021; Sipilä et al., 2016). We compare the 67 

formation rates with results obtained by using the methodology by Dada et al. (2020) based on Particle Size Magnifier 68 

(PSM) measurements and the growth rates with the results obtained by the INSIDE method (Pichelstorfer et al., 2018). 69 

We chose the DMA-train measurements for three main reasons: the high time resolution makes it an ideal instrument for 70 

nucleation studies, the collection efficiencies of the channels have been carefully characterized (Stolzenburg et al., 2017; 71 

Wlasits et al., 2020) and finally, the data from this instrument has not been used to estimate directly particle formation 72 

rates so far. 73 
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2 Bayesian framework for parameter estimation 74 

2.1 Aerosol  measurement and evolution models 75 

The quantities of interest in chamber experiments studying new particle formation are the particle number size-76 

distribution, the formation rate at the critical cluster size and the growth rate of the freshly formed particles. The available 77 

measurements to infer these quantities usually size classify the aerosol and measure the size classified number 78 

concentrations. While the retrieval of the particle number size distribution from such measurements is a classical inverse 79 

problem (Chambolle and Pock, 2011; Kandlikar and Ramachandran, 1999; Wolfenbarger and Seinfeld, 1990), the 80 

estimation of the process parameters (formation and growth rate) is often done by analysis of the time evolution of the 81 

retrieved particle size distribution. Here, we focus on the formulation of the problem within a statistical Bayesian 82 

framework, where the state parameters described by a measurement model and an evolution model are treated as 83 

multivariate random processes and are estimated from measurements using a FIKS (Ozon et al., 2020).  84 

A measurement can be described by a vector 𝑦𝑘 representing 𝑚 indirect observations (channels of the instrument) of the 85 

particle size distribution 𝑛(𝑑𝑝, 𝑡𝑘). The observations are linked to the size distribution by the so-called instrument transfer 86 

(or kernel) functions ℋ such that: 87 

𝑦𝑘 = ∫ ℋ(𝑑𝑝)𝑛(𝑑𝑝, 𝑡𝑘)𝑑𝑑𝑝              (1)  88 

The transfer functions ℋ can be inferred from calibration experiments and instrument design considerations. Direct 89 

inversion of Eq. (1) for every time instant 𝑡𝑘 is typically an underdetermined and ill-posed inverse problem and requires 90 

some additional assumptions in order to avoid oscillatory and unstable solutions (Kandlikar and Ramachandran, 1999). 91 

At the same time, the time evolution of the particle size-distribution 𝑛(𝑑𝑝 , 𝑡) can be described by the aerosol general 92 

dynamic equation (GDE):  93 

𝜕𝑛

𝜕𝑡
(𝑑𝑝, 𝑡) = −

𝜕𝑔(𝑑𝑝,𝑡)𝑛(𝑑𝑝,𝑡)

𝜕𝑑𝑝
− 𝜆(𝑑𝑝, 𝑡)𝑛(𝑑𝑝, 𝑡) − CoagSink(𝛽, 𝑑𝑝, 𝑡) + CoagSrc(𝛽, 𝑑𝑝, 𝑡)                  (2) 94 

Here, 𝑔(𝑑𝑝 , 𝑡) is the condensation growth/evaporation rate, 𝜆(𝑑𝑝, 𝑡) is the particle loss by deposition or dilution and 95 

CoagSink and CoagSrc are the sink and source rates due to particle coagulation within the size distribution with the 96 

coagulation coefficients 𝛽. An exact expression of all terms can be found in e.g. Ozon et al. (2020) and Seinfeld and 97 

Pandis (2016). The boundary conditions of Eq. (2) are given by the apparent formation rate 𝐽𝑑𝑚𝑖𝑛
(𝑡) =98 

𝑔(𝑑𝑚𝑖𝑛 , 𝑡)𝑛(𝑑𝑚𝑖𝑛 , 𝑡) of newly formed particles at the minimum detectable size 𝑑𝑚𝑖𝑛  and a zero numerical flux condition  99 

𝑔(𝑑∞, 𝑡)𝑛(𝑑∞, 𝑡) = 0 at very large sizes. Altogether, the process parameters 𝑔(𝑑𝑝, 𝑡), 𝐽(𝑡), 𝜆(𝑑𝑝, 𝑡) and 𝛽(𝑑𝑖 , 𝑑𝑗) as well 100 

as the initial and boundary conditions determine completely the evolution of the size distribution, but especially 𝑔(𝑑𝑝, 𝑡) 101 

and 𝐽(𝑡) are usually not known. The coagulation coefficients 𝛽(𝑑𝑖 , 𝑑𝑗) can often be obtained from theory (and coagulation 102 

can be even neglected in many applications with low particle concentrations) and the loss parameters 𝜆(𝑑𝑝, 𝑡) are well 103 

quantified for controlled aerosol chamber experiments.  104 

A single measurement of the size distribution 𝑦𝑘 does not depend explicitly on the process parameters, but as 𝑔(𝑑𝑝 , 𝑡) 105 

and 𝐽(𝑡) determine the temporal evolution of 𝑛(𝑑𝑝, 𝑡𝑘) the estimation of the process parameters is feasible from a 106 

sequence of  𝑙 measurements 𝑦𝑘  at several time instances.  107 
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2.2 State estimation with Kalman smoothing 108 

Following Ozon et al. (2020) we formulate the problem as a Bayesian state estimation problem. After discretization of 109 

the problem in size space (𝑖 = 1, . . , 𝑞) and time (𝑘 = 1, … 𝑙), we can define the state variable 𝑋𝑘 = [𝑁𝑖
𝑘 𝑔𝑖

𝑘 𝜆𝑖
𝑘 𝐽𝑘] 110 

for each time step 𝑘 with the particle concentrations 𝑁𝑖
𝑘 per size discretization bin 𝑖, the condensation and loss terms 𝑔𝑖

𝑘 111 

and 𝜆𝑖
𝑘 , respectively, for each size discretization bin 𝑖 and the nucleation rate 𝐽𝑘. The problem can then be formulated as: 112 

𝑋𝑘+1 = 𝐹(𝑋𝑘) + 𝑤𝑘                        (3) 113 

𝑦𝑘 = 𝐻𝑋𝑘 + 𝑣𝑘               (4) 114 

Eq. (3) represents the discretized non-linear evolution model, which is based on the general dynamic equation for 𝑁𝑘, on 115 

second order processes for  𝑔𝑘 and 𝐽𝑘, and a random walk evolution for 𝜆𝑘 (see Section 2.3). Eq. (4) represents the 116 

discretized linear observation model. The incorporation of positivity constraints for the process rates and the 117 

aforementioned second order models require minor modifications in the definition of the state variable 𝑋𝑘. This, however, 118 

does not cause any changes in the form of the state-space model (3)-(4). For the details on the above modifications as 119 

well as discretization of the GDE model, we refer to Ozon et al. (2020). The terms 𝑤𝑘 and 𝑣𝑘 are the error terms, which 120 

are approximated as normally distributed 𝒩(0, Γ𝑤
𝑘) and 𝒩(0, Γ𝑒

𝑘) with the covariance matrices Γ𝑤
𝑘, Γ𝑣

𝑘, which not only 121 

include stochastic noise, but also errors due discretization, model and parameter uncertainties. The GDE, i.e. the non-122 

linear evolution model for  𝑁𝑘 (Eq. (2)), is similar to an advection equation. Therefore, its numerical discretization 123 

schemes are often unstable and must be treated carefully to avoid oscillation and  divergence or to minimize numerical 124 

diffusion (Shen et al., 2007; Smolarkiewicz, 1984). Thus, we show detailed considerations on the magnitude of the 125 

different error terms in the Supplement.  126 

 127 

Algorithm 1 Extended Kalman Filter (EKF) Algorithm 2 Fixed Interval Kalman Smoother (FIKS) 

Initial state: Expectation 𝑋0|0 and covariance Γ0|0 Initialization: Run Algorithm 1, store all variables 

for 𝑘 = 1, . . . , 𝑙 for 𝑘 = 𝑙 − 1, . . . ,1 

Prediction: expectation and covariance Backward gain matrix 

𝑋𝑘|𝑘−1 = 𝐹(𝑋𝑘−1|𝑘−1) 𝐴𝑘 = Γ𝑘|𝑘(𝜕𝐹)𝑇(Γ𝑘+1|𝑘)−1  

Γ𝑘|𝑘−1 = 𝜕𝐹𝑘−1Γ𝑘−1|𝑘−1(𝜕𝐹𝑘−1)𝑇 + Γ𝑤
𝑘−1 Smoother expectation and covariance 

Kalman gain matrix: 𝑋𝑘|𝐾 = 𝑋𝑘|𝑘 + 𝐴𝑘(𝑋𝑘+1|𝐾 − 𝑋𝑘+1|𝑘)  

𝐾𝑘 = Γ𝑘|𝑘−1(𝐻𝑘)𝑇(𝐻𝑘Γ𝑘|𝑘−1(𝐻𝑘)𝑇 + Γ𝑣
𝑘)−1  Γ𝑘|𝐾 = Γ𝑘|𝑘 + 𝐴𝑘(Γ𝑘+1|𝐾 − Γ𝑘+1|𝑘)(𝐴𝑘)𝑇  

Measurement update: filter expectation and covariance end 

𝑋𝑘|𝑘 = 𝑋𝑘|𝑘−1 + 𝐾𝑘(𝑌𝑘 − 𝐻𝑘𝑋𝑘|𝑘−1)  

Γ𝑘|𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)Γ𝑘|𝑘−1  

end  

Table 1: Extended Kalman Filter and Fixed Interval Kalman Smoother algorithms for estimation of the state variables and their 128 
variances 𝑿𝒌 and 𝚪𝒌.  129 
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Considering this structure of the problem, a non-linear extension to the Kalman Filter (Extended Kalman Filter; EKF)  is 130 

a well suited algorithm for solving the unknown size-distribution and process parameters (Gelb, 1974; Kaipio and 131 

Somersalo, 2005). It is a two stage recursive procedure, where in the first stage the future state and propagation of error 132 

is predicted based on the state evolution model (Eq. (3)). In the second stage, the state variable and its covariance are 133 

estimated by updating the predicted state variable and covariance. This so-called measurement update accounts for the 134 

discrepancy between the realized measurements at time 𝑡𝑘 and modelled measurements corresponding to the predicted 135 

state variable. This procedure is repeated until the final measurement 𝑘 = 𝑙. After finishing the EKF recursions, we utilize 136 

a Fixed Interval Kalman Smoother (FIKS), which consists of a backward recursion from a backward gain matrix and 137 

smooths the results by backwards recursion from 𝑙 to 1. The workflow of the EKF and FIKS are illustrated in Table 1 and 138 

more details on this algorithm can also be found in Ozon et al. (2020). 139 

2.3 Adaption to chamber experiments  140 

The state space model has been adjusted to represent best the evolution of an aerosol system during new particle formation 141 

experiments in an atmospheric simulation chamber like CLOUD. For the time evolution of the process parameters, we 142 

assume a rather smooth evolution for the nucleation and growth rates, approximated by a second order process (Ozon et 143 

al., 2020): 144 

𝐽𝑘+1 = (𝑟1 + 𝑟2)𝐽𝑘 − 𝑟1𝑟2𝐽𝑘−1 + 𝑤𝐽
𝑘         (5) 145 

𝑔𝑘+1 = (𝑟1 + 𝑟2)𝑔𝑘−𝑟1𝑟2𝑔𝑘−1 + 𝑤𝑔
𝑘        (6) 146 

The constants 𝑟1, 𝑟2 depend on the characteristic time of change, discretization time and a dampening factor and their 147 

definition can be taken from (Ozon et al., 2020) and the corresponding values for our experiments are listed in Table S1 148 

in the Supplement. The loss rates do not depend on time, in the chamber experiments of interest, and are well characterized 149 

by dedicated wall loss experiments (Stolzenburg et al., 2020). .The dilution time of the chamber 𝜏𝑑𝑖𝑙 = 𝑄𝑡𝑜𝑡/𝑉𝑐ℎ𝑎𝑚𝑏𝑒𝑟 . 150 

The time evolution is described by a random walk with a small stochastic noise term 𝑤𝜆
𝑘, and the expectation of the initial 151 

state is set to the experimentally determined value with a standard deviation of ±10%: 152 

𝜆𝑘+1 = 𝜆𝑘 + 𝑤𝜆
𝑘          (7) 153 

For fully defining the problem (Eq. (3)-(4)), an estimate of the covariance matrices corresponding to the error terms 𝑣𝑘  154 

and 𝑤𝑘 is needed.  The definition of the covariance matrices corresponding to the state noise 𝑤𝑘 on the size-distribution 155 

evolution 𝑤𝑁
𝑘 , the growth rate 𝑤𝑔

𝑘, the formation rate 𝑤𝐽
𝑘 and the wall loss rate 𝑤𝜆

𝑘 follow the consideration of Ozon et al. 156 

(2020). The covariances of the wall losses, the growth rate and the size-distribution are dominantly diagonal with some 157 

additional off-diagonal terms in order to account for a correlation in size. The formulation given by Ozon et al. (2020) 158 

was slightly altered to give a stronger correlation between the closest size bins (values for the different experiments are 159 

given in Table S1 in the Supplement): 160 

Γ𝑁/𝑔/𝜆
𝑘 (𝑖, 𝑗) = 𝜎𝑖,𝑁/𝜆/𝑔𝜎𝑗,𝑁/𝜆/𝑔  exp (− (

𝑖−𝑗

𝛿𝑁/𝜆/𝑔 
)

𝑎𝑁/𝜆/𝑔

)         (8)  161 

For the size-distribution evolution, we find that 𝜎𝑖,N
2 = (𝛿𝑘)2Var(𝑊𝑖

𝑘), with 𝛿𝑘 the discretization time-step and 𝑊𝑖
𝑘 the 162 

error of the discretization of the size-distribution evolution. A detailed derivation of 𝑊𝑖
𝑘 is given in the Supplement.  163 

The modelling error of the observation model and the measurement noise both contributing to 𝑣𝑘  are assumed to be 164 

mutually independent. For this reason, the covariance of the error term Γ𝑣
𝑘 in the measurement model is written as a sum 165 

of the covariances of these two random variables, i.e. Γ𝑣
𝑘 = Γ𝑚𝑜𝑑

𝑘 + Γ𝑦
𝑘. For a detailed derivation we refer to the 166 

Supplement, where we also show that the discretization error is negligible compared to model and measurement error if 167 
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a fine enough size discretization is chosen. We approximate Γ𝑣
𝑘 with uncorrelated processes, and hence the covariance 168 

matrices are of the diagonal form. For the measurement error, the variance is given by Poisson counting statistics in the 169 

case of a single-particle counting detector such as a condensational particle counter (CPC):  170 

Γ𝑦
𝑘(𝑖, 𝑖) = 𝑦𝑘(𝑖)            (9) 171 

For the model uncertainty, we assume the variance of the kernel Var(Δ𝐻𝑖,𝑗) is composed of an uncertainty proportional 172 

to 𝐻𝑖,𝑗 (for example due to an offset in the absolute calibration of the instrument) and a shifting size information error (for 173 

example discrepancy between set and actual classified size in a mobility spectrometer). It can then be formulated as 174 

(detailed values for the experiments under investigation can be found in Table S1 in the Supplement): 175 

Γ𝑚𝑜𝑑
𝑘 (𝑖, 𝑖) = ∑ (𝑛(𝑑𝑗)Δ𝑗)

2
Var(Δ𝐻𝑖,𝑗) 

𝑞
𝑗=1           (10) 176 

3 Experimental methods 177 

We use experimental data from the CERN CLOUD experiment (Duplissy et al., 2016; Kirkby et al., 2011) where we 178 

measured particle size-distributions in the sub-10 nm range with a DMA-train (Stolzenburg et al., 2017). The raw data 179 

obtained from the DMA-train is used as input for the analysis of three different sets of experiments performed in the 180 

atmospheric simulation chamber. The DMA-train instrument kernels are also used for modelling an instrument response 181 

to simulated size-distribution data in order to verify the general performance of the FIKS to DMA-train like data.  182 

3.1 DMA-train  183 

The DMA-train is an electrical mobility spectrometer, specifically designed to measure sub-10 nm size-distributions 184 

(Stolzenburg et al., 2017). Six identical DMAs are applied in parallel i.e. they sample through the same inlet. They are 185 

set to six distinct but fixed voltages and hence classified sizes. The charging state of the aerosol is pre-conditioned in two 186 

TSI Inc. Advanced Aerosol Neutralizers (Model 3088), each supplying three DMAs at 5.5 litre per minute (lpm) total 187 

flow. We use the Wiedensohler approximation (Wiedensohler, 1988) to describe the steady-state charge distribution at 188 

the DMA inlets. Kallinger and Szymanski (2015) showed that for the used neutralizers the steady-state charge distribution 189 

is still achieved for flow rates up to 5 lpm. After size classification, the aerosol is detected in condensation particle 190 

counters. Four channels are equipped with TSI Inc. Model 3776 ultrafine CPCs for detection of aerosols down to 2.5 nm. 191 

They were operated at reduced temperature settings in order to increase the detection efficiency of the smallest particles, 192 

achieving a 50% detection efficiency for particles as small as 2 nm (Wlasits et al., 2020). Two channels of the DMA-train 193 

were operated with particle counters specifically designed for sub-2 nm particle detection using diethylene glycol (DEG), 194 

an Airmodus Ltd. particle size magnifier (Model A10, PSM) and a TSI Inc. nano-Enhancer (Model 3777). Both are used 195 

as boosters to activate the particles, which are subsequently detected by either an Airmodus Ltd. CPC (Model A20, for 196 

the PSM) or a TSI Inc. CPC (Model 3772, for the nano-Enhancer). Both channels have a higher aerosol flow rate of 2.5 197 

lpm resulting in a broader transfer function and higher transmission at the DMA compared to the 1.5 lpm sample flow in 198 

the other four channels. The sheath flow at the DMAs is kept constant at 15 lpm for all six channels.  199 

The constant sampling at fixed sizes allows for either a higher time-resolution at large aerosol number concentrations or 200 

a higher sensitivity towards low number concentrations due to longer signal averaging times compared to a scanning or 201 

stepping differential mobility spectrometer. To increase the number of measured particle sizes, one DMA is still operated 202 

in an alternating mode, switching between 6.2 and 8 nm every ten seconds. The other DMAs are set to classify particles 203 

of 4.3, 3.2, 2.55, 2.2 and 1.8 nm. The instrument kernels are obtained from calibration experiments, where we use the 204 
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DMA transfer function and sampling loss characterization from Stolzenburg et al. (2017),  the CPC activation efficiencies 205 

from Wlasits et al. (2020) and the charging efficiency was tested to follow the Wiedensohler approximation in Tauber et 206 

al. (2020). The kernel functions for all seven classified sizes are shown in Fig. 1 for an instrument averaging time of 120 207 

seconds, sulphuric acid-like test particles (using the Ammonium Sulfate detection efficiencies from Wlasits et al.  (2020)) 208 

and including the detector flow rates of each condensation particle counter. Therefore, the kernels can be used to convert 209 

raw particle counts at the detecting CPCs into a particle size-distribution (within an inverse problem) and vice-versa. Note 210 

that for different chemical composition of the input particles, the CPC response might be different. Therefore, the kernels 211 

used for analysing experiments where particles were formed from oxidized organics (Kirkby et al., 2016) or from iodic 212 

acid (He et al., 2021) are different and approximated by the calibration curves for oxidized beta-caryophyllene and sodium 213 

chloride from Wlasits et al. (2020).  214 

 215 

Figure 1: Kernel functions of the DMA-train when classifying sulphuric acid particles at a signal averaging time of 120 seconds. (a) 216 
shows the continuous form of the transfer function (color code) of the seven DMA-train channels (y-axis), inferred from instrument 217 
calibrations (Stolzenburg et al., 2017). (b) shows the discretization into 32 size bins from 1.7 to 10 nm used in the Kalman smoother  218 
(c) shows the comparison between continuous form and used discretization for channel 2 with centroid diameter at 2.2 nm, together 219 
with the model uncertainty, which is used for the error estimate (see Table S1 in the Supplement).  220 

3.2 CLOUD 221 

We use experimental data from the DMA-train measuring new particle formation in nucleation experiments at the CERN 222 

CLOUD chamber. The 26.1 m3 stainless-steel chamber provides a high-purity, temperature-controlled environment in 223 

order to perform experiments under atmospherically relevant conditions, where trace gases can be added precisely at pptv 224 

(parts per trillion by volume) level and sunlight can be simulated by UV-illumination of the chamber. We use three 225 
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different sets of experiments, of varying chemical composition, in order to demonstrate the performance of the FIKS in 226 

reconstructing formation and growth rates. See also Kirkby et al. (2011) and Duplissy et al. (2016).  227 

First, a nucleation experiment using sulphuric acid and ammonia was performed at 5℃ by adding SO2 and O3 to the 228 

chamber and through the photo-dissociation of ozone, the formation of OH radicals and sulphuric acid was induced which 229 

resulted in strong new particle formation (Stolzenburg et al., 2020). Second, we performed nucleation and growth 230 

experiments at 5℃ using oxidized organics from dark (i.e. no UV-illumination) ozonolysis of alpha-pinene (Kirkby et al., 231 

2016; Stolzenburg et al., 2018). Both experiments resulted in moderate new particle formation rate and thus, in the Kalman 232 

smoother, we used DMA-train data that was averaged over 120 seconds time intervals. Third, we studied nucleation from 233 

iodine oxides at 10℃ (He et al., 2021), which resulted in high particle formation rates and fast growth. For the third 234 

experiment, we reduced the DMA-train averaging time down to 20 seconds, while keeping high counting statistics over 235 

the averaging interval.  236 

3.3 PSM derived formation rates  237 

Particle formation rates (Jdp) are calculated from the time derivative of the total particle number concentration larger than 238 

1.7 nm following the method introduced in Dada et al. (2020). The particle number size distribution is measured with the 239 

particle size magnifier (PSM) coupled with a condensation particle counter (1.5 – 2.5 nm), a TSI nano-SMPS (3 – 65 nm) 240 

and home-built long-SMPS (10 – 800 nm). The formation rates are corrected for the size dependent wall and coagulation 241 

losses. Additionally, since the chamber is operated in continuous mode, the particle concentrations are corrected for 242 

dilution losses. For more information on the PSM derived formation rates, see Dada et al. (2020). The uncertainty on 243 

J1.7 was assumed to be 30% for the CLOUD chamber calculated using propagation of error in the concentration 244 

measurement, dilution, coagulation and wall losses as well as the error on the time-derivative of the total particle 245 

concentration.  246 

3.4 Growth rates using INSIDE 247 

In order to compare the particle growth rates derived by Kalman smoothing, we use the size- and time-dependent growth 248 

rate analysis tool INSIDE (Pichelstorfer et al., 2018). It uses input particle size-distributions at time 𝑡1 in order to simulate 249 

the known aerosol dynamics (coagulation, wall losses and dilution) until a time 𝑡2 (typically separated by one 250 

measurement cycle of an instrument, i.e. the 120 seconds averaging time mentioned above). At 𝑡2, the simulated aerosol 251 

size-distribution is compared to the measured size-distribution and by evaluating the general dynamics equation above a 252 

certain diameter 𝑑eval the growth term 
d𝑑𝑝

d𝑡
|

𝑑eval

=

d𝑁∞
d𝑡

|
𝑑eval

∞
−  

d𝑁∞
𝑠𝑖𝑚

d𝑡
|
𝑑eval

∞

𝑛(𝑑𝑝,𝑡)|
𝑑eval

 can be computed. Evaluating this equation for 253 

several evaluation diameters 𝑑eval and at all measurement times 𝑡𝑖, this results in time- and size-resolved growth rates 254 

from a size-distribution measurement, which is distinct from most others, integrative growth rate analysis approaches 255 

(Dada et al., 2020). However, compared to the Kalman smoothing, each time step is analysed individually and the analysis 256 

framework relies on already inverted size distributions, where a point-by-point inversion procedure is used for the DMA-257 

train data of this work (Stolzenburg and McMurry, 2008). Moreover, the INSIDE method does not provide an uncertainty 258 

estimate on the growth rate calculation and hence a comparison with other growth rate calculations is beneficial to verify 259 

the results.  260 
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4 Results: Simulation and Experimental 261 

4.1 Numerical simulation test  262 

First, we modelled the DMA-train instrument numerically and simulated a data set representing a typical nucleation 263 

experiment performed in an atmospheric simulation chamber like CLOUD and applied the FIKS to this synthetic dataset. 264 

We used the same framework as in Ozon et al. (2020) to simulate a nucleation experiment with formation rate at 1 nm 265 

𝐽1.0 = 5.25 cm−3 s−1, and size-independent growth rate 𝐺𝑅 = 2.5 nm h−1 and the loss rates equal to the CERN CLOUD 266 

experiment (Stolzenburg et al., 2020). The evolution of the simulated size-distribution is shown in Fig. 2a. The 267 

measurement data 𝑦𝑘 are then simulated using the kernel functions from Fig. 1a and altered with a Poisson-distributed 268 

random counting error. The FIKS is then applied to the measurement data with the input parameters given in Table S1 in 269 

the Supplement.  270 

Figure 2 also shows the Kalman smoother estimates for the size-distribution, growth rate and formation rate at 1.7 nm. 271 

The reconstructed size-distribution (Fig. 2b) is very similar to the true size-distribution (Fig. 2a), especially taking into 272 

account the sparser discretization of the former. Also the estimated growth and nucleation rates agree well with true values 273 

of the respective process rates specified in the simulation. Moreover, the uncertainty estimates are feasible: For both 274 

quantities, the true values are within the uncertainty limits given by FIKS. The reconstructed size-distribution and 275 

especially, growth rate (Fig. 2 b and c, respectively) show some temporal oscillations, which are related to periods for the 276 

particle population to grow from the size range visible for one DMA-train channel to the next one. That is, the oscillation 277 

is a result of an insufficient coverage of the size-range by the DMA-train kernels and is discussed in more detail in Section 278 

4.5. Nevertheless, the overall good retrieval of the simulated size distribution and process rates demonstrates that Kalman 279 

smoothing approach is well suited for analysing DMA-train data from chamber nucleation experiments.  280 

281 
Figure 2: Results of the simulated chamber nucleation experiment: (a) The simulated, temporally evolving size distribution of aerosols. 282 
(b) The FIKS estimate for the size distribution. This estimate was computed based on the numerically simulated DMA-train data 283 
corresponding to the synthetic size distribution shown in (a). (c) The FIKS estimate for the growth rate of particles. (d) The growth rate 284 
corresponding to a single instant of time (2h 56min); here, the FIKS estimate and the associated uncertainty limits are plotted together 285 
with the true growth rate. (e) The FIKS estimate for the formation rate at 1.7 nm and its uncertainty, and the true formation rate. (f) 286 
FIKS estimate, its uncertainty and the true value of the particle size distribution corresponding to a single instant of time (2h 56min). 287 
In subfigures d-f, the orange lines represent the FIKS estimates (posterior expectations) and the orange shaded areas illustrate the 288 
uncertainties of the associated variables (more specifically, their approximate posterior standard deviation limits). The true values of 289 
the quantities are plotted in green. 290 
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4.2 Sulphuric Acid-Ammonia experiment 291 

We applied the FIKS to experimental data from a sulphuric acid-ammonia nucleation and growth experiment performed 292 

at 5℃ at the CERN CLOUD chamber. The raw data measured with the DMA-train were averaged in 120-second time 293 

intervals in order to increase the counting statistics per channel and then used as input for BAYROSOL. The details of 294 

parameter choices in FIKS are given again in Table S1 in the Supplement. The results of applying the Kalman smoothing 295 

to this experimental data are shown in Fig. 3.  296 

 297 

Figure 3: Results of an experiment performed at the CERN CLOUD chamber: The DMA-train data was acquired during sulphuric 298 
acid-ammonia nucleation and growth processes. Experimental conditions: 5℃, 60% RH, 5 ppb SO2, 120 ppb O3 and 40 ppt NH3. (a) 299 
The FIKS estimate for the size distribution. (b) The evolution of the formation rate during the experiment. The orange line and shaded 300 
area represent the FIKS estimate and its uncertainty, respectively, while the solid blue line and blue area show the nucleation rate 301 
estimate and the associated 30% uncertainty based on a different set of instruments (particle size magnifier, PSM) and the standard 302 
approach for inferring nucleation rates at 1.7 nm (Dada et al., 2020). (c) The growth rate corresponding to time 2h19 min after the start 303 
of the experiment. The FIKS estimate and the associated uncertainty are marked with orange line and shaded area, respectively. The 304 
green line represents the growth rate estimate, which is obtained from DMA-train data by traditional inversion (INSIDE method).  305 

The size- and time-dependence of the FIKS estimate for the true size-distribution (Fig. 3a) is very smooth, and it is also 306 

able to bridge the information gaps between the largest size-distribution channels. This is a significant improvement from 307 

the traditional point-by-point inversion, where the data of each DMA-train channel is inverted independently: When point-308 

by-point inversion was applied to the same dataset, those information gaps caused severe reconstruction errors 309 

(discontinuities) in the size-distribution, see (Stolzenburg et al., 2020). The size-distribution shows also small temporal 310 

fluctuations. The fluctuations are even more clearly visible in the reconstructed evolution of the formation rate (Fig. 3b). 311 

Remarkably, the same fluctuations are also recovered when the formation rate is inferred from the PSM and nano-SMPS, 312 
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i.e. an entirely different set of instrumentation and different type of data-analysis. This result strongly suggests that the 313 

fluctuation of the particle formation truly occurs physically in the experiment and is not a reconstruction error caused by 314 

instrument noise or a bias caused by the inversion method. The absolute values of the two independent formation rate 315 

estimates agree upon a factor of 1.5. Furthermore, large portions of the uncertainty intervals of these two estimates overlap 316 

with each other, which is another indicator of the feasibility of FIKS to analysing DMA-train data. In addition, also the 317 

inferred growth rates agree within the systematic uncertainties for both approaches (Fig. 3c for one time instant). It is 318 

worth noting, however, that both growth rate estimates rely on data from the same instrument and are hence more 319 

interdependent than the formation rate estimates. Nevertheless, the good agreement between them corroborates the 320 

feasibility of Kalman smoothing to reconstructing nanoparticle growth rates from experimental data. 321 

4.3 Alpha-pinene ozonolysis experiment 322 

Third, we applied the FIKS to experimental data obtained by the DMA-train from an alpha-pinene ozonolysis experiment. 323 

Besides the different chemical composition of the growing particles (resulting in different assumptions on the DMA-train 324 

transfer functions) in comparison to the experimental results used in section 4.2, this experiment is characterized by a 325 

different size-dependency of the growth rate, due to the increased condensation of low- and semi-volatile organics with 326 

increasing particle size (Simon et al., 2020; Stolzenburg et al., 2018; Tröstl et al., 2016). The formation rate, however, 327 

remains rather similar to the sulphuric acid-ammonia experiment under these specific experimental conditions, but the 328 

slower initial growth rates result in generally lower produced particle concentrations. The results of applying FIKS to the 329 

data from this experiment are shown in Fig. 4. Again, the size-distribution given by FIKS is much smoother than that 330 

obtained with a standard inversion procedure (see Heinritzi et al. (2020) for the same dataset inverted by the standard 331 

approach).  332 

Because in alpha-pinene ozonolysis experiment the nucleation and growth rates were known to be similar to those in the 333 

sulphuric acid-ammonia experiment, the parameters of their evolution models were selected as in Section 4.2 (Table S1 334 

in the Supplement). The formation rate is again slightly lower than the one obtained from the PSM. Considering the fact 335 

that inter-instrument deviations in sub-10 nm size-distribution measurements can be as large as one order of magnitude 336 

(Kangasluoma et al., 2020), the achieved agreement is remarkable, especially as some fluctuations within the chamber 337 

can again be reconstructed in both approaches. The retrieved growth rates from the FIKS estimate and the INSIDE method 338 

agree remarkably well and both show the increasing growth rates with increasing particle size up to 4.3 nm, an indication 339 

for a strong Kelvin-effect in organic condensation (Stolzenburg et al., 2018; Tröstl et al., 2016). The decreasing Kalman 340 

smoother estimate above 4.3 nm is related to the fact that the FIKS searches a smooth estimate of the growth rate (Eq. 341 

(6)), but at that point (2h30min after experiment start), practically no information from the size-distribution above 4.3 nm 342 

is available, resulting in a slow decrease towards zero. This is due to the strong smoothness a priori used in the FIKS 343 

algorithm (Table S1 in the Supplement). The INSIDE method does not report growth rates from regions with no 344 

information (Pichelstorfer et al., 2018) from the size-distribution and hence the estimate stops at 4.3 nm.  345 
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 346 

Figure 4: Results of an experiment performed at the CERN CLOUD chamber: The DMA-train data was acquired during an alpha-347 
pinene ozonolysis. Experimental conditions: Experimental conditions: 5℃, 40% RH, 300 ppt alpha-pinene, 40 ppb O3. (a) The FIKS 348 
estimate for the size distribution. (b) The evolution of the formation rate during the experiment. The orange line and shaded area 349 
represent the FIKS estimate and its uncertainty, respectively, while the solid blue line and blue area show the nucleation rate estimate 350 
and the associated 30% uncertainty based on a different set of instruments (particle size magnifier, PSM) and the standard approach 351 
for inferring nucleation rates at 1.7 nm (Dada et al., 2020). (c) The growth rate corresponding to time 2h30 min after the start of the 352 
experiment. The FIKS estimate and the associated uncertainty are marked with orange line and shaded area, respectively. The green 353 
line represents the growth rate estimate, which is obtained from DMA-train data by traditional inversion (INSIDE method). 354 

4.4 Iodic Acid experiment 355 

Finally, we analysed a more dynamic experiment of nucleation and growth from iodic acid (He et al., 2020, 2021). The 356 

experiment is characterized by extremely high nucleation rates, which are two orders of magnitude higher than in the 357 

sulphuric acid-ammonia and alpha-pinene ozonolysis experiments. However, the growth rate is only half an order of 358 

magnitude higher compared to the other two example cases. Figure 5 shows that, in spite of the highly dynamic 359 

experiment, the formation rate recovered by Kalman smoothing agrees with the estimate obtained from the PSM (Fig. 360 

5b). The usage of the DMA-train data with a time resolution of 20 seconds allows for the precise recovery of the spike in 361 

formation rate in the beginning of the experiment.  This causes the build-up of a high condensation sink and vapour/cluster 362 

depletion almost shutting off any further nucleation during the continuation of the experiment. The four-minute time 363 

resolution of the data for the calculation of the nucleation rate from the PSM is limited in that respect. The reconstructed 364 

growth rates (Fig. 5c) show again agreement between the FIKS estimate and the INSIDE method, indicating a clear 365 

decreasing trend with size, which is expected for condensation at the kinetic limit if the vapour molecular size is taken 366 

into account (He et al., 2021; Lehtinen and Kulmala, 2003; Nieminen et al., 2010; Stolzenburg et al., 2020). The lower 367 
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values towards 1.8 nm could be caused by a biased estimate of the PSM detection efficiency, because neither a calibration 368 

for iodic acid clusters nor for sodium chloride particles (which was used for the other detectors in the DMA-train) was 369 

available. The instabilities in the size-distribution at the smallest sizes and fluctuations of the formation rate are expected 370 

considering the highly dynamic process of this experiment Overall, the good agreement for the inferred process 371 

parameters of the aerosol general dynamics equation, i.e. the formation and growth rates, is still remarkable. However, 372 

the reconstructed size-distribution from the FIKS estimate shows some discontinuities, especially during the growth above 373 

3 nm. This is because the available instrument information from the DMA-train starts to get very sparse in that size range 374 

given the dynamic processes involved in the iodic acid nucleation and growth. More available size channels (hence more 375 

DMAs in the case of the DMA-train) would help to resolve such discontinuities. We will therefore provide an instrument 376 

design recommendation based on simulated data in the next section.  377 

 378 

Figure 5: Results of an experiment performed at the CERN CLOUD chamber: The DMA-train data was acquired during iodic acid 379 
nucleation and growth processes. Experimental conditions: Experimental conditions: 10℃, 80% RH, 100 ppt I2, 40 ppb O3. (a) The 380 
FIKS estimate for the size distribution. (b) The evolution of the formation rate during the experiment. The orange line and shaded area 381 
represent the FIKS estimate and its uncertainty, respectively, while the solid blue line and blue area show the nucleation rate estimate 382 
and the associated 30% uncertainty based on a different set of instruments (particle size magnifier, PSM) and the standard approach 383 
for inferring nucleation rates at 1.7 nm (Dada et al., 2020). (c) The growth rate corresponding to time 0h16min min after the start of 384 
the experiment. The FIKS estimate and the associated uncertainty are marked with orange line and shaded area, respectively. The green 385 
line represents the growth rate estimate, which is obtained from DMA-train data by traditional inversion (INSIDE method). 386 

4.5 Instrument design recommendation from a signal processing point of view  387 

The size range covered by the seven DMA-train channels was chosen semi-arbitrarily based on some external constraints: 388 

the lowest measured centroid diameter was supposed to be as close as possible to 1.7 nm where the formation rate is 389 
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typically measured for experiments performed at the CLOUD chamber. In order to cover the sub-10 nm range the largest 390 

channels was set to 8 nm. The other channel diameters were chosen to yield sufficient coverage of the sub-3 nm range. 391 

The width of the transfer functions was fixed by the detector sample flow rates and the 15 lpm critical orifices provided 392 

by Grimm Aerosol for the DMA sheath air supply (also the standard flow rate used by the manufacturer for this type of 393 

DMA). However, the chosen centroid diameters (and hence fixed voltages at the DMAs) and selected sheath flow rates 394 

could easily be altered.  395 

In order to study numerically the effect of choice for the DMA-train channels, we constructed a model corresponding to 396 

a channel choice different from that in the previous sections: The kernel for the DMA-train with seven channels having 397 

centroid diameters of 1.8, 2.2, 2.8, 3.6, 4.6, 6.1 and 8.0 nm is illustrated in  Fig. 6a. Moreover, channels 3 to 7 have been 398 

altered to use a 2.5 lpm sample flow rate (could be achieved by a make-up flow at each CPC) and a reduced sheath flow 399 

rate of 10 lpm, only providing a resolution of theoretical non-diffusive resolution of ~4, which is significantly lower. 400 

However, this permits covering the entire size-range between 1.8 and 8 nm by overlapping channels. We revisited the 401 

numerical simulation described in Section 4.1 using DMA-train model corresponding to this configuration. The resulting 402 

size-distribution given by FIKS is shown in Fig. 6b. Comparison between the two reconstructions in Fig. 2b and Fig. 6b 403 

reveals that the new choice of DMA-channels stabilizes the size-distribution estimate significantly. While in Fig. 2b, the 404 

size distribution evolves in step-wise manner when the growing particle mode reaches larger size-channels, the size 405 

distribution in Fig. 6b is very smooth, also temporally. The latter estimate also resembles the true (simulated) size-406 

distribution (Fig. 2a) more than the former one. 407 

The result of this additional numerical study thus demonstrates that in the chosen conditions of the simulation, the 408 

reconstruction quality improves when the resolution of individual channels is lowered. This seemingly counterintuitive 409 

effect stems from the fact that FIKS estimates do not rely only on the measurements, but are also advised by the GDE 410 

model, which makes the problem of optimizing the measurement design a somewhat cumbersome task. A rigorous 411 

investigation of the optimal experimental design is out of the scope of this paper, but the above observation is worth 412 

noticing -- especially because a lot of recent experimental effort in the sub-10 nm range has been devoted to improving 413 

the instrument resolution (Kangasluoma et al., 2020). While on the individual channel level this might reduce systematic 414 

uncertainties, as discussed in Kangasluoma et al. (2020), signal processing rather requires a broad coverage of the size 415 

distribution than high resolution. However, the ideal instrument would combine both, full coverage of the size distribution 416 

but achieved with more, high-resolution channels. For the DMA-train principle, this would require new ideas in 417 

instrument design in order to incorporate more DMAs without the instrument becoming impractically bulky.  418 
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 419 

Figure 6: Adjusted DMA-train kernel for better signal processing (a), which could be achieved by choosing suitable centroid voltages 420 
and altering the resolution of the DMAs through sheath-flow and sample-flow adjustments. (b) shows the reconstructed simulated size-421 
distribution of Fig. 2 using the adjusted kernel.  422 

5 Conclusion 423 

A recently developed methodology (BAYROSOL) applying the Fixed Interval Kalman Smoother (FIKS) to a finite 424 

difference solution to the aerosol GDE was used to analyze DMA-train measurements of aerosol dynamics at the CLOUD 425 

chamber facility at CERN. The overall aim of this methodology is to estimate unknown aerosol microphysical process 426 

rates as well as their uncertainties from size-distribution evolution measurements. In a previous paper, the methodology 427 

was shown to be able to predict new particle formation, growth and loss rates from synthetic computer-generated aerosol 428 

size distribution evolution data, while here the method has been applied to real experimental data for the first time. Four 429 

experimental cases with particle formation and growth were tested: 1) a computer-generated synthetic case, 2) sulphuric 430 

acid-ammonia, 3) alpha-pinene ozonolysis, and 4) iodic acid.  431 

The DMA-train was selected for two main reasons: first, the instrument kernel functions are well characterized giving 432 

rise to reliable estimation of the instrument uncertainties and second, new particle formation rates have not been estimated 433 

directly from DMA-train measurements before. In addition, as the current version of the DMA-train is designed in such 434 

a way that the individual DMAs have a rather narrow collection kernels for the channels, with significant gaps between 435 

some of the channels, the FIKS can reconstruct the size distributions from the measured signals in such a way that the 436 

distributions are rather smooth and consistent with the GDE. 437 

We compared the growth rates, which with BAYROSOL can be estimated as functions of both size and time, with those 438 

obtained by INSIDE, a method applied earlier to CLOUD data, and the agreement was remarkably good for all studied 439 

cases. INSIDE is also based on matching the GDE solution to measured size distribution dynamics, however without the 440 

capability of estimating uncertainties of the estimations. The FIKS-based estimates for the particle formation rates were 441 

compared with those estimated from data obtained by a separate instrument, the Particle Size Magnifier (PSM), based on 442 
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the rate of change of the total number concentration measured by the instrument corrected by coagulation and wall-losses. 443 

Again, the agreement was very good, especially considering the fact that instrument uncertainties are large at the very 444 

lowest end of the measured size spectrum. For the iodic-acid case, the FIKS estimate of the formation rate was even able 445 

to capture rapidly changing dynamics of the experiment. It was remarkable for all cases that some fluctuations in the 446 

formation rates were recovered by both methods independently, indicating that these are physical variations during the 447 

experiment 448 

Finally, we utilized the FIKS from an instrument development point of view. Typically, an as-high-as-possible resolution 449 

for the different measurement channels has been the aim when measuring nanometer-sized particles. This aim, however, 450 

gives rise to gaps in the measured size range, as is the case in the DMA-train studied. Thus we studied whether a better 451 

coverage of the size spectrum, but lower resolution of the individual channels would be advantageous for size distribution 452 

estimation. 453 

Summarizing, we believe that Bayesian state estimation methods such as FIKS can be very useful in the field of aerosol 454 

science in many aspects. As mentioned above, they can be used to fill gaps in measurements in such a way that not only 455 

the obtained size distributions but also unknown process rates are consistent with theory describing aerosol size 456 

distribution dynamics. In addition, the methodology provides estimations of uncertainties both for size distributions as 457 

well as process rates based on uncertainty estimations in the measurements and the used models, which is unfortunately 458 

not common when reporting results of aerosol measurements. Finally, it is conceivable that the methodology presented 459 

here will be superior to several previous approaches when combining measurement data obtained with several different 460 

instruments that operate at different size ranges. This will be a topic of our forthcoming studies. 461 
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