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Abstract.  13 

Bayesian state estimation in the form of Kalman smoothing was applied to Differential Mobility Analyser Train (DMA-14 

train) measurements of aerosol size distribution dynamics. Four experiments were analysed in order to estimate the aerosol 15 

size distribution, formation rate and size-dependent growth rate, as functions of time. The first analysed case was a 16 

synthetic one, generated by a detailed aerosol dynamics model, and the other three chamber experiments performed at the 17 

CERN CLOUD facility. The estimated formation and growth rates were compared with other methods used earlier for 18 

the CLOUD data and with the true values for the computer-generated synthetic experiment. The agreement in the growth 19 

rates was very good for all studied cases: estimations with an earlier method fell within the uncertainty limits of the 20 

Kalman smoother results. The formation rates matched also well, within roughly a factor of 2.5 in all cases, which can be 21 

considered very good considering the fact that they were estimated from data given by two different instruments, the other 22 

being the Particle Size magnifier (PSM), which is known to have large uncertainties close to its detection limit. The 23 

presented Fixed Interval Kalman Smoother (FIKS) method has clear advantages compared with earlier methods that have 24 

been applied to this kind of data. First, FIKS can reconstruct the size distribution between possible size gaps in the 25 

measurement in such a way that it is consistent with aerosol size distribution dynamics theory, and second, the method 26 

gives rise to direct and reliable estimation of size distribution and process rate uncertainties if the uncertainties in the 27 

kernel functions and numerical models are known. 28 

1 Introduction 29 

Atmospheric new particle formation and growth are important phenomena when considering global aerosol 30 

concentrations. Aerosol number concentration together with their size distribution and chemical composition determines 31 

how aerosols affect visibility, health and climate (Albrecht, 1989; Appel et al., 1985; Daellenbach et al., 2020; Pope and 32 

Dockery, 2006; Twomey, 1974). These are determined by atmospheric dynamics and aerosol dynamics such as new 33 

particle formation and growth as well as removal rates. Nieminen et al. (2018) reviewed the existing literature on the 34 

formation and growth rates ranging from polar sites, with very small aerosol concentrations to polluted urban sites with 35 

mailto:kari.lehtinen@uef.fi


 

 

2 

 

extremely high concentrations. The rates have been typically estimated using the methodology reviewed in Kulmala et 36 

al. (2012) and adjusted for chamber experiments by Dada et al. (2020). Both are based on rather simple regression or 37 

balance equation approaches, and permitting no proper estimation of the uncertainties. At the same time, however, 38 

instrument development, especially advances in particle detection efficiency and mass spectrometry, has developed 39 

rapidly (Kangasluoma et al., 2020). Potentially superior advanced data analysis methods have not been used, and, it is 40 

likely that there are significant inaccuracies in the estimated particle formation and growth rates estimated previously 41 

(Kürten et al., 2018). 42 

There have been some attempts to estimate aerosol formation and growth rates with different inverse methods (Henze et 43 

al., 2004; Kuang et al., 2012; Lehtinen et al., 2004; Sandu et al., 2005; Verheggen and Mozurkewich, 2006; Viskari et al., 44 

2012). We are, however, not aware of any of the above-mentioned methodology being used widely. The most promising 45 

ones in our view, that include also estimations of uncertainties, have been the ones by Kupiainen-Määttä (2016) and 46 

Shcherbacheva et al. (2020), who used Markov Chain Monte Carlo methodology to estimate evaporation rates as well as 47 

their uncertainties from synthetic cluster dynamics data. In addition, the INSIDE-method by Pichelstorfer et al. (2018), 48 

which is based on numerical solution of the aerosol general dynamic equation and matching the solution optimally to 49 

integrated measured concentrations of selected size intervals, has been successfully applied to determining growth rates 50 

at the CLOUD (Cosmics Leaving OUtdoor Droplets) experiments at CERN (European Organization for Nuclear 51 

Research) (Stolzenburg et al., 2020). Furthermore, the results in very recent manuscript by McGuffin et al. (2020), in 52 

which nucleation, growth and emission rates of are estimated using techniques from the field of nonlinear process control, 53 

seem promising. 54 

In a recent paper, Ozon et al. (2020) presented BAYROSOL, a Julia software package that combines a finite difference 55 

solution to the general dynamic equation for aerosols (GDE; Seinfeld and Pandis, 2016) to Bayesian state estimation in 56 

order to estimate unknown size dependent process rates (nucleation, condensation, losses) from known time evolution of 57 

the aerosol size distribution. Bayesian state estimation is a general framework for estimating time-dependent variables 58 

(state variables) based on (direct or indirect) noisy observations that are collected sequentially during the temporal 59 

evolution of the state variables (Gelb, 1979). The state estimation is based on the so-called state-space representation, 60 

which consists of the state evolution model and observation model. In this work, the state variables consist of the particle 61 

size distribution – the temporal evolution of which is modelled with GDE – and the nucleation, growth and deposition 62 

rates which are parameters of the GDE. The observation model is the mapping from the size distribution to DMA-train 63 

measurements. In Bayesian formulation, both the state variable and the observations are modelled as stochastic processes; 64 

their randomness reflects their uncertainty, which decreases, when measurement data is accounted for in the state 65 

estimation – formally speaking, this is done by conditioning the state variables with respect to measurement data (realized 66 

observations) sequentially. The result of Bayesian state estimation is the posterior probability density which reflects the 67 

uncertainty of the state variables after accounting for the measurement data.  68 

A large variety of state estimation schemes exits, and the choice between them depends on 1) the type of the state-space 69 

model (linearity, gaussianity, etc); 2) the type of data available when computing an estimate at time t (if data is available 70 

up to time k < t, the problem is of prediction type, while cases where k = t and k>t are referred to as filtering and smoothing, 71 

respectively), and 3) the approximations which are sometimes needed to lower the computational demand of state 72 

estimation. In the case of linear and gaussian state-space models, a Bayesian filtering problem can be solved recursively 73 

by the well-known Kalman filter algorithm. In non-linear and non-gaussian cases, the rigorous choice is to use so-called 74 

particle filters and smoothers (Särkkä, 2013). However, because these MCMC-based estimators are highly time 75 
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consuming in large-dimensional cases, approximative methods are often used – such as the extended Kalman filter and 76 

smoother adopted in this paper. These recursive algorithms use sequential linearization to approximate the non-linear 77 

models and non-gaussian probability distributions.  78 

In previous work Ozon et al., (2020) showed that the Fixed Interval Kalman Smoother (FIKS; Kaipio and Somersalo, 79 

2005) performed very well in estimating the process rates of the GDE in two distinct cases. First in a case in which 80 

continuous nucleation, growth and losses lead to a nearly steady state size distribution and second also in a case in which 81 

there is a growing nucleation mode after a nucleation burst. In the method, the unknowns (such as the discretized particle 82 

size distribution) are modeled as random variables, and their prior probability distributions are incorporated in the solution 83 

of the inverse problem. One important key feature of the Kalman smoother method is that it estimates also the error 84 

covariance matrices of the process rates that is their uncertainties, if the uncertainties of the measurement device are 85 

known. 86 

In this manuscript, we show results of applying BAYROSOL, for the first time to real experimental data. We use 87 

experiments performed with the differential mobility analyser-train (DMA-train; Stolzenburg et al., 2017) measuring new 88 

particle formation and growth at the CERN CLOUD chamber (Duplissy et al., 2016; Kirkby et al., 2011). In addition to 89 

testing the method with synthetic DMA-train data (in which the ‘correct’ results are known), we estimate formation and 90 

growth rates from three different formation and growth experiments: sulphuric-ammonia (Stolzenburg et al., 2020), alpha-91 

pinene ozonolysis (Heinritzi et al., 2020) and iodic acid (He et al., 2021; Sipilä et al., 2016). We compare the formation 92 

rates with results obtained by using the methodology by Dada et al. (2020) based on Particle Size Magnifier (PSM) 93 

measurements and the growth rates with the results obtained by the INSIDE method (Pichelstorfer et al., 2018). We chose 94 

the DMA-train measurements for three main reasons: first, the high time resolution makes it an ideal instrument for 95 

nucleation studies due to a more accurate estimate of dN/dt. Second, the collection efficiencies of the channels have been 96 

carefully characterized (Stolzenburg et al., 2017; Wlasits et al., 2020) and yield higher sensitivities to low particle number 97 

concentrations (Kangasluoma et al., 2020), which are often faced in atmospherically relevant nucleation studies, and third, 98 

the DMA train is, at the same time, interesting and challenging instrument for detailed data analysis because of the gaps 99 

in the measured size spectrum. 100 

2 Bayesian framework for parameter estimation 101 

2.1 Aerosol  measurement and evolution models 102 

Typical quantities of interest in chamber experiments studying new particle formation are the particle number size-103 

distribution, the formation rate at the critical cluster size and the growth rate of the freshly formed particles. The available 104 

measurements to infer these quantities usually size classify the aerosol and measure the size classified number 105 

concentrations. While the retrieval of the particle number size distribution from such measurements is a classical inverse 106 

problem (Chambolle and Pock, 2011; Fiebig et al., 2005; Kandlikar and Ramachandran, 1999; Wolfenbarger and Seinfeld, 107 

1990), the estimation of the process parameters (formation and growth rate) is often done by analysis of the time evolution 108 

of the retrieved particle size distribution (Dada et al., 2020). Here, we focus on the formulation of the problem within a 109 

statistical Bayesian framework, where the state parameters described by a measurement model and an evolution model 110 

are treated as multivariate random processes and are estimated from measurements using a FIKS (Ozon et al., 2020).  111 



 

 

4 

 

A measurement can be described by a vector 𝑦𝑘 representing 𝑚 indirect observations (channels of the instrument) of the 112 

particle size distribution 𝑛(𝑑𝑝, 𝑡𝑘). The observations are linked to the size distribution by the so-called instrument transfer 113 

(or kernel) functions ℋ such that: 114 

𝑦𝑘 = ∫ ℋ(𝑑𝑝)𝑛(𝑑𝑝, 𝑡𝑘)𝑑𝑑𝑝              (1)  115 

The transfer functions ℋ can be inferred from calibration experiments and instrument design considerations. Direct 116 

inversion of Eq. (1) for every time instant 𝑡𝑘 is typically an underdetermined and ill-posed inverse problem and requires 117 

some additional assumptions in order to avoid oscillatory and unstable solutions (Kandlikar and Ramachandran, 1999). 118 

At the same time, the time evolution of the particle size-distribution 𝑛(𝑑𝑝 , 𝑡) can be described by the aerosol general 119 

dynamic equation (GDE):  120 

𝜕𝑛

𝜕𝑡
(𝑑𝑝, 𝑡) = −

𝜕𝑔(𝑑𝑝,𝑡)𝑛(𝑑𝑝,𝑡)

𝜕𝑑𝑝
− 𝜆(𝑑𝑝, 𝑡)𝑛(𝑑𝑝, 𝑡) − CoagSink(𝛽, 𝑑𝑝, 𝑡) + CoagSrc(𝛽, 𝑑𝑝, 𝑡)                  (2) 121 

Here, 𝑔(𝑑𝑝 , 𝑡) is the condensation growth/evaporation rate, 𝜆(𝑑𝑝, 𝑡) is the particle loss by deposition or dilution and 122 

CoagSink and CoagSrc are the sink and source rates due to particle coagulation within the size distribution with the 123 

coagulation coefficients 𝛽. An exact expression of all terms can be found in e.g. Ozon et al. (2020) and Seinfeld and 124 

Pandis (2016). The boundary conditions of Eq. (2) are given by the apparent formation rate 𝐽𝑑𝑚𝑖𝑛
(𝑡) =125 

𝑔(𝑑𝑚𝑖𝑛 , 𝑡)𝑛(𝑑𝑚𝑖𝑛 , 𝑡) of newly formed particles at the minimum detectable size 𝑑𝑚𝑖𝑛  and a zero numerical flux condition  126 

𝑔(𝑑∞, 𝑡)𝑛(𝑑∞, 𝑡) = 0 at very large sizes. Altogether, the process parameters 𝑔(𝑑𝑝, 𝑡), 𝐽(𝑡), 𝜆(𝑑𝑝, 𝑡) and 𝛽(𝑑𝑖 , 𝑑𝑗) as well 127 

as the initial and boundary conditions determine completely the evolution of the size distribution, but especially 𝑔(𝑑𝑝, 𝑡) 128 

and 𝐽(𝑡) are usually not known. The coagulation coefficients 𝛽(𝑑𝑖 , 𝑑𝑗) can often be obtained from theory (and coagulation 129 

above 𝑑𝑚𝑖𝑛 can be even neglected in many applications with low particle concentrations) and the loss parameters 𝜆(𝑑𝑝, 𝑡) 130 

are well quantified for controlled aerosol chamber experiments.  131 

A single measurement of the size distribution 𝑦𝑘 does not depend explicitly on the process parameters, but as 𝑔(𝑑𝑝 , 𝑡) 132 

and 𝐽(𝑡) determine the temporal evolution of 𝑛(𝑑𝑝, 𝑡𝑘) the estimation of the process parameters is feasible from a 133 

sequence of  𝑙 measurements 𝑦𝑘  at several time instances.  134 

2.2 State estimation with Kalman smoothing 135 

Following Ozon et al. (2020) we formulate the problem as a Bayesian state estimation problem. After discretization of 136 

the problem in size space, i.e. particle diameter (𝑖 = 1, . . , 𝑞) and time (𝑘 = 1, … 𝑙), we can define the state variable  𝑋𝑘 =137 

[𝑁𝑘 𝑔𝑘 𝜆𝑘 𝐽𝑘]
𝑇
 for each time step 𝑘 with the particle concentrations 𝑁𝑖

𝑘 per size discretization bin 𝑖, the 138 

condensation and loss terms 𝑔𝑖
𝑘 and 𝜆𝑖

𝑘 , respectively, for each size discretization bin 𝑖 and the nucleation rate 𝐽𝑘. Here, 139 

we have denoted 𝑁𝑘 = [𝑁1
𝑘, … , 𝑁𝑞

𝑘], 𝑁𝑘 = [𝑔1
𝑘 , … , 𝑔𝑞

𝑘]  and 𝜆𝑘 = [𝜆1
𝑘 , … , 𝜆𝑞

𝑘].  The problem can then be formulated as: 140 

𝑋𝑘+1 = 𝐹(𝑋𝑘) + 𝑤𝑘                        (3) 141 

𝑦𝑘 = 𝐻𝑋𝑘 + 𝑣𝑘               (4) 142 

Eq. (3) represents the discretized non-linear evolution model, which is based on the general dynamic equation for 𝑁𝑘, on 143 

second order processes for  𝑔𝑘 and 𝐽𝑘, and a random walk evolution for 𝜆𝑘 (see Section 2.3, Eq (5)-(7)). Eq. (4) represents 144 

the discretized linear observation model. The terms 𝑤𝑘 and 𝑣𝑘  are the error terms, which are approximated as normally 145 

distributed 𝒩(0, Γ𝑤
𝑘) and 𝒩(0, Γ𝑒

𝑘) with the covariance matrices Γ𝑤
𝑘 , Γ𝑣

𝑘, which not only include stochastic noise, but also 146 

errors due discretization, model and parameter uncertainties.  147 

 148 



 

 

5 

 

We note that the above description of the state-space model (3)-(4) is slightly simplified for the sake of notational 149 

convenience. Namely, two additional features – both described in detail by Ozon et al. (2020) – are included in the model: 150 

First, we assume that the process rates are positive quantities and incorporate this positivity constraint into the evolution 151 

model by reparametrizing these quantities in the model. For example, for the nucleation rate 𝐽𝑘, we write 𝐽𝑘 =152 

1

𝛼
ln(1 + 𝑒𝛼𝜉𝐽

𝑘 ), where 𝜉𝐽
𝑘 is an unconstrained random variable and 𝛼 is a scaling constant. Respective parametrizations 153 

are written for 𝑔𝑖
𝑘 and 𝜆𝑖

𝑘 . Secondly, as noted above, second order models are written for rates 𝐽𝑘 and 𝑔𝑘. More 154 

specifically, we consider the respective state parameters 𝜉𝐽
𝑘  , 𝜉𝑔

𝑘   as second order Markov processes; for example 155 

𝜉𝐽
𝑘=𝜓1𝜉𝐽

𝑘−1+𝜓2𝜉𝐽
𝑘−2 + 𝜂, where 𝜓1 and 𝜓2 are model parameters and 𝜂 is Gaussian state noise. The second order models 156 

are written, because they promote temporal smoothness of the processes. When the positivity constraint and the second 157 

order models are included in the model, the state variable 𝑋𝑘 in the state-space model (3)-(4) is rewritten in the form 158 

𝑋𝑘 = [𝑁𝑘 𝜉𝑔
𝑘   𝜉𝑔

𝑘−1 𝜆𝑘 𝜉𝐽
𝑘   𝜉𝐽

𝑘−1]
𝑇
, and at each time step the above logarithmic functions are used for mapping the 159 

unconstrained variables 𝜉𝐽
𝑘  , 𝜉𝑔

𝑘   and  𝜉𝜆
𝑘 to respective quantities 𝐽𝑘, 𝑔𝑖

𝑘 and 𝜆𝑖
𝑘. For the details on the above modifications 160 

as well as discretization of the GDE model, we refer to Ozon et al. (2020). 161 

 162 

The GDE, i.e. the non-linear evolution model for  𝑁𝑘 (Eq. (2)), is similar to an advection equation. Therefore, its 163 

numerical discretization schemes are often unstable and must be treated carefully to avoid oscillation and  divergence or 164 

to minimize numerical diffusion (Shen et al., 2007; Smolarkiewicz, 1984). Thus, we show detailed considerations on the 165 

magnitude of the different error terms in the Supplement.  166 

 167 

Algorithm 1 Extended Kalman Filter (EKF) Algorithm 2 Fixed Interval Kalman Smoother (FIKS) 

Initial state: Expectation 𝑋0|0 and covariance Γ0|0 Initialization: Run Algorithm 1, store all variables 

for 𝑘 = 1, . . . , 𝑙 for 𝑘 = 𝑙 − 1, . . . ,1 

Prediction: expectation and covariance Backward gain matrix 

𝑋𝑘|𝑘−1 = 𝐹(𝑋𝑘−1|𝑘−1) 𝐴𝑘 = Γ𝑘|𝑘(𝜕𝐹)𝑇(Γ𝑘+1|𝑘)−1  

Γ𝑘|𝑘−1 = 𝜕𝐹𝑘−1Γ𝑘−1|𝑘−1(𝜕𝐹𝑘−1)𝑇 + Γ𝑤
𝑘−1 Smoother expectation and covariance 

Kalman gain matrix: 𝑋𝑘|𝐾 = 𝑋𝑘|𝑘 + 𝐴𝑘(𝑋𝑘+1|𝐾 − 𝑋𝑘+1|𝑘)  

𝐾𝑘 = Γ𝑘|𝑘−1(𝐻𝑘)𝑇(𝐻𝑘Γ𝑘|𝑘−1(𝐻𝑘)𝑇 + Γ𝑣
𝑘)−1  Γ𝑘|𝐾 = Γ𝑘|𝑘 + 𝐴𝑘(Γ𝑘+1|𝐾 − Γ𝑘+1|𝑘)(𝐴𝑘)𝑇  

Measurement update: filter expectation and covariance end 

𝑋𝑘|𝑘 = 𝑋𝑘|𝑘−1 + 𝐾𝑘(𝑌𝑘 − 𝐻𝑘𝑋𝑘|𝑘−1)  

Γ𝑘|𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)Γ𝑘|𝑘−1  

end  

Table 1: Extended Kalman Filter and Fixed Interval Kalman Smoother algorithms for estimation of the state variables and their 168 
variances 𝑿𝒌 and 𝚪𝒌.  169 

Considering this structure of the problem, a non-linear extension to the Kalman Filter (Extended Kalman Filter; EKF)  is 170 

a well suited algorithm for solving the unknown size-distribution and process parameters (Gelb, 1974; Kaipio and 171 
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Somersalo, 2005). It is a two stage recursive procedure, where in the first stage the future state and propagation of error 172 

is predicted based on the state evolution model (Eq. (3)). In the second stage, the state variable and its covariance are 173 

estimated by updating the predicted state variable and covariance. This so-called measurement update accounts for the 174 

discrepancy between the realized measurements at time 𝑡𝑘 and modelled measurements corresponding to the predicted 175 

state variable. This procedure is repeated until the final measurement 𝑘 = 𝑙. After finishing the EKF recursions, we utilize 176 

a Fixed Interval Kalman Smoother (FIKS), which consists of a backward recursion from a backward gain matrix and 177 

smooths the results by backwards recursion from 𝑙 to 1. The workflow of the EKF and FIKS are illustrated in Table 1 and 178 

more details on this algorithm can also be found in Ozon et al. (2020). 179 

2.3 Adaption to chamber experiments  180 

The state space model has been adjusted to represent best the evolution of an aerosol system during new particle formation 181 

experiments in an atmospheric simulation chamber like CLOUD. For the time evolution of the process parameters, we 182 

assume a rather smooth evolution for the nucleation and growth rates, approximated by a second order process (Ozon et 183 

al., 2020): 184 

𝐽𝑘+1 = (𝑟1 + 𝑟2)𝐽𝑘 − 𝑟1𝑟2𝐽𝑘−1 + 𝑤𝐽
𝑘         (5) 185 

𝑔𝑘+1 = (𝑟1 + 𝑟2)𝑔𝑘−𝑟1𝑟2𝑔𝑘−1 + 𝑤𝑔
𝑘        (6) 186 

The constants 𝑟1, 𝑟2 depend on the characteristic time of change, discretization time and a dampening factor and their 187 

definition can be taken from (Ozon et al., 2020) and the corresponding values for our experiments are listed in Table S1 188 

in the Supplement.  189 

In contrast to the growth and formation rates, the loss rates in a chamber experiment do not depend on time, but can be 190 

decribed by time independent wall and dilution losses 𝜆 = 𝜆𝑑𝑖𝑙 + 𝜆𝑤𝑎𝑙𝑙(𝑑𝑝). These loss rates are well characterized by 191 

dedicated wall loss experiments (Stolzenburg et al., 2020) and the dilution rate of the chamber 𝜆𝑑𝑖𝑙 = 𝑄𝑡𝑜𝑡/𝑉𝑐ℎ𝑎𝑚𝑏𝑒𝑟 , 192 

where 𝑄𝑡𝑜𝑡 is the total flow rate to the chamber to maintain constant pressure, and 𝑉𝑐ℎ𝑎𝑚𝑏𝑒𝑟  is the chamber volume. The 193 

time evolution is described by a random walk with a small stochastic noise term 𝑤𝜆
𝑘, and the expectation of the initial 194 

state (see Table S1 in the Supplement) is set to the experimentally determined value with a standard deviation of ±10%: 195 

𝜆𝑘+1 = 𝜆𝑘 + 𝑤𝜆
𝑘          (7) 196 

For fully defining the problem (Eq. (3)-(4)), an estimate of the covariance matrices corresponding to the error terms 𝑣𝑘  197 

and 𝑤𝑘 is needed.  The definition of the covariance matrices corresponding to the state noise 𝑤𝑘 on the size-distribution 198 

evolution 𝑤𝑁
𝑘 , the growth rate 𝑤𝑔

𝑘, the formation rate 𝑤𝐽
𝑘 and the wall loss rate 𝑤𝜆

𝑘 follow the consideration of Ozon et al. 199 

(2020). The covariances of the wall losses, the growth rate and the size-distribution are dominantly diagonal with some 200 

additional off-diagonal terms in order to account for a correlation in size. The formulation given by Ozon et al. (2020) 201 

was slightly altered to give a stronger correlation between the closest size bins due to the sparser size-resolution of the 202 

DMA-train compared to the simulated SMPS system (values for the different experiments are given in Table S1 in the 203 

Supplement): 204 

Γ𝑁/𝑔/𝜆
𝑘 (𝑖, 𝑗) = 𝜎𝑖,𝑁/𝜆/𝑔𝜎𝑗,𝑁/𝜆/𝑔  exp (− (

𝑖−𝑗

𝛿𝑁/𝜆/𝑔 
)

𝑎𝑁/𝜆/𝑔

)         (8)  205 

For the size-distribution evolution, we find that 𝜎𝑖,N
2 = (𝛿𝑘)2Var(𝑊𝑖

𝑘), with 𝛿𝑘 the discretization time-step and 𝑊𝑖
𝑘 the 206 

error of the discretization of the size-distribution evolution. A detailed derivation of 𝑊𝑖
𝑘 is given in the Supplement.  207 

The modelling error of the observation model and the measurement noise both contributing to 𝑣𝑘  are assumed to be 208 

mutually independent. For this reason, the covariance of the error term Γ𝑣
𝑘 in the measurement model is written as a sum 209 
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of the covariances of these two random variables, i.e. Γ𝑣
𝑘 = Γ𝑚𝑜𝑑

𝑘 + Γ𝑦
𝑘. For a detailed derivation we refer to the 210 

Supplement, where we also show that the discretization error is negligible compared to model and measurement error if 211 

a fine enough size discretization is chosen. We approximate Γ𝑣
𝑘 with uncorrelated processes, and hence the covariance 212 

matrices are of the diagonal form. For the measurement error, the variance is given by Poisson counting statistics in the 213 

case of a single-particle counting detector such as a condensational particle counter (CPC):  214 

Γ𝑦
𝑘(𝑖, 𝑖) = 𝑦𝑘(𝑖)            (9) 215 

For the model uncertainty, we assume the variance of the kernel Var(Δ𝐻𝑖,𝑗) is composed of an uncertainty proportional 216 

to 𝐻𝑖,𝑗 (for example due to an offset in the absolute calibration of the instrument) and a shifting size information error (for 217 

example discrepancy between set and actual classified size in a mobility spectrometer). It can then be formulated as 218 

(detailed values for the experiments under investigation can be found in Table S1 in the Supplement): 219 

Γ𝑚𝑜𝑑
𝑘 (𝑖, 𝑖) = ∑ (𝑛(𝑑𝑗)Δ𝑗)

2
Var(Δ𝐻𝑖,𝑗) 

𝑞
𝑗=1           (10) 220 

3 Experimental methods 221 

We use experimental data from the CERN CLOUD experiment (Duplissy et al., 2016; Kirkby et al., 2011) where we 222 

measured particle size-distributions in the sub-10 nm range with a DMA-train (Stolzenburg et al., 2017). The raw data 223 

obtained from the DMA-train is used as input for the analysis of three different sets of experiments performed in the 224 

atmospheric simulation chamber. The DMA-train instrument kernels are also used for modelling an instrument response 225 

to simulated size-distribution data in order to verify the general performance of the FIKS to DMA-train like data.  226 

3.1 DMA-train  227 

The DMA-train is an electrical mobility spectrometer, specifically designed to measure sub-10 nm size-distributions 228 

(Stolzenburg et al., 2017). Six identical DMAs are applied in parallel i.e. they sample through the same inlet. They are 229 

set to six distinct but fixed voltages and hence classified sizes. The charging state of the aerosol is pre-conditioned in two 230 

TSI Inc. Advanced Aerosol Neutralizers (Model 3088), each supplying three DMAs at 5.5 litre per minute (lpm) total 231 

flow. We use the Wiedensohler approximation (Wiedensohler, 1988) to describe the steady-state charge distribution at 232 

the DMA inlets. Kallinger and Szymanski (2015) showed that for the used neutralizers the steady-state charge distribution 233 

is still achieved for flow rates up to 5 lpm and we assume that this holds true for 5.5 lpm flow, too. After size classification, 234 

the aerosol is detected in condensation particle counters. Four channels are equipped with TSI Inc. Model 3776 ultrafine 235 

CPCs for detection of aerosols down to 2.5 nm. They were operated at reduced temperature settings in order to increase 236 

the detection efficiency of the smallest particles, achieving a 50% detection efficiency for particles as small as 2 nm 237 

(Wlasits et al., 2020). Two channels of the DMA-train were operated with particle counters specifically designed for sub-238 

2 nm particle detection using diethylene glycol (DEG), an Airmodus Ltd. particle size magnifier (Model A10, PSM) and 239 

a TSI Inc. nano-Enhancer (Model 3777). Each is used as a booster stage to activate the particles, which are subsequently 240 

detected by either an Airmodus Ltd. CPC (Model A20, for the PSM) or a TSI Inc. CPC (Model 3772, for the nano-241 

Enhancer). Both channels have a higher aerosol flow rate of 2.5 lpm resulting in a broader transfer function and higher 242 

transmission at the DMA compared to the 1.5 lpm sample flow in the other four channels. The sheath flow at the DMAs 243 

is kept constant at 15 lpm for all six channels.  244 

The constant sampling at fixed sizes allows for either a higher time-resolution at large aerosol number concentrations or 245 

a higher sensitivity towards low number concentrations due to longer signal averaging times compared to a scanning or 246 
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stepping differential mobility spectrometer. To increase the number of measured particle sizes, one DMA is still operated 247 

in an alternating mode, switching between 6.2 and 8 nm every ten seconds. The other DMAs are set to classify particles 248 

of 4.3, 3.2, 2.55, 2.2 and 1.8 nm. The instrument kernels are obtained from calibration experiments, where we use the 249 

DMA transfer function and sampling loss characterization from Stolzenburg et al. (2017),  the CPC activation efficiencies 250 

from Wlasits et al. (2020) and the charging efficiency was tested to follow the Wiedensohler approximation in Tauber et 251 

al. (2020). The kernel functions for all seven classified sizes are shown in Fig. 1 for an instrument averaging time of 120 252 

seconds, sulphuric acid-like test particles (using the Ammonium Sulfate detection efficiencies from Wlasits et al.  (2020)) 253 

and including the detector flow rates of each condensation particle counter. Therefore, the kernels can be used to convert 254 

raw particle counts at the detecting CPCs into a particle size-distribution (within an inverse problem) and vice-versa. Note 255 

that for different chemical composition of the input particles, the CPC response might be different. Therefore, the kernels 256 

used for analysing experiments where particles were formed from oxidized organics (Kirkby et al., 2016) or from iodic 257 

acid (He et al., 2021) are different and approximated by the calibration curves for oxidized beta-caryophyllene and sodium 258 

chloride from Wlasits et al. (2020).  259 

 260 

Figure 1: Kernel functions of the DMA-train when classifying sulphuric acid particles at a signal averaging time of 120 seconds. (a) 261 
shows the continuous form of the transfer function (color code) of the seven DMA-train channels (y-axis), inferred from instrument 262 
calibrations (Stolzenburg et al., 2017). (b) shows the discretization into 32 size bins from 1.7 to 10 nm used in the Kalman smoother  263 
(c) shows the comparison between continuous form and used discretization for channel 2 with centroid diameter at 2.2 nm, together 264 
with the model uncertainty, which is used for the error estimate (see Table S1 in the Supplement).  265 
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3.2 CLOUD 266 

We use experimental data from the DMA-train measuring new particle formation in nucleation experiments at the CERN 267 

CLOUD chamber. The 26.1 m3 stainless-steel chamber provides a high-purity, temperature-controlled environment in 268 

order to perform experiments under atmospherically relevant conditions, where trace gases can be added precisely at pptv 269 

(parts per trillion by volume) level and sunlight can be simulated by UV-illumination of the chamber. We use three 270 

different sets of experiments, of varying chemical composition, in order to demonstrate the performance of the FIKS in 271 

reconstructing formation and growth rates. See also Kirkby et al. (2011) and Duplissy et al. (2016).  272 

First, a nucleation experiment using sulphuric acid and ammonia was performed at 5℃ by adding SO2 and O3 to the 273 

chamber and through the photo-dissociation of ozone, the formation of OH radicals and sulphuric acid was induced which 274 

resulted in strong new particle formation (Stolzenburg et al., 2020). Second, we performed nucleation and growth 275 

experiments at 5℃ using oxidized organics from dark (i.e. no UV-illumination) ozonolysis of alpha-pinene (Kirkby et al., 276 

2016; Stolzenburg et al., 2018). Both experiments resulted in moderate new particle formation rate and thus, in the Kalman 277 

smoother, we used DMA-train data that was averaged over 120 seconds time intervals. Third, we studied nucleation from 278 

iodine oxides at 10℃ (He et al., 2021), which resulted in high particle formation rates and fast growth. For the third 279 

experiment, we reduced the DMA-train averaging time down to 20 seconds, while keeping high counting statistics over 280 

the averaging interval.  281 

3.3 PSM derived formation rates  282 

Particle formation rates (Jdp) are calculated from the time derivative of the total particle number concentration larger than 283 

1.7 nm following the method introduced in Dada et al. (2020). The particle number size distribution is measured with the 284 

particle size magnifier (PSM) coupled with a condensation particle counter (1.5 – 2.5 nm), a TSI nano-SMPS (3 – 65 nm) 285 

and home-built long-SMPS (10 – 800 nm). The formation rates are corrected for the size dependent wall and coagulation 286 

losses. Additionally, since the chamber is operated in continuous flow mode, the particle concentrations are corrected for 287 

dilution losses. For more information on the PSM derived formation rates, see Dada et al. (2020). The uncertainty on 288 

J1.7 was assumed to be 30% for the CLOUD chamber derived from the repetition of the same experiment. A procedure as 289 

described in Dada et al. (2020) using propagation of error in the concentration measurement, dilution, coagulation and 290 

wall losses as well as the error on the time-derivative of the total particle concentration within a Monte-Carlo simulation 291 

could be used if such repetition experiments were not available. It needs to be noted, that for comparison of the formation 292 

rate value at the arbitrary minimum detectable size 𝑑min = 1.7 nm with a system inherent nucleation rate at the critical 293 

cluster size, additional sophisticated approaches might be necessary (Kürten et al., 2015). 294 

3.4 Growth rates using INSIDE 295 

In order to compare the particle growth rates derived by Kalman smoothing, we use the size- and time-dependent growth 296 

rate analysis tool INSIDE (Pichelstorfer et al., 2018). It uses input particle size-distributions at time 𝑡1 in order to simulate 297 

the known aerosol dynamics (coagulation, wall losses and dilution) until a time 𝑡2 (typically separated by one 298 

measurement cycle of an instrument, i.e. the 120 seconds averaging time mentioned above). At 𝑡2, the simulated aerosol 299 

size-distribution is compared to the measured size-distribution and by evaluating the general dynamics equation above a 300 

certain diameter 𝑑eval the growth term 
d𝑑𝑝

d𝑡
|

𝑑eval

=

d𝑁∞
d𝑡

|
𝑑eval

∞
−  

d𝑁∞
𝑠𝑖𝑚

d𝑡
|
𝑑eval

∞

𝑛(𝑑𝑝,𝑡)|
𝑑eval

 can be computed. Evaluating this equation for 301 
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several evaluation diameters 𝑑eval and at all measurement times 𝑡𝑖, this results in time- and size-resolved growth rates 302 

from a size-distribution measurement. This is distinct from most others, integrative growth rate analysis approaches, 303 

which can only derive one growth rate value for a specified size-interval in a single run (Dada et al., 2020; Kulmala et 304 

al., 2012; Lehtipalo et al., 2014; Paasonen et al., 2018). Last it should be noted that for INSIDE, compared to the Kalman 305 

smoothing, each time step is analysed individually and the growth rate analysis framework relies on already inverted size 306 

distributions. For this inversion only a simple point-by-point inversion procedure is used for the DMA-train data of this 307 

work, assuming narrow DMA transfer functions and little variation of the size-distribution across it (Stolzenburg and 308 

McMurry, 2008). Moreover, the INSIDE method does not provide an uncertainty estimate on the growth rate calculation 309 

and hence the Kalman smoothing will provide valuable insights on the uncertainty related to growth rate measurements.  310 

4 Results: Simulation and Experimental 311 

4.1 Numerical simulation test  312 

First, we simulated a data set representing a typical nucleation experiment performed in an atmospheric simulation 313 

chamber like CLOUD and modelled the DMA-train response according to the above Kernel functions and then applied 314 

the FIKS to this synthetic dataset. We used the same framework as in Ozon et al. (2020) to simulate a nucleation 315 

experiment with formation rate at 1 nm 𝐽1.0 = 5.25 cm−3 s−1, and size-independent growth rate 𝐺𝑅 = 2.5 nm h−1 and 316 

the loss rates equal to the CERN CLOUD experiment (Stolzenburg et al., 2020). The evolution of the simulated size-317 

distribution is shown in Fig. 2a. The measurement data 𝑦𝑘 are then simulated using the kernel functions from Fig. 1a and 318 

altered with a Poisson-distributed random counting error. The FIKS is then applied to the measurement data with the 319 

input parameters given in Table S1 in the Supplement. We use a resolution of 32 bins from 1.7 to 10 nm for the FIKS to 320 

keep the computational effort low. We tested also 16 to 64 size discretization bins, but higher resolution required 321 

additional adjustments in the size-correlation of the covariance given in Eq. (8), which would result in significant 322 

differences compared to the original work of Ozon et al. (2020) without providing significantly more accuracy. Figure 2 323 

also shows the Kalman smoother estimates for the size-distribution, growth rate and formation rate at 1.7 nm. The 324 

reconstructed size-distribution (Fig. 2b) is very similar to the true size-distribution (Fig. 2a), especially taking into account 325 

the sparser discretization of the former. Also the estimated growth and nucleation rates agree well with true values of the 326 

respective process rates specified in the simulation. Moreover, the uncertainty estimates are feasible: For both quantities, 327 

the true values are within the uncertainty limits given by FIKS. The reconstructed size-distribution and especially, growth 328 

rate (Fig. 2 b and c, respectively) show some temporal oscillations, which are related to periods for the particle population 329 

to grow from the size range visible for one DMA-train channel to the next one. That is, the oscillation is a result of an 330 

insufficient coverage of the size-range by the DMA-train kernels. The problem could be approached by application of a 331 

regularization scheme in the measurement model (Voutilainen and Kaipio, 2001) or by adjusting the kernels improving 332 

the overlap, which will be discussed in more detail in Section 4.5. Nevertheless, the overall good retrieval of the simulated 333 

size distribution and process rates demonstrates that Kalman smoothing approach is well suited for analysing DMA-train 334 

data from chamber nucleation experiments.  335 

 336 
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337 
Figure 2: Results of the simulated chamber nucleation experiment: (a) The simulated, temporally evolving size distribution of aerosols. 338 
(b) The FIKS estimate for the size distribution. This estimate was computed based on the numerically simulated DMA-train data 339 
corresponding to the synthetic size distribution shown in (a). (c) The FIKS estimate for the growth rate of particles. (d) The growth rate 340 
corresponding to a single instant of time (2h 56min); here, the FIKS estimate and the associated uncertainty limits are plotted together 341 
with the true growth rate. (e) The FIKS estimate for the formation rate at 1.7 nm and its uncertainty, and the true formation rate. (f) 342 
FIKS estimate, its uncertainty and the true value of the particle size distribution corresponding to a single instant of time (2h 56min). 343 
In subfigures d-f, the orange lines represent the FIKS estimates (posterior expectations) and the orange shaded areas illustrate the 344 
uncertainties of the associated variables (more specifically, their approximate posterior standard deviation limits). The true values of 345 
the quantities are plotted in green. 346 

4.2 Sulphuric Acid-Ammonia experiment 347 

We applied the FIKS to experimental data from a sulphuric acid-ammonia nucleation and growth experiment performed 348 

at 5℃ at the CERN CLOUD chamber. The raw data measured with the DMA-train were averaged in 120-second time 349 

intervals in order to increase the counting statistics per channel and then used as input for BAYROSOL. The details of 350 

parameter choices in FIKS are given again in Table S1 in the Supplement. The results of applying the Kalman smoothing 351 

to this experimental data are shown in Fig. 3.  352 

 353 
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Figure 3: Results of an experiment performed at the CERN CLOUD chamber: The DMA-train data was acquired during sulphuric 354 
acid-ammonia nucleation and growth processes. Experimental conditions: 5℃, 60% RH, 5 ppb SO2, 120 ppb O3 and 40 ppt NH3. (a) 355 
The FIKS estimate for the size distribution. (b) The evolution of the formation rate during the experiment. The orange line and shaded 356 
area represent the FIKS estimate and its uncertainty, respectively, while the solid blue line and blue area show the nucleation rate 357 
estimate and the associated 30% uncertainty based on a different set of instruments (particle size magnifier, PSM) and the standard 358 
approach for inferring nucleation rates at 1.7 nm (Dada et al., 2020). The pink line and shaded area show the standard approach using 359 
the data from the DMA-train only. (c) The growth rate corresponding to time 2h20min after the start of the experiment. The FIKS 360 
estimate and the associated uncertainty are marked with orange line and shaded area, respectively. The green line represents the growth 361 
rate estimate, which is obtained from DMA-train data by traditional inversion (INSIDE method). (d) The total number concentration 362 
reconstructed from the standard inversion approach (green line) and FIKS (orange line and shaded area for the uncertainty range). 363 

The size- and time-dependence of the FIKS estimate for the true size-distribution (Fig. 3a) is very smooth, and it is also 364 

able to bridge the information gaps between the largest size-distribution channels. This is a significant improvement from 365 

the traditional point-by-point inversion, where the data of each DMA-train channel is inverted independently: Here the 366 

reconstructed total number concentration is significantly more noisy. The smoother FIKS reconstructed size-distribution 367 

and total number concentration (Fig. 3d) still show some small temporal fluctuations. The fluctuations are even more 368 

clearly visible in the reconstructed evolution of the formation rate (Fig. 3b). In contrast to the oscillations found in the 369 

growth rate for the simulated case, the fluctuations do not only occur when the size-distribution reaches a new DMA-train 370 

size channel. Furthermore, the same fluctuations are also recovered when the formation rate is inferred from the PSM and 371 

nano-SMPS, i.e. an entirely different set of instrumentation and different type of data-analysis. This result suggests that 372 

the fluctuation of the particle formation truly occurs physically in the experiment and is not a reconstruction error caused 373 

by instrument noise or a bias caused by the inversion method. The absolute values of the two independent formation rate 374 

estimates agree upon a factor of 1.5. Furthermore, large portions of the uncertainty intervals of these two estimates overlap 375 

with each other, which is another indicator of the feasibility of FIKS to analysing DMA-train data. In addition, also the 376 

inferred growth rates agree within the systematic uncertainties for both approaches (Fig. 3c for one time instant). It is 377 

worth noting, however, that both growth rate estimates rely on data from the same instrument and are hence more 378 

interdependent than the formation rate estimates. Nevertheless, the good agreement between them corroborates the 379 

feasibility of Kalman smoothing to reconstructing nanoparticle growth rates from experimental data. 380 

4.3 Alpha-pinene ozonolysis experiment 381 

Third, we applied the FIKS to experimental data obtained by the DMA-train from an alpha-pinene ozonolysis experiment. 382 

Besides the different chemical composition of the growing particles (resulting in different assumptions on the DMA-train 383 

transfer functions) in comparison to the experimental results used in section 4.2, this experiment is characterized by a 384 

different size-dependency of the growth rate, due to the increased condensation of low- and semi-volatile organics with 385 

increasing particle size (Simon et al., 2020; Stolzenburg et al., 2018; Tröstl et al., 2016). The formation rate, however, 386 

remains rather similar to the sulphuric acid-ammonia experiment under these specific experimental conditions, but the 387 

slower initial growth rates result in generally lower produced particle concentrations. The results of applying FIKS to the 388 

data from this experiment are shown in Fig. 4. Again, the size-distribution given by FIKS is much smoother than that 389 

obtained with a standard inversion procedure, see Heinritzi et al. (2020) and Fig. 4d for the total number concentration 390 

evolution retrieved from the standard inversion and the FIKS.  391 

Because in alpha-pinene ozonolysis experiment the nucleation and growth rates were known to be similar to those in the 392 

sulphuric acid-ammonia experiment, the parameters of their evolution models were selected as in Section 4.2 (Table S1 393 

in the Supplement). The formation rate is lower by a factor of 2.5 than the one obtained from the PSM. Also the formation 394 

rate retrieved with the method from Dada et al. (2020) but using the DMA-train data is significantly higher, but in-between 395 

the two estimates. The possible deviation has hence two plausible reasons: The instrumental differences can be caused by 396 
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different calibration procedures for the DMA-train and PSM (Dada et al. (2020); direct cross-calibration using NAIS 397 

versus Wlasits et al., (2020) using beta-caryophyllene ozonolysis surrogates). And the methodological differences could 398 

arise from the very low counting statistics in the DMA-train during this experiment compared to the other two, which 399 

will cause the inherent Gaussian assumption of the FIKS to fail. As the deviation in the reconstructed total number 400 

concentration of the DMA-train data using two inversion procedures is only a factor of ~1.3 (Fig. 4d), the formation rate 401 

discrepancies could be largely due to the more difficult and uncertain calibration procedures. Considering the fact that 402 

inter-instrument deviations in sub-10 nm size-distribution measurements can be as large as one order of magnitude 403 

(Kangasluoma et al., 2020), the achieved agreement is remarkable, especially as some fluctuations within the chamber 404 

can again be reconstructed in both approaches. The retrieved growth rates from the FIKS estimate and the INSIDE method 405 

agree remarkably well and both show the increasing growth rates with increasing particle size up to 4.3 nm, an indication 406 

for a strong Kelvin-effect in organic condensation (Stolzenburg et al., 2018; Tröstl et al., 2016). The decreasing Kalman 407 

smoother estimate above 4.3 nm is related to the fact that the FIKS searches a smooth estimate of the growth rate (Eq. 408 

(6)), but at that point (2h30min after experiment start), practically no information from the size-distribution above 4.3 nm 409 

is available, resulting in a slow decrease towards zero. This is due to the strong smoothness a priori used in the FIKS 410 

algorithm (Table S1 in the Supplement). The INSIDE method does not report growth rates from regions with no 411 

information (Pichelstorfer et al., 2018) from the size-distribution and hence the estimate stops at 4.3 nm.  412 

 413 

Figure 4: Results of an experiment performed at the CERN CLOUD chamber: The DMA-train data was acquired during an alpha-414 
pinene ozonolysis. Experimental conditions: Experimental conditions: 5℃, 40% RH, 300 ppt alpha-pinene, 40 ppb O3. (a) The FIKS 415 
estimate for the size distribution. (b) The evolution of the formation rate during the experiment. The orange line and shaded area 416 
represent the FIKS estimate and its uncertainty, respectively, while the solid blue line and blue area show the nucleation rate estimate 417 
and the associated 30% uncertainty based on a different set of instruments (particle size magnifier, PSM) and the standard approach 418 
for inferring nucleation rates at 1.7 nm (Dada et al., 2020). The pink line and shaded area show the standard approach using the data 419 
from the DMA-train only. (c) The growth rate corresponding to time 2h30 min after the start of the experiment. The FIKS estimate and 420 
the associated uncertainty are marked with orange line and shaded area, respectively. The green line represents the growth rate estimate, 421 
which is obtained from DMA-train data by traditional inversion (INSIDE method). (d) The total number concentration reconstructed 422 
from the standard inversion approach (green line) and FIKS (orange line and shaded area for the uncertainty range). 423 

4.4 Iodic Acid experiment 424 

Finally, we analysed a more dynamic experiment of nucleation and growth from iodic acid (He et al., 2020, 2021). The 425 

experiment is characterized by extremely high nucleation rates, which are two orders of magnitude higher than in the 426 
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sulphuric acid-ammonia and alpha-pinene ozonolysis experiments. However, the growth rate is only half an order of 427 

magnitude higher compared to the other two example cases. Figure 5 shows that, in spite of the highly dynamic 428 

experiment, the formation rate recovered by Kalman smoothing agrees with the estimate obtained from the PSM (Fig. 429 

5b). The usage of the DMA-train data with a time resolution of 20 seconds allows for the precise recovery of the spike in 430 

formation rate in the beginning of the experiment.  This causes the build-up of a high condensation sink and vapour/cluster 431 

depletion almost shutting off any further nucleation during the continuation of the experiment. The four-minute time 432 

resolution of the data for the calculation of the nucleation rate from the PSM is limited in that respect. The reconstructed 433 

growth rates (Fig. 5c) show again agreement between the FIKS estimate and the INSIDE method, indicating a clear 434 

decreasing trend with size, which is expected for condensation at the kinetic limit if the vapour molecular size is taken 435 

into account (He et al., 2021; Lehtinen and Kulmala, 2003; Nieminen et al., 2010; Stolzenburg et al., 2020). The lower 436 

values towards 1.8 nm could be caused by a biased estimate of the PSM detection efficiency, because neither a calibration 437 

for iodic acid clusters nor for sodium chloride particles (which was used for the other detectors in the DMA-train) was 438 

available. The instabilities in the size-distribution at the smallest sizes and fluctuations of the formation rate are expected 439 

considering the highly dynamic process of this experiment. Overall, the good agreement for the inferred process 440 

parameters of the aerosol general dynamics equation, i.e. the formation and growth rates, is still remarkable. However, 441 

the reconstructed size-distribution from the FIKS estimate shows some discontinuities, especially during the growth above 442 

3 nm. This is because the available instrument information from the DMA-train starts to get very sparse in that size range 443 

given the dynamic processes involved in the iodic acid nucleation and growth. This also causes the overshooting in the 444 

total number concentration using the standard inversion compared to the FIKS result (Fig. 5d), as the larger size channels 445 

cover a very broad range at too high resolution for the linear interpolation of the standard inversion used to obtain Ntot. 446 

More available size channels (hence more DMAs in the case of the DMA-train) would help to resolve such discontinuities. 447 

We will therefore provide an instrument design recommendation based on simulated data in the next section.  448 

 449 

Figure 5: Results of an experiment performed at the CERN CLOUD chamber: The DMA-train data was acquired during iodic acid 450 
nucleation and growth processes. Experimental conditions: Experimental conditions: 10℃, 80% RH, 100 ppt I2, 40 ppb O3. (a) The 451 
FIKS estimate for the size distribution. (b) The evolution of the formation rate during the experiment. The orange line and shaded area 452 
represent the FIKS estimate and its uncertainty, respectively, while the solid blue line and blue area show the nucleation rate estimate 453 
and the associated 30% uncertainty based on a different set of instruments (particle size magnifier, PSM) and the standard approach 454 
for inferring nucleation rates at 1.7 nm (Dada et al., 2020). The pink line and shaded area show the standard approach using the data 455 
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from the DMA-train only. (c) The growth rate corresponding to time 0h16min min after the start of the experiment. The FIKS estimate 456 
and the associated uncertainty are marked with orange line and shaded area, respectively. The green line represents the growth rate 457 
estimate, which is obtained from DMA-train data by traditional inversion (INSIDE method). (d) The total number concentration 458 
reconstructed from the standard inversion approach (green line) and FIKS (orange line and shaded area for the uncertainty range). 459 

 460 

4.5 Instrument design recommendation from a signal processing point of view  461 

The size range covered by the seven DMA-train channels was chosen semi-arbitrarily based on some external constraints: 462 

the lowest measured centroid diameter was supposed to be as close as possible to 1.7 nm where the formation rate is 463 

typically measured for experiments performed at the CLOUD chamber. In order to cover the sub-10 nm range the largest 464 

channels was set to 8 nm. The other channel diameters were chosen to yield sufficient coverage of the sub-3 nm range. 465 

The width of the transfer functions was fixed by the detector sample flow rates and the 15 lpm critical orifices provided 466 

by Grimm Aerosol for the DMA sheath air supply (also the standard flow rate used by the manufacturer for this type of 467 

DMA). However, the chosen centroid diameters (and hence fixed voltages at the DMAs) and selected sheath flow rates 468 

could easily be altered.  469 

In order to study numerically the effect of choice for the DMA-train channels, we constructed a model corresponding to 470 

a channel choice different from that in the previous sections: The kernel for the DMA-train with seven channels having 471 

centroid diameters of 1.8, 2.2, 2.8, 3.6, 4.6, 6.1 and 8.0 nm is illustrated in  Fig. 6a. Moreover, channels 3 to 7 have been 472 

altered to use a 2.5 lpm sample flow rate (could be achieved by a make-up flow at each CPC) and a reduced sheath flow 473 

rate of 10 lpm, only providing a theoretical non-diffusive resolution of ~4, which is significantly lower. However, this 474 

permits covering the entire size-range between 1.8 and 8 nm by overlapping channels. We revisited the numerical 475 

simulation described in Section 4.1 using DMA-train model corresponding to this configuration. The resulting size-476 

distribution given by FIKS is shown in Fig. 6b. Comparison between the two reconstructions in Fig. 2b and Fig. 6b reveals 477 

that the new choice of DMA-channels stabilizes the size-distribution estimate, which is supported by the comparison of 478 

the estimated total number concentrations (Fig. 6d). While with the original design the size distribution evolves in step-479 

wise manner when the growing particle mode reaches larger size-channels, the size distribution retrieved with the adjusted 480 

kernels is smoother, also temporally, which is especially visible in the evolution of the total number concentration. The 481 

improvement is also significant for the retrieval of the growth rate, where the estimate no longer overshoots as illustrated 482 

by the snapshot size dependence of the growth rate for a single instant in time, shown in Fig. 6c. It should be noted, that 483 

also regularization schemes in the measurement model as proposed by Voutilainen and Kaipio (2001) could provide 484 

smoother estimates, but this would need a significant adjustment of the algorithm provided by Ozon et al. (2020) and is 485 

hence not implemented here.  486 

The result of this additional numerical study thus demonstrates that in the chosen conditions of the simulation, the 487 

reconstruction quality improves when the resolution of individual channels is lowered. This seemingly counterintuitive 488 

effect stems from the fact that FIKS estimates do not rely only on the measurements, but are also advised by the GDE 489 

model, which makes the problem of optimizing the measurement design a somewhat cumbersome task. A rigorous 490 

investigation of the optimal experimental design is out of the scope of this paper, but the above observation is worth 491 

noticing -- especially because a lot of recent experimental effort in the sub-10 nm range has been devoted to improving 492 

the instrument resolution (Kangasluoma et al., 2020). While on the individual channel level this might reduce systematic 493 

uncertainties, as discussed in Kangasluoma et al. (2020), signal processing rather requires a broad coverage of the size 494 

distribution than high resolution. However, the ideal instrument would combine both, full coverage of the size distribution 495 

but achieved with more, high-resolution channels. For the DMA-train principle, this would require new ideas in 496 
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instrument design in order to incorporate more DMAs without the instrument becoming impractically bulky.  Extending 497 

the measurement size-range above 10 nm would require even more DMAs, but this range is usually well-covered by 498 

commercially available instruments, which could easily be added to the FIKS measurement model, facilitating the 499 

measurement of experiments where particle grow well beyond 10 nm.  500 

 501 

Figure 6: Adjusted DMA-train kernel for better signal processing (a), which could be achieved by choosing suitable centroid voltages 502 
and altering the resolution of the DMAs through sheath-flow and sample-flow adjustments. (b) shows the reconstructed simulated size-503 
distribution of Fig. 2 using the adjusted kernel. (c) The growth rate corresponding to time 1h20min min after the start of simulation. 504 
The orange line and shaded area are the FIKS estimate using the original design of the DMA-train, while the blue line and shaded area 505 
indicate the FIKS result from the proposed new design. The green line shows the true value used to create the input size distribution(d) 506 
shows the evolution of the total particle number concentration for the input size-distribution (green), the original kernel (orange line 507 
and shaded area for the uncertainty) and the proposed design (blue line and shaded area).  508 

5 Conclusion 509 

A recently developed methodology (BAYROSOL) applying the Fixed Interval Kalman Smoother (FIKS) to a finite 510 

difference solution to the aerosol GDE was used to analyze DMA-train measurements of aerosol dynamics at the CLOUD 511 

chamber facility at CERN. The overall aim of this methodology is to estimate unknown aerosol microphysical process 512 

rates as well as their uncertainties from size-distribution evolution measurements. In a previous paper, the methodology 513 

was shown to be able to predict new particle formation, growth and loss rates from synthetic computer-generated aerosol 514 

size distribution evolution data, while here the method has been applied to real experimental data for the first time. Four 515 

experimental cases with particle formation and growth were tested: 1) a computer-generated synthetic case, 2) sulphuric 516 

acid-ammonia, 3) alpha-pinene ozonolysis, and 4) iodic acid.  517 

The DMA-train was selected for two main reasons: first, the instrument kernel functions are well characterized giving 518 

rise to reliable estimation of the instrument uncertainties and second, new particle formation rates have not been estimated 519 

directly from DMA-train measurements before. In addition, as the current version of the DMA-train is designed in such 520 
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a way that the individual DMAs have a rather narrow collection kernels for the channels, with significant gaps between 521 

some of the channels, the FIKS can reconstruct the size distributions from the measured signals in such a way that the 522 

distributions are rather smooth and consistent with the GDE. 523 

We compared the growth rates, which with BAYROSOL can be estimated as functions of both size and time, with those 524 

obtained by INSIDE, a method applied earlier to CLOUD data, and the agreement was remarkably good for all studied 525 

cases. INSIDE is also based on matching the GDE solution to measured size distribution dynamics, however without the 526 

capability of estimating uncertainties of the estimations. The FIKS-based estimates for the particle formation rates were 527 

compared with those estimated from data obtained by a separate instrument, the Particle Size Magnifier (PSM), based on 528 

the rate of change of the total number concentration measured by the instrument corrected by coagulation and wall-losses. 529 

Again, the agreement was very good, especially considering the fact that instrument uncertainties are large at the very 530 

lowest end of the measured size spectrum. For the iodic-acid case, the FIKS estimate of the formation rate was even able 531 

to capture rapidly changing dynamics of the experiment. It was remarkable for all cases that some fluctuations in the 532 

formation rates were recovered by both methods independently, indicating that these are physical variations during the 533 

experiment 534 

Finally, we utilized the FIKS from an instrument development point of view. Typically, an as-high-as-possible resolution 535 

for the different measurement channels has been the aim when measuring nanometer-sized particles. This aim, however, 536 

gives rise to gaps in the measured size range, as is the case in the DMA-train studied. Thus we studied whether a better 537 

coverage of the size spectrum, but lower resolution of the individual channels would be advantageous for size distribution 538 

estimation. 539 

Summarizing, we believe that Bayesian state estimation methods such as FIKS can be very useful in the field of aerosol 540 

science in many aspects. As mentioned above, they can be used to fill gaps in measurements in such a way that not only 541 

the obtained size distributions but also unknown process rates are consistent with theory describing aerosol size 542 

distribution dynamics. In addition, the methodology provides estimations of uncertainties both for size distributions as 543 

well as process rates based on uncertainty estimations in the measurements and the used models, which is unfortunately 544 

not common when reporting results of aerosol measurements. Finally, it is conceivable that the methodology presented 545 

here will be superior to several previous approaches when combining measurement data obtained with several different 546 

instruments that operate at different size ranges. This will be a topic of our forthcoming studies. 547 
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also contains the code used to obtain the results discussed in Ozon et al. 2020. It is possible to generate the simulated data 551 
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