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Abstract. The Arctic atmosphere is warming rapidly and its relatively pristine environment is sensitive to the long-range trans-

port of atmospheric pollutants. While carbon dioxide is the main cause for global warming, short-lived climate forcers (SLCFs)

such as methane, ozone, and particles also play a role in Arctic climate on near-term time scales. Atmospheric modelling is

critical for understanding the abundance and distribution of SLCFs throughout the Arctic atmosphere, and is used as a tool

towards determining SLCF impacts on climate and health in the present and in future emissions scenarios. In this study, we5

evaluate 18 state-of-the-art atmospheric and Earth system models, assessing their representation of Arctic and Northern Hemi-

sphere atmospheric SLCF distributions, considering a wide range of different chemical species (methane, tropospheric ozone

and its precursors, black carbon, sulfate, organic aerosol, and particulate matter) and multiple observational datasets. Model

simulations over four years (2008-2009 and 2014-2015) conducted for the 2021 Arctic Monitoring and Assessment Programme

(AMAP) SLCF assessment report are thoroughly evaluated against satellite, ground, ship and aircraft-based observations. The10

results show a large range in model performance, with no one particular model or model type performing well for all regions

and all SLCF species. The multi-model mean was able to represent the general features of SLCFs in the Arctic, though verti-

cal mixing, long-range transport, deposition, and wildfire emissions remain highly uncertain processes. These
:::::::
processes

:
need

better representation within atmospheric models to improve their simulation of SLCFs in the Arctic environment.

1 Introduction15

The Arctic atmosphere is warming 3 times more quickly than the global average (Bush and Lemmen, 2019; NOAA, 2020;

AMAP, 2021; IPCC, 2021). Arctic warming is a manifestation of global warming and the main driver for this is the increasing

carbon dioxide (CO2) radiative forcing (IPCC, 2021). Arctic warming is amplified by sea ice and snow feedbacks and affected

by local radiative forcings in the Arctic, including radiative forcings by short-lived climate forcers (SLCFs), such as methane,

black carbon, and tropospheric ozone (AMAP, 2015a,b, 2022). The remote pristine Arctic environment is sensitive to the long-20

range transport of atmospheric pollutants and deposition (Schmale et al., 2021b). At the same time, it is difficult to carry out

in situ measurements (Nguyen et al., 2016; Freud et al., 2017) and satellite observations over the Arctic. The majority of the

Arctic surface is ocean, covered with sea-ice that is usually adrift for most part of the year. The Arctic environment is also

harsh. These aspects have historically kept surface based measurements sparse. The overwhelming majority of the satellite

observations either depend on the visible spectrum, are limited by the presence of clouds, or have very low sensitivity in the25

lower troposphere where the atmospheric processes mainly determine the fate of the pollutants. Many satellite measurements

also do not have good coverage in the Arctic, given their orbital parameters or problems measuring areas with high albedo

(Beer, 2006).
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Modelling the Arctic atmosphere comes with its own challenges due to extreme meteorological conditions, its great distance

from major global pollution sources, poorly known local emissions, high gradients in physical and chemical fields, and a30

singularity in some model grids at the pole. Models have been improving in the last two decades, but many models still have

inaccurate results in the Arctic (Shindell et al., 2008; Eckhardt et al., 2015; Emmons et al., 2015; Sand et al., 2017; Marelle

et al., 2018). That said, there has recently been a number of improvements in numerous models that have allowed for better

representation of certain processes (Morgenstern et al., 2017; Emmons et al., 2020a; Swart et al., 2019; Holopainen et al., 2020;

Im et al., 2021). In this study, model simulations for the 2021 Arctic Monitoring and Assessment Programme (AMAP) SLCF35

assessment report (AMAP, 2022), have been thoroughly evaluated by comparison to several freely available observational

datasets in the Northern Hemisphere, and assessed in more detail in the Arctic. In order to support the integrated assessment

of climate and human health for AMAP, 6 SLCF species (methane CH4; ozone O3; black carbon BC; sulfate SO2−
4 ; organic

aerosol OA; and fine particulate matter PM2.5), and 2 O3 precursors (carbon monoxide CO; and nitrogen dioxide NO2) from

18 atmospheric or Earth system models are compared to numerous observational datasets (from 3 satellite instruments, 740

monitoring networks, and 9 measurement campaigns) for four years (2008-2009 and 2014-2015), with the goal of answering

the following questions:

1. How well do the AMAP SLCF models perform in the context of measurements and their associated uncertainty?:

What do the best-performing models have in common?

Are there regional patterns in the model biases?45

Are there patterns in the model biases between SLCF species?

2. How does the model performance impact model applications, such as simulated climate and health impacts?

3. What processes should be improved or studied further for better model performance?

Out of scope of this study are any sensitivity tests by the models to assess different components of model errors. Also out of

scope are the models’ simulations of aerosol optical properties and cloud properties (e.g., cloud fraction, cloud droplet number50

concentration, cloud scavenging, etc), though those parameters do have a large impact on climate and a tight relationship with

some SLCFs. Their initial evaluation can be found in AMAP (2022) (Chapter 7). Estimates of effective radiative forcings of

SLCFs in the Arctic by the AMAP participating models are also provided elsewhere (Oshima et al., 2020).

The next section summarizes the models used in this study, with more information in the appendix. Section 3 summarizes

the measurements used for model evaluation. Section 4 presents our model evaluation for each SLCF species, followed by a55

summary of all SLCFs. Finally, Section 5 is the conclusion where the questions posed above are answered.

2 Models

In this section we briefly describe the models used for the AMAP SLCF study and refer the reader to Appendix A for individual

model descriptions and further information. All models were run globally with the same anthropogenic emissions dataset (see
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Section 2.1), and most were run for the years 2008-2009 (as was done for the 2015 AMAP assessment report) and 2014-201560

(to evaluate more recent model results) inclusive for this evaluation, as these were years with numerous Arctic measurements.

Unless otherwise indicated, all model output was monthly-averaged.

The models used for this study are summarized in Table 1. As is shown in the table, not all models provided all SLCF

species, and not all models provided all four years. There were 8 chemical transport models (CTMs), 2 chemistry climate

models (CCMs), 3 global climate models (GCMs), and 5 Earth system models (ESMs). Many models used specified or nudged65

meteorology, which allows the day-to-day variability of the model meteorology to be more closely aligned with the historical

evolution of the atmosphere than occurs in a free-running model. The ERA-Interim reanalysis was the most commonly used

meteorology (in 7 out of 18 models) but some were free-running (simulating their own meteorology) and some used other

reanalysis products (Table 1).

2.1 Emissions70

All models used the same anthropogenic emissions dataset, which is called ECLIPSE (Evaluating the Climate and Air Quality

Impacts of Short-Lived Pollutants) v6B. These were created using the IIASA-GAINS (International Institute for Applied

Systems Analysis - Greenhouse gas - Air pollution Interactions and Synergies) model (Amann et al., 2011; Klimont et al.,

2017; Höglund-Isaksson et al., 2020), which provides emissions of long-lived greenhouse gases and shorter-lived species in a

consistent framework. These historical emissions were provided for the years 1990 to 2015 at 5-year intervals, as well as the75

years 2008-9 and 2014. Those models that simulated the 1990-2015 time periods linearly interpolated the emissions for the

years in between. The ECLIPSEv6b emissions include many pollutants, such as CH4, CO, NOx, BC, and SO2. They include the

significant sulfur emission reductions which have taken place since the 1980s (Grennfelt et al., 2020). Global anthropogenic BC

emissions are estimated to be 6.5 Tg in 2010 and 5.9 Tg in 2020, and global anthropogenic SO2 emissions are estimated to be

90 Tg in 2010 but declined significantly over the subsequent decade to 50 Tg (AMAP, 2022). The reductions are mainly due to80

stringent emissions standards in the energy and industrial sectors, and reduced coal use in the residential sector (AMAP, 2022).

Global anthropogenic methane emissions were 340 Tg in 2015 and 350 Tg in 2020, and are expected to continue to increase,

unlike BC and SO2. The largest methane sources in 2015 were agriculture (42% of total emissions), oil and gas (extraction

and distribution) (18%), waste (18%) and energy production (including coal mining) (16%) (AMAP, 2022; Höglund-Isaksson

et al., 2020). CO and NOx emissions have been declining steadily and are expected to continue declining in the future.85

In comparison to the CMIP6 emissions (Hoesly et al., 2018), ECLIPSEv6b emissions have additionally taken into account

the recent declines in emissions from Asia of SO2, BC and NOx due to recent control measures. Whereas
:
,
:::::::
whereas

:
those

declines in the CMIP6 emissions were unrealistically small (Wang et al., 2021; von Salzen et al., 2021). The inclusion of

emissions from the flaring sector in Russia was a significant improvement which was not present in the previous version of

ECLIPSE emissions that was used in the AMAP (2015a) report.90

For non-agricultural fire emissions, many models utilized the CMIP6 fire emissions, which are based on monthly GFED

(Global Fire Emissions Database) v4.1 (van Marle et al., 2017). About half of the models included volcanic emissions or

stratospheric aerosol concentrations from the CMIP6 dataset (Thomason et al., 2018) or other sources, and the other half did
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not include volcanic emissions, which mainly impact SO2 and;
:

thus, modelled SO2−
4 . The emissions from the October to

December 2014 Honoluraun volcano eruption (Gíslason et al., 2015; Twigg et al., 2016; Ilyinskaya et al., 2017) were included95

by six models in a separate set of simulations. Similar differences in biogenic and agricultural waste emissions appear in these

model simulations, and all are summarized in Table 2.

2.2 Chemistry

This section contains a summary of models’ chemistry schemes, and we refer the reader to Appendix A and references therein

for more details.100

2.2.1 Methane

All participating models that provided CH4 output prescribed CH4 concentrations based on box model results from Olivié

et al. (2021) for 2015 and from Meinshausen et al. (2017) for years prior to 2015. The former utilised the ECLIPSE v6B

anthropogenic CH4 emissions (Section 2.1), along with assumptions for the natural emissions (Olivié et al., 2021; Prather

et al., 2012) to provide as input to models’ surface or boundary layer CH4 concentrations. Models then allow CH4 to take part105

in photochemical processes, such as the production of tropospheric O3.

2.2.2 Tropospheric chemistry

There is a wide range of tropospheric gas-phase chemistry implemented in the models. Air quality-focused models, such as

DEHM, EMEP MSC-W, GEM-MACH, GEOS-Chem, MATCH, and WRF-Chem have detailed HOx-NOx-hydrocarbon O3

chemistry, with speciated volatile organic compounds (VOCs), and secondary aerosol formation. The GISS-E2.1, MRI-ESM2,110

and UKESM1 ESMs also use this level of tropospheric chemistry. Whereas
::
In

:::::::
contrast, climate-focused models like CanAM5-

PAM, CIESM-MAM7, ECHAM-SALSA, and NorESM1 contain bare minimum gas-phase chemistry, and use prescribed O3

fields (e.g., CanAM5-PAM uses CMAM climatological O3 fields). The CCMs are somewhere in between, with simplified

tropospheric and stratospheric chemistry so that they could be run for longer time periods. For example CMAM’s tropospheric

chemistry consists only of CH4-NOx-O3 chemistry, with no VOCs.115

2.2.3 Stratospheric chemistry

Only a subset of the participating models have a fully simulated stratosphere. CMAM, MRI-ESM2, GISS-E2.1, OsloCTM, and

UKESM1 contain a relatively complete description of the HOx, NOx, Clx and Brx chemistry that controls stratospheric ozone

along with the longer-lived source gases such as CH4, N2O and CFCs. Other models have a simplified stratosphere, such as

GEOS-Chem which has a linearized stratopheric chemistry scheme (Linoz, McLinden et al. (2000)), and WRF-Chem which120

specifies stratospheric concentrations from climatologies - both of which do not simulate stratospheric chemistry. Finally,

several models have no stratosphere or stratospheric chemistry at all (e.g., CIESM-MAM7, GEM-MACH, DEHM, and EMEP

MSC-W).
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2.2.4 Aerosols

Most models contain speciated aerosols; mineral dust (also known as crustal material), sea salt, BC, OA (sometimes separated125

into primary and secondary), SO2−
4 , nitrate (NO−

3 ), and ammonium (NH+
4 ). Though

::::::::
However, some, like CanAM5-PAM and

UKESM1, do not simulate NO−
3 and NH+

4 , but assume all is in the form (NH4)2SO2−
4 . OA, SO2−

4 , NO−
3 , and NH+

4 are

involved in chemical reactions interacting with the gas-phase chemistry. Aerosol size distributions are either prescribed or

discretized into log-normal modes or size sections. How the aerosol size distribution varies in space and time depends on many

different processes, including emission, aerosol microphysics, aerosol-cloud interactions, and removal. How these processes130

are parameterized depends on the model and we refer the reader to the appendix and the references therein for more detail.

3 Measurements

We have utilized many freely available observational datasets of SLCFs to evaluate the models with. General descriptions are

given below under the broad headings of surface monitoring, satellite, and campaign datasets, and there is some additional

information in Appendix B.135

3.1 Surface monitoring datasets

3.1.1 CH4 and O3

Global surface CH4 measurements were obtained from the World Data Centre for Greenhouse Gases (WDCGG). These mea-

surements were made via gas chromatography, which has a <1% uncertainty range. Surface in situ O3 measurements are

typically made via various types of UV absorption monitors, employing the Beer-Lambert law to relate UV absorption of O3140

at 254 nm directly to the concentration of O3 in the sample air (e.g., Bauguitte (2014)), which have approximately 3% or 1-2

ppbv uncertainty range. We obtained surface O3 measurements from various networks: the National Air Pollutant Surveil-

lance Program (NAPS) and the Canadian Pollutant Monitoring Network (CAPMON) for Canada; the Chemical Speciation

Network (CSN) for the U.S.; the Beijing Air Quality and Hong Kong Environmental Protection Agency for China; the Climate

Monitoring and Diagnostics Laboratory (CMDL) for some global sites; the European Monitoring and Evaluation Programme145

(EMEP); and some individual Arctic monitoring stations like Villum Research Station and Zeppelin Mountain. Many of these

measurements were downloaded from the EBAS database. The Arctic O3 measurement locations are shown in Figure 1.

3.1.2 CO, NO, and NO2

CO and NOx measurements were obtained from the same monitoring networks as O3. CO instrumentation is similar to that

for O3, however, it uses gas filter correlation to relate infrared absorption of CO at 4.6 µm to the concentration of CO in the150

sample air (Biraud, 2011). For NOx, the instrument deploys the characteristic chemiluminescence produced by the reaction

between NO and O3, the intensity of which is proportional to the NO concentration. NO2 measurements are approximated

using its thermal reduction to NO by a heated (350◦C) molybdenum converter (Bauguitte, 2014). Note that this method has an
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Figure 1. Location for Arctic surface in situ measurement locations. (left) O3, (middle) BC in brown and ice cores in black, and (right)

SO2−
4 .

estimated bias of about 5-20% because of sensitivity to other oxidized nitrogen species, and this has not been corrected for.

The bias is on the lower end for high-NOx conditions, and in the low-NOx Arctic, can be up to 100% uncertainty.155

3.1.3 BC and OA

There are various BC measurement methods, exploiting different properties of BCand thus
:
;
::::
thus,

:
measuring different quan-

tities (Petzold et al., 2013); Elemental carbon (EC) determined by thermal/thermal-optical methods, equivalent BC (eBC) by

optical absorption methods, and refractory BC (rBC) by incandescence methods. Table B1 in Appendix B lists the different

measurement techniques/instruments that the different monitoring networks and individual Arctic monitoring stations use. As160

BC emission inventories, including ECLIPSEv6b, are mainly based on emission factors derived from thermal/thermal-optical

methods, modelled BC is thus
::::::::::
consequently

:
representative of EC.

The different types of BC measurements (EC, eBC, and rBC) usually agree with each other within a factor of two (AMAP,

2022; Pileci et al., 2021). Though
:::::::
However, it has been shown that, as the aerosol ages, the complex state of mixing of BC

particles causes eBC to increase relative to EC (Zanatta et al., 2018). The absorption and scattering cross sections of coated BC165

particles vary by more than a factor of two due to different coating structures. He et al. (2015) found an increase of 20-250%
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in absorption during aging, significantly depending on coating morphology and aging stages. Thus, this complexity impacts

model-measurement comparisons at remote Arctic locations where one would expect eBC to have a high, positive uncertainty.

We obtained BC from the Canadian Aerosol Baseline Measurement (CABM) network for Canada; Interagency Monitor-

ing of Protected Visual Environments (IMPROVE) network for the U.S.; EMEP network for Europe; as well as individual170

Arctic locations. To our knowledge, there were no other freely accessible BC measurements. The major observing networks

EMEP, CABM, and IMPROVE measure EC with approximately 10% uncertainty (Sharma et al., 2017). However, given the

complexities in different BC measurement types, as mentioned above, the overall uncertainty is about 200%.

Another complexity with model evaluation of BC is that some of the eBC measurements that models are compared to were

made from collected particulate matter with different maximum diameters (e.g., PM1, PM2.5, and PM10). These are included175

in Table B1 for each of the measurement locations. From the models we use BC from PM2.5, as most of the BC is expected to

be in the submicron mode.

Organic Carbon (OC) is also measured via thermal/thermal-optical methods (Chow et al., 1993, 2001, 2004; Huang et al.,

2006; Cavalli et al., 2010; Chan et al., 2019; Huang et al., 2021) using the same instrumentation as for EC detection in

IMPROVE, CABM, NAPS, and EMEP measurement networks. These OC measurements have approximately 20% or less180

uncertainty (Chan et al., 2019). Models output organic aerosol (OA), which includes OC and organic matter and is related to

OC via a factor of 1.4 (Russell, 2003; Tsigaridis et al., 2014), though this factor has been reported as a range from 1.4 to 2.1 in

the literature, depending on the source of OC/OA (Tsigaridis et al., 2014). Nevertheless, we applied a conversion factor of 1.4

to the OC measurements before comparing the modelled OA.

Arctic BC measurement locations are shown in Figure 1, many of these Arctic aerosol measurements were discussed in185

Schmale et al. (2021a). We also evaluated modelled BC deposition by comparing it to BC deposition derived from ice core

measurements (D4, ACT2: McConnell and Edwards (2008); Humboldt: Bauer et al. (2013); Summit: Keegan et al. (2014);

NGT_B19, ACT11d: McConnell et al. (2019)). All of the ice core locations are also shown in Figure 1. Deposition fluxes are

not a measured value, but, are derived from the EC concentrations in ice and precipitation estimates.

3.1.4 SO2−
4190

Surface in situ SO2−
4 measurements in the major observing networks typically use ion chromatography methods, which have

approximately 3% uncertainty range (Solomon et al., 2014). However, SO2−
4 measurements have been shown to have up to

20% analytical uncertainty (AMAP, 2022). SO2−
4 datasets were obtained from IMPROVE, EMEP, and CABM networks, often

via the EBAS database.

SO2−
4 deposition was also derived from the same ice core measurements mentioned above for BC deposition (D4, ACT2:195

McConnell and Edwards (2008); Humboldt: Bauer et al. (2013), Summit: Maselli et al. (2017); NGT_B19, ACT11d: Mc-

Connell et al. (2019)). The Arctic SO2−
4 measurement locations are shown in Figure 1.
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3.1.5 PM2.5

Surface in situ PM2.5 measurements are usually made via gravimetric analysis of particulate matter collected on a filter (e.g.,

Teflon substrate), which has around 1-6% uncertainty range (Malm et al., 2011). These data were obtained from Beijing Air200

Quality and U.S. Embassy data for China, NAPS for Canada (Dabek-Zlotorzynska et al., 2011), IMRPROVE for the U.S., and

EMEP/EBAS for Europe.

3.2 Satellite datasets

Satellite observations are useful for evaluating models on larger horizontal spatial scales and for evaluating the 3-dimensional

atmosphere - not the surface concentrations. Observations from three satellite instruments were used to evaluate model trace205

gas distributions in the free troposphere and when appropriate, the lower-stratosphere. These were: the Tropospheric Emission

Spectrometer,
::::::
version

::
7 (TES; (Gluck, 2004a,b)

:::::::::::::::::::::::::::::::::::::::::::::::::::::
(NASA Atmospheric Science Data Centre, 2018; Gluck, 2004a,b)), the Atmo-

spheric Chemistry Experiment-Fourier Transform Spectrometer
::::::::::::
Spectrometerm

:::::::
version

:::
4.1 (ACE-FTS; Bernath et al. (2005)

:::::::::::::::::::::::::::::::::::::::
Bernath et al. (2005); Sheese and Walker (2020)), and the Measurements of Pollution in the Troposphere

:
,
::::::
version

::
8 (MOPITT;

(Ziskin, 2000)
::::::::::::::::::::::::::::
(Ziskin, 2000; Deeter et al., 2019)). The vertical profiles of trace gas volume mixing ratios are derived or re-210

trieved from the satellite-measured emission or absorption spectra, with varying degrees of vertical sensitivity. These remote

techniques typically have about a 15% uncertainty on the measurements (e.g., Verstraeten et al. (2013)) though this depends

on the specific instrument and the species retrieved (e.g., Sheese et al. (2017)).

Note that while TES and MOPITT have global spatial coverage, their coverage does not extend up into the high Arctic. The

TES instrument on NASA’s Aura satellite measures vertical profiles of trace gases such as O3, CH4, NO2, CO, and HNO−
3215

from 2004-present. After interpolating all models and TES results to a 1◦ × 1◦ horizontal grid, the monthly mean CH4 and O3

from the TES lite products were matched in space and time with models. Models were smoothed with the TES monthly mean

averaging kernels prior to comparisons with satellite data. TES measurements started in 2004 and stopped in late 2015, and

had poorer coverage in its last few years.

A similar comparison method was used for MOPITT data. The MOPITT instrument on NASA’s Terra satellite measures CO220

from 2000 to present.

The ACE-FTS instrument on CSA’s SCISAT satellite has measured trace gases; O3, CO, NO, NO2, CH4, among over 30

others from 2004-present. SCISAT has a high-inclination orbit giving its instruments better coverage in the Arctic. ACE-FTS

is a limb-sounding instrument, measuring the solar absorption spectra of dozens of trace gas concentrations from the upper-

troposphere to the thermosphere. This gives us the opportunity to evaluate the 3-D model output in a region of the atmosphere225

where the radiative forcing of ozone is at its highest. Evaluating models with ACE-FTS measurements also sheds insight into

models’ transport and upper tropospheric chemistry. As was shown in Kolonjari et al. (2018), 3-hourly model output (rather

than monthly mean output) is required for accurate comparisons to ACE-FTS data,
:
; thus, only models that provided output

at this time frequency were compared to ACE-FTS measurements. The model output was sampled to match the times and

locations of ACE-FTS measurements. We used an updated version of the advanced method in Kolonjari et al. (2018). Instead230
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of taking the model output at the closest time to the ACE-FTS measurement time, the model output was linearly interpolated

onto the ACE-FTS time. This reduces the bias introduced by diurnal cycles, which can cause certain volume mixing ratios

(VMRs; e.g. that of NO and NO2) to vary significantly in between model output times. As in Kolonjari et al. (2018), the model

output is also interpolated vertically in log pressure space and bilinearly in latitude and longitude to account for spatial variation

between model gridpoints.235

3.3 Measurement campaigns

Finally, there were air- and ship-based measurement campaigns of black carbon that were used for model evaluation. Aircraft

campaigns allow for vertical profiles of chemical species to be evaluated, and ship campaigns allow for in situ measurements

in the remote Arctic seas.

3.3.1 Aircraft campaigns240

The flight paths of the aircraft data used for model evaluation of BC are shown in Figure 2. The aircraft campaigns include

A-FORCE (Oshima et al., 2012), ARCPAC (Brock et al., 2011), ARCTAS (Jacob et al., 2010), EUCAARI (Hamburger et al.,

2011), HIPPO (Schwarz et al., 2010), NETCARE (Schulz et al., 2019), and PAMARCMIP (Stone et al., 2010). Most of these

aircraft campaigns occurred during boreal spring and summer months (April to July) except for one (HIPPO) occurring in

January and November, and most occured during the 2008-9 time period, with only one (NETCARE) occurring during 2014-245

15. All of these aircraft campaigns measured rBC from single-particle soot photometers (SP2) (Moteki and Kondo, 2010;

Schwarz et al., 2006; Stephens et al., 2003).

The AMAP models that submitted 3-hourly BC output were linearly interpolated on to the aircraft locations in space and time

using the Community Intercomparison Suite (CIS; Watson-Parris et al. (2016)) in order to provide representative comparisons

and robust evaluation.250

3.3.2 Ship campaigns

There were three ship-based measurement campaigns in 2014-2015. These were the two Japanese campaigns (MR14-05 and

MR15-03 cruises of R/V Mirai) in September of 2014 and 2015 (track from Japan to north of Alaska; Taketani et al. (2016)), and

the Russian campaign in October 2015 (track north of Russia, from Arkhangelsk to Severnaya Zemlya and back; Popovicheva

et al. (2017)) - both are shown in Section 4.5 (Figure 17). Models that provided 3-hourly BC output were compared to these255

observations. The Russian measurements of aerosol eBC concentrations were determined continuously using an aethalometer

purposely designed by MSU/CAO (Popovicheva et al., 2017). Light attenuation caused by the particles depositing on a quartz

fiber filter is measured, the light attenuation coefficient of the collected aerosol was calculated. eBC concentrations were deter-

mined continuously by converting the time-resolved light attenuation to the eBC mass corresponding to the same attenuation

and characterized by a specific mean mass attenuation coefficient, in calibration with AE33 (Magee Scientific).260
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Figure 2. Flight tracks of BC aircraft campaigns used in this study.

The Japanese measurements provide rBC (refractory BC). Pileci et al. (2021) showed that rBC and eBC are linearly related,

:
; thus, in order to compare the observations to models, we converted rBC to eBC via a factor of 1.8 (eBC = 1.8×rBC; Zanatta

et al. (2018); Pileci et al. (2021)).

4 Model-measurement Comparisons

In this section, we evaluate modelled SLCFs from the 18 participating models with a focus on performance in the Northern265

Hemisphere mid-latitudes (defined for our purposes as 30-60◦N) and the Arctic (defined here as >60◦N for simplicity).
::::::
Unless

::::::::
otherwise

:::::
noted,

::::
the

:::::::::::
observations

:::
are

::::::::
compared

:::
to

:::
the

::::::
model

::::
grid

::::
box

:::
that

:::::
they

:::
are

::::::
located

:::
in,

::::
and

:::::
when

:::::
more

::::
than

::::
one

:::::::::
observation

:::::::
location

::::::
occurs

::
in

:::
the

:::::
same

:::::
model

::::
grid

::::
box,

:::::
those

::::::::::
observations

:::
are

::::::::
averaged

::::
first

:::::
before

:::
the

:::::::::::
comparison. We look

at spatial patterns in the model biases, as well as the vertical distribution and the seasonal cycles for each species,
:::
but

::::
first

:::
we

:::
start

:::
by

::::::::
providing

::
a

:::::::::::
multi-species

::::::::
summary

::
of

:::
the

::::::
annual

::::
mean

::::::
model

:::::
biases

::
in
:::
the

:::::::
surface

::
air.270

4.1
:::::::::::
Multi-species

::::::::
summary

11



C
a

n
A

M
5

−
P
A

M

C
E

S
M

C
IE

S
M

−
M

A
M

7

C
M

A
M

D
E

H
M

E
C

H
A

M
−

S
A

L
S

A

E
M

E
P

−
M

S
C

W

F
L

E
X

P
A

R
T

G
E

O
S

−
C

h
e

m

G
IS

S
−

E
2

.1

M
A
T

C
H

M
A
T

C
H

−
S

A
L

S
A

M
R

I−
E

S
M

2

N
o

rE
S

M

O
s
lo

C
T

M

U
K

E
S

M
1

W
R

F
−

C
h

e
m

m
m

m

SO4

BC

OA

PM2.5

CH4

O3

CO

NO2

(a) Mid−latitude model biases for 2014−15 annual mean

−325
−200
−100
−50
−20
−10
−5
−2
0
2
5
10
20
50
100
200
325

C
a
n
A

M
5
−

P
A

M

C
E

S
M

C
IE

S
M

−
M

A
M

7

C
M

A
M

D
E

H
M

E
C

H
A

M
−

S
A

L
S

A

E
M

E
P

−
M

S
C

W

F
L
E

X
P
A

R
T

G
E

O
S

−
C

h
e
m

G
IS

S
−

E
2
.1

M
A
T

C
H

M
A
T

C
H

−
S

A
L
S

A

M
R

I−
E

S
M

2

N
o
rE

S
M

O
s
lo

C
T

M

U
K

E
S

M
1

W
R

F
−

C
h
e
m

m
m

m

SO4dep

BCdep

SO4

BC

OA

PM2.5

CH4

O3

CO

NO2

(b) Arctic model biases for 2014−15 annual mean

−325
−200
−100
−50
−20
−10
−5
−2
0
2
5
10
20
50
100
200
325

Figure 3.
::::

Mean
::::::
2014-15

:::::
model

::
%
:::::

biases
:::

for
::::
each

:::::
model

:::
and

:::
the

:::::::::
multi-model

:::::
mean,

:::
for

::::::
surface

:::::
SLCF

:::::::::::
concentrations

:::
and

:::
BC

:::
and

:::::
SO2−

4

::::::::
deposition,

::
at

::
(a)

:::::::::::
mid-latitudes,

:::
and

::
(b)

:::
the

:::::
Arctic.

::::
Note

:::
that

:::
the

:::::
colour

::::
scale

::::
isn’t

:::::
linear.

:::
The

:::::::
2014-15

:::::::
average

::::::::
modelled

::::::
percent

::::::
biases

:::
for

::::::
surface

::::::::::::
concentrations

::
of

:::::::
SLCFs

:::
are

:::::
shown

::
in

::::::
Figure

::
3

:::
for

::::
each

:::::
model

::::
and

::
the

:::::::::::
multi-model

:::::
mean

:::::::
(mmm).

::::
This

::::::
figure

::
is

:::::
based

::
on

::::
the

:::::
model

:::::::::::
comparisons

::
at

:::
the

:::::::
surface

:::::::::
observation

::::::::
locations

::::
that

::::
will

::
be

::::::
shown

::
in

:::::::::
subsequent

:::::::
sections

::::::::
(Figures

::
1,

::
5,

::
7,

:::
10,

:::
11,

:::
13,

::::
18,

:::
21,

:::
and

:::
23

:::
and

:::::::::
additional

::::::::
American

:::::::::::
observations

:::::
from

:::
the

:::::::::
IMPROVE

:::::::
network

:::
for

:::
BC,

::::::
SO2−

4 ,
:::
and

:::::
OA).275

:::::
Figure

::::
3(b)

::::::
shows

::::
that,

:::
for

::::::
surface

::::::
Arctic

:::::::::::::
concentrations,

:::
no

:::
one

::::::
model

::::::::
performs

::::
best

:::
for

::
all

:::::::
species,

::::
but

:::
that

:::
the

::::::
mmm

:::::::
performs

::::::::::
particularly

::::
well.

::
It
::::
also

:::::
shows

::::
that

:::
the

:::::
model

::::::
biases

::::
vary

::::
quite

::
a

::
bit

::::::
among

::::::
SLCF

::::::
species

:::
for

::::
both

:::
the

:::::::::::
mid-latitudes

:::
and

:::
the

::::::
Arctic.

::
It
::
is

::::::::
important

:::
to

::::
note

:::
that

:::::
there

:::
are

:::::
many

:::::
more

:::::::::::
measurement

::::::::
locations

::
at
::::::::::::

mid-latitudes
::::::::
compared

::
to
:::

in
:::
the

:::::
Arctic.

::::
BC,

:::::
CH4,

::::
O3,

:::
and

::::::
PM2.5 ::::

have
:::
the

:::::::
smallest

::::::
model

:::::
biases

::::
out

::
of

:::
the

::::::
SLCFs

::
of

::::
this

:::::
study,

:::::::
whereas

::::
OA,

::::
CO

:::
and

:::::
NO2

::::
have

:::::
larger

:::::
model

::::::
biases.

:
280

:::
We

:::
find

:::
for

::::
half

::
of

:::
the

:::::
SLCF

:::::::
species

:::
that

:::
the

:::::
mmm

:::::::
percent

:::
bias

:::::::::
decreases

::::
with

::::::
latitude

:::::::
(Figure

::
4).

::::
O3,

:::::
NO2,

:::
BC,

::::
and

::::
SO4

::::
have

:
a
:::::::
negative

:::::
slope

::
in

:::
the

::::
bias

::
vs

:::::::
latitude

::::::
Figure.

:::
So

:
if
:::
the

:::::
mmm

::::
bias

::::
was

::::
high

::
at

:::
the

:::::::::::
mid-latitudes,

::
it
::
is

:::::
close

::
to

::::
zero

::
in

:::
the

:::::
Arctic

:::::
(O3),

:::
and

::
if
:::
the

:::::
mmm

::::
bias

::::
was

::::
near

::::
zero

::
at

::::::::::::
mid-latitudes,

:
it
::
is
::::::::
negative

::
in

:::
the

:::::
Arctic

::::::
(NO2,

::::
BC,

::::::
SO2−

4 ).
::::
This

:::::::
implies

:::
that

:::::
there

:
is
:::
not

:::::::
enough

:::::::::
long-range

::::::::
transport

::::
from

:::
the

::::::::::
mid-latitude

::::::
source

::::::
regions

::
to

:::
the

::::::
Arctic.

::::
That

:::::
said,

:::
the

:::::
mmm

::::
CH4::::

bias

12
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Figure 4.
:::::::::
Multi-model

:::::
mean

::
%

:::::
biases

::
for

::::::
surface

:::::
SLCF

::::::::::
concentrations

::::::
versus

:::::
latitude

:::
(in

:::
10◦

::::::
latitude

::::
bins).

::::
stays

::::::::
relatively

:::::::
constant

::::
with

:::::::
latitude,

::::
and

:::
we

:::
will

:::
see

::
in
:::::::
Section

:::
4.2

::::
that

:::
this

:::::
result

::
is

:::::::::::::::
model-dependent.

:::
The

::::
CO,

::::::
PM2.5,

::::
and285

:::
OA

:::::
mmm

:::::
biases

::::
have

:::
an

::::::::
increasing

:::::
trend

::::
with

:::::::
latitude.

::::::::
However,

::::
both

:::
CO

:::
and

::::::
PM2.5::::

have
::
no

::::::::::
observation

::::::::
locations

::
in

:::
the

::::
high

:::::
Arctic,

:::
so

::::
those

::::::
results

:::
can

:::
not

::::::::
represent

:::::::::
long-range

::::::::
transport.

::::
OA

::::
only

:::
has

:::
one

::::::::::
observation

:::::::
location

::
in

:::
the

::::
high

::::::
Arctic,

:::
and

:::
its

:::
bias

::
is

::::
very

:::::
large

::::::
overall,

::
so

:::::
other

:::::
issues

:::::
other

::::
than

:::::::::
long-range

::::::::
transport

:::
are

::
at

::::
play,

::
as

:::
we

::::
will

:::
see

::
in

:::
the

::::::::
following

:::::::::
discussion

:::::::
(Section

::::
4.7).

::
Of

::::::
course,

:::::
there

:::
are

::::::
spatial,

::::::::
temporal,

::::
and

:::::
model

::::::::::
differences

::
in

:::
the

::::::
results,

:::
so

::
we

::::
will

::::
now

:::::::
explore

:::::
model

:::::::::::
performance

:::
for290

::::
each

:::::
SLCF

::
in

::::::
more

:::::
detail

::
in

:::
the

:::
next

:::::::::::
subsections.

4.2 Methane

Measured annual mean surface methane is shown in the top left panel of Figure 5, along with model biases in the rest of the

panels. Recall, that unlike the rest of the SLCF species in this study, CH4 concentrations were prescribed in these models

from the same CH4 dataset (Olivié et al., 2021). That said, the different decisions by modellers in how those CH4 global295

concentrations are distributed make differences in how these models compare to measurements. The mean model biases are

small and mainly positive; in the mid-latitudes, the multi-model mean bias is +145 ppbv (or +8.5%), and in the Arctic, the

multi-model mean bias is 24 ppbv (or 1.3%), which means that the models simulate the magnitude of surface CH4 well -

though still outside the <1% measurement uncertainty range. There is a gradient in CH4 concentrations
:::::
VMRs

:
(higher in the

northern hemisphere and lower in the southern hemisphere) that is seen in the measurements (Figure 5,top-left) and reported in300

the literature (e.g., Dlugokencky et al. (1994)), though not well captured by CMAM, MRI-ESM2, and UKESM1 models, which

are all biased low in the northern hemisphere, and biased higher towards the south. That is because of the simplifications made

in these models distributions of CH4. For example, CMAM used a single global-average CH4 concentration that is interpolated

linearly in time from once-yearly values.
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Figure 5. (top left) Measured surface-level methane (in ppbv, left colour bar) and (rest of panels) model biases (model minus measurement,

also in ppbv, right colour bar) for 2014-2015.

Figure 5 also shows that observed annual mean surface CH4 ranges geographically from about 1500 to 2100 ppbv depending305

on location, however, the models have a much smaller range due to their prescribing CH4 concentrations as a lower boundary

input. For example CMAM CH4 volume mixing ratios only span about ±3 ppbv around 1836 ppbv. The span of MRI-ESM2

surface CH4 is even smaller. GEOS-Chem, GISS-E2.1, and OsloCTM have a more realistic range of 1700-2000 ppbv, though

they still do not get the full variability that is seen in surface CH4 mixing ratios close to CH4 sources. However, in the

free-troposphere (above the boundary layer), we have TES satellite measurements of CH4 that show that CH4 is much more310

smoothly distributed aloft. Thus, the simplification of prescribing CH4 concentrations in the models, is more realistic there

(Figure 6, showing the 600 hPa level in the mid-troposphere). Additionally, Figure 6 better illustrates the latitudinal gradient

in CH4 over the globe, and its lack in some models, which have more negative biases in the Northern Hemisphere, and more

positive biases in the southern hemisphere. Other models, such as GISS-E2.1, do a good job of capturing the global distribution

of CH4.315
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Figure 6. (top left) TES measurements of CH4 in the mid-troposphere (at 600 hPa, in ppbv, left colour bar) and (rest of panels) model biases

for 2008-9 (model minus measurement, also in ppbv, right colour bar). Results for 2014-15 are similar but had less spatial coverage by the

satellite.
::::
Gray

::::
areas

::::
have

::
no

::::
data

:::::
(either

::::
from

:::::
model,

::::
TES,

::
or

:::::
both).

In the Arctic, the vertical cross section of CH4 VMRs over time as measured by the ACE-FTS in the mid-to-upper tro-

posphere, and in the stratosphere is shown in Figure ??
::
S1. There is a large decrease in CH4 above the tropopause,

:::::::
around

:::::::
300-100

:::
hPa. The models are all biased high in the troposphere, and low in the lower-stratosphere, then high again in the

upper-stratosphere
:::
low

::::::
around

:::
300

::::
hPa,

::::
and

::::
high

::::::
around

:::
100

::::
hPa. This pattern is true for mid-latitudes as well as in the Arctic,

and implies
:::
may

::::::
imply that the altitude of the modelled tropopause is too low. This same conclusion was also found in Law320

(2021) via comparisons of these models simulations to ozonesonde measurements, and in our ACE-FTS
::::::
satellite

:
O3 compari-

son in the next section. The CH4 model-measurement correlation coefficients for ACE-FTS are relatively high (e.g., R=0.48 to

0.86 depending on the model).

(top left) ACE-FTS measurements of Arctic (>60◦N) CH4 vs month (in ppbv, top colour bar) and (rest of panels) model

biases for 2014-15 (model minus measurement, also in ppbv, lower colour bar). Results for 2008-9 are similar and not shown.325

Therefore, the general model evaluation for CH4 indicates that because models do not explicitly model CH4 emissions, they

do not simulate the surface-level variability of CH4 VMRs. Models differ in their global distribution of CH4, thus;
:::::
thus, only

some contain the north-south CH4 gradient. Those that do not have the largest underestimations of Arctic tropospheric CH4.

The CH4 evaluation also implies that modelled tropopause height may be too low.
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4.3 Ozone330

Tropospheric O3 is the third most important greenhouse gas (IPCC, 2021), and a regional pollutant that causes damage to

human health and ecosystems. O3 is a secondary pollutant, formed in the troposphere via photochemical oxidation of volatile

organic compounds in the presence of nitrogen oxides (NOx=NO+NO2). As such, models must simultaneously simulate the

meteorological conditions, precursor species distributions, and the photochemistry correctly in order to accurately simulate O3.

That said, since surface O3 is an important contributor to poor air quality, there is significant pressure for models to simulate335

it accurately, particularly in the heavily populated mid-latitudes (e.g., for air quality forecasting). Only models with prognostic

O3 are included in this section.

Figure 7 shows the in situ annual
::::::::::
summertime mean O3 measurements (top left panel), and the model biases (rest of panels)

:
,

:::
and

:::
the

::::
same

:::
for

:::
the

:::::
annual

:::::
mean

::
is

:::::
shown

::
in
:::
the

::::::::::
Supplement

::::::
(Figure

::::
S2). These include averaging O3 from hourly observations

(day and night) and 3-hourly or monthly modelled O3 depending on which were available for each model. Surface O3 is over-340

predicted by most models, which has been documented previously (Makar et al., 2017; Turnock et al., 2020). It has been

shown that models can have problems producing low O3 overnight (Brown et al., 2006; Lin et al., 2008). In the Arctic,

simulated surface O3 has more mixed results. Annual mean concentrations are of the order of 40 ppbv, and individual model

biases range from -20% to +52% globally on average for 2014-15. The multi-model mean has a bias of +11% for the Arctic,

but this is not spatially distributed uniformly. All models overestimated surface O3 in Alaska (mainly due to the overestimation345

of summertime concentrations, discussed below), and most models have too little O3 at the Greenland location and in northern

Europe.

The models were all able to represent the summertime peak in the mid-latitudes seasonal cycle (not shown). In contrast to the

more polluted mid-latitudes, where surface O3 peaks in the summertime due to photochemical production being at a maximum,

Arctic O3 is more influenced by the Brewer-Dobson circulation, bringing a maximum of tropospheric O3 in the springtime due350

to photochemical production (Wespes et al., 2012), descent from the stratosphere, and more long-range transport of O3 to the

Arctic. Figure 8, shows this springtime peak in both the western (a, longitude<0◦) and eastern (b, longitude>0◦) Arctic in the

measurements. However, the models only capture that seasonal cycle in the eastern Arctic [Fig. 8(b)], implying that that the

models are representing large scale circulation and possibly stratosphere to troposphere exchange well. But it is interesting

to note that the models that have sophisticated representation of stratosphere-troposphere exchange (such as CMAM, MRI-355

ESM2, UKESM1) do not particularly stand out as better performers in Figure 8, compared to models that do not simulate the

stratosphere (such as DEHM, MATCH, MATCH-SALSA). Thus, it’s
::
its impact on surface O3 may be very small.

In the western Arctic [Alaska mainly, Figure 8(a)], models overestimate summertime Arctic O3, likely due to over-predicting

the impact of wildfire emissions on tropospheric O3 concentrations, which is a research topic with high uncertainty (van der

Werf et al., 2010; Monks et al., 2015; Arnold et al., 2015). Another possibility is that modellled
::::::::
modelled O3 dry deposition360

over boreal vegetation is underestimated (Stjernberg et al., 2012; Thorp et al., 2021).

Surface O3 monthly range that occurs at the locations in Fig. 7 above 60◦N. The measurements are the black and white

box/whiskers, and the models are the coloured box and whiskers. (a) for the western Arctic and (b) for the eastern Arctic for
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Figure 7. (top left) Annual
::::::::::
Summertime

::::
(JJA) mean in situ surface O3 measurements (in ppbv, left colour bar) and (rest of panels) model

biases for 2014-15 (model minus measurement, also in ppbv, right colour bar). Results for 2008-9 are similar but are not available for China.

2014-15. Thick horizontal lines indicate the median O3 VMR in each month, and the box extends to the interquartile range.

The whiskers extend to the minimum and maximum monthly mean O3 VMR.365

Some Arctic locations are more inclined to get spring-time surface O3 depletion due to bromine explosions and halogen

chemistry (Bottenheim et al., 1986; Barrie et al., 1988; Simpson et al., 2007). None of the model simulations in this study

contain the necessary tropospheric halogen chemistry to simulate those events, thus, this
:::::
which

:
partly explains why some

models in Figure 8(bottom) overestimate springtime O3 concentrations. That particular feature is explored further on a site-to-

site basis in Law (2021).370

The next subsection shows that both O3 precursors CO and NO2 are underestimated compared to measurements at all global

locations. This has implications for simulated tropospheric O3 chemistry.

Free-tropospheric O3: satellite comparisons

Aircraft-based measurements and ozonesondes can provide insight into the vertical distribution of O3 and these have been

well documented [E.g., Tarasick et al. (2019); Law (2021)]. However, model grid boxes may not be representative of those fine375

spatial scale measurements. In this study, we examine how the model biases change in the vertical when compared to satellite

measurements, which have a larger, “smoothed out” spatial sensitivity due to their viewing geometry and retrieval methods.
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Figure 8.
:::::
Surface

:::
O3:::::::

monthly
:::::

range
:::
that

::::::
occurs

::
at

:::
the

:::::::
locations

:::
in

:::
Fig.

::
7
:::::
above

:::::
60◦N.

::::
The

:::::::::::
measurements

:::
are

:::
the

:::::
black

:::
and

:::::
white

::::::::::
box/whiskers,

:::
and

:::
the

::::::
models

:::
are

:::
the

:::::::
coloured

:::
box

:::
and

::::::::
whiskers.

::
(a)

:::
for

:::
the

::::::
western

:::::
Arctic

::::
and

::
(b)

:::
for

:::
the

::::::
eastern

:::::
Arctic

:::
for

:::::::
2014-15.

::::
Thick

::::::::
horizontal

::::
lines

::::::
indicate

:::
the

::::::
median

::
O3:::::

VMR
::
in

::::
each

:::::
month,

:::
and

:::
the

:::
box

::::::
extends

::
to
:::
the

:::::::::
interquartile

:::::
range.

::::
The

:::::::
whiskers

:::::
extend

::
to

::
the

::::::::
minimum

:::
and

:::::::
maximum

:::::::
monthly

::::
mean

:::
O3:::::

VMR.
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Figure 9. Vertical distribution of models’ O3 percent biases [(model minus measurement) over measurement] for 2008-9 as compared to

the TES measurements; (left) average for Arctic latitudes
:::::::::
mid-latitudes

:
(>60

::::
30-60◦N)

:
, and (right) average for mid-latitudes

::::
Arctic

:::::::
latitudes

(30-60
:::
>60◦N). mmm = the multi-model mean.

Specifically, we compare modelled O3 to TES and ACE-FTS satellite-based retrievals. These satellite instruments also have

better global coverage than aircraft and sonde-based measurements.

The model fractional biases as compared to TES measurements from near surface up to 100 hPa are shown in Figure 9 for380

the Arctic (left), and mid-latitudes (right). All models’ simulated fractional biases have similar vertical profiles for both the

Arctic and mid-latitudes, with greater negative values at lower levels, and a more positive “bulge” of about 10% around 300

hPa in the Arctic and about 5% around 200 hPa at mid-latitudes. That “bulge” in model biases at 300 hPa was also seen to

a greater degree (50-70%) when comparing these models simulations to Arctic ozonesonde measurements in Law (2021). As

compared to TES, which has much lower vertical resolution, the results are not as striking,
:::
but

:::
are

:::::::::
consistent

::::
with

:::::::::
ACE-FTS385

:::::::::::
measurements. On an average, the models have a negative bias at all vertical levels in the Arctic region and in lower troposphere

in the mid latitude region, where as a positive bias is seen in the upper troposphere below 60◦N. This is consistent for the two

time periods (2008-9 and 2014-15).

Given that Figure 7 showed positive biases near the mid-latitudes, while Figure 9 shows lower O3 in the free troposphere,

these results imply that there is not enough vertical lifting/mixing of tropospheric O3 in most of the models. However, the TES390

measurements have been shown to be biased high by approximately 13% throughout the troposphere (Verstraeten et al., 2013),

which is the same amount that the multi-model mean is low. Similarly, ACE-FTS O3 has an uncertainty range between +5-10%

when compared to O3 from other satellite limb-view observations (Sheese et al., 2017). Thus,
:::
The

:::::::::
ACE-FTS

::::::::::
comparison

:::
for

::
O3::::

can
::
be

:::::
found

::
in

:::
the

::::::::::
Supplement

:::::::
(Figure

::::
S3),

:::::::
showing

:::::
higher

::::::
model

:::::
biases

::::::
around

::::::::
300-100

:::
hPa

:::::::
(except

::
for

:::::::::::::
GEOS-Chem),
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:::
and

::::
good

:::::::::
agreement

:::::
below

::::
that.

:::::::::
Therefore,

:
overall, participating models simulate the free tropospheric O3 reasonably well and395

within the uncertainly limits of the observations.

Therefore, the general model evaluation for O3 indicates that all models overestimate surface O3 at mid-latitudes, and that,

combined with a lack of O3 transport to the Arctic, result in modelled Arctic O3 VMRs having relatively little bias (the right

answer for the wrong reason). The summertime evaluation implies that models overestimate the O3 produced and transported

by wildfires in the western Arctic. The O3 evaluation also implies that modelled tropopause height may be too low.400

4.4 O3 precursors: Carbon monoxide and nitrogen oxides

Figures 10 and 11 show the comparisons of the models
::::::::::
multi-model

:::::::
medians

:::::::
(MMM)

:
to the surface in situ measurements. The

:::::
figures

:::
for

:::::
each

:::::
model

:::::::
appears

::
in

:::
the

::::::::::
Supplement

:::::::
(Figures

:::
S4

::::
and

:::
S5),

::::
but

::::
only

:::
the

::::::
MMMs

:::
are

::::::
shown

::::
here

:::::
since

:::
the

::::::
spatial

::::::
patterns

:::::
were

::::
very

::::::
similar

:::
for

:::
all

:::::::
models.

:::
The

:
multi-model annual mean underpredicts both CO and NO2 by approximately

-55% in the Northern Hemisphere for 2014-15. The 2015 AMAP report showed similar findings for simulated surface CO,405

as have other studies (AMAP, 2015a; Emmons et al., 2015; Monks et al., 2015; Jiang et al., 2015; Quennehen et al., 2016),

pointing to a possible
:::::
likely underestimation of CO emissions, and possibly shorter modelled lifetimes of CO due to an overes-

timation in OH (Miyazaki et al., 2012). The annual mean surface CO underestimation is mainly dominated by the wintertime

(e.g., the multi-model mean bias in DJF is -92%), when it has been reported that CO emissions from combustion are too low

(e.g., Kasibhatla et al. (2002); Pétron et al. (2002)). All the models exhibit a large negative bias over China which is consistent410

with the study by Quennehen et al. (2016), and is attributed to the enhanced destruction of CO by OH radicals, but it was

also found in Kasibhatla et al. (2002) and Pétron et al. (2002) that bottom-up CO emission inventories in Asia are greatly

underestimated.

In the free troposphere, we compare modelled CO to that measured by MOPITT. Figure 12 shows these comparisons at

the 600 hPa level. All models are biased low over land in the mid-latitudes, which was the same finding as in the surface415

comparisons. However, models were biased high over the oceans at lower latitudes. The biases were more negative at the 600

hPa level than at the 900 hPa level, but with similar spatial patterns. Monks et al. (2015) discussed that models had high biases

in the outflow from Asia, and low biases north of there due to lack of transport. Our results are consistent with these findings.

The Quennehen et al. (2016) study also suggested that summertime CO transport out of Asia is too zonal. This could explain

some of the underestimation in the Arctic in the mid-troposphere.420

In the upper-troposphere and stratosphere, modelled CO and NOx monthly time series are compared to measurements from

the ACE-FTS satellite instrument (where NOx=NO + NO2 which are measured separately), and those results are shown as

Taylor diagrams in Figure ??
::
S6, along with O3 and CH4 at 150 hPa, which is in the upper-troposphere, lower-stratosphere

(UTLS) region. The contours show the model’s overall skill as defined in Hegglin et al. (2010). Only the models that simulate

the stratosphere were included, and the results show that there is a range in model performance by SLCF species, with no one425

model performing best for all. Comparison statistics for CO were poorer than those for O3, CH4 and NOx.

Taylor diagrams showing model performance for 2014-15 monthly average trace gases in the Arctic UTLS region at 150 hPa

as evaluated against ACE-FTS satellite measurements. The grey contours indicate the skill as defined in Hegglin et al. (2010).
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Figure 10. Mean CO volume mixing ratios (ppbv, left colour bar) at surface measurement sites, and model
:::::::::
multi-model

::::::
median

::::::
(MMM)

:
bias

(model
::::

MMM
:
minus measurement in ppbv, right colour bar) for 2014-15. Results from 2008-9 are similar and not shown.

4.5 Black carbon

In this section, we examine the spatial and seasonal distributions of BC using ground-based measurements which are primarily430

available in North America, Europe, and several locations in the Arctic, but are also available from two ship-based campaigns,

and several aircraft campaigns. Given the limited global data available for both BC and SO2−
4 (e.g., we could find none freely

available for Asia), we focus the plots on the Arctic region here, and given that the magnitude of BC and SO2−
4 does not span

a wide range throughout the Arctic, we show model biases as percent rather than absolute differences as was done in previous

sections for trace gas species shown globally. We also analyse the BC model-measurement comparisons keeping in mind that435

because there are various definitions and measurements types for BC, we consider an agreement within a factor of 2 to be

within the uncertainty range (Section 3.1.3).

Figure 13 (top left panel) shows annual mean surface-level concentrations of black carbon (BC) at nine Arctic observation

stations, and (rest of panels) the model percent biases there. The annual mean BC concentrations are of the order of less than
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Figure 11. Mean NO2 volume mixing ratios (ppbv, left colour bar) at surface measurement sites, and model
:::::
MMM bias (model

:::::
MMM minus

measurement in ppbv, right colour bar) for 2014-15. Results from 2008-9 are similar and not shown.

1 µg m−3 and most models tend to underestimate BC in the high Arctic while overestimating in Alaska and Scandinavia. This440

result could be partially explained by the discrepancy caused by the use of EC and eBC data which are not the same (Section

3.1.3). As aerosols age during the transport to the high Arctic locations, their eBC (based on absorption converted to mass) gets

more and more of a positive bias compared to EC. As models are more representative of EC, they will not be able to agree with

eBC measurements in the aged air at high Arctic remote stations, such as Gruvebadet, Zeppelin, Alert, and Utqiagvik. This is

in contrast to the Alaskan and European stations, which
:::
are closer to sources where BC is more fresh, and thus;

:::::
thus, the eBC445

measurements have lower uncertainty.

That said, a few models (CanAM5-PAM, DEHM, and FLEXPART) overestimate BC concentrations in the high Arctic.

Overall individual model biases range between ±100% at individual sites.

The underestimation of high-Arctic atmospheric BC concentrations may be related to excessive BC deposition further south,

however, there are very few BC deposition measurements. In the Arctic, we can evaluate total (wet + dry) modelled deposition450
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Figure 12. (top left) Mean MOPITT CO at 600 hPa (in ppbv, left colour bar) and (rest of panels) model biases (model minus measurement

in ppbv, right colour bar) for 2014-15.

via derived ice core measurements. There were 6 ice cores on Greenland and one in the European Arctic, in Spitsbergen

(Lomosovfonna). Figure 14 shows that all models overestimate BC deposition fluxes at the ice core locations. While the ice

cores contain BC data starting in the year 1750, only data after 1990 have been used to match the modelled time period

(1990-2015, 1995-2015, 2008-9 and 2014-15, depending on the model).

The measured BC deposition flux values on Greenland vary with elevation (lower fluxes at higher elevation). Summit (3177455

masl) has an average of 285 µg/m2/yr in contrast to ACT2 (2461 masl) with 676 µg/m2/yr. BC deposition is highest in the

European Arctic at Spitsbergen with 856 µg/m2/yr. For all 7 ice cores used in this comparison the averaged model mean is

3 times as high as the observations. At D4 (2728 masl) the modeled mean corresponds best to the observation, with a mean

bias of +83%. At ACT11 (2296 masl) the models have 4 times the deposition flux compared to the measurements. Generally

though, the model mean is skewed higher by FLEXPART and DEHM (Figure 14), which also had higher atmospheric BC460

concentrations. A few models simulated less BC deposition than observed at these sites, and these models also underestimated
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Figure 13. Mean BC concentrations (in µg m−3, top colour bar) at surface Arctic measurement sites, and model bias [as (model-

measurement)/measurement in %, bottom colour bar] for 2014-15. Results from 2008-9 are similar and not shown.

BC atmospheric concentrations. Thus, it is difficult to conclude deposition biases as being a cause for atmospheric biases, when

the two are inter-related parameters.

The seasonal cycles of surface-level atmospheric BC concentrations at several Arctic locations are shown in Figure 15. As

seen in Eckhardt et al. (2015), some models still underestimate wintertime BC, but many models now show similar seasonality465

as the observations. The multi-model mean also captures well the monthly variations including the summertime peak at some

Alaskan sites caused by fire emissions. The multi-model mean Arctic BC is underestimated in winter (-24%), and overesti-

mated in the summer (+32%), though overall, this is an improvement in model performance in simulating Arctic BC since the

2015 AMAP assessment on black carbon and ozone as climate forcers - the latter of which had -59% winter bias and +88%

summertime bias (AMAP, 2015a; Eckhardt et al., 2015). However, it is difficult to make direct comparisons to that report as470

those values were for a smaller set of Arctic locations, different observation periods, and with a different set of models (though

24



D4 - 2003

0

1

2

3
D

ep
. B

C
 [m

g/
m

2/
ye

ar
]

Measured
DEHM
CanAM5PAM
MRI-ESM
CESM
MATCH
OsloCTM
ECHAM-SALSA
MATCH-SALSA
EMEP-MSCW
NorESM
WRF-chem
GEOS-CHEM
GISS-E2.1
UKESM1
FLEXPART

ACT2 - 2004

0

2

4

D
ep

. B
C

 [m
g/

m
2/

ye
ar

] ACT11D - 2011

0

2

4

D
ep

. B
C

 [m
g/

m
2/

ye
ar

]

Humboldt - 1993

0

1

2

3

D
ep

. B
C

 [m
g/

m
2/

ye
ar

] NGT_B19 - 1993

0

0.5

1

1.5

D
ep

. B
C

 [m
g/

m
2/

ye
ar

]

Summit - 2009

0

0.5

1

1.5

D
ep

. B
C

 [m
g/

m
2/

ye
ar

]

Lomosovofonna - 2009

0

2

4

6

D
ep

. B
C

 [m
g/

m
2/

ye
ar

]

Figure 14. Annual average BC deposition flux values for the 7 ice core locations (Fig. 1) for each model based on values from 2008-9 and

2014-15. The observed fluxes are plotted in black and a black line indicates the level of the average observed flux, the black dashed line is

the model mean for each location. The period used for plotting is based on all available years after 1990, the title indicates the last available

year form the ice core record.
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Figure 15. Modelled (thin colored lines) and measured (thick black line) monthly mean BC concentrations (in µg m−3) at surface Arctic

measurement sites in 2014-15. Multi-model mean is shown by the black dashed line.

many overlapping). The model improvement may be due to the improved anthropogenic emissions of BC, particularly from

northern Russia, where flaring emission factors were increased in ECLIPSEv6B compared to those used for the 2015 AMAP

report.

Most models have reasonable spatial correlation with the measurements across the Arctic, in that they correctly simulate475

the range of BC concentrations that appear across the Arctic (e.g., higher concentrations at Hurdal, lower concentrations at

Zeppelin, etc), as shown in Figure ??
::
S7. However, there are still large differences and low R values in the statistics shown in

Figure ??
::
S7.

Modelled vs measured BC concentrations at surface Arctic measurement sites in 2014-15. Results for 2008-9 (not shown)

had lower correlation coefficients and higher biases. Filled circles represent the mean for each location and the lines represent480

± one standard deviation from mean. The number of monthly mean values available from individual sites is shown in brackets

next to site names in the legend, with a max of 24 months in the 2 years.

There are positive model biases at mid-latitudes (in North America and Europe; not shown) for surface-level BC. The vertical

analysis of BC from the aircraft campaigns (below) provides further insight and support for the suggestion that models do not

have adequate long-range transport of the pollutants from their the sources in the mid-latitude, and
:
; thus, do not simulate485

enough pollution in the Arctic.

Vertical profiles of BC: aircraft campaigns

Gridded BC output at three-hourly intervals was provided by 11 of the participating models and was compared to aircraft

campaign measurements of BC. The interpolation of model output to flight track coordinates was carried out by tools from the
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Community Intercomparison Suite (CIS; Watson-Parris et al. (2016)), which co-located the extracted model tracks with their490

corresponding observational values.

Figure 16 shows the median vertical profiles of BC concentrations from the aircraft measurements and from the models. At

mid-latitudes, from 0-2km, all of the models agree well with the measurements. However, BC concentrations decline steeply

in a few models (e.g., MATCH-SALSA, EMEP-MSC-W, and GEOS-Chem) above 2 km. It would appear that they do not have

enough vertical lifting of BC and/or perhaps too short of a BC lifetime. Indeed, one of these is EMEP MSC-W, in which the495

short BC lifetime was previously reported in Gliß et al. (2021). That said, in Lund et al. (2018b), the Oslo-CTM and ECHAM

models were shown to overestimate the BC lifetime. In our case, OsloCTM isn’t shown in Figure 16 because it didn’t provide

BC at 3-hourly time scales. But ECHAM-SALSA results are consistent with the Lund et al. (2018b) study, in that they are

particularly overestimating BC in the upper altitudes, in both the mid-latitudes and the Arctic, implying too long a lifetime,

and too much long-range transport into the upper Arctic atmosphere. The measured BC profile at mid-latitudes drops off more500

quickly around the tropopause at 11-12 km, and, except for CanAM5-PAM, the models do not reproduce this drop.

In the Arctic profiles (Figure 16), the modelled and observed profiles do not decline with altitude throughout the troposphere,

but the observed median BC concentration does drop sharply around 9 km - again near the Arctic tropopause, and again, the

only model to capture that change is CanAM5-PAM. In the Arctic comparisons, the models that didn’t simulate enough BC

aloft at the mid-latitudes, stand out as having larger underestimates of BC in the Arctic. For example, MATCH-SALSA and505

EMEP MSC-W have very low BC throughout the Arctic vertical profile. These results are consistent with the surface BC

underestimation in Figure 15. Therefore, the underestimation seen in the Arctic for those two models is likely due to a lack of

long-range transport from the mid-latitudes, as well as errors in BC deposition mentioned above. In addition, the Zhao et al.

(2021) study showed that different parts of the Arctic BC vertical profile are sensitive to BC transported from different areas

of the world. For example, the lower tropospheric BC is influenced by emissions transported from North America, Russia-510

Belarus-Ukraine, Europe, and East Asia. Whereas,
:
,
:::::::
whereas,

:
upper tropospheric Arctic BC is mainly influenced by transport

from South Asia. Thus, the differences in the model results could be related to differences in how they simulate these transport

pathways.

In Mahmood et al. (2016), they found that, overall, considerable differences in wet deposition efficiencies in the models exist

and are a leading cause of differences in simulated BC burdens. Results from their model sensitivity experiments indicated that515

convective scavenging outside the Arctic reduces the mean altitude of BC residing in the Arctic, making it more susceptible to

scavenging by stratiform (layer) clouds in the Arctic. Consequently, scavenging of BC in convective clouds outside the Arctic

acts to substantially increase the overall efficiency of BC wet deposition in the Arctic, which leads to low BC burdens compared

to simulations without convective BC scavenging. Oshima et al. (2013) also found that convective scavenging at mid- and sub-

tropical latitudes removes a significant fraction of BC. In contrast, BC concentrations in the upper troposphere are only weakly520

influenced by wet deposition in stratiform clouds, whereas lower tropospheric concentrations are highly sensitive (Mahmood

et al., 2016) - these are consistent with the results we find in this study, where the multi-model median is too high above about 9

km and too low from 0-9 km. Indeed, the MATCH and MATCH-SALSA models, for example, assumes reduced scavenging of

aerosol in mixed phase clouds following Liu et al. (2011), which increases long-range transport to the Arctic. It is odd then that
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Figure 16. Median vertical profiles of observed (heavy black line) and modelled (coloured lines) BC concentrations for all aircraft campaigns

combined, separated into (left) mid-latitudes, and (right) Arctic. The multi-model median is shown by the dashed black line.
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MATCH is one of the better performing models in Figure 16, and MATCH-SALSA is not. Despite the large range in modelled525

vertical BC concentrations, the multi-model median is close to the observed throughout the troposphere at both mid-latitudes

and in the Arctic.

Arctic seas analysis: ship campaigns

From the ship-based measurements, we see that there is a consistent model overestimate of BC in the Pacific region
:::::
(Japan

::::::
Cruise) where measured concentrations are very low (Figure 17). Indeed, Taketani et al. (2016) report that BC concentrations530

were in the range 0-66 ng m−3, with an overall mean value of just 1.0 ± 1.2 ng m−3. The models, possibly due to their

coarse resolutions, were not able to simulate such low background BC concentrations. However, even the model with the

highest resolution (GEM-MACH at 15 km resolution) overestimated BC in the Pacific - though that limited area model, in

that region near the boundary, would have been heavily influenced by the upwind, coarser resolution boundary conditions

that were assumed (1◦×1◦ MOZART4 chemical boundary conditions). The high bias in the Pacific may be due to all models535

overestimating the amount of BC that gets transported off of the Asian continent. That model bias is consistent with our low-

altitude comparisons of the models to the HIPPO aircraft campaign measurements, which were taken over the north-western

Pacific (Figure 2). The BC overestimate over the Pacific was also found in the Schwarz et al. (2013) study looking at simulated

BC from the AeroCom global model intercomparison initiative as compared to HIPPO measurements.

Conversely, the modelled BC concentrations generally agree with measurements in the Russian Arctic ocean, though biased540

slightly low for the most part. Popovicheva et al. (2017) attributes the higher BC concentrations measured near the Kara

Straight (north of 70◦N) to gas-flaring emissions, and when near Arkhangelsk (White Sea), important sources were mid-

latitude biomass burning, transportation, and combustion (residential and commercial). Since models were able to simulate

this well, their improvement is likely due to improved Russian anthropogenic emissions in ECLIPSE v6B (Section 2.1, AMAP

(2022)) compared to previous emissions datasets, which didn’t include enough Russian flaring emissions. The best model545

results were from ECHAM-SALSA and MATCH when compared to all of the ship campaign data.

Therefore, the general model evaluation for BC indicates that while there is a large variability in models results, they tend to

overestimate surface BC at mid-latitudes (including over the Pacific ocean) and underestimate surface BC in the Arctic. Again,

these results point to a lack of transport to the Arctic, and in this case, too much BC deposition along the way. Though
:::::
While

we were only able to evaluate BC deposition in the Arctic in this study, those results support the hypothesis of some models550

having too much BC deposition. The BC vertical profile evaluation also implies that modelled tropopause height may be too

low.

4.6 Sulfate

We used monthly mean surface level observations of SO2−
4 from 18 Arctic sites to evaluate the models. Figure 18 shows

that, similar to BC, the SO2−
4 concentrations in the high Arctic are underestimated by most of the models. A few models555

overestimate SO2−
4 in Scandinavia and Alaska.

The model underestimations of SO2−
4 could be mainly due to higher efficiencies of models in removing aerosol during the

long-range transport to the high Arctic. This is consistent with a previous study based on AMAP 2015 model simulations that
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Figure 17. (left
:::
top) Observed BC concentrations (in µg m−3, top colour bar) along the ship paths, and the model biases (µg m−3, bottom

colour bar
::

rest
::
of

::::::
panels) . (right) Modelled

::
the

:::::::
modelled

:
vs measured 3-hour-average BC concentrations along the ship paths. Note the

logarithmic scale.
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Figure 18. Mean measured SO2−
4 concentrations (in µg m−3, top colour bar) at surface Arctic measurement sites, and model bias [as (model-

measurement)/measurement in %, bottom colour bar] for 2014-15. Results from 2008-9 are similar and not shown.
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found that the convective wet deposition outside the Arctic region may have led to different seasonal cycles of aerosol con-

centrations in the Arctic (Mahmood et al., 2016). Dimethylsulphide (DMS) a naturally occurring source of sulfur from marine560

algae emissions could also be misrepresented in models. However, this source would be more pronounced in the summer when

there is less sea ice in the high Arctic, and it does not appear as though models are underestimating only in the summertime

(Figure 19). Rather, some models appear too low in the winter and spring - which point towards underestimating local Arctic

sources, and to a lack of transport from mid-latitudes as being the key issues. Despite the individual model differences in repre-

senting the seasonal cycle, the multi-model mean compares well with observations at most locations. However the multi-model565

mean SO2−
4 is significantly underestimated at Alert and Irafoss sites. Mean model biases for all Arctic sites ranges from -65%

to +80% among different models, and correlation coefficients are typically around 0.5 (Fig. ??
::::::
Figure

::
S8).

The
:::
high

:::::::::::
GEOS-Chem

::::
bias

::
in

:::
the

:::::::::::
summertime

::::
seen

::
in

:::::
Figure

:::
19,

::::
was

::::
first

:::::::
reported

::
in

:::::::::::::::::
Breider et al. (2014)

:::
and

:::::
found

::
to

:::
be

:::
due

::
to

::::::::
problems

::::
with

:::::
cloud

:::
pH

:::
and

:::::
cloud

:::::
liquid

:::::
water

::
in

:::
the

:::::::
summer

::::
over

:::
the

::::::
Arctic.

::
In

:::::::::::::::::
Breider et al. (2017),

:::
the

:::::::::::
summertime

:::::
Arctic

::::::
surface

:::::
SO2−

4 :::::::::::::
concentrations

:::
are

::::::
reduced

:::
by

:
a
:::::
factor

:::
of

:
2
:::
by

:::::::
reducing

:::
the

:::::
cloud

:::::
liquid

:::::
water

:::::::
content

::
to

:
a
:::::::
uniform

:::::
value570

::
of

::::::::
1×10−7g

::::
m−3

:::::
north

::
of

:::::
65◦N

:::
in

:::
the

::::::
model.

::::
The

::::::
version

::
of

::::::::::::
GEOS-Chem

::
in

:::
our

:::::
study

::
is

:::::
more

:::::
recent

::::
and

::::
uses

:::
the

::::::
offline

::::
cloud

::::::
liquid

::::
water

:::::::
content

::::
from

::::
both

:::::::::
GEOS-FP

:::
and

:::::::::
MERRA2.

:::
We

:::
did

:::
not

:::::
scale

:::
this

:::::::
variable

:::::
down,

::::::
which

::::
may

::
be

:
a
::::::
reason

:::
for

::
the

:::::
high

::::::::::::
GEOS-Chem

:::::
sulfate

::::
bias

::
in

::::::
Figure

:::
19.

:::
The

:
seasonal cycle for observations grouped together is shown in Figure S1

::
S9, showing a consistent seasonal cycle for

2008-9 as seen in the observations. Most models (e.g. CanAM5-PAM, DEHM, MATCH, OsloCTM) are able to capture the575

seasonal cycle well. However several models (e.g. CESM, CIESM-MAM7, ECHAM-SALSA, and EMEP-MSCW) strongly

underestimate observed springtime peak values. Conversely, the models and the measurements showed a weaker seasonal

cycle during the 2014-15 time period (Figure S2
:::
S10). It may be partly due to the local pollution sources in the Arctic during

wintertime (e.g., Fairbanks). Those highly localised pollution events, caused by local emissions getting trapped in a stable

boundary layer occur on scales that are smaller than the model resolutions employed here can represent. Many models are also580

missing chemical formation processes for SO2−
4 in the absence of sunlight, which may explain underestimations seen in winter

(e.g. Moch et al. (2018); Alexander et al. (2009)). An evaluation of SO2 could help with our understanding, but was beyond

the scope of this study. A lack of dark chemistry may be true for organic aerosol, discussed in the next section as well.

From October to December 2014, the Honoluraun volcanic eruption may have elevated SO2−
4 concentrations at some loca-

tions in the Arctic. However, in our model-measurement comparisons, there does not appear to be a large underestimate during585

those months, which implies that model performance wasn’t impeded by not including those volcanic emissions.

Modelled vs measured surface SO2−
4 concentrations at Arctic measurement sites for 2014-15. Filled circles represent the

mean at a site and the lines represent +/- one standard deviation from mean based on available monthly mean data. Numbers

in brackets show the number of months used, with a maximum of 24.

As mentioned above, the uncertainty in wet deposition could be a significant factor in atmospheric SO2−
4 model biases.590

Previous studies have shown that models have too much washout in winter and not enough wet deposition in summer, leading

to a “flatter” seasonal cycle than observed (e.g., Fig 19; Browse et al. (2012); Mahmood et al. (2016)). As with BC in the

previous section, the SO2−
4 deposition was evaluated here in the same manner. The average measured SO2−

4 deposition fluxes
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Figure 19. Modelled (thin colored lines) and measured (thick black line) monthly mean SO2−
4 concentrations (in µg m−3) at surface Arctic

measurement sites in 2014-15. Multi-model mean is shown by the black dashed line.
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Figure 20. SO2−
4 deposition fluxes for the Greenland ice core locations shown in Figure 6.3.3.1.1. The observed fluxes are plotted in black

and a black line indicates the level of the average observed flux, the black dashed line is the multi-model mean at that location. The period

used for plotting is based on all available years after 1990, the title indicates the last available year from the ice core record.

from ice cores for all locations (only Greenland was available here) is 18 mg/m2/yr. The lowest observed fluxes are found at

D4 (12 mg/m2/yr) and highest at ACT11D (30 mg/m2/yr). The model average for all locations is overestimated by around 20%595

compared to measured fluxes. This is similar to the model biases in atmospheric SO2−
4 concentrations.

Therefore, the general model evaluation for SO2−
4 indicates that while there is a large variability in models results, as with

BC, models underestimate surface SO2−
4 in the Arctic. The evaluation of SO2−

4 deposition in the Arctic is similar to BC, with

both overestimating deposition.

4.7 Organic aerosol600

Unfortunately, there is only one high-Arctic station with OA measurements (Alert, NV, Canada), however there are a few

additional stations measuring OA at the sub-Arctic (still >60◦N). These are all shown in Figure 21. The seasonal cycles are
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Figure 21. Mean OA concentrations (in µg m−3, top colour bar) at surface Arctic measurement sites, and model bias [as (model-

measurement)/measurement in %, bottom colour bar] for 2014-15. Results from 2008-9 are similar and not shown.

shown in Figure 22, and the model vs. measurement scatter plot along with some comparison statistics are presented in Figure

??
:::
S11.

Model biases have a large range of ±200% at the different locations, but the multi-model mean for the region is +65%. At605

mid-latitudes (30-60◦N), measurements are conducted mainly in the U.S, where the multi-model mean bias is +83% for the

2014-15 average (not shown).

Several models (CanAM5-PAM, DEHM, CIESM-MAM7, ECHAM-SALSA, GEOS-Chem, MRI-ESM2, NorESM, OsloCTM,

and UKESM1) are able to simulate the summertime peak in Arctic OA concentrations, however the other seven models in Fig-
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Figure 22. Modelled
::::::
Monthly

:::::
Arctic

:::
OA

::::
from

::::::
models (thin colored lines

:::
red) and measured

::::::::::
measurements

:
(thick blackline) monthly mean

OA concentrations (in µg m−3) at surface Arctic measurement sites in
::
for

:
2014-15.Multi-model mean is shown by the black dashed line.
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ure 22 simulate a seasonal cycle that is too flat or peaks at the wrong time (e.g., the CESM seasonal cycle peaks too early in610

the year).

Modelled vs measured surface OA concentrations at Arctic measurement sites for 2014-15. Filled circles represent the mean

at a site and the lines represent +/- one standard deviation from mean based on available monthly mean data. Numbers in

brackets show the number of months used, with a maximum of 24.

Figures 21 and ??
:::
S11 both show that most models consistently overestimate Alaskan OA and underestimate European OA,615

consistent with our assessment of other species showing that models are likely overestimating wildfire influence in summertime

Alaska.
::
All

:::::::
models,

::::::
except

::::::::::::::
EMEP-MSC-W,

:::::
used

:::
the

::::::
GFED

:::
fire

:::::::::
emissions

:::::::::
inventory.

:::::::::::::
EMEP-MSC-W

:::::
used

:::
the

:::::
FINN

::::
fire

::::::::
emissions

::::::::
inventory,

::::::
which

:::
for

:::::::
BC+OC,

:::
has

:::::
been

::::::
shown

::
to

::
be

::::::::::
significantly

::::::
lower

::::
than

::
the

::::::
GFED

:::::::::
emissions

::::::::::::::
(Liu et al., 2020)

:
.
::
As

::
a
::::::
result,

:::::::::::::
EMEP-MSC-W

::::::
model

:::::
biases

:::
in

::::::
Alaska

:::
are

:::::
lower.

:::::::::
However,

::::
they

:::::
aren’t

:::
the

:::::::
lowest.

::::::::::::::
MATCH-SALSA

::::
has

:::
the

:::::
lowest

::::
OA

:::::
model

::::::
biases

::
in

:::::::
Alaska,

::::::
despite

::::
that

::::::
model

:::::
using

::::::
GFED

:::::::::
emissions. The comparison statistics in Figure ??

:::
S11620

show highly varying comparison statistics
:::::
results.

4.8 Fine particulate matter

PM2.5 is partly connected to direct and indirect climate effects via its interactions with clouds. It is mainly composed of BC,

SO2−
4 , OA, NO−

3 , and NH+
4 , as well as crustal material

:::::
(dust), sea-salt and water, though the water component is often dried

off during measurements. Model biases of those species will contribute to the total PM2.5 biases. In order to minimize concern625

over errors in the last three - mainly natural - PM2.5 components, for this analysis, we have used a consistent set of CM, SS,

and H2O in PM2.5 calculations, while using each models results for all of the other PM2.5 components. Thus, the inter-model

variability is only due to differences in the anthropogenic components of PM2.5.

While BC, SO2−
4 , and OA were discussed above, it is beyond the scope of this project to evaluate the other major PM

species, which, aside from water, have a smaller radiative impact. Note that the analysis in this section is focused on sub-Arctic630

and mid-latitude sites, closer to human populations, rather than remote high Arctic sites due to a lack of data. PM2.5 is not

a typical parameter included in the longer-term remote Arctic observations. Since PM2.5 has important health impacts, it is

well-measured at air quality monitoring networks.

The model PM2.5 biases at several locations in the United States, Europe and China are within 60-80% range. However,

some models (CanAM5-PAM, CIESM-MAM7, GEOS-CHEM, GEM-MACH and Oslo-CTM) show biases larger than 200%,635

especially in the Western US and Alaska. The spatial patterns in the model biases, such as being higher in the U. S. and

lower in Asia, are the same for both 2008-9 (not shown) and 2015 23 though the biases are overall skewed slightly lower

for 2008-9 than they are in 2014-15
::::
large

::::::::::
inter-model

::::::::::
differences

::
in

::::::
Figure

:::
23

:::
are

:::::
likely

:::
due

:::
to

:::::::::
uncertainty

::
in
:::::::

mineral
:::::
dust.

::::::::::::
CanAM5-PAM

:::
has

::
a
:::::::::
particularly

:::::
large

::::::::::
contribution

::
of

::::
dust

::
to

::::::
PM2.5.

:::
The

::::::::::::::::::
Turnock et al. (2020)

:::::
study

::::::
showed

::::
that

:::
dust

:::::::
regions

::::
were

:::::::
globally

::::
one

::
of

:::
the

:::::::
largest

::::
areas

:::
of

::::::::
diversity

::
in

::::::
PM2.5 ::::::::::::

concentrations
:::::::
between

::::::::
different

:::::::
CMIP6

::::::
models. The EMEP640

MSC-W results are consistent with EMEP annual evaluations for Europe, where the model underestimates PM2.5 by 10-

25%, including a few Arctic sites in Norway and Finland (Gauss et al. (2020), and annual model Evaluation reports at https:

//www.emep.int/publ/common_publications.html).
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Figure 23. Measured ground-level PM2.5 concentrations (µg m−3) and model biases [as (model-measurement)/measurement in %, bottom

colour bar] for 2015.
:::::::
2014-15. The upper colorbar represents observations and lower bar represents model biases.
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The simulated surface level SLCFs were quite sensitive to the different meteorological conditions such as boundary layer

stability and levels of photochemistry which differed between the two time periods chosen in this study. 2014-15 was also a time645

period with more wildfires compared to 2008-9. For example, according to the CMIP6 emission data that were used in most of

the models, emissions of BC from Canadian wildfires in 2014-15 were 340% higher than in 2008-9 whereas the emissions from

the USA and Russia were similar for these years. Given the very intense wildfire emissions and low anthropogenic emissions

in northern Canada in 2014-15, differences in simulated PM2.5 concentrations over Canada and Alaska can be partly attributed

to differences in simulations of wildfire aerosols in the models.650

Some models (CanAM5-PAM, CESM, CIESM-MAM7, GEOS-Chem, and WRF-Chem) simulate higher PM2.5 and more

variable PM2.5 in the summertime (e.g., Fig S.3
:::::
Figure

::::
S12 in the supplemental material). While this is seen to some extent in

the observations, this may be due to the way fire emissions and sea salt emissions are treated in these models. Fire emissions,

fire plume injection height, and plume rise
:::::
plume

::::
rise,

::::
and

::::
wet

:::::::::
deposition

::
of

:::
fire

:::::::::
pollutants

:
are all highly uncertain model

parameters
::::::::
processes

:
and a subject of ongoing research (e.g., Urbanski (2014); Heilman et al. (2014); Paugam et al. (2016)).655

Indeed, the individual model PM2.5 Arctic biases are more tightly clustered for 2008-9 when there were fewer fires. Mölders

and Kramm (2018) showed that Arctic PM2.5 seasonal pollution is mainly due to local air pollution in the winter and due to

fires in the summer.

Figure 24 shows that the annual mean simulated PM2.5 concentrations compare well with observations and the correlation

coefficients are relatively high (R= 0.8 or higher for all models). The high concentrations in China and low concentrations in660

US and Europe are captured by the models providing confidence for health impact assessments that utilize these model results.

4.9 Multi-species summary

The 2014-15 average modelled percent biases for surface concentrations of SLCFs are shown in Figure 3 for each model and

the multi-model mean (mmm); and Figure ?? with box and whiskers showing the range of how the model percent biases

compare across species. These two figures are based on the observations/locations shown Figures 5, 7, 10, 11, 13, 18, 21, and665

23 (with additional American observations from the IMPROVE network for BC, SO2−
4 , and OA). Figure 3(b) shows that, for

surface Arctic concentrations, no one model performs best for all species, but that the mmm performs particularly well.

Mean 2014-15 model % biases for each model and the multi-model mean, for (a) mid-latitudes, and (b) the Arctic. Note that

the colour scale isn’t linear.

Figure ?? shows that the model biases vary quite a bit among SLCF species for both the mid-latitudes and the Arctic. It is670

important to note that there are many more measurement locations at mid-latitudes compared to in the Arctic. BC, CH4, O3,

and PM2.5 have the smallest model biases out of the SLCFs of this study, whereas OA, CO and NO2 have larger model biases.

(a) Mid-latitude and (b) Arctic % biases from all models and all species together for 2014-2015. Thick line is the median,

boxes extend to the 25th and 75th percentiles, and whiskers extend to 1.5 times the interquartile range.

The summertime evaluation of surface O3, BC, and OA all imply that models overestimate the amount of these pollutants675

coming from wildfires in the western Arctic. This could be due to uncertainties in wildfire emissions, fire plume transport,
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Figure 24. Annual mean PM2.5 comparisons between station observations and model simulations for year 2015.
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or in the case of O3 and secondary OA, the plume chemistry. The model overestimations in the summer could be due to a

combination of all of these uncertainties.

Aside from the surface concentrations discussed above, our analysis from ACE-FTS, TES, and the aircraft datasets show

that CH4, O3, and BC model biases all imply that modelled tropopause height is likely too low. Tropospheric species like CH4680

and BC should drop rapidly above the tropopause, but model biases increase sharply at that point. Stratospheric species like

O3 should increase rapidly above the tropopause, but model biases decline sharply there.

5 Conclusions

In this study, we evaluated the SLCF simulation capabilities of 18 models that were used in the 2021 AMAP SLCF Assessment

Report. Our conclusions are grouped into the questions we aimed to answer in the introduction:685

5.1 How well do the AMAP SLCF models perform in the context of measurements and their associated uncertainty?

Recall that the in situ SLCF measurements had the following reported uncertainties: CH4 1%, O3 3%, CO 5%, NO2 5-100%,

BC 200%, SO2−
4 20%, OA 20%, and PM2.5 1-6%. However, since the variability in measurements from different techniques

was only really taken into account for the BC uncertainty, and since we are comparing annual mean results to each other, it

is not a fair comparison to say that models and measurements agree with each other if model biases are within the reported690

measurement uncertainty range. However, we do use those numbers as a rough guideline for “good” model performance, in

the absence of other quantitative criteria.

Some model annual mean biases were within those uncertainty ranges. For example, CMAM, MRI-ESM2, and UKESM1

simulate Arctic CH4 to within 1%, thus
:
;
::::
thus, agreeing the CH4 measurements. However, at mid-latitudes, they are all out of

range at around +6-10%. MATCH and WRF-Chem simulated mid-latitude O3 to within 2%, but only MATCH-SALSA was695

within 3% in the Arctic region. The Arctic NO2 measurements are highly uncertain at around 100%, so all of the models agreed

with Arctic NO2 measurements. However, in the higher-NO2 mid-latitudes environment, NO2 measurement uncertainty is at

the smaller end of the range. OsloCTM, and WRF-Chem mid-latitude NO2 biases were within 10%. All models agree with BC

measurements in both mid-latitudes and the Arctic, as all biases are less than 80%. CESM, CIESM-MAM7, DEHM, MATCH,

UKESM1, and WRF-Chem all simulate mid-latitude SO2−
4 to within 20%. But only CanAM5-PAM, and MRI-ESM2 do the700

same for the Arctic region. OA had some of the largest model biases (Figure ??
::::::
Figures

::
3
:::
and

::
4), though ECHAM-SALSA,

EMEP-MSC-W, GISS-E2.1, MATCH, and OsloCTM are all within 20% in the Arctic, though none at mid-latitudes. Finally,

with the small uncertainty on PM2.5, only CIESM-MAM7 in the mid-latitudes, and GISS-E2.1 in the Arctic agree within 2%.

To summarize the mmm annual mean performance, it “matches”
::::::
surface

:
observations in the Arctic for CH4, NO2, BC,

SO2−
4 , OA, and PM2.5 - and as such, the mmm has the best overall performance for the Arctic. In the mid-latitudes the mmm705

“matches”
::::::
surface observations for BC, and SO2−

4 only.

Regarding the comparisons of trace gases to the TES, MOPITT, and ACE-FTS satellite measurements (which have roughly

5-20% uncertainty), models agree well. Free-tropospheric distributions of trace gases are somewhat easier to simulate as
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common problems like a too-stable boundary layer or too much deposition do not negatively impact the free-tropospheric

SLCF distributions. The variability in the free troposphere is smaller compared to at the surface as well. It is also because of710

the previously noted difference between the spatial range that remote measurements cover being more akin to the spatial scale

of model grid boxes, compared to the point measurements from in situ observations.

5.1.1 What do the best-performing models have in common?

There were no models that performed best for all SLCF species and for all regions, highlighting that it is difficult for any

one model to bring together numerous complex processes and get results comparable to observations for all SLCFs. This715

would involve simulating aerosols and chemistry together with the right transport processes, meteorology and clouds, which is

difficult, especially for a remote region like the Arctic where parameterisations might have been built on datasets that are not

always applicable there. In addition, studies like that of Tsigaridis et al. (2014) have showed that there was no clear change in

model skill (in that case for OA) with increasing model complexity.

However, several models such as CanAM5-PAM, DEHM, NorESM, and MATCH have better representation of the vertical720

distribution of BC. DEHM and MATCH also had relatively small biases throughout the O3 tropospheric profile (CanAM5-

PAM and NorESM did not simulate gas-phase SLCFs). MATCH in particular has the smallest surface O3 bias at mid-latitudes,

which may be related to its high vertical resolution in the boundary layer (the lowest two layers are 20 m thick and four

lowest layers are below 150 m). These models are a mix of air quality and climate-focused models, thus;
:::::

thus, it is important

to note that there is no obvious difference between climate and air quality model biases for annual mean SLCFs. Despite725

the lack of complex tropospheric chemistry, CMAM had some of the lowest O3 biases at both mid-latitudes and the Arctic.

This may imply that the more complex chemistry is not needed in the context of climatological tropospheric O3 for climate

studies (though of course, O3 on shorter time scales would need more complete complete tropospheric O3 chemistry). In the

lower-stratosphere, however, models with simplified/climatological O3 schemes did not perform as well as models that had full

stratospheric chemistry included.730

5.1.2 Are there regional patterns in the model biases?

Generally speaking, when comparing the mid-latitude model biases to those of the Arctic, they all skew more negative (Figure

??), except for CO and PM2.5,
::
4),

:
implying a lack of long-range transport to the Arctic. The best Arctic results for BC

throughout the tropospheric profile were from models (CanAM5-PAM, DEHM, MATCH, WRF-Chem) that simulated the

vertical mixing of BC well at mid-latitudes. These first three of the four models were nudged to the ERA-Interim analysis and735

WRF-Chem was nudged to the NCEP FNL analysis. The Arnold et al. (2015) study showed that a key determinant in model

differences for PAN export relative to CO was the meteorology used in the models. Their results implied that the ERA-Interim

models had more efficient vertical transport and mixing in mid-latitude source regions compared to GEOS-driven models. In

the current study, Arctic BC was greatly underestimated throughout the Arctic profile by MATCH-SALSA, EMEP MSC-W,

and GEM-MACH, which had BC concentrations at mid-latitudes dropping much too low in the free troposphere. Those models740

had different sources of meteorology (Table 2) and some may have insufficient convection schemes. For example GEM-MACH
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is missing sub-grid scale deep and shallow convection, which is important for the exchange between planetary boundary layer

and free troposphere, and thus
:::::::::::
consequently for transport at mid and high latitudes. This subject could be studied further via

sensitivity tests with and without nudged meteorology, while keeping the aerosol physics the same.

:::
The

:::::::::::
summertime

:::::::::
evaluation

::
of

::::::
surface

::::
O3,

:::
BC,

::::
and

:::
OA

:::
all

:::::
imply

::::
that

::::::
models

:::::::::::
overestimate

:::
the

::::::
amount

:::
of

::::
these

:::::::::
pollutants745

::::::
coming

::::
from

::::::::
wildfires

::
in

:::
the

::::::
western

::::::
Arctic.

::::
This

:::::
could

::
be

::::
due

::
to

::::::::::
uncertainties

::
in
:::::::
wildfire

:::::::::
emissions,

:::
fire

::::::
plume

::::::::
transport,

::
or

::
in

::
the

::::
case

::
of

:::
O3:::

and
:::::::::
secondary

::::
OA,

:::
the

:::::
plume

:::::::::
chemistry.

:
It
::
is

::::
also

:::::
likely

:::
that

:::
wet

:::::::::
deposition

::
of

:::
fire

:::::::::
pollutants

:
is
:::::::::::::
underestimated

::
if

:::
fire

::::::
aerosol

:::
size

:::
are

:::
too

:::::
small,

::::
and

:::
due

::
to

::::::
climate

::::::
models

::::::
lacking

:::::::::::
pyrocumulus

::::::
clouds

:::
and

:::::::::::
precipitation.

::::
The

:::::
model

:::::::::::::
overestimations

::
of

::::::
SLCFs

::
in

:::
the

:::::::
summer

:::::
could

::
be

:::
due

::
to
::
a
::::::::::
combination

::
of
:::
all

::
of

:::::
these

:::::::::::
uncertainties.

:::::
Aside

::::
from

:::
the

:::::::
surface

::::::::::::
concentrations

::::::::
discussed

::::::
above,

:::
our

::::::::
analysis

::::
from

:::::::::
ACE-FTS,

:::::
TES,

:::
and

::::
the

::::::
aircraft

:::::::
datasets

:::::
show750

:::
that

:::::
CH4,

:::
O3,

:::
and

:::
BC

::::::
model

:::::
biases

:::
all

:::::
imply

:::
that

::::::::
modelled

::::::::::
tropopause

:::::
height

::
is

:::::
likely

:::
too

::::
low.

:::::::::::
Tropospheric

::::::
species

::::
like

::::
CH4

:::
and

:::
BC

::::::
should

::::
drop

:::::::
rapidly

:::::
above

:::
the

::::::::::
tropopause,

:::
but

::::::
model

:::::
biases

:::::::
increase

:::::::
sharply

::
at

:::
that

::::::
point.

:::::::::::
Stratospheric

::::::
species

::::
like

::
O3::::::

should
:::::::
increase

::::::
rapidly

::::::
above

:::
the

:::::::::
tropopause,

:::
but

::::::
model

:::::
biases

:::::::
decline

::::::
sharply

:::::
there.

5.1.3 Are there patterns in the model biases between SLCF species?

Some patterns one might expect between SLCF species were not demonstrated in this study’s results. For example, both O3-755

precursors, CO and NO2, are too low in models, though that underestimation is worse in the winter. Despite that, surface O3

tends to be overestimated, though that is overestimation is mainly in the summer. Also the west-east pattern in Arctic surface

O3 was to be overestimated in Alaska and underestimated in Scandenavia
::::::::::
Scandinavia. However, for CO and NO2 those skewed

biases are reversed.

At mid-latitudes SO2−
4 , BC, and OA are biased high in most models, yet despite that, PM2.5 is underestimated. Thus, the760

PM2.5 biases must be significantly influenced by the other, mainly natural, aerosol components.

In addition to expected patterns, there were no other discernible patterns in model biases between SLCF species either.

5.2 How does the model performance impact model applications, such as simulated climate and health impacts?

In the AMAP (2022) report, these models go on to be used to simulate future emission scenarios, and from those results, the

future temperature changes due to these SLCFs are predicted. They are further used to determine future changes to human765

health due to the changes in SLCFs. Given the model evaluation of this study, we have determined that using the multi-model

mean to predict SLCF climate impacts is generally robust. Considering the SLCFs with greatest radiative impact (CH4, O3, BC,

and SO4), the mmm was within ±25% of the measurements across the northern hemisphere. The mmm also performed very

well for PM2.5, which is a main component considered for human health impacts. Thus, for climate studies, where relatively

large regions time periods are considered, the model performance is sufficient.770
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5.3 What processes should be improved or studied further for better model performance?

The model evaluation in this study brought about results that have been reported in previous publications, and several notable

issues remain. Here we recommend some future work that may help improve model performance.

– Models simulate too much surface O3 at mid-latitudes, and this may be due inadequate treatment of dry deposition (Val

Martin et al., 2014), and/or not including parameterizations for the shade provided by vegetation that reduces photo-775

chemistry, as reported in Makar et al. (2018). That said, MATCH had the smallest mid-latitude surface O3 bias without

accounting for canopy shading, hence, precursor emissions, vertical mixing, deposition, and O3 chemistry all have a role

in model O3 results, and errors in these may sometimes cancel out.

– There are a number of indications that simulated boundary layers are too stable (not enough vertical lifting of SLCFs,

too much O3 titration, too much BC and SO4 deposition). Therefore, increased convection at mid-latitudes may be780

needed. However, this hypothesis is opposite to that found in Allen and Landuyt (2014), which found excessive tropical

convection caused CMIP5 models to overestimate BC aloft. It is thus
::::::::
therefore important to evaluate models specifically

for export and long-range transport events driven by different mechanisms (e.g. frontal export, convective lifting), which

is a focus within the PACES initiative (Arnold et al., 2016).

– The O3, BC, SO2−
4 , and PM2.5 model biases were all high in the Alaskan summertime, implying that many models may785

simulate too much pollution from wildfires there. Models need improved wildfire parameters for emissions, plume height,

and plume chemistry
:::::
plume

:::::::::
chemistry,

::::
and

:::::::::::
aerosol-cloud

:::::::::
processes. For example, fire emissions inventories GFED4,

GFASv1.2, FINNv1.5 vary by up to a factor of 3 for BC emissions (AMAP, 2022); light and temperature attenuation

under smoke plumes means less O3 is produced than precursor concentrations may imply; and plume rise and injection

height need to be accurate for long range transport.790

– Modelled deposition is highly uncertain, and there is evidence here that some models have too much deposition of BC

at mid-latitudes. However, deposition measurements are scarce, even at mid-latitudes, and more of those measurements

are needed to constrain models.

– Additional, preferably long-term, OA and PM2.5 measurements are needed in the high-Arctic. Both are expected to be

important to Arctic conditions in the future, with increasing wildfires, and shipping influencing the Arctic atmosphere,795

and the lack of those measurements is problematic for constraining models.

– An evaluation of SO2 would help to determine if the model biases in SO2−
4 are due to transport, to emission uncertainty,

or if it can be explained by the uncertainty in chemistry. The removal of particles represents a large uncertainty but

without SO2 (and DMS) it cannot be concluded that the removal is too fast.

Therefore, we conclude that sensitivity tests for the above-mentioned model processes will be important for further under-800

standing and improving model performance for SLCFs. But just as important is having additional Arctic measurements, and

the continuation of existing Arctic measurements in order to assess the model improvements.
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Code and data availability. The models’ output files in netCDF format from the simulations used in this project can be found here: http:

//crd-data-donnees-rdc.ec.gc.ca/CCCMA/products/AMAP/.

Some of the models’ code are available online at the following locations:805

CanAM5-PAM: https://gitlab.com/cccma

CESM2: https://www.cesm.ucar.edu/models/cesm2/

ECHAM-SALSA: The codes used for the ECHAM-SALSA simulations are available from the ECHAM-HAMMOZ repository under https://

redmine.hammoz.ethz.ch/projects/hammoz/repository/1/show/echam6-hammoz/branches/fmi/AMAP/AMAP_evaluation, after obtaining the

HAMMOZ license.810

FLEXPART: https://www.flexpart.eu

GEOS-Chem: http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_12#12.3.2

GISS-E2.1: https://www.giss.nasa.gov/tools/modelE/ and https://simplex.giss.nasa.gov/

NorESM: https://github.com/NorESMhub/NorESM

Oslo CTM: https://github.com/NordicESMhub/OsloCTM3815

and the other models’ code may be available upon request.

The model evaluation programs can be found on gitlab here: https://gitlab.com/cynwhaley/amap-slcf-model-evaluation.

The surface monitoring datasets are available online here:

WDCGG for CH4: https://gaw.kishou.go.jp/login/user

EBAS for European (EMEP) and several Arctic locations: http://ebas.nilu.no/820

NAPS: https://open.canada.ca/data/en/dataset/1b36a356-defd-4813-acea-47bc3abd859b

IMPROVE: https://views.cira.colostate.edu/fed/Express/ImproveData.aspx

Beijing Air Quality for China: https://beijingair.sinaapp.com/

PM2.5 from the US embassy in China from the data portal: www.stateair.net.

The satellite measurement data used in this study are available online here:825

ACE-FTS v4.1 measurements are available, following registration, from http://www.ace.uwaterloo.ca

TES: https://tes.jpl.nasa.gov/tes/data/products/lite

MOPITT: https://www2.acom.ucar.edu/mopitt/products

Appendix A: Model Descriptions830

The eighteen models used in this study are described in each subsection below. Table A1 contains further information summa-

rizing the models’ setup for the AMAP SLCF simulations.

A1 CanAM5-PAM

The Canadian Atmospheric Model version 5 (CanAM5), with Piecewise lognormal approximation Aerosol Model (PAM) was

used. CanAM5-PAM is an improved version of CanAM4 (von Salzen et al., 2013). The improvements include a higher vertical835

resolution, improved parameterizations for land surface and snow processes, DMS emissions, and clear-sky radiative transfer.
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CanAM5-PAM has 49 vertical levels extending up to 1 hPa with a resolution of approximately 100 m near the surface. Model

simulations are performed using a spectral resolution of T63, which is equivalent to the horizontal resolution of approximately

2.8◦ × 2.8◦. The model uses separate parameterizations for layer and convective clouds. Aerosol microphysical processes are

based on the piecewise lognormal approximation (von Salzen, 2006; Ma et al., 2008; Peng et al., 2012; Mahmood et al., 2016,840

2019; AMAP, 2015a). The model simulates binary homogeneous nucleation of sulfuric acid and water vapor. Newly formed

particles grow by condensation and coagulation.

A detailed description of parameterizations of ocean DMS flux to atmosphere, oxidation, and removal processes is provided

in Tesdal et al. (2016). In-cloud production of sulfate requires O3 and hydrogen peroxide (H2O2) as oxidants (von Salzen et al.,

2000), with oxidant (OH, NO−
3 , H2O2, O3) concentrations specified as climatological results from CMAM. Dry deposition of845

aerosol depends on concentrations of aerosols in the near-surface model layer (Zhang et al., 2001). Wet deposition includes

in-cloud scavenging in both convective clouds and layer clouds, as well as below-cloud scavenging.

Cloud droplet number concentrations are calculated based on the assumption of a parcel of air which ascends from the

subcloud layer into the cloud layer with a characteristic vertical velocity (Peng et al., 2005), where the standard deviation of

the subgrid-scale cloud vertical velocity probability distribution is parameterized using the approach by (Ghan et al., 1997).850

Aerosol particles that are suspended in the parcel of air may activate and grow into cloud droplets by condensation of water

vapor. A numerically efficient solution of the condensational droplet growth equation (e.g., Seinfeld and Pandis (2006)) is

employed for this purpose. In grid cells that are affected by clouds, CanAM5-PAM accounts for cloud albedo and lifetime

effects (first and second aerosol indirect effects) as well as semi-direct effects.

A2 CESM855

The Community Earth System Model version 2 (Danabasoglu et al., 2020) is an ESM that can be configured in many different

ways. The configuration applied for this assessment utilized the Community Atmosphere Model (CAM) version 6 and Modal

Aerosol Model (MAM4) with 4 mixed-species aerosol modes (Liu et al., 2016). CAM6 employs a spectral element dynamical

core (Lauritzen et al., 2018). Type 0 and Type 1 CESM runs were conducted at 1.9◦ × 2.5◦ horizontal resolution, while Type 3

runs at 0.9◦ × 1.25◦, all with 32 vertical layers. For Type 0 and Type 1 simulations, CESM version 2.0 was used with “CAM6-860

chem” representations of chemical reactions (Emmons et al., 2020b), enabling prognostic simulation of tropospheric ozone

concentrations, along with a volatility basis set (VBS) parameterization for the formation of secondary organic aerosols (SOA)

(Tilmes et al., 2019) and stratospheric chemistry. CAM6-chem is coupled to the interactive Community Land Model (CLM5),

which provides biogenic emissions, calculated online using the MEGANv2.1 algorithm (Guenther et al., 2012), and handles

dry deposition. Tracked aerosol species simulated by MAM4 include sulfate, primary and aged black carbon and organic865

matter, dust, sea-salt, and secondary organic aerosols. Both sea salt and dust emissions are calculated on-line and are highly

sensitive to the surface wind speed (Mahowald et al., 2006a,b). These runs were also forced with prescribed SSTs and sea-ice

concentrations, created from merged Reynolds/HADISST products as in Hurrell et al. (2008). Type 3 transient runs utilized

CESM version 2.1.1 without atmospheric chemistry and with fully-coupled atmosphere, ocean, land, and sea-ice components
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(component set “BSSP245cmip6”), as applied to simulate future scenarios for CMIP6. All CESM runs specified global-mean870

mixing ratios of methane and carbon dioxide.

A3 CIESM-MAM7

CIESM-MAM7 is the Community Integrated Earth System Model (CIESM) (Lin et al., 2020) using the Modal Aerosol Model

(MAM7) with 7 mixed-species aerosol modes (Liu et al., 2012). Current CIESM version 1.1 (see Table 1 of Lin et al. (2020))

is based on NCAR Community Earth System Model (CESM version 1.2.1) with several novel developments and modifications875

aiming to overcome some persistent systematic biases, such as the double Intertropical Convergence Zone (ITCZ) problem

and underestimated marine boundary layer clouds. CIESM-MAM7 employs a finite volume dynamical core with 0.9◦ × 1.25◦

for horizontal resolution and 31 layers for vertical resolution. The large-scale meteorology (horizontal wind field) is nudged

towards ERA-Interim reanalysis data and the relaxation time is set to 6 hours. In CIESM-MAM7, the primary emission of black

carbon (BC), organic carbon (OC), ammonia (NH3), volatile organic compounds (VOCs), sulfur dioxide (SO2) and oxidizing880

gases (H2O2, O3, OH) are prescribed by the input data uniformly provided by AMAP-SLCF group. The emission amount

of dust (DU) and sea salt (SS) are calculated online. Aerosol size distributions in CIESM-MAM7 are described by the seven

overlapping log-normal distributions, including Aitken, accumulation, primary carbon, fine dust and sea salt, coarse dust and

sea salt modes. The geometric standard deviation of each mode is prescribed (see Table 1 of Liu et al. (2012)). A simplified gas

and liquid phase chemistry is included in CIESM-MAM7. SO2 and dimethyl sulfate (DMS) can be oxidized to sulfuric acid gas885

(H2SO2−
4 ) and then condenses to form the sulfate aerosols, while the evolution of oxidizing gases is not considered. Primary

organic matter (POM) and BC are emitted to the primary carbon mode, then are aged and transferred to the accumulation

mode by condensation of H2SO2−
4 , NH3 and semi-volatile organics and by coagulation with Aitken and accumulation modes.

The effect of stratospheric sulfate aerosol from volcanic emission on radiative forcing is considered, by following the CMIP6

procedure (Thomason, 2012). No specific stratospheric chemistry is included in CIESM-MAM7.890

A4 CMAM

The Canadian Middle Atmosphere Model (CMAM) is based on the third generation CanAM model, with the model lid raised

to approximately 95 km and the necessary radiative processes for the mesosphere included (Scinocca et al., 2008). A represen-

tation of gas phase chemistry has also been included that contains a relatively complete description of the HOx, NOx, Clx and

Brx chemistry that controls stratospheric ozone along with the longer-lived source gases such as CH4, N2O and CFCs (Jonsson895

et al., 2004). For the troposphere the chemical mechanism can be considered as methane-NOx chemistry as it does not include

the chemistry of larger volatile organic compounds. The model does, however, include a description of associated tropospheric

chemical processes such as wet and dry deposition, interactive NOx emissions from lightning, corrections of clear-sky photol-

ysis rates for clouds and N2O5 hydrolysis on prescribed sulfate aerosol distribution using the reaction probabilities of Davis

et al. (2008). The simulation analysed here used a “Specified Dynamics” setup, one where the model horizontal winds and900

temperature are nudged towards a meteorological reanalysis dataset that represents the observed historical evolution of the

atmosphere. In this way the day-to-day variability of the model meteorology is much more closely aligned with the historical
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evolution of the atmosphere than would be possible in a free-running model. Here the CMAM model was nudged to six-hourly

fields from the ERA-Interim reanalysis (Dee et al., 2011) on all model levels below 1 hPa and with a relaxation time constant

of 24 hours.905

A5 DEHM

The Danish Eulerian Hemispheric Model (DEHM) (Christensen, 1997; Brandt et al., 2012; Massling et al., 2015) is a 3D

Eulerian atmospheric chemistry-transport model developed at the Department of Environmental Science at Aarhus University

in Denmark. The model domain covers the Northern Hemisphere using a polar stereo-graphic projection with a grid resolution

of 150 km × 150 km. It includes nesting capabilities to make simulations with a higher grid resolution in a limited area of910

the domain, and in this work an Arctic sub-domain with 50 km × 50 km have been applied covering the Arctic area down to

about 40-54◦N. The Model have 29 vertical levels in sigma coordinates, where the lowest 15 levels are below 2000 m above

the surface. The lowest model levels are 22 m thick and the top of the model domain is at 100 hPa. i.e the whole troposphere

and very lowest part of the stratosphere. DEHM includes a SOx-NOx-VOC-ozone chemistry with 71 components including

secondary organic aerosols (SOA), where VBS mechanism are used, and 9 particulates including hydrophobic and hydroscopic915

BC , primary organic aerosols, primary anthropogenic dust, PM2.5 fraction and coarse fraction of PM10 of seasalt and Pb. CH4

are prognostic species, where the boundary conditions have large influence. The model is driven by meteorological data from

a numerical weather prediction model from the WRF model (Skamarock et al., 2008), version 3.9, with 1-hour resolution. The

WRF model system is driven by reanalysis data from the ERA-Interim made by ECMWF by nudging.

A6 ECHAM-SALSA920

ECHAM-SALSA is the general aerosol-climate model ECHAM-HAMMOZ (ECHAM6.3-HAM2.3-MOZ1.0) (Tegen et al.,

2019; Schultz et al., 2018) using the Sectional Aerosol module for Large Scale Applications SALSA (Kokkola et al., 2018) to

solve the aerosol microphysics. ECHAM6 (Stevens et al., 2013) computes the atmospheric circulation and fluxes using a semi-

Lagrangian transport scheme. In the setup used here, the large-scale meteorology (vorticity, divergence, and surface pressure;

relaxation times of 24, 6, and 48 h, respectively) was nudged towards ERA-Interim reanalysis data (Berrisford et al., 2011). In925

SALSA the aerosol size distribution is modelled using 10 size sections (or bins), which span particle sizes between 3 nm and

10 µm. The size distribution is further divided into a soluble and an insoluble sub-population, which are treated as externally

mixed. Within one size bin of one sub-population, all aerosol particles are considered internally mixed. In its standard setup,

SALSA describes the aerosol compounds, BC, organic carbon (OC), SO2−
4 , SS, and mineral dust (DU). In the model, BC,

OC, SS, and DU are emitted as primary particles, while SO2−
4 is emitted as either SO2 or as DMS, which are oxidized using930

a simplified chemistry (Stier et al., 2005) to form H2SO4, which then either nucleates or condenses onto existing particles.

BC, OC, and SO2 emissions are prescribed using input files, while SS and DU emissions are computed online. All greenhouse

gas concentrations are fixed to pre-defined concentrations. The model resolution for the simulations performed here was T63

(roughly 2◦ by 2◦), further using 47 hybrid sigma-pressure levels.
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A7 EMEP MSC-W935

The EMEP MSC-W model is a 3-D Eulerian chemistry transport model developed at the Norwegian Meteorological Institute

within the Framework of the UN Convention on Long-range Transboundary Air Pollution. It is described in detail in Simpson

et al. (2012). Although the model has traditionally been aimed at simulations of acidification, eutrophication and air quality

over Europe, global modelling has been performed and evaluated against observations for many years (Jonson et al., 2010; Wild

et al., 2012). The model uses 20 vertical levels defined as eta-hybrid coordinates. The 10 lowest levels are within the PBL (with940

the bottom layer being 92 m thick), and the top of the model domain is at 100 hPa. Model updates since Simpson et al. (2012),

resulting in EMEP model version rv4.33 as used here, have been described in Simpson et al. (2019) and references cited therein.

The main revisions were made to the parameterisations of coarse NO−
3 formation on sea salt and dust aerosols, N2O5 hydrolysis

on aerosols, and additional gas-aerosol loss processes for O3, HNO−
3 and HO2. The EMEP model, including a user guide, is

publicly available as Open Source code at https://github.com/metno/emep-ctm. EMEP-modelled PM2.5 and PM10 include945

primary and secondary aerosols, both anthropogenic and natural. Secondary aerosol consists of inorganic sulfate, nitrate and

ammonium, and SOA; the latter is formed from both anthropogenic and biogenic emissions using the ’VBS’ scheme detailed

in Bergström et al. (2012) and Simpson et al. (2012). The model also calculates sea salt aerosols and windblown dust particles

from soil erosion. AOD is calculated based on the mass concentrations of individual aerosols multiplied by corresponding

Mass Extinction Coefficients. In these simulations, we did not use the BC and OC emissions from EclipseV6b directly, but950

applied EclipseV6b PM2.5 and coarse PM emissions instead, which were split into elementary carbon (EC), organic matter

(OM) (here assumed inert) and the remaining inorganic dust. The EC and OM emissions in the fine and coarse fractions were

further divided into fossil fuel and wood-burning compounds for each country and source sector. The split applied to the PM

emissions is the same as used in EMEP operational runs (IIASA, personal communication). 80% of emitted EC is assumed to

be hydrophobic, ageing to become hydrophilic within 1 to 1.5 days. As in Bergström et al. (2012), the Organic Matter/Organic955

Carbon ratio of emissions by mass is assumed to be 1.3 for fossil-fuel sources and 1.7 for wood-burning sources. Note that

different wildfire emissions were used here, i.e. from FINN (the Fire INventory from NCAR, version 15). The EMEP model

runs were driven by 3-hourly meteorological data from the ECMWF IFS model at 0.5◦ × 0.5◦ resolution.

A8 FLEXPART

The Lagrangian particle dispersion model FLEXPART version 10.4 (Pisso et al., 2019) releases computational particles that are960

simulated forward in time following 3-hourly ECMWF meteorological fields with 137 vertical layers and a spatial resolution

of 1◦ x 1◦. For each year around 330 million particles were released to calculate turbulent diffusion (Cassiani et al., 2014),

unresolved mesoscale motions (Stohl et al., 2005) and convection (Forster et al., 2007). A recently updated wet-deposition

scheme taking into account in-cloud and below cloud removal was used (Grythe et al., 2017). Gravitational settling for spherical

BC particles with an aerosol mean diameter of 0.25 µm and a normalised standard deviation of 3.3 and a particle density of965

1500 kg m−3 (Long et al., 2013) are used in the calculation of dry deposition. The surface concentration and deposition fields

were retrieved on a monthly basis on a resolution of 0.5◦ × 0.5◦.
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A9 GEM-MACH

GEM-MACH (Global Environmental Multiscale model-Modelling Air quality and CHemistry) is the Environment and Climate

Change Canada (ECCC) air quality prediction model. It consists of an online tropospheric chemistry module embedded within970

ECCC’s GEM numerical weather forecast model (Côté et al., 1998b,a; Charron et al., 2012). The chemistry module includes

a comprehensive representation of air quality processes, such as gas-phase, aqueous-phase, and heterogeneous chemistry and

aerosol processes (e.g. Moran et al. (2013); Makar et al. (2015b,a); Gong et al. (2015). Specifically, gas-phase chemistry is rep-

resented by a modified ADOM-II mechanism with 47 species and 114 reactions (Lurmann et al., 1986; EPRI, 1989); inorganic

heterogeneous chemistry is parameterized by a modified version of the ISORROPIA algorithm of Nenes et al. (1999), as de-975

scribed in detail in Makar et al. (2003); SOA formation is parameterized using a two-product, overall or instantaneous aerosol

yield formation (Odum et al., 1996; Jiang, 2003; Stroud et al., 2018); aerosol microphysical processes, including nucleation

and condensation (sulfate and SOA), hygroscopic growth, coagulation and dry deposition/sedimentation are parameterized as

in Gong et al. (2003); the representation of cloud processing of gases and aerosols includes uptake and activation, aqueous

phase chemistry, and wet removal (Gong et al., 2006, 2015).980

Aerosol chemical composition is represented by eight components: sulfate, nitrate, ammonium, elemental carbon (EC),

primary organic aerosol (POA), secondary organic aerosol (SOA), crustal material (CM) and sea salt; aerosol particles are

assumed to be internally mixed. A sectional approach is used for representing aerosol size distribution. For the 2015 Arctic

simulation, a 12-bin (between 0.01 and 40.96 µm in diameter, logarithmically spaced: 0.01-0.02, 0.02-0.04, 0.04-0.08, 0.08-

0.16, 0.16-0.32, 0.32-0.64, 0.64-1.28, 1.28-2.56, 2.56-5.12, 5.12-10.24, 10.24-20.48 and 20.48-40.96 µm) configuration is985

used.

Type 0 simulation was conducted for the year of 2015 over a limited-area model (LAM) domain on a rotated lat-lon grid at

0.1375◦ × 0.1375◦ (or 15-km) resolution covering the Arctic (>60◦N) and extending to the southern US-Canada border. Some

of the model upgrades for the Arctic simulation are described in Gong et al. (2018). Anthropogenic emissions used are based

on a combination of North American emission inventories (specifically, the 2016 US National Emission Inventories and 2015990

Canadian national Air Pollution Emission Inventories) and global ECLIPSE v6b 2015 baseline emissions. North American

wildfire emissions are processed using the Canadian Forest Fire Emission Prediction System (CFFEPS) from satellite detected

fire hotspot data (MODIS, AVHRR, and VIIRS). CFFEPS consists of a fire growth model, a fire emissions model, and a

thermodynamic-based model to predict the vertical penetration height of a smoke plume from fire energy (see Chen et al.

(2019) for details). Biogenic emissions are calculated online in GEM-MACH based on the algorithm from BEIS version 3.09995

with BELD3-format vegetation land cover. Sea salt emissions are computed based on Gong et al. (2003).

The chemical lateral boundary conditions were from MOZART-4/GEOS-5 (https://www.acom.ucar.edu/wrf-chem/mozart.shtml;

Emmons et al. (2010). The meteorology was initialized daily (at 00:00 UTC) using the Canadian Meteorological Centre’s global

objective analyses.
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A10 GEOS-Chem1000

GEOS-Chem is a global three-dimensional chemical transport model driven by assimilated meteorological observation from

the Goddard Earth Observing System (GEOS) of the NASA Data Assimilation Office (DAO) which was first introduced in 2001

(Bey et al., 2001). GEOS-Chem is a grid-independent model which operates on a 1-D column with default or user-specified

horizontal grid points, vertical grid points, and timestep. GEOS-Chem Classic can use archived GEOS meteorological data on

a rectilinear latitude-longitude grid to compute horizontal and vertical transport and use Open-MP in parallelization. Two of1005

the assimilated meteorological data from the NASA Global Modeling and Assimilation Office (GMAO) can be used to drive

the off-line mode of GEOS-Chem. The first one is the operational data starting from 2012, the GEOS Forward Processing

(GEOS-FP, Lucchesi (2013) which native resolution was 0.25◦ × 0.3125◦. The second one is the consistent Modern-Era

Retrospective Analysis for Research and Applications version 2 (MERRA-2, Randles et al. (2017) starting from 1979-present,

with the native resolution 0.5◦ × 0.625◦. Both meteorological data have 72 hybrid sigma-pressure levels with the top at 0.011010

hPa and 3-hourly temporal resolution for 3-D fields and 1-hour resolution for 2-D fields. The advection scheme of GEOS-

Chem uses the TPCORE advection scheme (Lin and Rood, 1996) on the latitude-longitude grid, while the convective transport

uses the convective mass flux described by Wu et al. (2007). The wet deposition scheme in GEOS-Chem is based on Liu et al.

(2001) for water soluble aerosols and Amos et al. (2012) for gases. The dry deposition is based on the resistance-in-series

scheme of Wesely (1989). Aerosol deposition is from Zhang et al. (2001). Emission of dust aerosol, lightning NOx, biogenic1015

VOCs, soil NOx, and sea salt aerosol are dependent on the local meteorological conditions. CEDS global inventory is the

default anthropogenic emissions, while EDGAR v4.3.2 (M. et al., 2018) is also available as an alternate option to CEDS.

Future anthropogenic emissions following the RCP scenarios (Holmes et al., 2013), aircraft emissions (Stettler et al., 2011),

ships emission (from CEDS), lighting NOx emissions (Murray et al., 2012) are also include and configured at run-time using

the HEMCO module described (Keller et al., 2014). Biogenic VOC emissions in GEOS-Chem are from the MEGAN v2.11020

inventory (Guenther et al., 2012). Chemical solver in the standard GEOS-Chem simulation uses KPP (Damian et al., 2002)

as implemented in GEOS-Chem. The gas phase in troposphere in GEOS-Chem included detailed HOx-NOx-VOC-ozone-

halogen-aerosol tropospheric chemistry mechanism which generally follows JPL/IUPAC recommendations including the PAN

(Fischer et al., 2014), Isoprene (Travis et al., 2016; Fisher et al., 2016), Halogenes (Sherwen et al., 2016; Chen et al., 2017) and

Criegees (Millet et al., 2015). A linearized stratospheric chemistry scheme has been implemented since GEOS-Chem v9.0. The1025

model will read from an archived 3D monthly mean production rates and losing frequency for each species at the beginning

of each month. The Linoz chemistry (McLinden et al., 2000) is also applied and as a recommended option for stratospheric

ozone layer. The original sulfate-nitrate-ammonium aerosol simulation in GEOS-Chem coupled to gas-phase chemistry (Park

et al., 2004). The black carbon simulation (Wang et al., 2014), organic aerosol (J. et al., 2020), complex SOA (Pye et al.,

2010), the aqueous-phase isoprene SOA scheme (Marais et al., 2016) and the dust simulation (Duncan Fairlie et al., 2007)1030

are also implement into GEOS-Chem. The dust size distributions are from Zhang et al. (2013). The GEOS-Chem v12.3.2 with

uniformly 2◦ × 2.5◦ MERRA-2 meteorological data for 2008-9, GEOS-FP meteorological data for 2014-15, and ECLIPSEv6b

emissions was used in this study.
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A11 GISS-E2.1

NASA Goddard Institute of Space Studies (GISS) Earth system model (ESM), GISS-E2.1, is a fully-coupled ESM. A full1035

description of GISS-E2.1 and evaluation of its coupled climatology during the satellite era (1979-2014) and the historical

ensemble simulation of the atmosphere and ocean component models (1850-2014) are described in Kelley et al. (2020). GISS-

E2.1 has a horizontal resolution of 2◦ in latitude by 2.5◦ in longitude, and 40 vertical layers extending from the surface

to 0.1 hPa in the lower mesosphere. The tropospheric chemistry scheme used in GISS-E2.1 (Shindell et al., 2001, 2003)

includes inorganic chemistry of Ox, NOx, HOx, CO, and organic chemistry of CH4 and higher hydrocarbons using the CBM41040

scheme (Gery et al., 1989), and the stratospheric chemistry scheme (Shindell et al., 2006) which includes chlorine and bromine

chemistry together with polar stratospheric clouds. The meteorology was nudged to the NCEP reanalysis.

In the present work, we used the OMA, the One-Moment Aerosol scheme (Bauer et al., 2007a,b; Bauer and Koch, 2005;

Koch et al., 2006; Miller et al., 2006; Tsigaridis et al., 2013; Bauer et al., 2020). OMA is a mass-based scheme in which

aerosols are assumed to remain externally mixed and have a prescribed and constant size distribution, with the exception of1045

sea salt that has two distinct size classes, and dust that is described by a sectional model with an option from 4 to 6 bins.

The OMA scheme treats sulfate, nitrate, ammonium, carbonaceous aerosols (black carbon and organic carbon, including the

NOx-dependent formation of SOA and methanesulfonic acid formation), dust and sea-salt. The model includes secondary

organic aerosol production, as described by (Tsigaridis and Kanakidou, 2007). The default dust configuration that is used in

this work includes 5 bins, a clay and 4 silt ones, from submicron to 16 µm in size. The first three dust size bins can be coated by1050

sulfate and nitrate aerosols (Bauer and Koch, 2005). OMA only includes the first aerosol indirect effect. The aerosol number

concentration that impacts clouds are obtained from the aerosol mass as described in (Menon and Rotstayn, 2006).

The natural emissions of sea salt, DMS, isoprene and dust are calculated interactively. Anthropogenic dust sources are

not represented in ModelE2.1. Dust emissions vary spatially and temporally only with the evolution of climate variables like

wind speed and soil moisture (Miller et al., 2006). The version of the model we use in this work uses prescribed sea surface1055

temperature (SST) and sea ice thickness and extent during the historical period (Rayner et al., 2003).

A12 MATCH

MATCH - Multiscale Atmospheric Transport and Chemistry (Robertson et al., 1999) is an offline, Eulerian, 3-D chemistry

transport model developed at the Swedish Meteorological and Hydrological Institute. MATCH can be run on global to urban

domains to study a range of atmospheric chemistry/air quality problems, but for this study model runs were performed for1060

the 20◦N-90◦N region focusing on long-transport to the Arctic. ERA-Interim reanalysis data from the European Centre for

Medium-Range Weather Forecasts (ECMWF) were used as meteorological input to the model. Six-hourly data (3-hourly for

precipitation) were extracted from the ECMWF archives on a 0.75◦ × 0.75◦ rotated latitude-longitude grid. The original data

had 60 levels, but the 38 lowest levels reaching about 16 km in the Arctic were used in the model.

The scheme for gas-phase tropospheric chemistry and bulk aerosols as described in Andersson et al. (2007) was used.1065

Methane concentrations were prescribed. Boundary conditions at the top of the model and at the lateral boundaries for a range

52



of species including ozone were based on monthly mean values from the Copernicus Atmospheric Monitoring Service. The

aerosol scheme was extended with BC and OC simulated as two fractions: fresh, hydrophobic and aged, and hydrophilic.

Eighty percent of anthropogenic emissions from all sectors were emitted into the hydrophobic and 20% into the hydrophilic

fraction except for fire/biomass combustion where 100% was emitted into the hydrophilic component following Genberg et al.1070

(2013). Scavenging and aging was parameterized following Liu et al. (2011), i.e., aging is proportional to OH and scavenging

in mixed-phase clouds is reduced. The hydrophobic fraction is assumed to be 5% activated in the scavenging scheme, while

the hydrophilic fraction is 100% activated. If the clouds are mixed phase, then the scavenging efficiency is scaled by the ratio

of cloud ice water content to total cloud water content assuming zero scavenging for 100% ice clouds.

A13 MATCH-SALSA-RCA41075

The chemistry transport model, MATCH (Robertson et al., 1999; Andersson et al., 2007) described above is online coupled to

the aerosol dynamics model, SALSA (Kokkola et al., 2008). SALSA describes the whole chain from nucleation to the growth

and deposition of particles and computes the size distribution, number concentration and chemical composition of the aerosol

species. A sectional representation of the aerosol size distribution is considered with three main size ranges (a: 3-50 nm, b: 50-

700 nm and c: > 700 nm) and each range is again subdivided into smaller bins and into soluble and insoluble bins adding up to a1080

total of 20 bins. A schematic of the sectional size distribution and the aerosol species considered in each bin is shown in Figure

A.1.13.1. The seasonally varying emissions are based on the sector-wise ECLIPSE inventory. Isoprene emissions are modelled

online depending on the meteorology based on the methodology by Simpson et al. (1995). The terpene emissions (α-pinene)

are taken from the modelled fields by the EMEP model. Sea salt is parameterized following the scheme of Foltescu et al. (2005)

but modified for varying particle sizes, wherein Mårtensson et al. (2003) scheme is used if the particle diameter is 1 µm and1085

Monahan et al. (1986) scheme is used otherwise. The coupling of MATCH with SALSA and the evaluation of this model setup

is described in detail in Andersson et al. (2015). A cloud activation model that computes 3-D CDNCs (Cloud Droplet Number

Concentrations) based on the prognostic parameterization scheme of Abdul-Razzak and Ghan (2002) specifically designed for

aerosol representation with sectional bins is embedded in the MATCH-SALSA model. This scheme simulates the efficiency of

an aerosol particle to be converted to a cloud droplet depending on the number concentration and chemical composition of the1090

particles given the updraft velocity and supersaturation of the air parcel. The updraft velocity is computed as the sum of the

grid mean vertical velocity and turbulent kinetic energy (TKE) for stratiform clouds (Lohmann et al., 1999). These CDNCs are

then offline coupled to a regional climate model, RCA4 (SAMUELSSON et al., 2011), that provides us information on cloud

properties such as cloud cover, cloud droplet radii, cloud liquid-water path as well as radiative fluxes. The schematic of the

model coupling is shown in Figure A.1.13.2. RCA4 is run with 6-hourly ERA-Interim meteorology and the 3-hourly RCA41095

meteorological fields along with the fields needed to calculate updraft velocity are used to drive the MATCH-SALSA-cloud

activation model. The CDNCs are then used to re-run the RCA4 model to obtain the cloud properties and radiative effects. The

validation and more details of this model set up is described in Thomas et al. (2015).
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A14 MRI-ESM2

MRI-ESM2 (Meteorological Research Institute (MRI) Earth System Model version 2.0, developed by the MRI of the Japan1100

Meteorological Agency) consists of four major component models; an atmospheric general circulation model (MRI-AGCM3.5)

with land processes, an ocean-sea-ice general circulation model (MRI.COMv4), and aerosol and atmospheric chemistry mod-

els (YUKIMOTO et al., 2019; Kawai et al., 2019; Oshima et al., 2020), however, we do not couple OGCM in this study’s

simulations. MRI-ESM2 uses different horizontal resolutions but employs the same vertical resolution in each atmospheric

component model as follows: TL159 (approximately 120 km), TL95 (approximately 180 km), and T42 (approximately 2801105

km) in the MRI-AGCM3.5, the aerosol model, and the atmospheric chemistry model, respectively, all with 80 vertical layers

(from the surface to a model top of 0.01 hPa) in a hybrid sigma-pressure coordinate system. Each component model is in-

teractively coupled by a coupler, which enables an explicit representation of the effects of gases and aerosols on the climate

system. The atmospheric chemistry component model in MRI-ESM2 is the MRI Chemistry Climate Model version 2.1 (MRI-

CCM2.1), which calculates the evolution and distribution of ozone and other trace gases in the troposphere and in the middle1110

atmosphere. The model calculates a total of 90 gas-phase chemical species and 259 chemical reactions in the atmosphere. The

aerosol component model in MRI-ESM2 is the Model of Aerosol Species in the Global Atmosphere mark-2 revision 4-climate

(MASINGAR mk-2r4c) that calculates atmospheric aerosol physical and chemical processes and treats the following species;

nonsea-salt sulfate, BC, OC, sea salt, mineral dust, and aerosol precursor gases (e.g., sulfur dioxide and dimethyl sulfide).

The size distributions of sea salt and mineral dust are divided into 10 discrete bins and the sizes of the other aerosols are1115

represented by lognormal size distributions. The model assumes external mixing for all aerosol species; however, in the radi-

ation process in MRI-AGCM3.5, hydrophilic BC is assumed to be internally mixed with sulfate with a shell-to-core volume

ratio of 2; the optical properties of hydrophilic BC are calculated based on Mie theory with a core-shell aerosol treatment, in

which a concentric BC core is surrounded by a uniform coating shell composed of other aerosol compounds (Oshima et al.,

2009b,a). MRI-ESM2 employs a BC aging parameterization (Oshima and Koike, 2013) that calculates the variable conver-1120

sion rate of BC from hydrophobic BC to hydrophilic BC, which generally depends on the production rate of condensable

materials such as sulfate. In the radiation and cloud processes in MRI-ESM2, sulfate is assumed to be (NH+
4 )2SO2−

4 and OC

is assumed to be organic matter (OM) by lumping OC species using an OM-to-OC factor of 1.4. MRI-ESM2 represents the

activation of aerosols into cloud droplets based on the parameterizations, and detailed descriptions and evaluations of the cloud

processes and cloud representations in MRI-ESM2 are given by Kawai et al. (2019). Evaluations of the effective radiative1125

forcing (ERF) of anthropogenic gases and aerosols in present-day conditions relative to preindustrial conditions in the global

and the Arctic using MRI-ESM2 are given by Oshima et al. (2020). The simulations in this study were performed from Jan-

uary 2008 (or January 1990) to December 2015 after a 1-year spin-up run using the prescribed SST and sea ice data (provided

by the AMIP experiment in CMIP6, https://www.wcrp-climate.org/modelling-wgcm-mip-catalogue/modelling-wgcm-mips-2/

240-modelling-wgcm-catalogue-amip). The horizontal wind fields were nudged toward the 6-hourly Japanese 55-year Re-1130

analysis (JRA55) data (Kobayashi et al., 2015) (https://jra.kishou.go.jp/JRA-55/index_en.html) in the simulation. We used the

monthly anthropogenic emissions from the ECLIPSE V6B emission dataset and the monthly biomass burning emissions from
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the CMIP6 in the simulations. Major volcanic aerosols are given by the stratospheric aerosol dataset used in the CMIP6 ex-

periments (Thomason et al., 2018). A second simulation with volcanic SO2 emission including Holuhraun eruption was also

performed for 2014-2015.1135

A15 NorESM1

NorESM1 (Bentsen et al., 2013; Iversen et al., 2013) is based on the fourth version of the Community Climate System Model

(CCSM4) (Gent et al., 2011), with coupled models for the atmosphere, ocean, land and sea-ice. Here, we have used a 1◦

horizontal resolution in the atmosphere (0.95◦ latitude by 1.25◦ longitude, version ’NorESM1-Happi’). The model has 26

vertical levels on a hybrid sigma-pressure co-ordinate up to the model top at 2.194 hPa. The model calculates the lifecycles1140

of a range of natural and anthropogenic aerosol components from emissions and physico-chemical processing in air and cloud

droplets. The only prescribed aerosol concentrations are stratospheric sulfate from explosive volcanoes. The direct and indirect

aerosol effects on climate are calculated by parameterization of aerosol interactions with schemes for radiation and warm

cloud microphysics (Kirkevåg et al., 2013). The model uses a prognostic calculation of cloud droplet numbers, allowing for

competition effects between aerosols of different hygroscopic property and size.1145

A16 OsloCTM

The Oslo CTM3 is an offline global three-dimensional chemistry transport model driven by 3-hourly meteorological fore-

cast data from the Integrated Forecast System (IFS) model at the European Centre for Medium-Range Weather Forecasts

(ECMWF). The Oslo CTM3 consists of a tropospheric and stratospheric chemistry scheme (Søvde et al., 2012) as well as

aerosol modules for sulfate, nitrate, black carbon, primary organic carbon, secondary organic aerosols, mineral dust and sea1150

salt (Lund et al., 2018a).

A17 UKESM1

UKESM1 (United Kingdom Earth System Model) is a fully-coupled Earth System model (Sellar et al., 2019) with a coupled

atmosphere ocean physical climate model (HadGEM3-GC3.1) at its core (Kuhlbrodt et al., 2018; Williams et al., 2018). For

UKESM1 various Earth system components are incorporated with the physical climate model including ocean biogeochem-1155

istry, an interactive stratosphere-troposphere chemistry and aerosol scheme and terrestrial carbon and nitrogen cycles coupled

to interactive vegetation. The model has a horizontal resolution of 135 km at the mid-latitudes (1.875◦ × 1.25◦), with 85

levels on a terrain-following hybrid height coordinate system, ranging in height from the surface to a model top of 85 km. The

combined stratosphere-troposphere United Kingdom Chemistry and Aerosol (UKCA) scheme is used within UKESM1 and is

fully described and evaluated in (Archibald et al., 2020; Mulcahy et al., 2020).1160

The chemical scheme in UKCA is built upon the scheme described for the stratosphere in Morgenstern et al. (2009) and

that for the troposphere described in O’Connor et al. (2014). Chemical reactions are included within UKCA for odd-oxygen

(Ox), nitrogen (NOy), hydrogen (HOx = OH + HO2), CO, CH4 and short-chain non-methane volatile organic compounds
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(NMVOCs), including isoprene. Reactions involving NMVOCs are simulated as discrete species. UKCA includes an interactive

photolysis scheme, as well as representations of both wet and dry deposition for gas and aerosol species. Additional chemical1165

reactions for DMS, SO2 and monoterpenes (C10H16) are included to enable coupling to the aerosol scheme within UKCA.

A two-moment aerosol microphysical scheme, GLOMAP (Global Model of Aerosol Processes; Mann et al. (2010, 2012)),

is used to simulate four aerosol components (SO3, BC, organic matter, sea-salt) across five log-normal modes, ranging from

sub to super micron sizes. Mineral dust is simulated separately using a 6 bin mass only scheme, ranging in size from 0.6 to

60 microns in diameter (Woodward, 2001). Ammonium nitrate is not currently included within the UKCA aerosol scheme.1170

The formation of secondary organic aerosols (SOA) is included based on a fixed yield rate of 26% from the products of

monoterpene oxidation. The higher fixed yield value accounts for the underlying uncertainty in SOA formation and the absence

of anthropogenic, marine and isoprene sources.

Precursor emission fluxes are either prescribed using specified input files or calculated interactively using online meteo-

rological variables within UKESM1. Methane is represented by using prescribed global concentrations. Interactive emission1175

fluxes are calculated online for sea salt, DMS, dust, lightning NOx and biogenic volatile organic compounds (BVOCs). Emis-

sions of isoprene and monoterpenes from the natural environment are calculated online by coupling to the land surface scheme

within UKESM1. Simulations provided by UKESM1 and used in the AMAP assessment have been undertaken using different

configurations. For this study, experiments UKESM1 has been set up using an atmosphere only configuration that is nudged to

ECMWF reanalysis (ERA-interim) of temperature and wind fields above the boundary layer. Prescribed values of sea surface1180

temperatures and sea ice are used for each year of simulation based on historical simulations conducted as part of CMIP6 using

the fully coupled atmosphere-ocean configuration of UKESM1. For other ancillary inputs a multi-year climatology was used;

equivalent to an AMIP type simulation.

A18 WRF-Chem

WRF-Chem (Weather Research and Forecasting model with online coupled chemistry) is used to simulate the transport and1185

chemical transformation of trace gases and aerosols simultaneously with the meteorology. The model dynamics (WRF) are

non-hydrostatic. The model version used for AMAP is WRF-Chem version 3.8.1 also including updates reported in Marelle

et al. (2017) and Marelle et al. (2018). The simulation was performed on a polar stereographic projection with a horizontal

resolution of 100 km and 50 vertical hybrid terrain-following vertical pressure levels using hydrostatic pressure. The center of

the domain is placed at the North pole and the latitude at the domain’s outside boundary varies from 7◦ South to 7◦ North.1190

The WRF-Chem chemical lateral boundary conditions are from MOZART-4/GEOS-5 (https://www.acom.ucar.edu/wrf-chem/

mozart.shtml; Emmons et al. (2010). Pressure at the model top is set to 50 hPa with stratospheric concentrations (e.g. ozone)

taken from climatologies. The model was run with Morrison double-moment scheme microphysics, long and short wave

radiative effects treated by RRTMG scheme, Kain-Fritsch-Cumulus Potential (KF-CuP) cumulus parameterization scheme.

The model was run with SAPRC-99 chemical scheme providing gas-phase tropospheric reactions including VOCs and NOx,1195

coupled with the MOSAIC 8 bin sectional scheme including VBS treatments for SOA. Methane concentrations are prescribed.

Stratospheric or tropospheric halogen chemistry is not included. It was run using anthropogenic emissions from ECLIPSE v6b
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and the GFED fire emissions. Boundary and initial meteorological conditions were given by the global NCEP Final Analysis

(FNL) and used to nudge the temperature, relative humidity, and winds at every dynamical time-step above the planetary

boundary layer.1200

Appendix B: Observational Datasets

The following datasets were used to evaluate the models in this study. As BC measurements vary by instrument, Table B1

summarizes the different Arctic BC datasets used in this study.

For SLCFs other than Arctic BC, Table B2 summarizes some information about the observation networks.
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Table A1. Information about models’ spatial set-ups.

Model horizontal resolution scale (global or regional)

CanAM5-PAM 128×64, Gaussian grid, T63 global

CESM 1.9◦ × 2.5◦ lat/lon grid global

CIESM-MAM7 0.9◦ × 1.25◦ lat/lon grid global

CMAM 96×48 Gaussian grid, T47 global

DEHM 50km, >150×150 gridpoints Polar stereographic

ECHAM-SALSA T63 global

EMEP-MSC-W 0.5◦ × 0.5◦ regular lon/lat global

FLEXPART Met. input data: 1◦ x 1◦ global

GEM-MACH 0.1375◦ (or 15-km) rotated Arctic LAM

GEOS-Chem 2◦ × 2.5◦ global

GISS-E2.1 2◦ × 2.5◦ global

MATCH 186×186, 0.75◦ rotated lat/lon regional

MATCH-SALSA 188×198, 0.75◦ rotated lat/lon regional

MRI-ESM2 TL159(AGCM), TL95(aerosol), T42(ozone) global

NorESM 0.9◦ × 1.25◦ global

Oslo-CTM 2.25◦ × 2.25◦ global

UKESM1 145x192 (1.875◦ × 1.25◦ ) global

WRF-Chem 100 km regional-Arctic
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Table B1. Information about Arctic BC measurements used for model evaluation

Location or network Method Comments/references

IMPROVE EC via thermo-optical Malm et al. (1994)

EMEP EC via thermo-optical from PM2.5 and PM10 Tørseth et al. (2012); EMEP (2014)

CABM EC via thermal evolution method from Sharma et al. (2006); Huang et al. (2006)

total suspended particle (2005-2011) and Huang et al. (2021)

PM1 (2011 to present). At Alert, also eBC via

aethalometer for PM1

Gruvebadet Lab eBC via PSAP from PM1 Gogoi et al. (2016)

Zeppelin Mountain eBC via aethalometer Eleftheriadis et al. (2009)

Utqiagvik (aka Barrow) eBC via aethalometer and via PSAP from PM1 Delene and Ogren (2002)

Japanese Arctic cruise rBC via SP2 from PM10 Taketani et al. (2016)

Russian Arctic cruise eBC via aethalometer Popovicheva et al. (2017)

Aircraft campaigns rBC from SP2 Moteki and Kondo (2010); Schwarz et al. (2006)

Stephens et al. (2003)
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