Preprints
https://doi.org/10.5194/acp-2021-970
https://doi.org/10.5194/acp-2021-970

  06 Dec 2021

06 Dec 2021

Review status: this preprint is currently under review for the journal ACP.

Eurodelta multi-model simulated and observed PM trends in Europe in the period of 1990–2010

Svetlana Tsyro1, Wenche Aas2, Augustin Colette3, Camilla Andersson4, Bertrand Bessagnet3,a, Giancarlo Ciarelli3, Florian Couvidat3, Kees Cuvelier5, Astrid Manders6, Kathleen Mar7, Mihaela Mircea8, Noelia Otero7, Maria-Teresa Pay9, Valentin Raffort10, Yelva Roustan10, Mark R. Theobald11, Marta G. Vivanco11, Hilde Fagerli1, Peter Wind1,12, Gino Briganti8, Andrea Cappelletti8, Massimo D'Isidoro8, and Mario Adani8 Svetlana Tsyro et al.
  • 1Norwegian Meteorological Institute, NO-0313, Oslo, Norway
  • 2Norwegian Institute for Air Research (NILU), Box 100, 2027 Kjeller, Norway
  • 3INERIS, National Institute for Industrial Environment and Risks, Parc Technologique ALATA, 60550, Verneuil-en-Halatte, France
  • 4Swedish Meteorological and Hydrological Institute, 60176 Norrköping, Sweden
  • 5ex European Commission, Joint Research Centre (JRC), Ispra, Italy
  • 6TNO, Dept. Climate, Air and Sustainability, P.O. Box 80015, 3508 TA Utrecht, the Netherlands
  • 7Institute for Advanced Sustainability Studies, Postdam, Germany
  • 8ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development Via Martiri di Monte Sole 4, 40129 Bologna, Italy
  • 9BSC, Barcelona Supercomputing Center, Centro Nacional de Supercomputaciòn, Nexus II Building, Jordi Girona, 29, 08034 Barcelona, Spain
  • 10CEREA, École des Ponts, EDF R&D, Île-de-France, France
  • 11CIEMAT, Atmospheric Pollution Unit, Avda. Complutense, 22, 28040 Madrid, Spain
  • 12Faculty of Science and Technology, University of Tromsö, Tromsö, Norway
  • anow at: European Commission, Joint Research Centre (JRC), Ispra, Italy

Abstract. The Eurodelta-Trends multi-model experiment, aimed to assess the efficiency of emission mitigation measures in improving air quality in Europe during 1990–2010, was designed to answer a series of questions regarding European pollution trends. i.e. were there significant trends detected by observations? do the models manage to reproduce observed trends? how close is the agreement between the models and how large are the deviations from observations? In this paper, we address these issues with respect to PM pollution. An in-depth trend analysis has been performed for PM10 and PM2.5 for the period of 2000–2010, based on results from six chemical transport models and observational data from the EMEP (Cooperative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe) monitoring network. Given harmonization of set up and main input data, the differences in model results should mainly result from differences in the process formulations within the models themselves, and the spread in the models simulated trends could be regarded as an indicator for modelling uncertainty.

The model ensemble simulations indicate overall decreasing trends in PM10 and PM2.5, with reduction by between 2 and 6 μg m−3 m−3 (or between 10 and 30 %) from 2000 to 2010. Compared to PM2.5, relative PM10 trends are weaker due to large inter-annual variability of natural coarse PM within the former. The changes in the concentrations of PM individual components are in general consistent with emission reductions. There is a reasonable agreement in PM trends estimated by the individual models, with the inter-model variability below 30–40 % over most of Europe, increasing to 50–60 % in northern and eastern parts of EDT domain.

Averaged over measurement sites (26 for PM10 and 13 for PM2.5), the mean ensemble simulated trends are −0.24 and −0.22 μg m−3 year−1 for PM10 and PM2.5, which are somewhat weaker than the observed trends of −0.35 and −0.40 μg m−3 year−1, respectively, partly due to models underestimation of PM concentrations. The correspondence is better in relative PM10 and PM2.5 trends, which are −1.7 and −2.0 % year−1 from the model ensemble and −2.1 and −2.9 % year−1 from the observations, respectively. The observations identify significant trends for PM10 at 56 % of the sites and for PM2.5 at 36 % of the sites, which is somewhat less that the fractions of significant modelled trends. Further, we find somewhat smaller spatial variability of modelled PM trends with respect to the observed ones across Europe and also within individual countries.

The strongest decreasing PM trends and the largest number of sites with significant trends is found for the summer season, according to both the model ensemble and observations. The winter PM trends are very weak and mostly insignificant. One important reason for that is the very modest reductions and even increases in the emissions of primary PM from residential heating in winter. It should be kept in mind that all findings regarding modeled versus observed PM trends are limited the regions where the sites are located.

The analysis reveals a considerable variability of the role of the individual aerosols in PM10 trends across European countries. The multi-model simulations, supported by available observations, point to decreases in SO4−2 concentrations playing an overall dominant role. Also, we see relatively large contributions of the trends of NH4+ and NO3 to PM10 decreasing trends in Germany, Denmark, Poland and the Po Valley, while the reductions of primary PM emissions appears to be a dominant factor in bringing down PM10 in France, Norway, Portugal, Greece and parts of the UK and Russia.

Further discussions are given with respect to emission uncertainties and the effect of inter-annual meteorological variability on the trend analysis.

Svetlana Tsyro et al.

Status: final response (author comments only)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on acp-2021-970', Anonymous Referee #1, 30 Dec 2021
  • RC2: 'Comment on acp-2021-970', Paul A. Makar, 31 Dec 2021

Svetlana Tsyro et al.

Data sets

EURODELTA/TFMM trend modelling Colette, A. et al. https://wiki.met.no/emep/emep-experts/tfmmtrendeurodelta

How to accesss EURODELTA-Trends model results Eurodelta team/MetNorway https://wiki.met.no/aerocom/user-server

Svetlana Tsyro et al.

Viewed

Total article views: 374 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
271 95 8 374 3 3
  • HTML: 271
  • PDF: 95
  • XML: 8
  • Total: 374
  • BibTeX: 3
  • EndNote: 3
Views and downloads (calculated since 06 Dec 2021)
Cumulative views and downloads (calculated since 06 Dec 2021)

Viewed (geographical distribution)

Total article views: 369 (including HTML, PDF, and XML) Thereof 369 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 18 Jan 2022
Download
Short summary
Particulate matter (PM) air pollution causes adverse health effects. In Europe, the emissions caused by anthropogenic activities have been reduced last decades. To assess the efficiency of emission reductions in improving air quality, we have studied the evolution of PM pollution in Europe. Simulations with six air quality models and observational data indicate a decrease in PM concentrations by 10 to 30 % across Europe from 2000 to 2010, which is mainly a result of emission reductions.
Altmetrics