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Abstract. The relative importance of two processes that help control the concentrations of stratospheric water vapor, the

Quasi-Biennial Oscillation (QBO) and El Niño-Southern Oscillation (ENSO), are evaluated in observations and in compre-

hensive coupled ocean-atmosphere-chemistry models. The possibility of nonlinear interactions between these two is evaluated

both using Multiple Linear Regression(MLR) and three additional advanced machine learning techniques. The QBO is found

to be more important than ENSO, however nonlinear interactions are non-negligible, and even when ENSO, the QBO, and5

potential nonlinearities are included the fraction of entry water vapor variability explained is still substantially less than what

is accounted for by cold point temperatures. While the advanced machine learning techniques perform better than an MLR in

which nonlinearities are suppressed, adding nonlinear predictors to the MLR mostly closes the gap in performance with the

advanced machine learning techniques. Comprehensive models suffer from too weak a connection between entry water and

the QBO, however a notable improvement is found relative to previous generations of comprehensive models. Models with a10

stronger QBO in the lower stratosphere systematically simulate a more realistic connection with entry water.

1 Introduction

Water vapor (WV) provides most of the greenhouse effect in the atmosphere, and of the total water vapor feedback to increasing

anthropogenic greenhouse gas emissions, roughly 10% is associated with water vapor in the stratosphere (?????). The amount

of water vapor that enters the stratosphere is also important for stratospheric chemistry and specifically the severity of ozone15

depletion (????). Hence, it is important to understand the factors that control the entry of water vapor into the stratosphere on

all timescales, and to consider whether comprehensive models used for ozone and climate change assessments represent these

factors correctly.

ost of the water vapor in the lower stratosphere transited from the tropical upper troposphere through the tropical tropopause,

and therefore tropical temperatures near the cold point largely determine lower stratospheric water vapor concentrations20

(??????). Many processes have been shown to modulate these cold point temperatures, and the goal of this work is to re-
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evaluate the influence of these processes, and in particular their nonlinear interactions, on entry water vapor. We then consider

the ability of comprehensive models to represent this effect.

The QBO modulates water vapour mixing ratios in air entering the stratosphere through its influence on temperatures in

the tropical tropopause region (??????)
:::::::::
(????????). Specifically, warmer cold point temperatures during the QBO phase with

westerlies near 50hPa (hereafter wQBO) lead to moistening, and colder temperatures during the QBO phase with easterlies near5

50hPa (eQBO) lead to drying of the stratosphere. Comprehensive climate models typically struggle to capture the downward

propagation of the QBO to the lower stratosphere (??), and consistent with this ? found that the Chemistry Climate Model

Validation Activity 2 (CCMVal2) models and most of the the Chemistry-Climate Model Initiative (CCMI, ?) models they

considered struggle to capture an influence of the QBO on entry water.

El Niño (EN), the ENSO phase with anomalous warming of the tropical Eastern Pacific, has been shown to lead to a cooler10

tropical lower stratosphere and warmer tropical troposphere (???)
:::::
(????). In addition, EN also forces a Rossby wave response

that extends to the tropopause, whereby anomalously cold temperatures are present over the Central Pacific, and anomalously

warm temperatures are present over the Indo-Pacific warm pool (?????). This zonal dipole in temperature has been shown to

affect water vapor below the cold point: water vapor decreases in the region with cold anomalies and increases in the region

with warm anomalies by ∼ 25% (???).15

The net effect of these temperature anomalies on tropical lower stratospheric water vapor is complex. While the lower

stratosphere clearly was moister following the two largest EN events in the satellite era (in 1997/1998 and in 2015/2016) (??),

moistening also was evident following two of the strongest La Nina events (in 1998/1999 and 1999/2000). The impact of more

moderate events is less clear, and any net effect is not statistically significant considering the shortness of the data record (??).

Both La Nina and El Nino can lead to a moistening if the cold point moves zonally within the tropics (to the Central Pacific20

for El Nino, and to the far West Pacific for La Nina), and even though the lower stratospheric response is opposite for El Nino

and La Nina, the cold point warms
::::::
appears

::
to
:::::
have

:::::::
warmed for both strong El Nino and strong La Nina events, explaining the

moistening in 1997/1998, 1998/1999, 1999/2000, and 2015/2016 (?). There is no consensus among models as to the sign of

the impact of ENSO on water vapor, with many models predicting a response opposite to that observed (?).

Finally, the strength of Brewer Dobson circulation has been found to be important in determining entry water vapor, with a25

faster circulation associated with cooling of the cold point and dehydration (????).

The net response to these various forcings is often quantified using multiple linear regression (e.g. ??)
::::::
(e.g. ??), which im-

plicitly assumes that the response to these forcings is linear, i.e. that the response to a given magnitude El Niño is equal and

opposite to that of a La Niña event of equal magnitude. This technique also assumes that the response to e.g. ENSO and QBO

is the sum of the linear responses to each individual forcing
:::
(??). Recent work has pointed out two faults of such an assump-30

tion. First, ?
::
and

:::
? found that the response to ENSO is nonlinear

::
in

::::::::::
observations

::::
(and

::::
also

::
in
:::::
some

:::::::
models), and hence such

a methodology may underestimate the impact of ENSO on stratospheric water vapor. Second, ? find that the QBO has larger

amplitude and longer period during La Niña conditions than during El Niño. Hence the difference between the warmer CPT

temperatures
:::
cold

:::::
point

:::::::::::
temperatures

::::::
(CPT) during wQBO and colder temperatures

:::
CPT

:
during eQBO are larger during La

Niña than during El Niño. This strengthens earlier findings that the greatest dehydration of air entering the stratosphere from35
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the troposphere occurs during the winter under La Niña and easterly QBO conditions (??). Specifically, ? argue that the net

effect of ENSO and the QBO is not just a linear superposition of their independent influences, but the net result of their mutual

interaction.

The goal of this work is to reconsider the relative importance of the QBO and ENSO while taking into consideration the

possibility for nonlinearity in the response, and to then consider whether the most-recent comprehensive models are capable5

of simulating the response. After introducing the data and methodology in
::::::
Section

:
2, we evaluate the relative sucesses of a

Multiple Linear Regression(MLR) and of more advanced machine learning (ML) techniques with ENSO, QBO, BDC, and

mid-tropospheric temperature as predictors, in an attempt to find the factors that most succinctly explain observed interannual

water vapor variability. We also consider the fraction of interannual entry water vapor variability that can be accounted for

by variations of the cold point temperature as an upper bound on how much water vapor variability is predictable from large10

scale processes. We then add two nonlinear predictors to the MLR, and demonstrate that they are as important as e.g. a linear

ENSO predictor. Finally, we consider the ability of comprehensive coupled ocean-atmosphere-chemistry models to simulate

the connection between the QBO and entry water.

2 Data and methodology

2.1 Data15

The Stratospheric Water and OzOne Satellite Homogenized data set (SWOOSH) (?) features a merged, gridded, homogenized

and filled water vapor product from various limb sounding and solar occultation satellites over the previous ~30 years. The

measurements are monthly means comprised of the following instruments: SAGE-II/III, UARS HALOE, UARS MLS, and

Aura MLS. We use the zonal mean product (latitude, pressure) and the 3D (latitude, longitude, pressure) product as described

in Table 1. The former has a high latitudinal resolution of 2.5◦ and extends to the HALOE period (1990s), while the latter has a20

horizontal resolution of 20◦× 5◦ but relies on the high sampling rates available with AURA
::::
MLS

:
since 2004. While the latter

data set does include some data as early as 1994, there are many gaps and filling these gaps in a self-consistent way is out

of the scope of this analysis. Both data sets have a pressure level range of 300 to 1 hPa though our focus is on entry water at

82hPa and 68hPa. We use the zonal mean product when focusing on zonal mean entry water, and the 3D product when showing

lat-lon maps of regression coefficients.25

Table 1. Description of the target used in this analysis.

Target field SWOOSH field name SWOOSH file name years used

zonal mean combinedanomfillanomh2oq swoosh-v02.6-198401-201912-latpress-2.5deg-L31 1994-2019

3D combinedanomh2oq swoosh-v02.6-198401-201912-lonlatpress-20deg-5deg-L31 2005-2019

We examine six models participating in the CCMI and five coupled chemistry-climate models participating in the sixth phase

of the Coupled Model Intercomparison Project (CMIP6; ?). We only include CMIP6 models with interactive stratospheric
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chemistry as such a coupled chemistry-climate configuration has been shown to lead to more robust interannual variability of

temperatures in the lower stratosphere as compared to models with fixed ozone (?). Note that most of the models nevertheless

simulate a too-warm cold point and too-little interannual variability of entry water (?).

CCMI-1
:::::
CCMI

:::::
phase

::
1 was jointly launched by the International Global Atmospheric Chemistry (IGAC) and the Stratosphere-

troposphere Processes And their Role in Climate (SPARC) to better understand chemistry-climate interactions in the recent5

past and future climate (??). We analyze the Ref-C2 simulations, which span the period 1960-2100, impose ozone depleting

substances as specified by the ?, and impose greenhouse gases other than ozone depleting substances as in Representative Con-

centration Pathway (RCP) 6.0 (?). More details about these simulations are included in ?. We only consider CCMI models with

a coupled ocean
:::::::
(though

:::
for

::::
some

:::::::
models,

::::
e.g.

::::::
EMAC,

:::
the

::::::
ocean

::::
state

::
is

::::
taken

:::::
from

:
a
::::::::
different

::::::::::
integration), and we compute

statistics for all available ensemble members separately before computing the average response for each model. The CCMI-110

models used in this study are listed in Table 2. CCMI-2 models are instructed to nudge the QBO rather than spontaneously

simulate it. While this nudging should lead to an improved ability to capture the temperature response to the QBO (as discussed

in section 4), this improvement is not because the models themselves are necessarily better and nudging is known to interfere

with the transport of trace gases (??). Hence the water vapor variability in CCMI-2 models is outside the scope of this study.

::::
Note,

::::::::
however,

:::
that

:::::
three

::
of

:::
the

:::::::
CCMI-1

::::::
models

::::::::::
considered

:::
here

:::::::
nudged

:::
the

:::::
QBO:

:::
the

::::::
NCAR

::::::
models

:::
and

:::::::
EMAC.

::::
The

::::::
fidelity15

::
of

:::
the

::::
QBO

::
in
:::::
these

::::::
models

::::
will

::
be

::::::::
discussed

::
in
:::::::
section

::
4.

In addition to the CCMI-1 models, we also consider five Earth System models with coupled chemistry that are participating

in CMIP6: CESM2-WACCM (?), GFDL-ESM4 (?), CNRM-ESM2-1 (?), MRI-ESM2-0 (?), and UKESM1-0-LL (?). The

climatology and seasonal cycle of stratospheric water vapor in these models is documented in ?.
:::
All

:::
six

::::::
models

::::::::::::
spontaneously

:::::::
represent

:::
the

:::::
QBO

:::::
(???)

::::::
though

::
as

::::::::
discussed

::
in

::::::
section

::
4
:::
the

::::::
quality

::
of

:::
the

:::::::::
simulation

::::::
varies. For all CMIP6 models we focus20

on the historical integrations of the period 1850 to 2014. Note that standard CMIP6 output includes the 70hPa and 100hPa

levels but unfortunately no level in-between, and so our ability to diagnose physical processes near the cold point is limited.

(In contrast, CCMI output is available both near 80hPa and 90hPa.) All eleven models spontaneously represent the QBO (???)

though as discussed in section 4 the quality of the simulation varies. All data are deseasonalized by subtracting the long term

monthly means for that specific data product.25

2.2 Target Variables and Indices

The target variable for all data sources is entry water, defined as water vapor at 82 hPa for SWOOSH, the closest archived

level to 82hPa for CCMI
:::
(for

::::::
nearly

::
all

:::::::
models

:::
this

::
is

::::::
80hPa), and 70hPa for CMIP6. The Quasi-Biennial Oscillation index

is derived from the 50 mb zonal wind data in the NCEP/NCAR Reanalysis Climate Data Assimilation System (?). While

including levels lower than 50hPa may lead to a slight improvement of the fit in observational data, many of the CCMI/CMIP630

models struggle to capture any remnant of the QBO below 50hPa (???) and hence we use 50hPa only throughout this paper.

The lagged correlation of the QBO with near-82hPa entry water area averaged between 15S and 15N is shown in Figure 1a,

and it is clear that a lag of 2 to 5 months maximizes the relationship in observations and in models. In Section 3 we use a lag

of 5 months, and in Section 4 we use a lag of 2 months for CCMI and 5 months for CMIP6, though results are similar if the
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Table 1: Data products used

data source ensemble members reference

obs SWOOSH v2.6 1 ?

ERA-5 1 ?

CCMI
::::::
CCMI-1 NIWA-UKCA 5 ?

CESM1 WACCM 3 ?

CESM1 CAM4-chem 3 ?

HadGEM3-ES 1 ?

MRI-ESM1r1 1 ?

EMAC-L47MA 1 ?

CMIP6 CESM2-WACCM 1 ?

GFDL-ESM4 1 ?

CNRM-ESM2-1 1 ?

MRI-ESM2-0 1 ?

UKESM1-0-LL 1 ?

Table 2. The data sources used in this study. For CMIP6 models we focus on the historical integrations of the period 1850 to 2014, and for

CCMI
::::
phase

:
1
:

the Ref-C2 simulations spanning the years 1960 to 2100.
:::
The

:::::::
CCMI-1

:::::
models

::::::
CESM1

::::::::
WACCM,

::::::
CESM1

:::::::::::
CAM4-chem,

:::
and

::::::::::::
EMAC-L47MA

::::
nudge

:::
the

:::::
QBO;

::
the

:::
rest

:::::::::::
spontaneously

:::::::
generate

::
the

:::::
QBO.

:

lag is changed by a few months. A later lag for the QBO is used for CMIP6 due to the difference in available pressure levels

used to define entry water.

The El-Niño Southern Oscillation is tracked using the NINO3.4 index (5◦ North-5◦South, 170◦-120◦West) sourced with

ERSSTv5 data with a 1981-2010 base period. The data is taken from NOAA (?).

The CCMI and CMIP6 integrations include both long-term changes due to climate change in addition to the interannual5

variability which is our focus. The analyses in section 4 therefore includes, in addition to the QBO regressor, a regressor

to track greenhouse gas concentrations (the equivalent CO2 from the RCP6.0 scenario, and historical CO2 concentrations for

historical simulations, ?). For the observational analysis, we do not include a CO2 regressor, but instead detrend all time-series,

for two reasons: first, the regression coefficient for CO2 in an MLR is extremely sensitive to whether we include the HALOE

period or not, and, second, the ML methods are more stable when provided with fewer predictors on which to train the model.10

Both of these effects likely arise because of the short duration of the observational data-record.
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Figures/qbocorrelation-eps-converted-to.pdf

Figure 1. Lagged correlation between the QBO at 50hPa and tropical water vapor at (a) 80hPa in CCMI models and (b) 70hPa in CMIP6

models
::::
(entry

::::
water

::
is
:::::
lagged

::::
after

:::
the

:::::
QBO).

:::
The

::::::
lagged

::::::::
correlation

:::
for

:::::::::
observations

:::::::::
(SWOOSH

::::
data)

::
is

:::
also

:::::::
included

::
in

::::
thick

::::
black. The

combinedanomfillanomh2oq product of swoosh-v02.6-198401-201912-latpress-2.5deg-L31 is used for observations from 1994 to 2019. Note

that the WACCMand , CAM4Chem,
:::
and

::::::::::::
EMAC-L47MA

:
models in panel (a) nudge the QBO; in all other models the QBO is spontaneously

generated.
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Figure 2. A correlation heatmap for the predictors used in the analysis. The time-span is from 1994 to 2019.

The T500 index is the air temperature at 500 hPa averaged over the tropics (20◦S to 20◦N) taken from the ERA5.1 reanalysis

(??). The BDC (Brewer–Dobson Circulation) index is the ERA5.1 variable "mean temperature tendency due to parametri-

sations" at 70 hPa averaged over the tropics (20◦S to 20◦N). In the deep tropics, the dominant contribution to the "mean

temperature tendency due to parametrisations" is radiative heating.

The cold point temperature (CPT) index is calculated as in ?, who use air temperature data from three equatorial radiosonde5

stations: Nairobi (1◦S, 37◦E), Manaus (3◦S, 60◦W), and Majuro (7◦N, 171◦E) sourced from the Integrated Global Radiosonde

Archive (IGRA) (?). The radiosonde data was re-sampled to monthly means and its seasonal cycle was removed.

Note that the correlation of the BDC with the QBO is -0.66 (Figure 2), and hence including both in a single regression or ML

model can lead to erroneous model interpretation. If the BDC is defined at 82hPa (instead of at 70hPa) the correlation with the

QBO drops, but then the correlation of the BDC with cold point temperatures reaches -0.72 over the period since 2005. Hence10

there is again the potential for misleading results if both are included, and if only the BDC is included there is ambiguity as

to whether a signal is due to the BDC or rather actually is associated with CPT but appears in the BDC regression coefficient

because of the tight relationship between the CPT and BDC. Finally, the correlation between T500 and ENSO is 0.52, and if

we high-pass filter the data to focus on interannual timescales the correlation increases further. Hence there is a similar risk of

misleading results if both are included in a MLR, and similar ambiguity if only one is included.15

All indices are deseasonalized by removing the long term monthly means. We do not consider seasonality in this work in

order to maximize the degrees of freedom, though we certainly acknowledge that the regression coefficients for, say, ENSO

change sign between midwinter and late spring (??). For all of these predictor time series, we divide by the standard deviation

before constructing a MLR or ML model.
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Figure 3. The R2 of the MLR between water vapor anomalies at the 82.54 hPa level with the four groups of predictors: (a) cold point

temperatures; (b) QBO and ENSO; (c) as in (b) but adding in ENSO2 and QBO×ENSO; (d) as in (b) but adding in T500hPa and the BDC.

This MLR spans from 2005 to 2019 and uses the 3D SWOOSH product. The regression is reconstructed directly from all predictors, i.e.,

in-sample.

As discussed in ?, cold point temperatures are highly correlated with entry water vapor (correlation of∼ 0.8 from 1993-2017

for 60S-60N averaged entry water vapor). This result is reproduced here over the period 2005-2019, but showing the latitude vs.

longitude distribution, in Figure 3a. We allow the CPT to lead entry water vapor by up to five months. Correlations peak above

0.8, and more generally 75% (i.e. the maximum R2 on Figure 3a) of the cold point temperature and entry water variability are

linearly related. We treat this 0.8 correlation as an upper bound on the effect that large scale, monthly mean dynamics can have5

on entry water vapor (with the remaining 25% due to processes on smaller spatial scales or shorter timescales). The aim of this

paper is to understand the 75% of the variability that is due to large scale processes. In particular to what extent can this 75%

of the variability in turn be explained by large scale processes remote to the cold point such as the QBO and ENSO?

2.3 Machine Learning (ML) models

As discussed in the introduction, the connection between the QBO, ENSO, and entry water is not necessarily linear. Accord-10

ingly, we pick three popular types of ML models which we use in a supervised learning regression: Support Vector Machines

(SVM), Random Forest (RF) and Multi Layered Perceptron (MLP). These ML models are applied in Section 3 only. All the

models here are implemented through the Scikit-Learn Python package (?) and use an optimization scheme in order to reduce
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the error between the predicted and the observed target variable. However, each of the models’ approach to the regression task

is different.

The SVM model, in a classification task, uses a linear hyperplane in order to separate each sample class (?). By applying the

kernel trick, the input variables are non-linearly transformed into a high dimensional space where the type of the kernel, e.g.,

radial basis function, can be determined by hyper parameter tuning (?). In regression tasks,
:::
now

::::::
named

::::
SVR

::::::::
(Support

::::::
Vector5

::::::::::
Regression),

:::::
more

::::::::
flexibility

::
is

:::::::
allowed

:::::
where

:
an error parameter is added (ε) which measures the constraint on the residuals.

::::
Let’s

::::::::
consider

:::
the

::::::::
objective

:::::::
function

::
in

::::
OLS

:::::::::
(Ordinary

:::::
Least

:::::::
Squares)

::::::
which

:
is
:::::
used

::
in

::::::
MLRs:

MIN

n∑
i=1

(yi−wi ·xi)2,
:::::::::::::::::::

(1)

:::::
Where

:::
yi :

is
:::
the

::::::
target,

:::
wi :

is
:::

the
:::::::::

coefficient
::::
and

::
xi::

is
:::
the

::::::::
predictor.

::::
The

::::::::
objective

:::::::
function

::
in

:::
the

::::
SVR

::
is
:::::
used

::
to

::::::::
minimize

:::
the

:::::::::
coefficients

::::::::::
(specifically

:::
the

:::
l2

:::::
norm)

:::
and

::::
not

:::
the

::::::
squared

:::::
error

::
as

::
in

:::
the

:::::
OLS.

:::
The

:::::::::
constrains

::::::
handle

:::
the

::::
error

:::::
term

::
(ε)

::::::
where10

:
it
:::
can

:::
be

:::::
tuned

::
to

::::
gain

:::
the

::::::
desired

::::::::
accuracy

::
of

:::
our

::::::
model.

:::::
Thus,

::::::
SVR’s

:::::::
objective

:::::::
function

::::
and

:::::::::
constraints

:::
are

::
as

:::::::
follows:

:

MIN
1

2

∣∣ | w | ∣∣2
::::::::::::

(2)

|yi−wi ·xi| ≤ ε
:::::::::::::

(3)

:::::
Other

:::::::::::
improvements

::
to
:::

the
::::::
SVR’s

::::::::
objective

:::::::
function

:::
are

:::::
added

::
as
:::::::::
additional

:::::
hyper

::::::::::
parameters,

::::
e.g.,

::
as

::
to

::::
deal

::::
with

:::::
points

::::
that

:::::
reside

::::::
beyond

:::
the

::::::
margin

:::::::
defined

::
by

::
ε.15

The RF model
:::::::
operates

::::
very

:::::::::
differently

::::
than

:::::
SVM

::
as

:
it
::
is
:::::
based

:::
on

::
an

::::::::
ensemble

::
of
::::::::

decision
::::
trees

:::::
which

::
in
::::
our

::::
case

::::
solve

::
a

::::::::
regression

::::
task.

::
A
:::::::::
regression

::::
tree

::::::::
algorithm

::
is

:
a
::::
way

::
of

:::::::
splitting

:::
the

::::::
dataset

::
by

::::::::
selecting

::::::
certain

:::::
points

::::
that

::::::::
minimize

:::
the

:::::
mean

::::::
squared

:::::
error

::::::
defined

::
as

:::::::
follows:

:

MSE=
1

n

n∑
i=1

(yi− ŷ)2

::::::::::::::::::

(4)

:::::
Where

::
y
::
is

:::
the

::::::::::
observation

::::
and

:̂
y
::
is
:::
the

::::::::::
prediction.

:::::
These

::::::
points

:::
are

:::::::
selected

:::::::
through

::
an

:::::::
iterative

:::::::
process

::
of

::::::::::
calculating

:::
the20

::::
MSE

:::
for

:::
all

:::
the

:::::
splits

:::
and

::::::::
choosing

:::
the

::::
split

::::
that

:::::::::
minimizes

:::
the

:::::
MSE.

::::::::::
Regression

::::
trees

::::
are

:::::
prone

::
to

::::::::::
over-fitting,

::::
and

:::::
while

::::
there

:::
are

:::::
hyper

:::::::::
parameters

::::::
which

:::
can

::::
help

::::
with

::::
that,

:::::
much

:::::
better

:::::::::
algorithms

:::::
were

::::::::
developed

:::
on

:::
top

::
of

:::::::::
regression

::::
trees

::::::
which

::::::
address

:::
this

:::::
issue

:::::::::
adequately.

::::
One

::
of

:::::
these

:::::::::
algorithms

::
is

:::
the

:::
RF

:::::
model

::::
(?)

:::::
which

:
is
:::::::
outlined

:::
as

:::::::
follows:

1.
::::
Pick

:
k
::::
data

:::::
points

::
at

:::::::
random

::::
from

:::
the

:::::::
training

:::
set.

:

2.
::::
Build

::
a
:::::::::
regression

:::
tree

:::::::::
associated

::::
with

::::
these

::
k
::::
data

::::::
points.25

3.
::::::
Choose

:::
N

::::
trees

::
to

:::::
build

:::
and

::::::
repeat

::::
steps

::
1

:::
and

::
2.

:

4.
:::
For

:
a
::::
new

::::
data

::::::
point,

:::::
iterate

::::
over

::::
the

::
N

::::
built

:::::
trees,

:::::::
evaluate

::::
their

:::::::::
prediction

:::
for

:::
the

::::
data

:::::
point

::::
and

:::::
assign

:::::
their

:::::
mean

::::::::
prediction

::
to

::::
this

:::::
point.
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::::
Here,

::::::::::
over-fitting

::
is

::::
also

::
an

:::::
issue

::::::
though

:
a
:::::::
smaller

:::
one

::::
than

:::::::::
individual

:::::::::
regression

:::
tree

::::
and

:::
can

:::
be

::::
dealt

::::
with

:::
by

::::::::
adjusting

:::
the

:::::
model

::::::::::
complexity

:::
via

:::
the

::::::
various

:::::::::::::::
hyper-parameters.

:
.uses many independent decision trees on randomized selections of the

trained data subsets. The final output is produced by averaging all of the individual decision tree outputs(?). .
:

The MLP is a neural network algorithm
::
an

:::::::
artificial

::::::
neural

:::::::
network

:
that includes multi layered nodes with weights (?).

Typically, the network architecture includes an input layer, any number of hidden layer and an output layer where each layer’s5

nodes are connected via activation functions (a so-called feed–forward propagation). During the learning process, the weights

are re-evaluated using the back-propagation iterative algorithm (?) in order to decrease the cost function. Typically, the number

of hidden layers in the MLP architecture is determined in the hyper-parameters tuning step, and in our case was 1 hidden layer

with 10 hidden units.

Finally, we use Multiple Linear Regression (MLR), a well-known and often-used technique in the field (e.g. ??). When10

applied to lat-lon entry water vapor data, the model yields:

χH2O(t,φ,λ) = α(φ,λ)+βi(φ,λ) · ηi(t)+ ε(t,φ,λ) (5)

where χH2O is the reconstructed water vapor anomalies field and t,φ,λ are the time, latitude, and longitude respectively. α

and βi are the intercept and the beta coefficients of the MLR solution and ε is the residual field. η’s are the predictors used in

the analysis. Note that this MLR is computed separately for each grid cell using the 3D SWOOSH data since 2005. We also15

perform an MLR using the tropical mean entry water since 1994, where we average the latitude range between 15◦S and 15◦N,

and the predictors are QBO and ENSO. Thus a much simpler linear model is formulated as follows:

χH2O(t) = α+βi · ηi(t)+ ε(t) (6)

The validation and testing procedures of the ML models is done in two stages using a 5 fold Cross Validation (CV) technique

for each model separately. First, for the validation stage, we randomly select 80% of the samples and split them into 5 random20

groups called folds. Second, we train each model on 4 folds and test its performance (R2) on the remaining fold. Third, we

repeat this process 5 times (hence 5 fold CV) while iterating over all the folds. These three steps are repeated for all possible

combinations of the hyper-parameters, and we then choose best hyper-parameters which maximize the out-of-sample R2.

(This step is skipped for MLR since it does not have hyper parameters.) Then, for evaluating the models’ performance, we

traditionally would test the models once on the remaining data (i.e. the test set), however, since our dataset is quite short (31225

samples at most), we would like to gain understanding of the models’ performance distributions. Thus, we use a similar 5-fold

CV on all the samples: we randomly divide the data in five, train each model on 4 folds, and test its performance (R2) on the

remaining fold; these steps are cycled through all five folds. This random division of the data into five folds and subsequent

cycling is performed 20 times, and so we end up with 100 R2 scores per each model.

In the spirit of reproducible science, we encourage the interested reader to explore the Python repository hosted on GitHub.com30

(https://github.com/ZiskinZiv/Stratospheric_water_vapor_ML) that includes the processed data (except SWOOSH data sets)

and procedures of this paper’s analysis.
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Figure 4. Out of sample model predictions of deseasonalized and standardized water vapor anomalies at 82.54 hPa averaged between 15◦S

and 15◦N. The various models are RF (blue), SVM (orange), MLP (green), MLR (red) and MLR2 (pink). The MLR2 model is the same as

the MLR model but with ENSO2 and ENSO× QBO predictors. The observations are from SWOOSH (bold purple). Note the three forecast

"busts":2010-D-2011-JFM, 2015-OND and 2016-OND.

3 Re-evaluation of the importance of ENSO and the QBO in the observational record

We begin with the reconstructed entry water vapor timeseries in Figure 4 as computed by four different techniques with the

QBO and ENSO used as predictors. As discussed in section 2.3, we use out-of-sample testing to reduce as much as possible

overfitting. Specifically, Figure 4 shows the mean of the predicted out-of-sample water vapor from the 5-fold cross validation

scheme (see section 2).5

All four methods capture much of the variability of entry water present, but there are noticeably more forecasts busts than if

cold point temperatures are used as in ?. Three examples of forecasts busts are evident in late 2010, late 2015, and late 2016

(indicated by vertical lines), when all four techniques struggle to account for the observed change 1

The ability of each of the four techniques is quantified in Figure 5a-d, which shows a histogram of the R2 between the

predicted and actual entry water vapor for each of the individual out-of-sample tests performed. Figure 5 also indicates the10

mean, median, and standard deviation of the histogram of out-of-sample tests, and also the R2 if we compute the fit using

all data instead of applying an out-of-sample test. For all four techniques, there is a wide range of R2 values among the 100

different out-of-sample tests, and the in-sample R2 always exceeds the median of the 100 out-of-sample tests. This highlights

the need to perform an out-of-sample test to minimize overfitting. If the 3 ML techniques are compared to MLR, the MLR is

the least successful both when applied in-sample and out-of-sample, and the three advanced ML techniques all are similarly15

skillful (with SVM slightly worse than MLP or RF).

This comparison of MLR in Figure 5d to the ML techniques in Figure 5a-c may lead to an underestimate of the abilities of

MLR to account for entry water vapor, as the ML techniques allow for nonlinearity but MLR does not. As discussed in the

introduction, there are at least two nonlinear processes that have been argued to exist when accounting for entry water vapor

1Note that the bust in late 2010 may be improved if the extension of the QBO to the lowermost stratosphere was taken into consideration (?), however the

QBO in many CMIP models cannot be defined any lower than 50hPa.
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Figure 5. Out of sample model performance and distribution of R2 scores of deseasonalized and standardized water vapor at 82 hPa averaged

between 15◦S and 15◦N. The various models are RF (blue), SVM (orange), MLP (green) and MLR (red) and MLR2 (pink). The MLR2 model

is the same as the MLR model but with ENSO2 and ENSO× QBO predictors. The mean, median and standard deviation (std.dev) are noted

for each distribution in a yellow text box, along with the in sample R2 score.
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variability due to ENSO and the QBO: ENSO2 and a ENSO × QBO predictor. We therefore add these two predictors to the

MLR, and repeat the calculation in Figure 5e. While the in-sample result is still lower than that of the ML techniques (likely

because of additional nonlinear effects that are not included in the MLR), the out-of-sample results are now similar to those

of the ML techniques. Further, the busts on Figure 4 are not any worse in MLR2 than in the ML techniques. In other words,

adding these two nonlinear processes can explain most of the additional advantage of the ML techniques when the data is tested5

out-of-sample to mitigate over-fitting.

Even though these nonlinear processes help, the resulting R2 is still much less than that explained by CPT (Figure 3a).

Specifically, Figure 3b shows that a MLR with just QBO and ENSO can lead to an R2 ranging around 0.3, however this is only

half of the R2 when the actual cold point temperatures are included (Figure 3a). Adding the two nonlinear predictors (Figure

3c) leads to an increase of R2 by around 0.1 as compared to Figure 3b, but this is still much less than the R2 in Figure 3a.10

::
At

::::
least

::::
two

::
of

:::
the

:::::::::
techniques

:::::::::
considered

:::::
allow

:::
for

:
a
::::
clear

:::::::::
diagnosis

::
of

:::
the

::::::
relative

::::::::::
importance

::
of

:::::
ENSO

:::
vs

:::
the

:::::
QBO:

:::::
MLR

:::
and

:::::::
SHapley

::::::::
Additive

:::::::::::
exPlanations

:::::::
(SHAP)

::
as

::::::::
employed

:::
on

:::
the

:::
RF

::::::
model.

:::
The

:::::::
relative

:::::::::
importance

:::
of

::::
each

::
of

:::
the

:::::::::
predictors

::
in

:::
the

:::::
MLR

::
of

::::::
Figure

::
5e

::
is

::::::
shown

::
in

::::::
Figure

::
6,

::::::
which

:::::
shows

::
a

::::::
latitude

:::
vs

::::::::
longitude

::::
map

::
of

:::
the

:::::::::
regression

::::::::::
coefficients

:::::
when

::
the

:::::::::
regression

::
is
:::::::::
performed

:::
for

:::::
water

:::::
vapor

::
at
:::::
each

:::::::
gridpoint

:::::::::
separately

::::
(the

:::::
MLR

::
of

::::::
Figure

::
5e

::
is
:::::::::

performed
:::
on

:::
the

:::::::
tropical

::::
mean

:::::
water

::::::
vapor.)

::::
The

::::
QBO

::
is
::::::
clearly

:::::
more

::::::::
important

::::
than

:::
any

::
of

:::
the

:::::
other

::::::::
processes

:::
for

:::::::::
accounting

:::
for

::::
entry

::::::
water,

:::
and

::::
thus15

:::::::
accounts

:::
for

:::
the

:::::::
biennial

:::::
nature

::
of

:::
the

:::
fit

::
in

:::::
Figure

::
4

::::
with

:
a
:::::::::::
peak-to-peak

:::::::::
amplitude

::
of

::::::
around

::::::::
0.4ppmv.

:::::::::::
Interestingly,

:::
the

::::
map

::
for

::::::
ENSO

::::::::
indicates

:
a
::::::
zonally

::::::::::
asymmetric

::::::::
structure

::::::
(Figure

::::
6b),

:::
and

::
as

::::::::
discussed

::
in

::
?

:::
and

::
?

::
the

::::::::::
temperature

::::::::
structure

::
of

::::::
ENSO

:
is
:::::::::::
characterized

:::
by

:::::
zonal

:::::::
structure

::::
even

::
in

:::
the

:::::
lower

:::::::::::
stratosphere,

::::
with

::::::::
relatively

:::::
warm

::::::::::
temperatures

::
in
:::
the

::::::
Indian

:::::
Ocean

::::::
sector

:::
and

::::::
colder

::::::::::
temperatures

:::
in

:::
the

::::::
Pacific

::::::
sector.

::::
This

:::::
zonal

::::::::::
temperature

::::::
dipole

:::
thus

::
is
::::::::::

apparently
::::::
leading

::
to

::
a
::::::
similar

::::::
dipole

::
in

::::
entry

::::::
water,

::::
with

:::::::::
moistening

::::::::
occurring

:::
in

:::::
warm

::::::
regions

::::
and

:::::
drying

:::
in

::::
cold

:::::::
regions.

:::
The

:::::::
ENSO2

::::::::
predictor

::
is

::::
more

:::::::::
important20

:::
than

::::::
ENSO

:::
for

:::::
zonal

:::::
mean

:::::
entry

:::::
water

:::::
vapor

:::::::
(Figure

:::::
6bd).

::::
The

:::::
ENSO

:::::
times

:::::
QBO

::::::::
predictor

::
is
::::::::::::
comparatively

:::::::::::
unimportant

::::::
(Figure

:::
6c).

:

The SHAP technique also allows for quantification of the relative impact of ENSO versus QBO. SHAP (?) implements

a concept borrowed from game theory, where a prediction can be explained by assuming that each predictor’s value of the

instance is a “player” in a game where the prediction is the payout. The Shapley values (as computed by e.g., SHAP) indicate25

how to fairly distribute the “payout” among the predictors (?). The "payout" in our problem is the standardized entry water,

thus the computed Shapley values are measuring the mean effect ENSO or QBO have on standardized H2O anomalies. For an

in-depth explanation of the SHAP technique, we encourage the interested reader to explore the SHAP chapter of the online

book on Explainable AI (?) methods.

We calculated the mean SHAP values for the predictors as trained by the RF model. QBO has a mean effect of 0.42 std.dev30

on H2O anomalies while ENSO has a mean effect of -0.23 std.dev on H2O anomalies since it is negatively correlated with

H2O. Only when considering spring entry water is ENSO positively correlated, (?) though even in spring the QBO dominates.

In absolute value, QBO is almost twice as important as ENSO for entry water as diagnosed by SHAP.
:::
The

:::::::
relative

:::::::
primacy

::
of

::
the

:::::
QBO

::
is

::::::::
consistent

:::::
with

::
?

::
and

::
?.
:
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Figure 6. The in-sample β coefficients for the water vapor anomalies MLR analysis in the 82.54 hPa level at 2005 to 2019, performed using

the 3D SWOOSH data.

Additional evidence as to the importance of the ENSO2 predictor is provided in Figure 7, where we form an MLR using35

QBO and ENSO but compute the ENSO regression coefficient separately for each ENSO phase. The important point is that the

regression coefficient changes sign between EN and LN (Figure 7b vs. Figure 7c); in other words, a more positive ENSO state

during EN leads to more water vapor, but so does a more negative ENSO state during LN. A naive MLR misses this effect,

and would imply a limited impact of ENSO on entry water vapor. Only upon considering nonlinear effects is the full impact of

ENSO revealed.5

Finally, some previous work has focused on using the BDC or mid-tropospheric temperatures as predictors in MLR models

that attempt to explain entry water (e.g., ?). We show the R2 of an MLR with these predictors in Figure 3d. Adding T500

and the BDC clearly leads to an improved fit as compared to an MLR with only QBO and ENSO ( Figure 3b vs. Figure 3d),

however the improvement is similar to the effect of the nonlinear regressors in Figure 3c. As discussed in section 2, there is

a significant correlation between the BDC at 70hPa and the QBO at 50hPa, and hence including both in a ML model does10

not lead to significant improvement. Including the BDC at 82hPa instead leads to a larger improvement, however the BDC at

82hPa is significantly correlated with the cold point temperatures, and hence there is ambiguity if the BDC is defined at 82hPa

instead. There is some added value to using T500 as compared to ENSO, though as shown in Figure 6, an ENSO predictor is

much less useful than an ENSO2 predictor in any event. That is, most of the improvement upon adding the nonlinear predictors

comes about via the ENSO2 predictor (?).15
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Figure 7. The in-sample β coefficients for the water vapor anomalies MLR analysis in the 82.54 hPa level at 2005 to 2019. The ENSO

predictor was separated into 3 parts where EN represents the El-nino events (ENSO>=0.5), LN represents the La-nina events (ENSO<=-0.5)

and neutENSO the rest of the ENSO regressor.

4 Ability of CMIP6 and CCMI models to represent the QBO modulation

Section 3, and specifically Figure 6, indicated that the QBO is the most important single predictor of any considered in this

paper barring the cold point temperatures themselves. We now consider the ability of CMIP6 and CCMI models to represent

this connection, and for simplicity we focus on a simple regression of the QBO with entry water. (The ability of these models

to represent the connection between ENSO and entry water vapor was considered in ? in detail.)

The lagged correlation of the QBO with entry water is shown in Figure 1a for the CCMI models, and in Figure 1b for the5

CMIP6 models. While all models capture the sign of the dependence of entry water on the QBO (an apparent improvement

from ?), there is a wide range in the amplitude of the correlation. The two NCAR models in CCMI simulate the strongest

relationship, but these models nudge their QBO, and the corresponding CMIP6 run with a spontaneous QBO simulates a

weaker connection. Other models simulate a connection similar to (HadGEM3, EMAC-L47MA), or weaker than (NIWA-

UKCA, MRI-ESM), that observed. Note that ? considered these latter two CCMI models and also found a nearly non-existent10

connection between entry water and the QBO.

An alternate perspective on the ability of models to capture the relationship between the QBO and entry water is the regres-

sion coefficient from a MLR. Figure 8a shows these regression coefficients, and the observed regression coefficient is shown

with a horizontal black line. The two NCAR models in CCMI (the only models who
::::
both

::
of

::::::
whom nudge the QBO) are the

only models with a regression coefficient approaching that observed. The other models
::::::
models

:::::
which

:::
do

:::
not

:::::
nudge

:
uniformly15

underestimate the regression coefficients, and hence the relatively more realistic correlation coefficients from Figure 1 (which

15



Figures/qbocorrelatioregression-eps-converted-to.pdf

Figure 8. Relationship between the QBO and entry water vapor in CCMI and CMIP6 models. (a) regression coefficient; (b) standard deviation

of the QBO at 50hPa; (c) correlation coefficient; (d) relationship between the correlation coefficient (panel c) and standard deviation (panel

b), with the color of markers corresponding to the color used in panel (b) and (c). For (d), diamonds are CCMI models and stars are CMIP6

models. A solid black line in panels a-c is for reanalysis. Note that entry water is defined near 80hPa for CCMI models and at 70hPa for

CMIP6 models, hence the solid black reanalysis line differs for each. Note that the WACCMand
:
, CAM4Chem,

:::
and

::::::::::::
EMAC-L47MA

:
models

included in CCMI (the firstand , second
:
,
:::
and

::::
sixth models in panels a,b, and c; greenand ,

:
red,

:::
and

::::
cyan) nudge the QBO; in all other models

the QBO is spontaneously generated.
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are repeated in Figure 8c) are due to biases either in the standard deviation of entry water vapor or in the standard deviation

of the QBO itself. ? already demonstrated that ten of these models (with NIWA the lone exception) underestimate entry water

variability. These models
:::
For

::::::::
example,

:::::::::::::
EMAC-L47MA,

::::::
which

::::::
nudges

:::
the

::::::
QBO,

::::::::
simulates

:
a
:::::::::
reasonable

::::::::::
correlation

::
of

:::::
entry

::::
water

::::
with

:::
the

:::::
QBO

:::
but

::
a

:::::::
severely

:::::::
deficient

:::::::::
regression

:::::::::
coefficient

:::
due

::
to

::::
poor

::::::::::
interannual

::::::::
variability

:::
of

::::
entry

:::::
water.

:

:::
The

::::::
models

::::::
which

::
do

::::
not

:::::
nudge

:::
the

:::::
QBO also mostly underestimate variability of the QBO, as shown in Figure 8b. While

e.g., the UK Met Office model does a good job at capturing the QBO (and recall the NCAR
:::
and

:::::::::::::
EMAC-L47MA CCMI models5

have a nudged QBO), most other models struggle. A notable improvement is evident from the MRI contribution to CCMI to the

MRI contribution to CMIP6. The net effect of too weak internal variability of the QBO or of entry water is that the regression

coefficient of a model will be lower than that in observations, even if the correlation is generally realistic.

Do models with a better QBO perform better at capturing the relationship between entry water and the QBO? Figure 8d

compares for each model the standard deviation of the QBO (x-axis) with the correlation between entry water and the QBO10

(y-axis), and it is evident that the two are linked. The correlation coefficient across all models is statistically significant at the

95% level. Hence, an improved QBO leads to an improved representation of interannual variability of entry water.

5 Discussion

Stratospheric water vapor plays a crucial role both as a greenhouse gas that modulates the Earth’s radiative budget, and also

as a trace gas that regulates the severity of ozone depletion (??????). This study aims to understand the importance of nonlin-15

earity for two processes - ENSO and the QBO - that have been shown to regulate water vapor concentrations on interannual

timescales, and to consider whether comprehensive models used for climate change assessments represent these factors cor-

rectly.

Both the QBO and ENSO are important for entry water vapor, however a simple linear perspective would lead to the

mistaken conclusion that the effect of ENSO on zonal mean entry water vapor is minimal (Figure 6b). Rather, ENSO2 is the20

more important contributor (Figure 6d), though even ENSO2 is less important than the QBO (Figure 6a). A multiple linear

regression model that includes ENSO and the QBO performs notably worse than machine learning techniques that do not

assume linearity (Figure 5a-d), however adding an ENSO2 predictor to a multiple linear regression model fills the gap in

performance (Figure 5e), and the added value from the more complicated machine learning techniques is small. The physical

motivation for such an ENSO2 predictor was already presented in ?.25

ost of the comprehensive models considered here underestimate the strength of the connection between the QBO and entry

water vapor (Figure 1 and 8), with the only exception models which nudge the QBO rather than spontaneously generate it.

While this result is disappointing, a notable improvement is evident from the CCMVal2 and the early CCMI data analyzed by

?. We find that models in which the QBO reaches the lower stratosphere tend to perform better at capturing the relationship

between entry water and the QBO (consistent with ?), and QBO propagation into the lowermost stratosphere is crucial also for30

QBO teleconnections to the subtropical jet, to the Arctic stratosphere, and to tropical convection (???).
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Figure 9. a) Deseasonalized and standardized water vapor at 82.54 hPa averaged between 15◦S and 15◦N (purple) and their MLR recon-

struction (red) and residuals, spanning from 1994 to 2019. This MLR analysis was carried out with the ? CPT as the only predictor but after

detrending the data. The MLR model was trained on the MLS portion of SWOOSH (2005 to 2019, correlation=0.68) and was reconstructed

on the full time span (1994-2019, correlation=0.59). b) The residuals from the MLR reconstruction.

When considering the total variance of entry water vapor in Figure 5, the out-of-sample R2 was always less than the in-

sample R2. The importance of out-of-sample testing is further illustrated in Figure 9. Figure 9a shows the timeseries of zonal

mean water vapor from SWOOSH and the MLR reconstruction if the detrended ? CPT is used as the sole predictor for

detrended entry water and the model is trained over the period 2005 to 2019 only. While the MLR model does a reasonable job

of explaining the observed variability over the period used for training the MLR model, the MLR fails when applied out-of-

sample to the pre-MLS period (Figure 9b), as reflected by the generally larger values of the residuals. In other words, the model5

is overfit to the training data, and is not generalizing well to out-of-sample data. This kind of overfitting can be minimized by

appropriately tuning the hyperparameters for the ML techniques, though for MLR the only remedy is to perform out-of-sample

testing. Hence we strongly recommend that future studies using MLR or similar techniques use some variant of out-of-sample

testing to minimize over-fitting.

While the ENSO predictor is only weakly related to zonal mean entry water vapor, ENSO is associated with zonal structure in10

water vapor in the lower stratosphere. Figure 6b shows that water vapor is enhanced over the Indian Ocean sector, and reduced

over the East Pacific sector
::::
(see

:::
also

::::::
Figure

::
4

:::
and

:::
11

::
of

::
?

::
for

::
a
::::::
similar

::::::
feature

::
at

:::::::::
θ = 390K). This zonal dipole resembles the

zonal dipole of temperature in the TTL (e.g. ??), with locally warm TTL conditions associated with moistening and locally

cold TTL conditions associated with drying. Note that higher in the stratosphere, this zonal dipole goes away. However this

result suggests that up to 82hPa, horizontal motions are still not fast enough to fully homogenize tropical water vapor, as might15

be expected if the tape recorder mechanism was the only relevant mechanism (?). Future work should consider whether other

factors (e.g., SST patterns not related to ENSO) may also lead to zonal structure of water vapor in the lower stratosphere. Future

18



work should also consider additional novel means of interpreting the improvements of the ML fits as compared to MLR, in

order to bridge the gap between an improved fit and an understanding of how and why the improvement came about.

Finally, cold point temperatures (CPT) control around 75% of the variance of entry water vapor over the historical record.

None of the large scale predictors, neither individually nor in combination, come even close to explaining such a large frac-

tion of the variance (Figure 3). This gap in explainable variance highlights the need to better understand CPT variability on

interannual timescales, and perhaps even to build predictive models for the CPT itself.5
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