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Abstract.

Particulate matter (PM) is the air pollutant that causes the greatest deleterious health effects across the world and PM is routinely

monitored within air quality networks where PM mass according to its size, and sometimes number are reported. However, such

measurements do not provide information on the biological toxicity of PM. Oxidative potential (OP) is a complementary metric

that aims to classify PM in respect to its oxidising ability in the lungs and is being increasingly reported due to its assumed5

relevance concerning human health. Between June 2018 and May 2019, an intensive filter-based PM sampling campaign was

conducted across Switzerland in five locations which involved the quantification of a large number of PM constituents and OP

for both PM10 and PM2.5. OP was quantified by three assays: ascorbic acid (AA), dithiothreitol (DTT), and dichlorofluorescein

(DCFH). OPv (OP by air volume) was found to be variable in time and space with Bern-Bollwerk, an urban-traffic sampling site

having the greatest levels of OPv among the Swiss sites (especially when considering OPAA
v ), with more rural locations such as10

Payerne experiencing lower OPv. However, urban-background and suburban sites did experience significant OPv enhancement,

as did the rural Magadino-Cadenazzo site during wintertime because of high levels of wood smoke. The mean OP ranges

for the sampling period were: 0.4–4.1 nmolmin−1m−3, 0.6–3.0 nmolmin−1m−3, and 0.3–0.7 nmol H2O2 m
−3 for OPAA

v ,

OPDTT
v , and OPDCFH

v respectively. A source allocation method using positive matrix factorisation (PMF) models indicated

that although all PM10 and PM2.5 sources that were identified contributed to OPv on average, the anthropogenic road traffic and15

wood combustion sources had the greatest OPm potency (OP per PM mass). A dimensionality reduction procedure coupled to

multiple linear regression modelling consistently identified a handful of metals usually associated with non-exhaust emissions,

namely: copper, zinc, iron, tin, antimony and somewhat manganese and cadmium as well as three specific wood burning-

sourced organic tracers – levoglucosan, mannosan, and galactosan (or their metal substitutes: rubidium and potassium) were

the most important PM components to explain and predict OPv. The combination of a metal and a wood burning specific tracer20

led to the best performing linear models to explain OPv. Interestingly, within the non-exhaust and wood combustion emission

groups, the exact choice of component was not critical, the models simply required a variable to be present to represent the

emission source or process. This analysis strongly suggests that the anthropogenic and locally emitted road traffic and wood
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burning sources should be prioritised, targeted, and controlled to gain the most efficacious decrease in OPv, and presumably

biological harm reductions in Switzerland.25

1 Introduction

1.1 Background

Particulate matter (PM) is a major atmospheric pollutant that is very diverse in terms of size, composition, solubility, and

surface area. PM has deleterious effects on human health, reduces visibility, can negatively affect vegetation, and has significant

climate effects (Harrison, 2020). With the resolution of the United Nations Human Rights Council stating that access to a clean,30

healthy, and sustainable environment is a human right (United Nations Human Rights Council, 2021), further understanding

of PM and its negative health effects are required. These factors make PM a priority pollutant for management and control

and thus, is widely monitored worldwide (World Health Organization, 2021). However, widespread routine PM monitoring

is based primarily on mass within certain size fractions (and to a lesser extent, particle number) which contains no intrinsic

information on sources or the potential for biological harm. There is evidence that carbonaceous species and transition metals35

are more toxic to biological systems than inorganic ions (Fang et al., 2017; Daellenbach et al., 2020; Leni et al., 2020). This

gives rise to the motivation to define PM in terms of its biological reactivity and toxicity (Zhang et al., 2021).

The quantification of oxidative potential (OP) has the objective of being a “health-relevant” metric of ambient PM by

conducting biological toxicological characterisation (Saffari et al., 2014; Borlaza et al., 2018; Bates et al., 2019). OP aims to

complement PM mass and number monitoring data and is measured by quantifying the capacity of PM to drive oxidative stress40

after inhalation in target molecules, generally from the production of reactive oxygen species (ROS) (Delfino et al., 2013; Fang

et al., 2016; Yadav and Phuleria, 2020). ROS are free radicals that are formed with molecular oxygen and such compounds

can elicit inflammation responses and apoptosis (cell death), via complex triggers and cascades after inhalation, and therefore,

presents a mechanism of biological toxicity caused by ambient PM (Bates et al., 2019). PM toxicity may result in inflammation,

respiratory and cardiovascular diseases, cancer, and impediments to neural function (Raaschou-Nielsen et al., 2016; Liu et al.,45

2018a).

A number of toxicological assays have emerged that measure and quantify PM’s OP, but to date, no standard definition has

been decided on by consensus (Weber et al., 2018; Calas et al., 2019; Weber et al., 2021). However, the ascorbic acid (AA) and

dithiothreitol (DTT) assays have emerged as potential standards to evaluate ROS and OP because of their relatively widespread

use (Calas et al., 2017; Shirmohammadi et al., 2017; Yadav and Phuleria, 2020). However, due to the lack of standard operating50

procedures and calibrations, comparisons of OP measurements conducted by different laboratories is not advised, or at least

should be done very cautiously (Janssen et al., 2014; Calas et al., 2018; Molina et al., 2020). OP is usually expressed in one

of two ways: OP per volume of air (OPv), or OP per PM mass (OPm). OPv is usually used for exposure studies because it is a

metric that indicates the amount of OP a given population is exposed to. Contrasting this is OPm which is a measure of PM’s

potency to cause OP per a given PM mass unit.55
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Previous research has indicated that the intrinsic OPm of PM is highly variable and depends heavily on the constituents that

make up the PM (Daellenbach et al., 2020). Such conclusions indicate that PM from some emission or generation sources

have a greater capacity to drive OPm (OP per µg). Transition metals (for example, iron, copper, and zinc) in particular have

been repeatedly identified with correlation analyses as very potent OPm drivers, which are generally sourced from road traffic,

specifically non-exhaust emissions from tyre, brake, and road wear (Fang et al., 2016; Liu et al., 2018a; Bates et al., 2019;60

Taghvaee et al., 2019; Gao et al., 2020). Primary and secondary organic aerosol have also been identified as a potent driver

of OPm by some (Samake et al., 2017; Samaké et al., 2020), but because of the vast range of organics which can exist in the

atmosphere, specific compounds have yet to be identified as the primary cause. Conversely, inorganic PM sources such as

nitrate- and sulfate-rich sources as well as mineral dust have generally been found to have low OPm (Daellenbach et al., 2020;

Weber et al., 2021). This gives rise to a situation when investigating PM at a regional scale, the total mass distribution can be65

rather uniform, but OP is spatially highly heterogeneous (Yang et al., 2015; Liu et al., 2018b; Yu et al., 2021). This is because of

the large contributions of inorganic compounds to mass, and the importance of very potent, but irregularly emitted constituents

such as some metals near transport corridors and organics sourced from wood burning activities in specific communities, for

example.

1.2 PM in Switzerland70

Switzerland’s ambient PM10 and PM2.5 concentrations have progressively decreased since the mid-1990s after widespread

monitoring began (Barmpadimos et al., 2011; Gianini et al., 2012; Grange et al., 2018; Hüglin and Grange, 2021). There is a

strong site type gradient in Switzerland where rural locations are less polluted with PM when compared to roadside locations.

However, woodburning remains popular in some locations, especially south of the Alps, and this can significantly elevate

wintertime PM concentrations in these environments (Sandradewi et al., 2008; Grange et al., 2020). Based on recent intensive75

measurements, non-exhaust emissions from road vehicles is an emerging issue in Switzerland’s urban areas. Brake wear, tyre

wear, road wear, and resuspension of road dust have been shown to be important components of Switzerland’s urban PM load

(Hüglin and Grange, 2021; Grange et al., 2021; Rausch et al., 2022). Such emissions are generated by abrasive processes and

although there is a tendency of such PM to be in the coarse-mode, these emissions can also significantly enhance fine PM

concentrations. This is a result of the non-exhaust emission pathways generating PM with median diameters of approximately80

3µm and thus, straddle the boundary between coarse and fine PM (Harrison et al., 2021). Non-exhaust PM is relevant in

respect to OP because such particles are usually metal-rich and metals are thought to be very potent constituents for driving

OP. Indeed, previous reports of OP in Switzerland demonstrated the importance of metals in the PM mix for enhanced OP (Yue

et al., 2018; Daellenbach et al., 2020).

1.3 Objectives85

The primary objective of this study is to describe Switzerland’s ambient OP using observations from five sampling sites

between 2018 and 2019. Additionally, two sub-objectives are identified: (i) to compare Switzerland’s OPv values with other

locations where observations which can be robustly compared are available and, (ii) to use dimensionality reduction techniques,
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explicitly, positive matrix factorisation (PMF) receptor models, random forest, and multiple linear regression models to identify

what PM emission sources and components are most likely responsible for elevated OP (OPv and OPm). The implications of90

Switzerland’s OPv patterns and the identification of PM sources and constituents will be discussed with respect to PM and OPv

management.

2 Methods

2.1 Sampling sites

Daily PM filter samples were taken at five sampling sites across Switzerland (Table 1; Figure 1) between June 2018 and May95

2019. The five monitoring sites used for the PM sampling are included in Switzerland’s national air quality monitoring network;

NABEL (Federal Office for the Environment, 2021). These established sites are used for compliance or regulatory monitoring

and have long-term time series available for most common pollutants (Bundesamt für Umwelt, 2021). The sampling sites are

located in different environments, ranging from rural to urban-traffic surrounds. One site, Magadino-Cadenazzo, is located

south of the Alps while the other four are located on the Swiss Plateau.100

Table 1. Basic information for the five monitoring sites in Switzerland which were used for oxidative potential PM measurements.

Site Site name Local ID Canton Lat. Long. Elev. (m) Site type

ch0002r Payerne PAY Vaud 46.8 6.9 489 Rural

ch0008a Basel-Binningen BAS Basel-Landschaft 47.5 7.6 316 Suburban

ch0010a Zürich-Kaserne ZUE Zürich 47.4 8.5 409 Urban

ch0031a Bern-Bollwerk BER Bern/Berne 47.0 7.4 536 Urban-traffic

ch0033a Magadino-Cadenazzo MAG Ticino 46.2 8.9 203 Rural

2.2 Data

High-volume PM10 and PM2.5 quartz filter (Pallflex Tissuquartz 2500QAT-UP) samples were collected using Digitel DA-80H

samplers with flow rates of 30m3h−1. Daily sampling ran continuously from midnight and midnight for a 12-month period

between June 1 2018 and May 31 2019. However, for the quantification of constituents beyond simple mass, punches from

every fourth-days’ filters were taken and analysed. Because the sites form part of the NABEL network, routine flow checks105

and various tests were regularly conducted in accordance to standard operating procedures.

In total, 908 filters were analysed with three OP assays. Eight-hundred and ninety-nine valid samples were reported, the

missing samples were due to sampling or laboratory issues. Additional filter punches were used for a collection of other

laboratory analyses to quantify other PM constituents such as elemental components (with inductively coupled plasma atomic

emission spectrometry (ICP-AES) and inductively coupled plasma mass spectroscopy (ICP-MS)), ions (ion chromatography110

(IC)), elemental and organic carbon (thermal optical transmission (TOT) EN16909 method using the EUSAAR2 temperature

protocol (European Committee for Standardization (CEN), 2017)), and a collection of additional organics (high-performance
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Figure 1. The five sampling sites in Switzerland that were used for oxidative potential PM measurements. The shading indicates the elevation

of the terrain and filled blue areas show larger lakes and reservoirs. The cantonal boundaries are displayed as lines.

liquid chromatographic method followed by pulsed amperometric detection (HPLC-PAD)). The details of these additional

methods have been reported previously by Hüglin and Grange (2021); Grange et al. (2021) and the latter publication can be

considered a companion to this paper. Grange et al. (2021) contains further descriptions of the five sampling sites and a more115

comprehensive overview of what chemical species were quantified.

2.3 Oxidative potential assays

OP was analysed with three different assays: ascorbic acid (AA), dithiothreitol (DTT), and dichlorofluorescein (DCFH). These

analyses were conducted at the Institute of Environmental Geosciences, University of Grenoble Alpes, Grenoble, France. The

three different protocols are described in detail in Kelly and Mudway (2003); Cho et al. (2005); Calas et al. (2018, 2019).120

PM samples were extracted using a simulated lung fluid (SLF) solution composed of a Gamble’s and DPPC (dipalmi-

toylphosphatidylcholine) mixture. The Gamble’s solution represents the interstitial fluid deep within lungs and is mixture of

salts with a pH of 7.4. In order to maintain a constant amount of extracted PM, filter punches were adjusted by area to obtain

an iso-mass of 25µgmL−1 to ensure intercomparison among the samples (Charrier and Anastasio, 2012; Calas et al., 2018).

Concentrations of 25µgmL−1 were used rather than 10µgmL−1 (as reported by Calas et al. (2018)) to enable the three assays125

to be conducted in parallel and to compensate for the DCFH assay’s lower levels of sensitivity (Daellenbach et al., 2020). No
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filtration was done in order to include both water-soluble and insoluble particles. Such an extraction method has been adopted

to facilitate the extraction of PM in conditions closer to lung physiology (Calas et al., 2017).

The consumption of DTT in the assay was inferred as a measure of the ability of the PM to transfer electrons from DTT to

oxygen, thereby producing reactive oxygen species (ROS). The PM extracts were reacted with DTT, resulting in the consump-130

tion of DTT in the solution. The remaining DTT was then titrated with 5,5-dithiobis-(2-nitrobenzoic acid) (DTNB) to produce

a yellow chromophore (5-mercapto-2-nitrobenzoic acid or TNB), which was in direct proportion to the amount of reduced

DTT remaining in solution after the reaction with the PM extract. The consumption of DTT (nmolmin−1) was determined by

following the TNB absorbance at 412 nm wavelength at 10 min intervals for a total of 30 min of analysis time.

The AA assay relies on one of the main lung antioxidants, ascorbic acid. The consumption of AA (nmolmin−1) in the135

assay is inferred as the OP of PM quantified by the transfer of electrons from AA to oxygen, or the direct reaction between

PM components and AA. Similar to the DTT assay, the PM extracts were reacted with AA into a UV-transparent well plate

(CELLSTAR, Greiner-Bio). The absorbance was measured at 265 nm using a plate reader (TECAN spectrophotometer Infinite

M200 Pro) at 4 min intervals for a total of 30 min of analysis time.

The 2,7-dichlorofluorescin (DCFH) assay is commonly used for detecting intracellular H2O2 and oxidative stress using a140

non-fluorescent probe through the formation of a fluorescent product (dichlorofluorescein or DCF) in the presence of ROS

and horseradish peroxidase (HRP). DCF was measured by fluorescence at the excitation and emission wavelengths of 485 and

530 nm, respectively, every 2 min for a total of 30 min of analysis time. The ROS concentration in the sample is calculated in

terms of H2O2 equivalent based on a H2O2 calibration (100, 200, 300, 400, 500, 1000, and 2000 nmol).

For all assays, the mixtures were injected into a 96-well plates and the absorbance was read from the microplate reader145

(TECAN spectrophotometer Infinite M200 pro). The well plates were shaken for 3 seconds before each measurement and kept

at 37 ◦ C. Three laboratory blanks (in Gamble’s + DPPC) and three positive controls (1,4-napthoquinone at 24.7µmolL−1)

were included in each plate. The average values of these blanks were subtracted from the sample measurements of the given

plate. Detection limits (DL) were defined as three times the standard deviation of laboratory blank measurements. Uncertainties

were estimated thanks to triplicate measurement of the same well.150

The three assays have the same objective of determining the amount of oxidative stress an analyte can elicit, but the three

assays have differing sensitivities to various components which form the PM mix and the specific antioxidants within the lung.

The three assays have these general characteristics: AA is primarily sensitive to transition metals (Janssen et al., 2014), DTT is

the most reported OP assay and is sensitive to organics and to a lesser extent, metals (Janssen et al., 2014; Calas et al., 2019),

and DCFH shows a preferential sensitivity to a number of compounds that are often associated with secondary aerosol (Perrone155

et al., 2016; Pietrogrande et al., 2019). Therefore, the three assays give different perspectives on similar biological processes.

2.3.1 Units used

OP can be represented in two forms: OP per PM mass (OPm), or OP per volume of air (OPv). OP per volume of air is a superior

unit when representing population exposure and therefore, this unit is mostly used in this analysis. There are three OP assays
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reported and to differentiate these assays, a superscript notation is used, i.e., OPAA
v , OPDTT

v , and OPDCFH
v . For OPAA

v and160

OPDTT
v , the unit used is nmolmin−1m−3, while for OPDCFH

v , the unit is nmol H2O2 m
−3.

2.4 Source apportionment

Source apportionment for PM10 and PM2.5 for the five monitoring sites was conducted with the positive matrix factorisation

(PMF) receptor model and the multilinear engine (ME-2) algorithm (Paatero and Tapper, 1994; Paatero, 1999). The PMF

approach employed is informally known as “extended PMF” and was a result of the SOURCES research programme that165

involved the development of harmonised PMF methodology across several sites in France (Favez et al., 2017; Weber et al.,

2019, 2021). The EPA PMF 5.0 software tool was used to apply PMF (Norris et al., 2014). Eight distinct factors/sources were

identified for PM10, while five sources were identified for PM2.5. The PM10 sources were labelled as: sulfate-rich, nitrate-rich,

road traffic, wood combustion, primary biogenic, secondary biogenic, mineral dust, and aged sea salt. For PM2.5, the primary

biogenic, mineral dust, and aged sea salt sources were not identified. Details on the specific settings, constraints, and process170

of the extended PMF modelling can be found in the accompanying Grange et al. (2021) publication. The PMF input and output

data are also available in a persistent data repository for others’ convenience (Grange, 2021a).

The PMF analysis for the particular dataset was challenging because of the existence of fewer than the recommended samples

available (91 compared to the recommended at least 100 ht(Norris et al., 2014)), low signal to noise ratios for many variables

because of low ambient concentrations, and the inclusion of extra organic species into the PMF models. Despite the many175

validation steps conducted, the models had a number of limitations which are discussed fully in the companion paper Grange

et al. (2021) and were considered in the current work.

2.5 Linking PM sources to OP

The OP measurements were not included in the PMF modelling process, but these observations required linking to the PMF-

identified sources. To estimate the source contributions to the three OP assays, weighted robust multiple linear regression180

(MLR) with an iterative M -estimator was used. Conceptually, the OP observations were explained by the PMF-identified

sources, and because linear regression models return coefficients in the dependent variable’s response scale, the estimates of

the PMF-identified sources for OP are readily interpreted by investigating the models’ slope coefficients (β). The equation

expressing this process can be found elsewhere (Weber et al., 2021, Equation 4). To allow for evaluation of the models’

coefficients’ uncertainty, the data were bootstrapped 500 times and modelled. Additionally, the OP’s analytical uncertainties185

were included in the models as weights. The MASS R package was used as the interface to the robust linear regression

function (Venables and Ripley, 2002). An example of how this process was conducted can be found in a public repository

(Grange, 2021c).
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2.6 OP modelling

The filter-based measurement campaign resulted in a large number of elements, ions, and organics to be quantified which190

compose Switzerland’s PM. To extract the constituents which were the most important for OP, a multiple-step process was

conducted to firstly identify the most important constituents which explain OP and secondly, what combination of these con-

stituents resulted in the best statistical models which explained OP values in Switzerland.

The identification of the most important PM constituents to explain OP was conducted with random forest, an ensemble

decision tree machine learning algorithm (Breiman, 2001; Wright and Ziegler, 2017). The entire set of variables available195

was used to model OP. The random forests’ importances for the included variables were extracted and analysed to reduce the

feature space (Abdulhammed et al., 2019; Reddy et al., 2020). Variable importance is a metric that represents the improvement

of information gain at each split in the decision tree for a particular independent variable. Therefore, variable importance aids

the determination of a subset of useful variables. Permutation variable importance approach was the specific algorithm used and

this approach evaluates prediction accuracy with the sampled (out-of-bag; OOB) observations and permuting each variables’200

values to determine the effect on prediction performance (Wright et al., 2016).

The variables that were consistently identified as the top 12 most important for the explanation of OPAA
v and OPDTT

v

by random forest were used in further linear modelling work. This dimensionality reduction pre-processing step allowed the

dataset to be reduced from over 50 variables to the most important ≈15 for two OP assays. The sets of the top 12 variables

differed slightly among the different sites, PM size fractions, and OP assays, hence the identified variables were not identical205

across all groups.

The most important variables identified by random forest were used to model OP with robust multiple linear regression

(Venables and Ripley, 2002). Individual models using all combinations of the ≈15 variables with a maximum of five predictors

were created to explain OPv. The intercept term was excluded from the model formulation and over 100 000 models were

calculated. An example of how this was achieved is accessible via a public repository (Grange, 2021b). To identify models210

which were suitable for further use, three filters were applied to the models. Models with a maximum pairwise variance

inflation factor (VIF) for independent variables greater than 2.5 were removed because this suggests multicollinearity among

the independent variables (Jackson et al., 2009). Models which contained negative term estimates were also dropped, as were

models with R2 values less than 75 %. These filters resulted in 371 models to be kept for further analysis and the majority

(77 %) of these models had two independent variables.215

3 Results and discussion

3.1 Spatial-temporal variation of OP

OP measurements between June, 2018 and May, 2019 at five sampling locations throughout Switzerland demonstrated that

OPv was variable in both time and space. Mean OPv almost always increased as the sampling location became increasingly

urban and Bern-Bollwerk, an urban-traffic site, had the highest levels of OPv during the sampling period while Payerne, a rural220
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location had the lowest mean OPv (Figure 2; Table 2). For OPAA
v , the PM10 means ranged from 0.7 and 4.1 nmolmin−1m−3

and for PM2.5, the corresponding range was 0.4 and 1.6 nmolmin−1m−3. OPDTT
v means ranged from 0.8–3.0 and 0.6–

1.1 nmolmin−1m−3 for PM10 and PM2.5 respectively. OPDCFH
v did not show the same progressive increase across the rural to

urban roadside gradient with another rural site, Magadino-Cadenazzo having the highest means (0.7 nmol H2O2 m
−3 for both

PM10 and PM2.5) while the other four sites were inconsistently ranked for the different PM size fractions and considering the225

different types of averages (Table 2). The rural-urban-roadside gradient observed for OPAA
v and OPDTT

v was also demonstrated

by PM mass and most other individual constituents (the exception was secondary components such as nitrate, sulfate, and

ammonium) which form the Swiss PM mix, and this has been reported previously in a companion paper (Grange et al., 2021).

Bern−Bollwerk − Urban−traffic Zürich−Kaserne − Urban Basel−Binningen − Suburban Magadino−Cadenazzo − Rural Payerne − Rural
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Figure 2. Seasonal means of three OPv assays, two PM size fractions, and five sampling sites in Switzerland between June, 2018 and May,

2019.

Winter and autumn had the highest average OP which is consistent with the common winter situation where primary atmo-

spheric pollutants emissions are higher, and the atmospheric state is less conducive to pollutant transportation and dispersion230

(Beyrich, 1997; Emeis and Schäfer, 2006). The wintertime OP enhancement was especially clear at Magadino-Cadenazzo, a

9



Table 2. Simple summary statistics for three OPv assays, two PM size fractions, and five sampling sites in Switzerland between June, 2018

and May, 2019. x̄ and M represent the mean and median respectively while lower and upper refer to the 2.5 % and 97.5 % quantiles (which

contain 95 % of the observations). The summaries have been rounded to one decimal point and the units are nmolmin−1 m−3 for OPAA
v

and OPDTT
v and nmolH2O2 m−3 for OPDCFH

v .

OPAA
v OPDTT

v OPDCFH
v

PM Site x̄ M Lower Upper x̄ M Lower Upper x̄ M Lower Upper

PM10 Bern-Bollwerk 4.1 3.8 1.3 8.4 3.0 2.6 0.9 7.6 0.4 0.3 0.0 0.9

PM10 Zürich-Kaserne 1.7 1.4 0.4 4.5 1.3 1.1 0.3 2.9 0.4 0.3 0.0 1.1

PM10 Basel-Binningen 1.2 0.9 0.2 3.3 0.8 0.7 0.1 1.9 0.4 0.3 0.0 1.3

PM10 Magadino-Cadenazzo 1.7 1.2 0.2 5.5 1.0 0.8 0.1 3.3 0.7 0.4 0.1 3.2

PM10 Payerne 0.7 0.6 0.1 2.2 0.8 0.7 0.1 2.4 0.4 0.3 0.1 1.1

PM2.5 Bern-Bollwerk 1.6 1.4 0.5 3.8 1.1 0.9 0.2 2.2 0.5 0.3 0.1 1.1

PM2.5 Zürich-Kaserne 0.8 0.6 0.0 2.5 0.8 0.8 0.0 2.1 0.4 0.3 0.1 0.8

PM2.5 Basel-Binningen 0.7 0.4 0.1 1.9 0.6 0.4 0.1 2.0 0.4 0.2 0.0 1.3

PM2.5 Magadino-Cadenazzo 1.2 0.6 0.0 5.0 0.7 0.5 0.1 2.0 0.7 0.3 0.1 2.7

PM2.5 Payerne 0.4 0.3 0.0 1.2 0.6 0.5 0.0 1.7 0.3 0.2 0.0 0.9

site known to be heavily burdened by wood smoke during the winter months (Grange et al., 2020). Notably, at Magadino-

Cadenazzo, wintertime PM2.5 OPv was enhanced to nearly the same extent as PM10 because of wood burning sourced PM

being almost all contained in the fine-mode (Kleeman et al., 1999). Bern-Bollwerk was clearly the most polluted site with

respect to OPv where the two AA and DTT assays remained elevated for all seasons, but mean OPDTT
v was significantly lower235

during the summer than in the other seasons. Another key observation from these aggregations was that PMcoarse, defined as

the mass concentration of PM with a size between 2.5 and 10µm, contained 50 and 45 % of the OPAA
v and OPDTT

v signal

respectively. This was only able to be highlighted because the sampling design included both PM10 and PM2.5. This point

implies that PMcoarse is potentially relevant for human health and for regulatory purposes. Therefore, it is important to continue

PM10 monitoring in addition to the measurement of PM2.5.240

Figure 2 and Table 2 shows large differences among the three assays used to quantify OPv in this work. The DCFH assay

based on a fluorescence method showed much lower levels of spatial and seasonal variation when compared to the other two,

more established AA and DTT assays where the means ranged between 0.3 and 0.7 nmolmin−1m−3 (Figure A1). The DCFH

assay has a lower level of sensitivity when compared to the AA and DTT assays, nevertheless, the sensitivity of DCFH to

organic-rich PM was observed at the southern Magadino-Cadenazzo sampling location where OPv enhancement was clear245

during the winter because of high concentrations of wood burning emissions. The AA assay is primarily sensitive to met-

als (Janssen et al., 2014), and the Bern-Bollwerk site which is known to experience significant non-exhaust emissions from

road traffic, observed high levels of OPAA
v during the sampling period and the mean was 4.1 nmolmin−1m−3. Less severe

enhancements were also observed for the urban and suburban Zürich-Kaserne and Basel-Binningen sites with the AA assay

suggesting some metal contamination of these atmospheres too. These observations are consistent with work exploring the250
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urban and roadside increments in Switzerland, and the importance of non-exhaust emissions to these increments (Grange et al.,

2021).

3.1.1 OP comparison with other locations

The comparison of OP metrics among different locations and sampling durations is problematic due to the lack of standardised

OP laboratory procedures (Calas et al., 2019). Here, however, comparisons can be made with many French sites where OPv255

has been quantified by the same laboratory with identical analytical approaches. The OPv of PM2.5 has been rarely reported in

Europe, and therefore, only PM10’s OPv will be discussed here. Additionally, comparisons of the DCFH assay were unable to

be conducted due to a lack of available data for the French sites.

Based on Weber et al. (2021) which consolidated annual OPv data for 14 sampling sites across France between 2013 and

2018, Bern-Bollwerk’s atmosphere had high levels of OPv – especially when considering OPAA
v (Table A1). Bern-Bollwerk’s260

PM10 OPAA
v mean of 4.1 nmolmin−1m−3 was substantially higher than all other French sampling locations with the second

most polluted location being in Chamonix (site code CHAM), a town in an alpine valley which is topographically confined and

where the annual mean OPAA
v was reported as 2.6 nmolmin−1m−3 (between November 2013 and October 2014). The four

other Swiss sites were within the same range of the reported values for the French locations, however, both Zürich-Kaserne

and Magadino-Cadenazzo were ranked in the upper half of mean OPAA
v when comparing the 19 sites (14 in France and five265

in Switzerland). A map of seasonal and annual OPAA
v and OPDTT means for the closest French sites surrounding Switzerland

and the five Swiss sites included in this analysis are shown in Figure 3.

Bern-Bollwerk also demonstrated high levels of OPDTT
v when compared to the other sampling locations, but for this metric,

Chamonix was more polluted than Bern-Bollwerk with means of 4.4 and 2.9 nmolmin−1m−3 respectively (Table A1; Fig-

ure 3). The Basel-Binningen, Payerne, and Magadino-Cadenazzo Swiss sites had the lowest OPDTT
v means when considering270

the 19 sites that suggests that Switzerland has generally lower levels of OPDTT
v than France, which can be contrasted with

OPAA
v , where concentrations experienced in Switzerland were similar to those reported across France.
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Figure 3. Seasonal OPAA
v (a) and OPDTT

v (b) PM10 means for five Swiss sites included in this analysis and the closest six French sites

surrounding Switzerland. Data from the French sampling sites are from Weber et al. (2021).
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3.2 Linking OP to PM sources

The PMF source apportionment analysis identified eight PM sources in Switzerland: sulfate-rich, nitrate-rich, road traffic, wood

combustion, primary biogenic, secondary biogenic, mineral dust, and aged sea salt. All the eight sources were detected for PM10275

while the primary biogenic, mineral dust, and aged sea salt sources were not identified in the PM2.5 fraction indicating that these

sources were mostly in the coarse-mode. A full discussion of the PMF results, the limitations, and the sources’ characteristics

can be found in the companion paper, Grange et al. (2021), however, an outline of the PMF results is briefly given below.

The PMF results indicated that about 50 % of the PM10 and PM2.5 load in Switzerland was from the three predominantly

secondary nitrate-rich, sulfate-rich, and aged sea salt sources. Based on the models’ factor/source profiles, the former two280

sources contained a significant amount of organic mass. Generally, the primary and secondary biogenic sources were rather low

contributors to average PM10 mass concentrations (8.9 % to 15.8 %), but they were highly seasonal sources and the secondary

biogenic source was more important for PM2.5 (13.8 % to 23.0 %) than PM10. The wood burning, mineral dust, and road traffic

sources were more enhanced in urban areas, but their enhancement was highly dependent on the sites’ immediate environmental

surrounds. Bern-Bollwerk’s road traffic source contributed more than a third to both PM10 and PM2.5, while the wood burning285

source contributed over 20 % to both PM fractions at Magadino-Cadenazzo, despite being a source which was inactive for

about half of the sampling period.

To investigate the relationship between the activities of the identified main PM sources in Switzerland on its OP, the PMF

sources were used in conjunction with OPv observations. OPv was explained using MLR models for each of the five sites with

the identified PMF source contributions as independent variables (in µgm−3). The units of the estimated model coefficients for290

the PM sources were then in nmolmin−1µg−1 and interpreted as the intrinsic OPm. This process has been called an ‘inversion’

by others (Weber et al., 2021; Borlaza et al., 2021) and was conducted 500 times with bootstrapped inputs for each site, assay,

and PM size fraction to allow for robust estimates of the models’ terms. When considering the sets’ model residuals, they were

normality distributed and the mean R2 for OPAA and OPDTT models were 87 and 80 % respectively. The lack of structure in

the DCFH observations (Figure A1) resulted in poorly performing models and therefore, this assay was not included in further295

analyses.

When the explanatory multiple linear regression models were exposed to the PMF-identified sources it was clear that the

anthropogenic road traffic and wood combustion sources had the greatest intrinsic OPm (Figure 4). When combining the five

sites’ results together, the road traffic and wood combustion sources were always the highest ranked OPm sources, with the

exception of DTT for PM2.5 where wood combustion was ranked first, but road traffic fell to fourth place and the nitrate-300

rich source was placed second. The metal-sensitive AA assay showed that the coarse-mode road traffic source was the most

potent PM source in Switzerland giving additional evidence that coarse, non-exhaust emissions drove this assay’s OPm results.

The mostly fine and carbonaceous wood combustion source was always important for the two OPm assays and was clearly

the most potent source for PM2.5. The other remaining six sources had, on average, positive contributions to OPm, but were

far less important for OPm when compared to the road traffic and wood combustion sources based on this analysis. Notably,305

the nitrate- and sulfate-rich sources generally showed low levels of OPm which outlines a disconnect between average PM
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mass concentrations and OPm potency. This suggests that all PM has the ability to contribute to OP, but road traffic and

wood combustion source are the two sources that should be prioritised for control and management to efficiently reduce

OPv in Switzerland. Unlike Samake et al. (2017); Weber et al. (2021), these results do not suggest that biogenic-sourced PM is

particularly important for OPm in Switzerland, perhaps due to different fungal and plant species found in different environments310

or the differing intensities of agriculture and cultivation between the two countries (Samaké et al., 2019; Samake et al., 2017).
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Figure 4. Densities of the intrinsic OPAA
m (a) and OPDTT

m (b) estimates for the eight PM10 and five PM2.5 PMF-identified sources. The

estimates for all five sites included in the analysis have been aggregated.

3.3 Identifying important PM constituents with random forest

Within the PMF-identified sources shown in Figure 4, there are a large number of constituents that give the sources their

characteristics. To better identify the specific components which compose the PM sources identified in Switzerland that were

important and potent drivers of OPv, presumably, mostly contained within the road traffic and wood combustion sources, a315
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multi-step modelling process was conducted. The random forest algorithm was used to calculate variable importance and all

variables included in the data set were ranked (Breiman, 2001). A high importance ranking indicates that the variable is more

important for the dependent variable’s explanation and the utilisation of the random forest algorithm for this sort of application

has gained traction in many fields (Behnamian et al., 2019). The motivation for this process was to simplify and resolve the

lower-level linkages between PM components and OPv when the PMF sources were potentially heterogeneous among the320

sampling sites and PM size fractions.

When the random forest importances were calculated for each site, PM fraction, and OPv assay, it was clear that a collection

of organics and metals were commonly identified as being the most important variables for the explanation of OPv. Elements

and organic compounds associated with wood combustion: rubidium (Kleeman et al., 1999; Reid et al., 2005; Svane et al.,

2005), potassium, levoglucosan, mannosan and galactosan (Urban et al., 2012) were constantly ranked highly in terms of325

importance (Figure 5). The other group of components which were identified were metals such as copper, zinc, iron, tin,

antimony, and to some extent manganese and cadmium. This collection of metals is usually associated with vehicular non-

exhaust emissions and is generated by abrasive or wear processes (Charron et al., 2019; Harrison et al., 2021). EC and OC

were also commonly identified and these variables are associated with both wood burning and vehicle exhaust emissions.

Despite these two groups of PM constituents being identified, both mass and ions (especially nitrate) were also present in the330

most important variables identified by random forest. We interpret the presence of these variables as proxies of total PM mass

indicating that although for a given PM mass, OPv may vary depending on its make-up, total PM mass is still an important, and

related metric. Therefore, the importance analysis was consistent with the PMF inversion process discussed in Section 3.2.

Figure 5 also shows some site-specific variation due to the sites’ different local emissions. For example, in Bern-Bollwerk,

the non-exhaust sourced metals such as copper, iron, and zinc were ranked higher than the mean importance rank across the335

five sites. This feature was present in both assays and was somewhat clearer in PM10 due to the tendency of abrasive processes

to emit PM larger than 2.5µm (Harrison et al., 2021). Magadino-Cadenazzo on the other hand demonstrated a tendency of

rubidium, potassium, mannosan, and levoglucosan to be more important than the sites’ mean ranking which was consistent

with what is known about this site’s exposure to local emissions because it experiences a heavy wood smoke load (Sandradewi

et al., 2008; Chen et al., 2021). When comparing the two PM size fractions, there was no clear dominating source and the340

differences between PM10 and PM2.5 were overshadowed by site-specific differences. This supports the conclusions made in a

companion paper (Grange et al., 2021) where non-exhaust PM2.5 emissions were found to be considerable and are important

to consider across the Swiss sampling sites. When exposing the PMF sources (eight for PM10 and five for PM2.5) to the same

random forest importance analysis, the road traffic and wood combustion sources were clearly the most important sources for

OP explanation, as shown in Figure 4.345

A slightly different representation of the random forest importance rankings is provided in Figure 6, where the presence of

variables in the group was considered highly important were counted for the five sites, two OPv assays, and two PM fractions.

In this case, highly important variables were defined as the top 12 variables. It is noticeable that rubidium and copper, two

tracers for wood burning and non-exhaust emissions, were ranked as the most important variables for PM10 at all five sites and

for both OPv assays. For PM2.5, where concentrations of many metals were lower than in PM10, only a wood burning tracer350
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Figure 5. Random forest importance plot of the top independent variables for two OPv assays, two particulate size fractions, and five sampling

sites. The large open diamonds represent the variables’ medians and the variables are ordered by their median ranking.

(either potassium or rubidium) together with PM mass were identified across all five sites and both OPv assays. All variables

which were identified more than once for each OPv assay and PM size fraction (the variables shown in the y-axes of Figure 6)

were used in the next step of linear modelling to identify what variables are best to be used when forming predictive models to

explain OPv.
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Figure 6. Counts of how many times an independent variable was ranked highly (within the top 12) in terms of random forest importance

for two OPv assays, two particulate size fractions, and five sampling sites. Variables with counts of five shows that for every site included in

the analysis, this variable was identified as important for the explanation of OPv.
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3.4 Modelling OP355

The most important variables at each site, identified by the rank of the random forest importance (Figure 6), were used to build

multiple linear regression models to explain OPv. Every combination of the variables were used to calculate linear regression

models (with a maximum of five independent variables and the intercept terms omitted) and after training, only the models

with positive slope estimates, those which had a maximum pairwise variance inflation factor (VIF) of less-than 2.5, and had

an R2 greater-than 75 % were kept. These three filters ensured the models selected did not suffer from undesirable levels of360

multicollinearity among their independent variables (Jackson et al., 2009; Barmpadimos et al., 2011) and performed adequately

on their training set. The VIF filter removed all models with more than four independent variables due to the increased proba-

bility of multicollinearity when including additional independent variables in the same model. A total of 100 342 models were

trained and 371 models passed the filters. The number of models trained for each site, PM fraction, and OP assay is shown in

Table A2.365

When analysing the models with the best performance based on their R2 values, 77 % had two independent variables while

models with one or three independent variables only composed 13 % and 10 % of the total set. Almost without exception,

the best models’ independent variables included a metal and an organic compound. The metals contained in the models were

the same as those identified and discussed previously (Figure 5; Figure 6) and are generally emitted from abrasive processes

related to road vehicles (iron, zinc, copper, antimony, but also cadmium), while the organics were the specific biomass burning370

markers of levoglucosan, mannosan, and galactosan. Table 3 shows equations of the best performing models based on their

R2 values for each sampling site, the two PM size fractions and the two OPv. However, all models fulfilling the applied filter

criteria can be considered appropriate and considered as suitable models for explaining the observed OPv. The full list of these

suitable models is provided in the Supplementary Information (Table S1), the counts of all pairwise combinations of variables

in the suitable models with two or more independent variables are shown in Figure 7.375

The best performing models demonstrated that the combination of vehicular non-exhaust emission and wood burning tracers

were required to generate the best models to explain OPv. Interestingly, the exact tracers or markers used for the modelling

were not critical. For example, using antimony, copper, or iron as the representative non-exhaust emission species resulted in

models which performed very similarly and showed that these three metals were effectively interchangeable with one another.

Cadmium, manganese, and zinc could also be added to this group, but the use of these metals resulted in models which380

performed slightly worse on average and such patterns may be related to the different elements’ analytical detection limits or the

multiple emission sources these metals have. The same phenomenon was present for the wood burning tracers of levoglucosan,

mannosan, and galactosan where the selection of one of these organics over the other was not critical for the explanation of

OPv.

Figure 7 shows, that the combinations of independent variables in the suitable models for explaining OPAA
v are different385

from those for explaining OPDTT
v . There is clearly a larger number of combinations of independent variables in the models

for OPAA
v compared to OPDTT

v . The combinations of selected variables in models for OPAA
v are for both PM size fractions

predominantly the above-mentioned pairs of tracers for vehicular non-exhaust and wood burning emissions. It is interesting
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Table 3. The best performing robust multiple linear regression model equations for each site, two PM fractions, and two OPv assays. The

units used for the independent variables are µgm−3.

PM Site OP assay R2 (%) Equation

PM10 Payerne OPAA
v 87 OPv = 106.52(galactosan) + 2.78(iron)

PM10 Magadino-Cadenazzo OPAA
v 95 OPv = 1.93(levoglucosan) + 2.6(iron)

PM10 Basel-Binningen OPAA
v 96 OPv = 95.89(galactosan) + 130.38(copper)

PM10 Zürich-Kaserne OPAA
v 91 OPv = 41.72(mannosan) + 750.09(antimony)

PM10 Bern-Bollwerk OPAA
v 89 OPv = 109.01(galactosan) + 318.68(manganese)

PM10 Payerne OPDTT
v 86 OPv = 151.44(manganese) + 0.32(ammonium)

PM10 Magadino-Cadenazzo OPDTT
v 87 OPv = 11.81(mannosan) + 134.34(manganese)

PM10 Basel-Binningen OPDTT
v 90 OPv = 1.53(iron) + 0.44(ammonium)

PM10 Zürich-Kaserne OPDTT
v 79 OPv = 3.12(potassium) + 0.24(OC)

PM10 Bern-Bollwerk OPDTT
v 80 OPv = 2(EC) + 0.85(ammonium)

PM2.5 Payerne OPAA
v 90 OPv = 2.51(levoglucosan) + 88.29(copper)

PM2.5 Magadino-Cadenazzo OPAA
v 97 OPv = 23.04(mannosan) + 3.98(iron)

PM2.5 Basel-Binningen OPAA
v 88 OPv = 2.53(levoglucosan) + 613.81(antimony)

PM2.5 Zürich-Kaserne OPAA
v 91 OPv = 2.91(levoglucosan) + 107.98(copper)

PM2.5 Bern-Bollwerk OPAA
v 90 OPv = 17.73(mannosan) + 107.21(copper)

PM2.5 Payerne OPDTT
v 93 OPv = 0.19(organic_carbon) + 0.1(nitrate)

PM2.5 Magadino-Cadenazzo OPDTT
v 85 OPv = 8.25(galactosan) + 0.06(mass)

PM2.5 Basel-Binningen OPDTT
v 89 OPv = 17.9(galactosan) + 129.44(copper) + 0.08(nitrate)

PM2.5 Zürich-Kaserne OPDTT
v 84 OPv = 2.45(potassium) + 0.19(ammonium) + 70.49(pinic acid)

PM2.5 Bern-Bollwerk OPDTT
v 88 OPv = 30.91(galactosan) + 474.89(tin) + 0.34(ammonium)

to note that although rubidium and potassium had higher ranks in the random forest importance, the suitable models for

explaining mostly included an organic tracer for wood burning emissions (levoglucosan, mannosan, or galactosan). This could390

be explained by rubidium and potassium having multiple emission sources and therefore were removed by the multicollinearity

filter used for the model selection.

We interpret the presence of levoglucosan, mannosan, and galactosan in this analysis as simply indicators of biomass burning

emission sources. This is because these particular organic compounds are not redox-active and therefore, they cannot be the

components of PM that drove OP. Quinones, rubidium, and/or other co-emitted products from biomass burning are most likely395

the responsible components, and this is a clear example of how an observational study can suggest and highlight associations

or correlations, but not necessarily causality.

In contrast to OPAA
v , PM mass or ammonium and nitrate were present in the better performing models for OPDTT

v at times.

It is unlikely that ammonium and nitrate are indeed strong drivers of OPv since ammonium sulfate and nitrate ((NH4)2SO4

and NH4NO3) have been shown to have negligible OP (Daellenbach et al., 2020), the presence of these inorganic ions might400
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Figure 7. Number of times when a combination of two independent variables for the filtered models were present for PM10 and PM2.5 and

two OPv assays for five sampling sites.

be acting as a proxy for total ambient PM concentrations or perhaps seasonal emission cycles due to its shift between gas and

aerosol phases in the different seasons because of changes in ambient air temperature. For PM2.5’s OPDTT
v , OC as well as

pinic acid (a tracer for biogenic secondary organic aerosol) were frequently found in the 371 models which passed the model

selection criteria. OC and pinic acid might also be understood as proxies for total PM concentrations or specific conditions
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leading to elevated PM levels. Such mentioned proxies were in the models for explaining OPDTT
v mostly combined with an405

organic wood burning emission tracer and for PM2.5 also with copper and tin.

An alternative or supplementary interpretation of the above observations is that atmospheric ageing of PM and the changes

that such processes induce modify the OP character of PM. Indeed, the importance of secondary PM ageing for OP has been

shown by other work (Antiñolo et al., 2015; Wong et al., 2019; Zhu et al., 2020). Future studies will need to be conducted to

further fully understand these processes, however. This analysis is limited by the PM sampling campaign and associated PMF410

models that were able to be produced in this analysis. Further understanding of secondary PM sources and OP would be very

useful to fully understand OP dynamics across Switzerland.

The combinations of pairs of independent variables in suitable models for explaining OPv in PM10 and PM2.5 as shown

in Figure 7 indicates that the OPAA
v assay provided a response that was more specific to the chemical composition of PM

than the OPDTT
v assay. It is also noticeable that for both OPv assays there are more pairwise combinations of independent415

variables in the suitable models for PM2.5 than for PM10 (for OPAA
v : 74 vs. 111 and for OPDTT

v : 74 vs. 106). The reason for

this observation is currently unclear and further research will be required to fully elucidate these features.

4 Conclusions

An intensive PM and OP sampling campaign conducted across Switzerland between 2018 and 2019 demonstrated that OPv was

variable in time and space. OPv patterns followed the familiar pattern of atmospheric pollutants where urban locations were420

more polluted than their rural counterparts and wintertime saw enhanced OPv. Although the differences between rural and urban

locations were important for mass, the OP metrics constantly showed a greater difference indicating OP was more heteroge-

neous than PM mass across Switzerland. When comparing Switzerland’s OPv with 14 sites in France where data exists and were

produced by the same sampling and laboratory procedures, Switzerland’s OPv was comparable to that observed in France, but

Bern-Bollwerk, a semi-canyonised urban-traffic sampling location had the highest mean OPAA
v (4.1 nmolmin−1m−3) con-425

tained in the dataset. The lack of current standardisation for OP measurement, quantification, and calibration is an issue that

the air quality community should address and would allow for reliable comparisons among different locations and times in

the future. The AA and DTT assays showed much more seasonal structure than the third DCFH assay which made the former

approaches more useful for data analysis than the latter.

An analysis of Switzerland’s PM10 and PM2.5 sources identified by PMF models suggested that two major anthropogenic430

emission sources, namely road traffic and wood combustion were the most important drivers of OPv in Switzerland. The

importance of these two sources for OP has been reported elsewhere too (Simonetti et al., 2018). Contrasting this was the

inorganic nitrate- and sulfate-rich sources which generally had low levels of intrinsic OPm across Switzerland, as did the two

biogenic sources (primary and secondary). This outlines the potential disconnect between total PM mass concentration and

OPm which has been noted by others, for example, Daellenbach et al. (2020) and this observation may update the management435

priorities of PM sources with a focus on health impacts rather than total mass.
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Further investigation into the components of PM using a random forest dimensionality reduction technique and multiple

linear regression models demonstrated that a collection of metals associated with non-exhaust emissions such as copper, zinc,

antimony, iron, tin, manganese, and cadmium as well as the specific wood combustion tracers of levoglucosan, mannosan, and

galactosan (or associated elements such as rubidium and potassium) were consistently important for the explanation of OPv.440

The combination of a non-exhaust sourced metal and a biomass burning tracer provided very good models which could explain

OPv well when considering their training sets.

The results above point toward the need to control wood burning sourced PM and non-exhaust emissions to reduce the OPv

of Switzerland’s atmospheres. Such conclusions are not out of step with current air quality management practices and priorities,

but reinforce the importance of these sources and their respective chemistry with respect to OPv – potentially a health-relevant445

metric for PM. Therefore, a renewed focus on wood burning and non-exhaust emissions is encouraged to reduce the deleterious

health effects of PM. Because non-exhaust emissions and wood burning emissions can be effectively controlled at a local level,

it is likely that significant reductions of OPv could be achieved without the need for regional and transboundary management

collaboration.

The causality of the identified sources (and PM constituents) for driving OPv could always be questioned because the450

biological mechanisms which result in pathology were not investigated in this observational study. However, the results are

consistent with those found in the literature and give very clear suggestions on where to focus future efforts to identify the

linkage between biological mechanisms and OPv. It is also clear that the PM10 and PM2.5 size fractions have different OPv

characteristics and the OPv is not simply additive. Furthermore, considering the importance of non-exhaust emissions for the

coarse-mode, the importance of continued PM10 monitoring is outlined.455
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Figure A1. Time series of the three OPv assays for PM10 and PM2.5 at five sampling sites in Switzerland between June, 2018 and May, 2019.
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Table A1. Annual means of PM10 OPAA
v and OPDTT

v for sampling sites in France and Switzerland where identical methods to quantify OPv

has been conducted. The units used for the means is nmolmin−1 m−3 and the 14 sites’ data from France are from Weber (2021); Weber

et al. (2021).

Rank Country Urban area Site Site type OP assay Mean

1 Switzerland Bern Bern-Bollwerk Traffic OPAA
v 4.1

2 France Chamonix CHAM Urban valley OPAA
v 2.3

3 France Nogent NGT Urban background OPAA
v 2.2

4 France Passy PAS Urban valley OPAA
v 2.2

5 France Roubaix RBX Traffic OPAA
v 2.1

6 Switzerland Zürich Zürich-Kaserne Background OPAA
v 1.7

7 France Aix-en-provence AIX Urban background OPAA
v 1.7

8 Switzerland Cadenazzo Magadino-Cadenazzo Background OPAA
v 1.7

9 France Grenoble GRE-fr_2013 Urban background OPAA
v 1.7

10 France Marnaz MNZ Urban valley OPAA
v 1.6

11 France Vif VIF Urban background OPAA
v 1.5

12 France Grenoble GRE-fr_2017 Urban background OPAA
v 1.5

13 France Grenoble GRE-cb Urban background OPAA
v 1.4

14 France Strasbourg STG-cle Traffic OPAA
v 1.3

15 Switzerland Basel Basel-Binningen Background OPAA
v 1.2

16 France Talence TAL Urban background OPAA
v 1.0

17 France Nice NIC Urban traffic OPAA
v 1.0

18 Switzerland Payerne Payerne Background OPAA
v 0.7

19 France Port-de-Bouc PdB Industrial OPAA
v 0.6

20 France Marseille MRS-5av Urban background OPAA
v 0.5

1 France Passy PAS Urban valley OPDTT
v 4.4

2 Switzerland Bern Bern-Bollwerk Traffic OPDTT
v 2.9

3 France Grenoble GRE-fr_2013 Urban background OPDTT
v 2.7

4 France Nogent NGT Urban background OPDTT
v 2.7

5 France Roubaix RBX Traffic OPDTT
v 2.6

6 France Marseille MRS-5av Urban background OPDTT
v 2.6

7 France Strasbourg STG-cle Traffic OPDTT
v 2.4

8 France Chamonix CHAM Urban valley OPDTT
v 2.3

9 France Nice NIC Urban traffic OPDTT
v 2.2

10 France Aix-en-provence AIX Urban background OPDTT
v 1.9

11 France Talence TAL Urban background OPDTT
v 1.8

12 France Marnaz MNZ Urban valley OPDTT
v 1.8

13 France Port-de-Bouc PdB Industrial OPDTT
v 1.8

14 France Grenoble GRE-cb Urban background OPDTT
v 1.7

15 France Grenoble GRE-fr_2017 Urban background OPDTT
v 1.5

16 Switzerland Zürich Zürich-Kaserne Background OPDTT
v 1.3

17 France Vif VIF Urban background OPDTT
v 1.3

18 Switzerland Cadenazzo Magadino-Cadenazzo Background OPDTT
v 1.0

19 Switzerland Payerne Payerne Background OPDTT
v 0.8

20 Switzerland Basel Basel-Binningen Background OPDTT
v 0.8
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Table A2. The number of multiple linear regression (MLR) models trained for each site, PM size fraction, and OP assay. The total number

of models was 100 342.

Site PM fraction OP assay Number of models trained

Basel-Binningen PM10 OPAA 2379

Basel-Binningen PM10 OPDTT 6884

Basel-Binningen PM2.5 OPAA 4943

Basel-Binningen PM2.5 OPDTT 6884

Bern-Bollwerk PM10 OPAA 3472

Bern-Bollwerk PM10 OPDTT 6884

Bern-Bollwerk PM2.5 OPAA 4943

Bern-Bollwerk PM2.5 OPDTT 6884

Magadino-Cadenazzo PM10 OPAA 2379

Magadino-Cadenazzo PM10 OPDTT 6884

Magadino-Cadenazzo PM2.5 OPAA 4943

Magadino-Cadenazzo PM2.5 OPDTT 6884

Payerne PM10 OPAA 2379

Payerne PM10 OPDTT 4943

Payerne PM2.5 OPAA 3472

Payerne PM2.5 OPDTT 4943

Zürich-Kaserne PM10 OPAA 3472

Zürich-Kaserne PM10 OPDTT 4943

Zürich-Kaserne PM2.5 OPAA 4943

Zürich-Kaserne PM2.5 OPDTT 6884

Table S1. Attached op_model_collection_which_passed_the_filters.csv file containing all linear regression model for-

mulations with their estimates and model statistics.
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