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Abstract. Statistics on the occurrence of clear skies, ice and mixed-phase clouds over the Concordia station, in the Antarctic

Plateau, are provided for multiple time scales and analysed in relation to simultaneous meteorological parameters measured at

the surface. Results are obtained by applying a machine learning cloud identification and classification code (named CIC) to

4 years of measurements between 2012-2015 of downwelling high spectral resolution radiances, measured by the Radiation

Explorer in the Far Infrared-Prototype for Applications and Development (REFIR-PAD) spectroradiometer. The CIC algorithm5

is optimized for Antarctic sky conditions and results in a total hit rate of almost 0.98, where 1.0 is a perfect score, for the

identification of the clear sky, ice and mixed-phase clouds classes. Scene truth is provided by lidar measurements that are

concurrent with REFIR-PAD. The CIC approach demonstrates the key role of far infrared spectral measurements for clear/cloud

discrimination and for cloud phase classification. Mean annual occurrences are 72.3%, 24.9% and 2.7% for clear sky, ice and

mixed-phase clouds respectively, with an inter-annual variability of a few percent. The seasonal occurrence of clear sky shows10

a minimum in winter (66.8%) and maxima (75-76%) during intermediate seasons. In winter the mean surface temperature is

about 9◦C colder in clear conditions than when ice clouds are present. Mixed-phase clouds are observed only in the warm

season; in summer they amount to more than one third of total observed clouds. Their occurrence is correlated with warmer

surface temperatures. In the austral summer, the mean surface air temperature is about 5◦C warmer when clouds are present

than in clear sky conditions. This difference is larger during the night than in daylight hours, likely due to increased solar15

warming. Monthly mean results are compared to cloud occurrence/fraction derived from gridded (Level-3) satellite products,

from both passive and active sensors. The differences observed among the considered products and the CIC results are analysed

in terms of footprint sizes and sensors’ sensitivities to cloud optical and geometrical features. The comparison highlights the

ability of the CIC/REFIR-PAD synergy to identify multiple cloud conditions and study their variability at different time scales.

1 Introduction20

The polar regions present several challenges for meteorology and climatology studies (Walsh et al., 2018). These regions are

crucial components of the Earth’s Radiation Budget (ERB) (Liou, 2002; Kiehl and Trenberth, 1997), since they generally emit

more energy to space in the form of infrared radiation than what is absorbed from sunlight, thereby behaving as heat sinks.

Modelling studies have shown that changes in cloud properties (e.g., cloud amount, cloud thermodynamic phase, cloud height,
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cloud optical thickness) over Antarctica may impact different regions in the globe, highlighting the importance of Antarctic25

clouds for the global climate system (Lubin et al., 1998). However, obtaining measurements of cloud properties in the Antarctic

continent is still a challenge (Silber et al., 2018; Lubin et al., 2020), especially in its interior (Town et al., 2005; Lachlan-

Cope, 2010; Bromwich et al., 2012). Observations from synoptic weather stations require an experienced observing staff and

sometimes become unavailable during ’white-out’ conditions caused by blowing snow. Analysis of satellite measurements

from both active and passive sensors must account for a number of problems in inferring the cloud properties. One issue is that30

the cloud radiative properties tend to be very similar to those of the background (the snow/ice surface). Optically thin cirrus

clouds are often present in the Antarctic Plateau (King and Turner, 1997) but are difficult to identify and analyse due to their

small cloud signals (the difference between cloudy and clear-sky radiances). Measurements become problematic during the

long polar night (King and Turner, 1997), and some stations reduce the observing frequency in the winter time (Bromwich

et al., 2012). Observations at solar wavelengths are not available for about half of the year, thus reducing the overall ability to35

recognize the presence of cloud layers and to derive their physical and optical features. Measurements at longer wavelengths

(i.e. in the InfraRed, IR) are available regardless of solar illumination, but, frequently, the cloud top temperature is similar to

the ice surface temperature (King et al., 1992; King and Turner, 1997; Bromwich et al., 2012) and the cloud identification is

thus difficult from passive satellite observations.

Active remote sensing techniques have been very helpful in overcoming the limitations of the passive instruments in po-40

lar regions. Adhikari et al. (2012) investigated the seasonal and interannual variabilities of the vertical and horizontal cloud

distributions over the southern high latitudes poleward of 60◦S, using observations from CloudSat and Cloud-Aerosol Lidar

and Infrared Pathfinder Satellite Observation (CALIPSO) satellites between June 2006 and May 2010. They found that the

Antarctic Plateau has the lowest cloud occurrence of the Antarctic continent (< 30%). The sensors on board of the afore-

mentioned satellites have been also used to investigate macro and microphysical Antarctic cloud properties (Verlinden et al.,45

2011; Adhikari et al., 2012; Listowski et al., 2019; Ricaud et al., 2020). Nevertheless, satellite active sensors are not lacking

in problems when used for cloud detection in Polar regions. For example, Chan and Comiso (2011, 2013) discuss the diffi-

culties encountered by either the Cloud Profiling Radar (CPR), on Cloudsat, and the Cloud-Aerosol Lidar with Orthogonal

Polarization (CALIOP), on CALIPSO, in detecting low-level clouds in the Arctic. The difficulties arise from the CloudSat

coarse vertical resolution (about 500 m) and its limited sensitivity (low signal-to-noise ratio) near the surface, and in the case50

of CALIOP are due to the geometrically thin nature of the cloud and its surface proximity. Bromwich et al. (2012) present a

review on Antarctic tropospheric clouds. They discuss the instruments and methods to observe Antarctic clouds and the current

data sets available. The authors highlight that there are relatively few measurements of clouds in the Antarctic, especially in

the interior. They also indicate that better and more frequent remote sensing and in situ observations are needed.

The selection of the FORUM project (Palchetti et al., 2020) in 2019 as the 9th Earth Explorer Mission by European Space55

Agency (ESA) has revitalized studies in the Far-Infrared (FIR) part of the spectrum, approximately covering the 100-700 cm−1

band. Many studies have shown that the FIR can be used to complement standard remote sensing measurements performed

in the Mid Infrared (MIR) and improve cloud detection, classification, and inference of cloud properties (Rathke et al., 2002;

Palchetti et al., 2016; Di Natale et al., 2017; Maestri et al., 2019a). Moreover, ground-based remote sensing spectral upwards-
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looking measurements are very useful to determine the cloud properties relevant to the energy budget (Mahesh et al., 2001;60

Cox et al., 2014; Di Natale et al., 2020).

This study is performed in this context and exploits a unique dataset derived from FIR and MIR downwelling spectral radi-

ances measured at the Concordia station, Dome C, in the middle of the Antarctic Plateau. The measurements are performed by

means of the Radiation Explorer in the Far Infrared-Prototype for Applications and Development (REFIR-PAD) Fourier trans-

form spectroradiometer (Bianchini et al., 2019), in the scope of the projects Radiative Properties of Water Vapor and Clouds in65

Antarctica (PRANA) and Concordia Multi-Process Atmospheric Studies (CoMPASs), within the Italian National Program for

Research in Antarctica (PNRA, Palchetti et al., 2015). These projects represent the first long-term field campaigns to collect

high spectral resolution radiances in the FIR, with continuity for an extended period (measurements started in 2012). REFIR-

PAD is installed inside an insulated shelter, named the Physics Shelter, together with a backscattering lidar (acronym of Light

Detection and Ranging). The lidar detects backscattering and depolarization signals up to 7 km above the surface. Besides these70

measurements, the Antarctic Meteo-Climatological Observatory installed at Concordia (http://www.climantartide.it/) provides

data from an automatic weather station (AWS), and from daily radiosondes launches. These measurements are analyzed and

correlated to the meteorological conditions observed at the Concordia station and considered representative of a large area of

East Antarctica because of the horizontal uniformity in the Antarctic Plateau.

Recently, Maestri et al. (2019b) presented an algorithm to identify and classify clouds based on principal component analysis75

of IR radiance spectra at high spectral resolution. The Cloud Identification and Classification (CIC) is a fast machine learning

algorithm able to perform a cloud detection and classification, exploiting spectral variations of IR radiance signals. CIC can

account for spectral radiance from the full IR spectrum including the MIR and FIR. The algorithm analyses a distribution of

the so-called similarity index, that is a parameter defining the level of closeness between the analysed spectra and the elements

of specific classes that are defined with training sets.80

In this study, the CIC algorithm is applied to REFIR-PAD downwelling radiances to detect and classify Antarctic clouds

between 2012 and 2015. The main goal of this effort is to obtain statistics on clear/cloud occurrence and in the investigation

of the diurnal cycle and seasonality of clouds in the Antarctic Plateau. Both ice and mixed-phase clouds have been considered,

the latter consisting of a supercooled liquid water layer that, in general, may have ice particles present either above or below

(usually precipitating in this case).85

The algorithm is first applied to a test set so that the CIC performances are assessed. The excellent classification scores

obtained in the testing phase provide a solid base for the application of the CIC to the entire dataset. In this study, an effort is

made to link the meteorological state of the atmosphere to the cloud occurrence.

The paper is organized as follows. Section 2 describes the instrumentation and measurements performed at Concordia

Station. Section 3 introduces the CIC algorithm, its set-up and optimization to identify and classify clouds. Section 4 discusses90

the cloud occurrences results at different time scales. The study is summarized in Section 5 where conclusions are drawn.
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Figure 1. Antarctica elevation map, with the Concordia station indicated by a red star.

2 Instrumentation and Measurements

Concordia station is an Antarctic research base located at Dome C over the Antarctic Plateau (75◦06’S, 123◦23’E, 3.230 m

AMSL), in the East Antarctic region (Figure 1). The station opened in 2005 as part of an international cooperation project

between the PNRA and the French Polar Institute Paul-Émile Victor (IPEV). A detailed description of the instrumentation95

available in the PRANA and CoMPASs experiments at Concordia station is given in Palchetti et al. (2015). A brief overview

of the instruments and measurements made between 2012 and 2015 is provided in what follows.

Spectral measurements of the downwelling radiance are performed by REFIR-PAD, which provides spectrally resolved

zenith-looking radiance measurements in the range 100-1500 cm−1 with a 0.4 cm−1 spectral resolution, thus covering a large

part of the atmospheric longwave emission including both the FIR and part of the MIR region. The instrument points at the100

zenith through a 1.5 m chimney. The measurement sequence to obtain one complete spectrum is made of four calibration

acquisitions, in which the instrument looks at the internal reference blackbody sources, and four sky observations. Each single

acquisition takes about 80s. The entire sequence has a duration of about 14 min: 5.5 minutes of sky observations, 5.5 minutes

of calibrations, and delays for detector settling after scene changes (Palchetti et al., 2015). REFIR-PAD is a fast scanning

spectroradiometer with signals acquired in the time domain and resampled in postprocessing at equal intervals in optical path105

difference. It has been designed to operate with uncooled detectors and optics. The instrument operates full time, alternating

cycles of 5–6 hours of measurements, with 1–3 hours of analysis. It is installed in the Physics Shelter, located 500 m southward

from the main station, in what is called the Clean Air Area, where the predominant winds keep the air clean from the exhaust
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Table 1. Number of analysed REFIR-PAD spectra for each year.

Year: 2012 2013 2014 2015

Spectra: 16177 19298 25089 27396

plume of the Concordia power generator. Between the years 2012 and 2015, a total of 87960 spectra were analysed. The spectra

annual distribution is reported in Table 1.110

Since 2005, the Concordia station has provided hourly measurements of air temperature, pressure at the surface level, relative

humidity, wind speed, and wind direction. The snow temperature is measured at different depths from 5 cm to 10 m. These

measurements began in December 2012. Radiosondes (Vaisala RS92) are routinely released every day at 12 UTC, since 2006.

They reach an altitude of about 18 km in wintertime and about 25 km in the summer. All these data are made available by the

Antarctic Meteo-Climatological Observatory and a subset of them is used in this study.115

Atmospheric backscattering and depolarization ratio (cross polarized over parallel polarized total signal) profiles are mea-

sured by a lidar every 5 minutes (Palchetti et al., 2015). The instrument (http://lidarmax.altervista.org/englidar/Antarctic%

20LIDAR.php) is a Hamamatsu analog photo-multiplier tube, operating a Quantel laser (Brio) at 532 nm with biaxial config-

uration (10 cm off-axis) and nominal laser aperture of 1 mrad full angle. The lidar telescope has refractive optics with 10 cm

diameter and 30 cm focal length, with a field of view of approximately 2 mrad full angle. An interference bandpass filter of120

0.15 nm bandwidth is applied. The signal is averaged over 1000 laser shots. Measurements range from 30 to 7000 m above

the surface, with 7.5 m vertical resolution. The line of sight is 4° off-zenith to avoid possible ambiguity between liquid phase

clouds and oriented ice plates (Ricaud et al., 2020). The lidar operates through a window to enable measurements in all-weather

conditions.

2.1 Definiton of classes125

A subset of REFIR-PAD data, comprising 1928 spectra, is co-located with lidar measurements. The co-location criterion

is defined by the time of measurements: each REFIR-PAD spectrum is associated to the lidar data that is closest in time.

Co-located measurements are used to classify the REFIR-PAD spectra. For these cases, cloud layers are detected from the

analysis of the backscatter profiles and the depolarization ratio is used to determine the thermodynamic phase of the particles.

The classified spectra are then used to set up training and test sets as described in more detail in the next section. In the130

Antarctic environment the determination of cloud thermodynamic phase is not trivial. According to Liou and Yang (2016),

liquid water droplets retain the polarization state of the incident energy, while the light beam backscattered from non-spherical

ice particles is partially depolarized as a result of internal reflections and the transformation of coordinate systems governing

the electric vector. A theoretical analysis performed by the same authors shows that in presence of a liquid water cloud the

depolarization remains at about 2-4%, whereas radiation backscattered from non-spherical ice particles is strongly depolarized,135

varying between 30 and 40%. However, the threshold to determine the water physical state in real clouds can vary depending
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on the atmosphere and the cloud microphysical parameters. Sassen and Hsueh (1998) evaluate ground-based lidar data in

presence of contrail cirri, during the Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS) field campaign.

They found depolarization ratios in persisting contrails ranging from about 0.3 to 0.7. Freudenthaler et al. (1996) observed

depolarization ratios of 0.1 to 0.5 for contrails with temperatures ranging from −60 to −50◦C, depending on the stage of their140

growth. In this study, a depolarization ratio of 0.15 is used as a threshold (as indicated by Sassen (1991)) for the discrimination

of the liquid water clouds and ice clouds over the Concordia Station. The value accounts for possible increases due to multiple

scattering effects as discussed below.

An example of lidar observations for clear sky (red triangle), ice cloud (blue triangle), and mixed-phase cloud (green triangle)

is provided in the upper (backscattered signal) and middle (depolarization ratio) panel of Figure 2. The lower panel of the same145

figure provides the corresponding REFIR-PAD spectra. In clear sky conditions, the lidar backscattering signal decreases with

altitude, while the signal increases in the presence of cloud particles. As shown in the figure, clouds can be composed of

multiple layers, each one with different depolarization features. When the depolarization ratio is higher than 15%, the cloud

is classified as an ice cloud (blue triangle). For lower values of the depolarization ratio, it is assumed that the layer contains

liquid phase and the cloud is categorized as mixed-phase cloud (green triangle). The 15% depolarization ratio value is selected150

to account for the impact of multiple scattering within liquid clouds. It is observed that in presence of mixed-phase clouds the

depolarization ratio shows very small values at cloud base, characteristics of liquid spheres, and increases towards values typical

of ice crystals near the cloud top. An increase is, in part, intrinsically related with liquid water layers, where multiple scattering

determines a depolarization that gradually increases with the depth of penetration. For this reason, in some conditions, the

phase of the upper part of the cloud cannot be unambiguously defined based on the analysis of the depolarization ratio profile155

only. Nevertheless, the presence of liquid phase at bottom is unequivocally identified and the cloud is categorized as mixed-

phase. It is not infrequent the occurrence of precipitating ice crystals from mixed-phased cloud layers, even if in very small

quantities.

3 Cloud Identification and Classification Algorithm

The Cloud Identification and Classification (CIC) is a machine learning algorithm, based on the principal component analysis160

(PCA), able to classify an input spectrum (L) as representative of a specific class, characterized by the elements contained in

multiple groups of spectra used as training sets (TSs). The algorithm is based on the analysis of the measured spectra only

and does not require any ancillary information or forecast model output data for the classification. The classification accounts

for the spectral features of the observed brightness temperature (BT), compared to the characterizing spectral features of each

training set. A brief description of the algorithm is provided below; we recommend the reference article by Maestri et al.165

(2019b) for a full description of the CIC.

For each class X (i.e., clear sky, ice cloud, and mixed-phase) a set of spectra is used to set up a training set defining the

variability within the class:

TSX = TSX(ν̃, j) (1)
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Figure 2. (a) Lidar backscattering and (b) depolarization ratio for 2013, 2nd January. (a) and (b): Different sky conditions are highlighted in

correspondence of vertical dashed line. A red triangle indicate clear sky, blue triangle is used for ice cloud, and green triangle for mixed-phase

cloud. (c): REFIR-PAD spectra in correspondence of the three sky conditions highlighted in the upper and middle panels. The same color

code is used.

where ν̃ is the wavenumber, and j = 1, . . . ,J refers to the jth element (spectrum) of the TS. The information content of the170

TSs is evaluated by computing the eigenvalues (λ) and the eigenvectors (εTS) of the TS covariance matrices:

[λX , εTSX ] = eig(cov(TSX)) (2)
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The procedure also accounts for a spectral noise removal operation. This is performed by accounting only for a limited

number of principal components, defined by Turner et al. (2006) as the first P0 eigenvalues, out of P total components, that

minimize the indicator function:175

IND(p) =
RE(p)

(P − p)2
(3)

where p= 1, . . . ,P − 1 refers to the pth principal component and the real error RE is defined as:

RE(p) =

√∑P
i=p+1λX,i

J(P − p)
(4)

Each input spectrum L is then analysed by defining the extended training sets (ETS), that are the original TSs plus the input

spectrum itself:180

ETSX = [TSX(ν̃, j),L(ν̃)] (5)

and by computing the eigenvectors (εETS) of each ETS covariance matrix.

The classification is performed through a parameter called similarity index (SI) that evaluates the variation of the information

content in the ETS with respect to the original TS (for each class):

SIX = 1− 1

2P0

P0∑
p=1

∑
ν̃

|εETSX(ν̃,p)2− εTSX(ν̃,p)2| (6)185

The SI is a normalized index, where a value close to 1 means high similarity, and a value close to 0 means low similarity. As

an example, if the input spectrum is measured in clear sky, the information content of the ETSCLEAR would be similar to the

original TSCLEAR, and their eigenvectors will also be very similar, due to the low additional information content from the input

spectrum.

For this study, as previously indicated, three classes are defined: clear sky, ice clouds and mixed-phase clouds. Consequently,190

three training sets are prepared, each one containing spectra representative of that particular class. For each observation the

operation described in Equation 6 is performed for 2 classes at a time. In our case, 3 SIs are obtained derived from the mutual

comparison of the 3 classes. From these, a vector of similarity index differences (SID) is defined:

SID(1) = SICLEAR−SIICE CLOUD

SID(2) = SICLEAR−SIMIXED−PHASE CLOUD

SID(3) = SIICE CLOUD −SIMIXED−PHASE CLOUD (7)
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Figure 3. Logical diagram of the classification process performed by the CIC algorithm for the definition of the clear sky, ice cloud and

mixed-phase cloud classes.

The classification of the input spectrum is performed in accordance with the logical diagram of Figure 3. The diagram shows195

the comparison between specific couples of SI (yellow boxes). The partial results of each comparison are represented by white

boxes. If one class prevails over the other two, a classification is reached and the final output is provided (green boxes in the

Figure).

The comparison between the SI of the classes is called elementary approach. This methodology is based on a very sim-

ple classificator, the SID, which works properly when each class is characterized by specific spectral features that make the200

elements of the class easily distinguishable from those pertaining to other classes. This is clearly very difficult to attain for

some classes such as, for example, the clear sky class and the cirrus cloud class. The classification of clouds over the Antarctic

Plateau is particularly challenging, primarily because of the generally low cloud optical depths whose IR spectral characteris-

tics are very similar to that of the clear sky. The selection of the spectra contained in each training set is crucial, as it is in every

classification algorithm. In fact, the selected elements must represent the entire class characteristics and variability to perform205

a correct classification.

Maestri et al. (2019b) suggested that better results can be obtained when a classificator optimization is performed a-priori by

using a methodology called distributional approach. When applied to a set of observations, a perfect classifier would ideally

generate a bimodal SID distribution for each comparison between two classes, splitting the elements in two separate groups.

This class separation is difficult to achieve in reality and the amount that elements overlap depends on many factors, including210

the spectra used to define the training sets. To mitigate the issue, the CIC is applied separately to each training set element.
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Based on the result for each spectrum of known class, an evaluation can be made for the SID distribution for the entire set of

each class. Through this analysis of the SID distributions, an optimal SID delimiter can be defined to maximize the correct

classification of the training set elements. The delimiters, which can be different from zero, are set according to the classification

results to optimize the algorithm performance. An example of the SID distribution based on the training set spectra and of the215

elementary and the distributional approaches is provided in Figure 4. The CIC is applied to the training set spectra of clear

sky and mixed-phase clouds. The elementary method (left panel) classifies as clear sky (blue shaded area) all the spectra with

SID≤0 and as mixed-phase cloud (red shaded area) all the spectra with SID>0. This methodology misclassifies some of the

mixed-phase cloud training set spectra (red histogram). The distributional method (right panel) maximises the classification

performance by defining a new delimiter between clear and mixed-phase cloudy scenes. In this example, the new delimiter is220

set at SID=−0.15, so that most of the TS spectra are correctly classified. See Maestri et al. (2019b) for a description of the

computation of the delimiter. Once the delimiters (DEL) are defined for each class couplet, the classification is performed by

using a Corrected Similarity Index Difference (CSID):

CSID(1) = SICLEAR−SIICE CLOUD +DEL(clear − ice cloud)

CSID(2) = SICLEAR−SIMIXED−PHASE CLOUD +DEL(clear − mixed−phase cloud)

CSID(3) = SIICE CLOUD −SIMIXED−PHASE CLOUD +DEL(ice cloud − mixed−phase cloud) (8)

The entire classification procedure, schematically described in Figure 3, is then performed by the new classifier CSID in225

place of the SID. Due to the better performance, the distributional method is preferred and applied in this study.

3.1 Training and Test Sets

Spectra used to populate the training sets are chosen from a set of pre-classified observations. The identification is performed by

the co-located lidar backscatter and depolarization profiles in accordance with the criteria described in Section 2. Each training

set contains a limited number of spectra from the REFIR-PAD database, aiming at describing the variability of atmospheric230

conditions over the Concordia station. Due to the intense variations of the environmental conditions, the training sets are defined

for two macro-seasons: a warm season (November-March) and a cold season (April-October). The choice is also supported by

the fact that mixed-phase clouds are extremely rare in the cold macro-season. Ricaud et al. (2020) observed the occurrence of

supercooled liquid water clouds during the warm macro-season only, with the largest frequency occurring in December and

January. Listowski et al. (2019) also observed that the fraction of supercooled liquid water-containing clouds in the Antarctic235

Plateau varies between 10%, in the summertime, and 0%, in winter. Therefore, three training sets for the warm macro-season

are defined: clear sky, ice cloud, and mixed-phase cloud. For the cold macro-season, only the clear sky and ice cloud training

sets are used. Table 2 summarizes the number of spectra for each TS and macro-season.

Mean spectra in terms of BT (solid lines) and their standard deviations (shaded area) are presented in Figure 5 for the training

sets used for both macro-seasons. Differences between the mean spectra of the different classes are observed in the window240

channels located between 400 and 600 cm−1, and 800 and 1000 cm−1. Note that in IR window regions (transparent channels)
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(a) Elementary Approach

-0.5 0 0.5

SID

0

1

2

3

4

5

6

7

8

9

10
C

o
u

n
ts

CLEAR

MIXED-PHASE CLOUD

(b) Distributional Approach
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Figure 4. Example of (a) the CIC elementary approach and (b) the distributional approach applied to the training set elements of clear sky (49

spectra) and mixed-phase clouds (22 spectra), in the warm season (November-March). The clear sky (blue histogram) and the mixed-phase

cloud (red histogram) training set elements are classified according to the SID as clear sky (blue shaded area) or mixed-phase cloud (red

shaded area) scenes. Only 76% of the spectra are correctly classified using the elementary approach, while 99% of the spectra are correctly

classified using the distributional method.

Table 2. Number of spectra used in each TS, according with the macro-season.

Season / class clear sky ice cloud mixed-phase cloud

November-March 49 30 22

April-October 64 37 –

the standard deviation of the clear sky spectra is usually lower than that of the cloudy spectra, which account for a wider signal

variability in these bands. Furthermore, the clear sky signal is very low at window wavenumbers, and the measurements can

have very low signal to noise ratio.

Once the TSs are defined, the DELs are computed (as described in Section 3) and the CIC is ready to ingest the REFIR-245

PAD spectra and provide their classification. To evaluate the CIC performance and optimize its set-up, a test set is analysed of

1726 pre-classified spectra collected in 2013. The test set is composed of 559 clear sky, 1022 ice cloud, and 145 mixed-phase
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Figure 5. Average BT (solid line) ±1 standard deviation (shaded area) for TS elements of the (a) Warm and (b) Cold macro-seasons.

cloud spectra. These spectra were previously classified by using the co-located lidar backscatter and depolarization profiles. An

example is provided in Figure 2. We define the sky condition as that observed when the REFIR-PAD starts its measurement.

Then, the spectra are associated to the sky conditions encountered at the beginning of each measurement.250

3.2 CIC performance and optimization

The CIC algorithm is applied to the test set spectra by accounting for their BT in different spectral intervals. This operation

is performed to find the optimal spectral interval that maximizes the classification results for each class (clear sky, ice cloud,

mixed-phase cloud). Multiple runs of the CIC algorithm are performed on the same test set, by applying it to different spectral

ranges. Specifically, the starting wavenumber is moved, at steps of 20 cm−1, in the 200-600 cm−1 band, and the ending255

wavenumber is moved between 960 and 1480 cm−1. Note that, as discussed in Maestri et al. (2019b) and Magurno et al.

(2020), the spectral interval 620-670 cm−1 is excluded by the analysis.

The algorithm performance during this process is assessed by evaluating the Threat Score (ThS). A confusion matrix is used

to compute the ThS of each class and for each considered spectral interval. Each individual spectrum can be classified correctly

as a member of its class (i.e class A), or incorrectly as a member of a different class (i.e. class B or C). With this symbolism,260

the spectrum classification is interpreted in terms of:
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– True positive (TP): the spectrum belong to class A and it is properly classified in class A.

– True negative (TN): the spectrum does not belong to class A and it is properly classified in its class of pertinence (B or

C).

– False positive (FP): the spectrum belongs to class B or C but it is misclassified in class A.265

– False negative (FN): the spectrum belongs to class A but it is misclassified in class B or C.

Given the above possibilities, for each class the threat score is defined as:

ThS =
TP

TP +FN +FP
(9)

that accounts for the correctly classified spectra (TP) in the class and penalizes all the misclassified occurrences (FN and FP).

A ThS value of 1 means that there are no misclassified spectra.270

Based on the results obtained for each of the combinations of starting and ending wavenumbers, the ThS is calculated for

each class (clear sky, ice cloud, mixed-phase cloud). The weighted mean ThS values, that account for the total number of cases

in each class, are also calculated. In the upper left panel (a) of Figure 6 the mean ThSs are plotted as a function of the starting

and ending wavenumbers. The other panels in this figure (b-c-d) show results for the three specific classes. The ThS values span

from 0.487 to 0.966 in accordance with the selected interval and the given class. For intervals ending with wavenumbers larger275

than 1140 cm−1, the ThS decreases considerably for all the classes. This is likely associated to the noise of the REFIR-PAD

sensor which increases considerably above 1200 cm−1 and degrades the classification results. When the ending wavenumber

is set to values between 980 and 1080 cm−1, the ThS is very high (larger than 0.9) for all the starting wavenumbers below

400 cm−1, both for clear sky and ice clouds. The spectral interval 380–1000 cm−1 performs the best for classification of both

clear sky and ice clouds, where the ThS values are 0.963 and 0.966, respectively. The classification of mixed-phase clouds is280

slightly less robust compared to the other two classes, and the best spectral interval is 540–1020 cm−1 with a ThS of 0.927.

Typically, mixed-phase clouds are associated to more humid conditions than ice clouds and, frequently, to precipitation of thin

ice crystals. For these reasons, the inclusion of the smallest wavenumbers (associated to the less transparent part of the FIR) is

not maximizing the classification of mixed phase clouds.

When accounting for all the classes, the most performing spectral range for clear and cloud identification and classification is285

the 380–1000 cm−1 interval. The result is dependent on sensor characteristics and for this study it is specifically driven by the

REFIR-PAD spectral resolution and noise features. The optimal interval for the classification is also dependent on many other

parameters, among which are the type and number of classes considered, the observation geometry (e.g. satellite or ground

based), the observing location, and the mean atmospheric conditions. Because the water vapor content is extremely low, the

ground-based measurements on the Antarctic Plateau allow the full exploitation of the FIR spectral range. These channels290

would be totally opaque for upward observations in regions of increased water vapor content such as the tropics. The selected

spectral range (380–1000 cm−1) highlights the fundamental role of the FIR part of the spectrum in the cloud identification and

classification.
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Figure 6. Threat Scores for the test set as a function of different spectral intervals ingested by the CIC algorithm. The (a) All Classes threat

score is a weighted mean of the threat scores computed for each class: (b) clear sky, (c) ice cloud, and (d) mixed-phase cloud.

The results of the CIC classification applied to the test set using the 380–1000 cm−1 are summarized in Table 3. The Table

reports the number of spectra per class in the test set, the CIC Hit Rates (HR) and misclassified spectra, in percentage, and the295

threat scores. The HR for a class (i.e. A) is defined as:

HRA =
NCIC
A

N true
A

=
TP

TP +FN
(10)

where NCIC
A is the number of occurrences of the class A that are correctly identified by the CIC (corresponding to the TP in

the confusion matrix). N true
A is the total number of elements in class A of the dataset, and corresponds to TP+FN of the class

A.300

The overall performance is that almost 98% of spectra are correctly classified. Only a small percentage (less than 1%) of

cloudy spectra (ice clouds plus mixed-phase clouds) is misclassified as clear sky, and about 2% of the clear sky spectra are

erroneously identified as ice clouds. Note that in case of mixed-phase clouds the CIC is able to identify the presence of the

cloud in 99.3% of the cases even if for 8.3% the cloud phase is classified as ice instead of mixed-phase. This is actually a

very reasonable performance considering that, as noted before, most of the mixed-phase clouds are composed of a layer of305

super-cooled liquid phase near the cloud base and, likely, ice phase particles close to the cloud top as suggested by the large

values of the depolarization ratio.
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Table 3. Test set classification performed by CIC, using the optimal spectral range 380–1000 cm−1.

Class # Spectra Hit Rate Misclassification Threat Score

Clear Sky 559 98.0 % 2.0 % - Ice Cloud 0.963

0.0 % - Mixed-Phase Cloud

Ice Cloud 1022 98.7 % 0.9 % - Clear Sky 0.966

0.4 % - Mixed-Phase Cloud

Mixed-Phase Cloud 145 91.0 % 0.7 % - Clear Sky 0.886

8.3 % - Ice Cloud

Total 1726 97.9 % 2.1 % Weighted mean:

0.958

Sensitivity studies on the identification of mixed-phase clouds are performed assuming a cloud layer of constant total optical

depth of 2 at 900 cm−1, in which the base layer is composed of liquid water and the upper layer is occupied by ice particles. The

relative weight of the two layers to the total OD varies from a completely ice cloud to a completely liquid water cloud. Results310

(not shown here) demonstrate that for the bottom layer of liquid phase with OD larger than 0.1-0.3 the cloud is identified as

mixed-phase, otherwise, it is classified as ice cloud. This demonstrates that the algorithm is very sensitive to the presence of

thin liquid water layers at cloud base. Nevertheless, it is also possible to incur in situations in which a very thin layer of liquid

water is close to a thicker ice layer and the spectral signal measured at the ground is interpreted by the CIC algorithm as exiting

from an ice cloud. Another common situation is the presence of falling ice from mixed-phased cloud layers, as shown in the315

mid panel of Figure 2 between 18 and 20 UTC. Typically, the quantity of the precipitating ice crystals is very small and the

CIC algorithm is able to capture the radiometric signal from the upper liquid water layer as it will be shown in the case reported

in Figure 7 .

3.2.1 Test Set Misclassified Spectra

Each of the misclassified cases is visually inspected to understand the main causes of error in the CIC classification. It appears320

that the misclassification of clear sky as ice cloud, and vice-versa, occurs primarily for spectra taken during the cold macro-

season. The misclassification in this case is associated with the: (a) presence of a very thin cirrus cloud; (b) REFIR-PAD

measurements taken over a period of time in which the observed scene is changing (i.e. the measuring time encompasses both

clear sky and cloudy sky); or (c) presence of suspended particles near the surface (e.g., diamond dust, wind-blown snow, or

combustion products produced by the generator that heats Concordia Station).325

During the warm macro-season, a small percentage of mixed-phase clouds are misclassified as either clear sky or ice clouds.

In some cases, ice clouds are misclassified as mixed-phase clouds; this happens mostly when the ice cloud spectra are charac-

terized by a high BT in the main window region.
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Figure 7. Lidar depolarization ratio on (a) 3rd of January 2014 and (b) 1st of August 2014. The triangles mark the REFIR-PAD observations.

The color code indicates the CIC classification: red for clear sky, blue for ice cloud, and green for mixed-phase cloud.

4 Results

The 380–1000 cm−1 spectral interval is used to run the CIC algorithm over the entire REFIR-PAD dataset, comprising mea-330

surements from year 2012 through 2015. In Figure 7, the CIC classifications are compared with co-located lidar depolarization

data for two different days. For each REFIR-PAD observation, the classification is reported as a colored triangle in the upper

part of each panel. As previously discussed, low values of lidar depolarization together with large values of the backscattering

signal (not shown) indicate the presence of liquid water phase in the cloud layer, while high depolarization values are observed

in presence of ice clouds. The upper panel of Figure 7 shows the presence of a mixed-phase cloud over the Concordia station335

from about 10:00 UTC until the nighttime of the 3rd of January 2014. The presence of the cloud and its thermodynamic phase

are correctly identified and classified by the algorithm. Between hours 21:00 and 22:30 UTC, CIC identifies a spectral signal

characteristic of ice clouds that corresponds to larger values of the depolarization ratio measured by the lidar. On the 1st of

August 2014 (lower panel of Figure 7), the lidar depolarization shows that the day starts with a precipitating ice cloud, followed

by clear sky conditions from 15:00 UTC. For this case, both the clear sky and the ice cloud are correctly detected by the CIC340

algorithm.

The results of applying the CIC to the full available REFIR-PAD dataset are provided in terms of percentages, defining the

occurrence of each class with respect to the total number of analysed spectra. An error can be associated to the percentage
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occurrence, exploiting the HRs derived in the analysis of the test set. With the use of Equation 10 for the HR definition for the

class A:345

NCIC
A =N true

A ×HRA (11)

the number of misclassified spectra (N err
A ) of class A can be written as:

N err
A =N true

A × (1−HRA) (12)

Through combination of Equation 11 and Equation 12, it is possible to remove the term N true
A which is unknown for results

applied to the entire dataset. The following relation is then derived:350

N err
A =NCIC

A × (1−HRA)
HRA

=NCIC
A ×

(
1

HRA
− 1

)
(13)

The relative error (ε), associated to the classification of the elements of class A, is obtained by dividing the number of

misclassified A spectra to the total number of spectra NA+B+C =NTOT:

εA =
N err
A

NTOT
=
NCIC
A

NTOT
×
(

1

HRA
− 1

)
(14)

Note that the HR values associated with the individual classes for the entire dataset are unknowns. However, it is assumed355

that the CIC scores over the test set spectra are representatives of the performances that are obtained over the full dataset.

Therefore, the HRs obtained for the test set analysis (see back Table 3) are used in place of the dataset HR in Equation 14.

Thus, for the class A, the percentage classification error is simply:

εA%=
NCIC
A

NTOT
×
(

1

HRA
− 1

)
× 100 (15)

where NCIC
A is the number of spectra identified by CIC as member of class A and NTOT is the total number of spectra in360

the entire dataset. The HRA is obtained from the application of CIC to the test set and is thus known a-priori. Note that for a

small number of false positives (FP � TP ) the HR for class A is very similar to the ThS for the same class. CIC provides

very small values of FP when applied to the test set, with respect to TP values: 2% for ice clouds and clear sky, and about 3%

for mixed-phase clouds.

4.1 Sky classification: 4 years averages and inter-annual variability365

A total of 87960 REFIR-PAD spectra are analysed from the dataset spanning over the time range 2012–2015. From this set,

only 202 spectra are used for training the CIC algorithm, and the other 87758 are ingested by the CIC to evaluate the cloud
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Table 4. CIC classification results for the whole REFIR-PAD spectra dataset (2012–2015) and for single years. The associated uncertainties

are computed using Equation 15. Mean air temperatures at surface level for the entire period and for each year are also reported. The last row

refers to mean air temperatures at surface level computed for the months from November to March (Warm season).

CIC ENTIRE DATASET 2012 2013 2014 2015

CLASSIFICATION (%) (%) (%) (%) (%)

CLEAR SKY 72.3 ± 1.5 68.6 ± 1.4 75.1 ± 1.5 76.3 ± 1.5 68.8 ± 1.4

ICE CLOUD 24.9 ± 0.3 25.4 ± 0.3 22.8 ± 0.3 21.1 ± 0.3 29.6 ± 0.4

MIXED-PHASE CLOUD 2.7 ± 0.3 5.8 ± 0.6 2.0 ± 0.2 2.5 ± 0.2 1.5 ± 0.2

UNCLASSIFIED 0.1 ± 0.1 0.2 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1

Mean T (◦C) -53.5 -49.6 -54.5 -53.4 -55.0

Warm season Mean T (◦C) -40.2 -37.6 -41.0 -40.7 -41.1

occurrence over the Concordia station. The classification results are shown in Table 4 as percentages for clear sky, ice clouds,

mixed-phase clouds, and unclassified spectra. The entire dataset and individual years classifications are presented, as well as

the estimated percentage uncertainties (see Equation 15). On average, the clear sky is detected in almost 72% of the cases,370

with ice cloud occurrence of about 25% and mixed-phase cloud occurrence of less than 3%. The inter-annual variability of

total cloud occurrence in the Antarctic Plateau, the sum of ice and mixed-phase clouds, spans between about 23 and 31%.

This percentage interval is in accordance with the observations from Adhikari et al. (2012), who analysed data from CloudSat

and CALIPSO between 2006 and 2010 and reported percentages spanning between 20–30% interval. From our analysis the

cloudiest year in the 2012–2015 period is 2012, with a value of 31.2%. This is almost identical to what observed in 2015 (cloud375

occurrence is 31.1% in this case), with the difference being that in 2012 there was a significantly larger fraction of mixed-phase

clouds than in 2015 (5.8% and 1.5% respectively).

Mean temperatures at the surface level for the entire dataset and for each single year are also reported in Table 4. Tem-

peratures are measured every hour at the Concordia station and are linearly interpolated in time to be associated with the

REFIR-PAD measurements and the corresponding CIC classifications. The last row of Table 4 provides information only for380

the months of the warm macro-season from November to March. The results suggest a positive correlation between mean air

temperatures at surface level in the Warm macro-season and the occurrence of mixed-phase clouds. Note that mixed-phase

clouds are present only for months from November to March. The temperature and mixed-phase cloud correlation could indi-

cate that warm temperatures are favorable for mixed-phase clouds formation or that the presence of warm liquid clouds implies

a stronger cloud forcing at the surface and, consequently, an increase in the temperature values near the ground. Another fa-385

vorable condition for liquid cloud formation consists in the advection of air from warmer and more humid regions such as

the Ross Sea and Southern Ocean. Ice clouds are observed during the entire year. In contrast with mixed-phase clouds, their

occurrence does not seem correlated to the mean air temperature at the surface. Note that the maximum occurrence of ice

clouds is observed during year 2015, which had the lowest mean value of surface air temperature in the 4 years time range.
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Table 5. Mean seasonal occurrences of clear sky, ice clouds, and mixed-phase clouds at Concordia station. Mean surface air temperatures

are reported for each season.

DJF MAM JJA SON

# spectra 21209 21093 22395 23061

CIC CLASSIFICATION (%) (%) (%) (%)

CLEAR SKY 71.1 75.1 66.8 76.1

ICE CLOUD 17.6 24.7 33.2 23.8

MIXED-PHASE CLOUD 10.9 0.2 0.0 0.1

UNCLASSIFIED 0.4 0.0 0.0 0.0

Mean T (◦C) -34.9 -61.0 -65.0 -52.2

4.2 Seasonal clear sky and cloud occurrence390

Seasonal averages of cloud occurrence are computed for the entire dataset and presented in Table 5. The Table also reports the

number of spectra observed in each season, which show that the data are homogeneously distributed over the course of the year,

and the mean air temperatures. The mean total cloud occurrence varies from the minimum value of 23.9% detected in spring

(SON) to the maximum value of 33.2% in the cold winter season (JJA). The dominant cloud occurrence and thermodynamic

phase is ice. During the austral summer, the occurrence of ice clouds is the smallest. However, for the same season, the395

occurrence of mixed-phase clouds reaches its maximum over Concordia Station (10.9%). It is interesting that during summer,

more than one third of the clouds over Concordia is of the mixed-phase type. The occurrence of mixed-phase clouds in summer

is in line with the analysis performed by Listowski et al. (2019), who analysed DARDAR data (Delanoë and Hogan, 2010;

Ceccaldi et al., 2013) based on combined observations from CloudSat and CALIPSO satellites, in the period 2007–2010. The

same authors, by performing a visual analysis of the geographical distribution of the clouds containing liquid water particles,400

estimate that during the other seasons (MAM, JJA, and SON), the occurrence of mixed-phase clouds is close to 0%, in the

region around the Concordia station.

Seasonal occurrences for each class are analysed in combination with meteorological parameters encountered during the

corresponding REFIR-PAD measurements. In Figure 8, the percentage distribution of each class seasonal occurrence is reported

as a function of the air surface temperature, with histograms binning of 7◦C. The same color code is adopted here that was used405

previously: clear sky in red, ice clouds in blue, and mixed-phase clouds in green. The number of REFIR-PAD measurements

for each bin is reported at the base of the histograms. Over the four years, the surface air temperature (in correspondence of

REFIR-PAD measurements) varies between a minimum of −81.3◦C and a maximum of −15.8◦C. With the exception of the

spring season (SON, lower right panel of Figure 8), the results show that the detected cloudy sky occurrence increases (clear

skies decrease) as surface air temperature increases. This holds both for ice and mixed-phase clouds. In the winter season (JJA,410

lower left panel of Figure 8), for surface air temperature larger than−43.3◦C the CIC identifies only ice cloud conditions. Note

that the winter and spring seasons have the largest variation in the air surface temperatures. In the winter season, extremely
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Figure 8. Histograms of the seasonal occurrence of the analysed sky conditions as a function of the surface air temperature. (a) DJF - summer,

(b) MAM - autumn, (c) JJA - winter, and (d) SON - spring. The number of observations for each 7◦C bin is reported at the base of each

histogram.

low temperatures (below −70◦C) are very frequent and result from the lack of insolation, the dry atmospheric conditions, and

the absence of clouds. In the same season, higher surface temperatures are measured mainly when clouds are present. The

downwelling longwave radiation from cloud layers contributes to the surface radiative forcing and mitigates the temperature415

of the cold season. Over the four-year period the average winter surface temperature in clear sky conditions is −67.9◦C, while

in presence of ice clouds is −59◦C.

A similar analysis is performed by relating clear and cloudy sky occurrences to measurements of surface relative humidity

and surface pressure. Results (not shown here) indicate that the highest values of relative humidity tend to occur with the

highest percentage of clouds for all the seasons except spring. The highest mean values of surface pressure in the summer420

season tend to occur with the highest percentages of mixed-phase clouds (not shown). Unclassified spectra are obtained only

in the summer season and in correspondence of very high values of surface pressure, air temperature, and relative humidity.

Surface wind measurements are also analysed and related to CIC classification results for each season. The values of wind

speed and direction closest in time to the REFIR-PAD measurements are used. Wind roses are built considering the bias

correction methodology proposed by Droppo and Napier (2008), which indicates the necessity of weighting the contribution425

of each direction to correctly represent them in the wind roses.
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In Figure 9, the wind roses for each season and class are shown. Clear sky cases correspond to about 70% of all occurrences

in all seasons and are associated with a surface level wind that blows predominantly from South and South-West. Higher wind

intensities are found in springtime. An additional wind component from the West is observed in summer, but is negligible

in the other seasons. When ice clouds are present, the dominant surface wind direction is from the South-East, and the wind430

intensity is larger than in clear sky conditions on average (7.7 m/s versus 6.1 m/s). Note that non-negligible occurrences of

surface wind from the North-East are observed only when mixed-phase clouds are detected, especially during the fall (MAM)

season. This component overlaps with the dominant South-East wind component found both in summer and autumn. The wind

rose for mixed-phase clouds in the spring season (SON) is reported for completeness but is affected by the very few number of

cases detected. Even if very preliminary, the analysis of the surface wind direction for different sky conditions highlights some435

correlations between the wind component and the clear sky or cloud occurrence. Note (see back to Figure 1) that South and

West directions at the Concordia station point to the inner Antarctic Plateau, where the drier air is supposedly found. Otherwise,

the South-East and East directions are towards the Ross Sea and the Southern Ocean which are characterized by warmer and

more humid air. The correlations are far from being conclusive since the upper level winds and the back trajectories of the air

masses have not been analyzed yet.440

4.3 Monthly mean cloud occurrence: comparison with satellite data

CIC monthly mean cloud percentages (including ice and mixed-phase) for the period 2012–2015 are shown in Figure 10 (left

panel). The black curve corresponds to the 4-years monthly average cloud occurrence, and the shaded grey area indicates the

minimum and maximum CIC monthly values. The lowest average value is found in November (17%), while higher occurrences

are observed during the winter months. The peak is located in August, with an average value of 39%. For the same month, the445

inter-annual variability is quite large as indicated by the extent of the grey area. As examples, in August the monthly mean

values span from 31% to 62%, which is the highest derived occurrence, and in November from 1% (lowest registered value) to

37%.

Monthly mean cloud occurrences/fractions derived from level 3 (L3) satellite products are also reported in the left panel

of Figure 10 for the same period of time. The comparison has a twofold objective: a) to assess if the results obtained locally450

from the CIC/REFIR-PAD synergy can be representative of widespread region characterizing the Antarctic Plateau and b) to

estimate the differences among the cloud occurrences/fractions derived from L3 satellite products around the Concordia area.

According to WMO1, the L3 satellite products are composed of variables mapped on uniform space-time grid scales and are

constructed to provide completeness and consistency for the anticipated users. These products types are frequently used to

perform climate analysis and model evaluation (e.g. Stubenrauch et al., 2013; Webb et al., 2017). The assessment of their455

accuracy can be particularly challenging, especially in remote regions such as the Antarctic Plateau, due to the scarceness of

ground-based stations that are available for products validation campaigns. For the present study, we only refer to monthly

mean L3 satellite products and the comparison with CIC results is performed only in the context of the objectives described

above. A validation (that is outside the scopes of the present research) should be, eventually, performed on level 2 collocated

1World Meteorological Organization - http://www.wmo.int/pages/prog/sat/dataandproducts_en.php, last access: 03rd June 2021.
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Figure 9. Wind roses at Concordia station, for the four seasons (DJF, MAM, JJA, and SON) of the period 2012–2015. Clear sky, ice cloud,

and mixed-phase cloud conditions are split into separate rows.

satellite products to minimize the bias due to different footprint sizes that can be otherwise very large when accounting for460

gridded L3 products. In practice, different data sets present specific strengths and limitations that are briefly described below.

The L3 products used in this work are derived from passive radiometric observations performed by the Moderate Resolution

Imaging Spectroradiometer (MODIS) on board the TERRA and the AQUA satellite platforms, by the CALIOP on board the

CALIPSO satellite, and by the CPR on board CloudSat satellite. For MODIS L3 products, the occurrence by cloud type is

not available, and the cloud fraction is used. This variable is computed as the ratio between the cloud covered pixels and the465

total number of pixels observed by both satellite platforms each month and is mapped in a global grid of 1◦ of latitude and

longitude, which corresponds to an area of about 3000 km2 in the region of the Concordia station. In the right panel of Figure

10 the boundary of the area which refers to the considered MODIS L3 gridded product is reported in blue. In the same panel
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the location of the Concordia base is indicated as a black star. The MODIS L3 products used in this study are the MYD08 and

MOD08.470

They are derived from each MODIS sensors on platforms separately (MYD08 for AQUA, and MOD08 for TERRA, MODIS

Atmosphere Science Team, 2017). The MOD08/MYD08 L3 product is based on a cloud mask which exploits infrared and

visible bands. When in absence of solar illumination only the infrared bands are used. The monthly mean cloud fraction from

MODIS sensor is showed Figure 10 (light blue and blue line, for MODIS TERRA and AQUA L3 products, respectively).

In contrast to MODIS, the CALIOP and the CPR active sensors detect the cloud occurrence within vertical profiles. The L3475

product from these sensors is a volume cloud occurrence, which considers the number of cloud observations along the vertical

profiles that are mapped monthly on a regular grid. The CALIOP L3 product (CAL_LID_L3_Cloud_Occurrence-Standard-V1-

00, Winker, 2018) is built on a grid map of 2.5◦ of longitude and 2.0◦ of latitude, which corresponds to an area of about 15000

km2 in the region surrounding Concordia station and is indicated by a green line in right panel of Figure 10. The L3 product

from CloudSat (3S-RMCP, Haynes, 2019) is available in a grid of 5◦x5◦ of latitude and longitude, that covers an extended area480

of about 75000 km2 around the Concordia station, identified by the red line in the right panel of Figure 10. Cloudsat results are

reported in red in the left panel of Figure 10. From year 2011, the CPR on CloudSat collected data only in daylight hours due

to a battery anomaly, so there is no record of cloud occurrence from CloudSat from April to August.

For each one of the MODIS, CALIOP and CPR sensors, the grid point that includes the Concordia station is used to

retrieve the monthly L3 satellite product. Monthly time series of the cloud fractions, in the case of MODIS data, and of cloud485

occurrences, in the case of CALIOP and CPR observations, are computed for the period 2012–2015. Results are compared with

the cloud occurrence derived by the CIC algorithm over the Concordia station (left panel of Figure 10). Since the L3 products

of the three sensors refers to multiple extent areas of observations (of the order of tens of thousands of km2), some differences

are expected not only between the ground-based measurements analysed by CIC but also among the mean values of the L3

satellite products. In particular, we note that the gridded L3 products from CALIPSO and CloudSat refer to areas characterized490

by important variations in surface altitude with possible consequences on cloud formation and occurrence.

In presence of solar illumination, the lowest cloud occurrence values are those derived from CALIOP products, as shown in

green in the left panel of Figure 10. Despite the very low values, CALIOP is able to identify the maximum in cloud occurrence

during the austral winter (specifically August) also detected by the CIC algorithm applied to the REFIR-PAD data. In April

through August the MODIS MYD08 and MOD08 products provides very low values of cloud fraction likely due to the low495

efficiency of the cloud mask algorithm based on infrared bands only.

From November to March (the warm season), the CIC cloud occurrence is comparable to that found by MODIS and the

CPR sensors. Nevertheless, higher percentage of cloudiness is found by the CIC algorithm with respect to the CPR. The main

reasons for such differences are likely due to: (1) the high CIC sensitivity to the optically thin ice clouds which are often present

in the Antarctic Plateau (Maestri et al., 2019a) and missed by radar measurements (Henderson et al., 2013; L'Ecuyer et al.,500

2008), (2) the extension of the gridded area of the CPR L3 product which comprises regions with surface elevations spanning

up to 0.4 km in altitude and which might not be representative of the Dome C conditions, and (3) the CPR coarse vertical

resolution (0.5 km) which might be the cause of undetected clouds near the surface (Chan and Comiso, 2011) .
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Figure 10. Left panel: Percentage fraction of CIC monthly mean cloud occurrence (in black) compared with CloudSat L3 product (red line),

CALIPSO L3 product (green line), MODIS TERRA L3 product – MOD08 (light blue line), and MODIS AQUA L3 product - MYD08 (blue

line). The shaded grey area indicates the minimum and maximum CIC monthly values in the interval 2012–2015. Right panel: Location of

the Dome Concordia base and extension of the grid sector for Cloudsat, CALIPSO and AQUA/TERRA MODIS L3 data. Surface elevation

above mean sea level is also reported.

4.4 Diurnal variability of cloud occurrence

The almost continuous REFIR-PAD measurements, during the four year period provide an opportunity to investigate an hourly505

mean cloud occurrence. The time collocation of each CIC classification is obtained by associating each spectra to the hourly

time of observation. For instance, observations performed between 1:00:00 UTC and 1:59:59 UTC are associated to the time

1:00:00 UTC. For each hour, the percentage of occurrence of each class is computed and results are reported in Figure 11.

Results are also presented as seasonal means.

In the austral summer (upper left panel of Figure 11), a diurnal cycle is observed and related to the hourly mean insolation,510

also reported in the same Figure with a black dotted curve. The clear sky occurrence is characterized by a maximum value of

about 78% at around 5:00 UTC (13:00 local time). This maximum is very close in time to the maximum of insolation for the

same period of the year. In the summer season, the highest percentage of occurrence of cloudiness (about 36%) is obtained

during nighttime hours, that correspond to the coldest time of the day. For the other seasons, a clear diurnal cycle of the

percentage occurrences is not observed. Note that for the fall and spring seasons the daily variation of the insolation is much515

less intense that for austral summer, and in winter is almost null. In the austral autumn (MAM, panel b) and spring (SON, panel

d) seasons the clouds are almost entirely composed of ice since mixed-phase clouds are very rare. In the austral winter (JJA,

panel c) the insolation is close to zero and the ice cloud occurrence reaches its seasonal maximum.

In Figure 12, the hourly mean surface air temperature is plotted for the four seasons for clear sky, ice clouds, and mixed-phase

clouds. The hourly mean temperatures are also presented for all-sky conditions (magenta line) and the hourly mean top of the520

atmosphere insolation (dashed black curve). The all-sky hourly mean air surface temperature is driven by the diurnal cycle of
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Figure 11. Hourly mean cloud occurrence of clear sky (red lines), ice clouds (blue lines), and mixed-phase clouds (green line). Unclassified

spectra are in black and total cloud occurrence in magenta. Percentages of occurrence are provided for each season: (a) DJF, (b) MAM,

(c) JJA, and (d) SON. The top of the atmosphere hourly mean insolation is also reported in Wm−2 (black dashed line), referring to values

reported on the right ordinate axis. Local time is UTC+8.

insolation in summer and spring: a lag of about two hours is observed between the maximum in insolation and the maximum

in temperature. The all-sky surface air temperature has a 11.2◦C amplitude in summer, when the top of the atmosphere diurnal

cycle of insolation is the largest. This amplitude decreases as the insolation cycle becomes weaker and it is almost null in

winter.525

The surface mean air temperature is higher in cloudy sky conditions (ice cloud or mixed-phase cloud) than for clear sky at

all hours of the day, suggesting a positive cloud forcing at the surface level. Mean values of surface air temperature are higher

in the presence of mixed-phase clouds than ice clouds at all times of the day. Observations of mixed-phase clouds (green

curves) are rare in autumn and spring and the data do not cover the full day in these seasons. Note that when mixed-phase

clouds are present, the daily thermal amplitude is smoothed with respect to the other sky conditions. The main reason for this530

could be related with the averagely larger optical thickness of liquid water clouds with respect to ice clouds (Di Natale et al.,

2020) which implies a decrease in surface insolation and thus a dumping of the diurnal cycle of surface temperature due to the

reduced solar warming. The hourly mean surface temperature is larger when ice clouds are present than in clear sky conditions.

This difference is, on average, larger in winter (about 9◦C) and autumn (about 7◦C), diminishes in summer (about 4◦C) and

becomes very small in spring (about 1◦C). The cause of this low value needs further investigation. Possible explanations could535

be related to the optical thickness and position of the clouds and/or related to the circulation of the air in the area that is not
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Figure 12. Hourly mean surface air temperature, according to the sky condition: clear sky (red line), ice cloud (blue line), mixed-phase cloud

(green line), and all-sky (magenta line). The temperature is reported according to the season: (a) DJF, (b) MAM, (c) JJA, and (d) SON. The

top of the atmosphere hourly mean insolation is also reported in Wm−2 (black dashed line), and values indicated by the ordinate axis on the

right. Local time is UTC+8.

accounted for in this analysis. For the spring and summer seasons, where the insolation diurnal cycle is larger, the surface

temperature difference is greater between the clear sky and ice cloud conditions for low insolation but decreases for higher

insolation.

5 Summary and conclusion540

High spectral resolution downwelling radiances at Far InfraRed (FIR) and Mid InfraRed (MIR) wavelengths are measured by

the REFIR-PAD spectroradiometer located at Dome C on the Antarctic Plateau between 2012–2015. The spectral radiance

measurements are, for the first time, ingested by an automatic machine learning algorithm called CIC to perform single spec-

trum classifications. CIC is developed to identify high spectral resolution observations and, in case of cloudy scene, to perform

a classification. The algorithm is computationally very fast and only requires a limited number of spectra as training set, which545

makes it very flexible, efficient, user-friendly, and easy to adapt to different types of sensors. For this study, the algorithm is

arranged and optimized to classify a REFIR-PAD spectrum as being a clear sky, ice cloud, or mixed-phase cloud. In the Dome

C region, mixed-phase clouds are usually characterized by at least one layer of water in liquid phase. Typically, an ice layer

close to the cloud top and weak precipitation of ice crystals are also observed.
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While an accurate description of clear and cloud properties is quite difficult in the Antarctic from passive measurements550

alone, our analysis of the REFIR-PAD data is greatly enhanced through coincident active measurements of atmospheric

backscattering and depolarization ratio profiles measured by a lidar system that is temporally co-located with the REFIR-

PAD radiance measurements. The coincident lidar and REFIR-PAD measurements are used to obtain accurate training sets

for the CIC algorithm. The training sets are formed by using a total of 202 spectra that are sufficient to characterize the large

variability of the atmospheric conditions in the Antarctic Plateau region. An analysis of the lidar data and atmospheric vertical555

profiles of temperature and humidity, obtained from radiosondes launched every day at the Concordia station, is used to sepa-

rate the training sets into two macro seasons. The first is named the warm season and ranges between November and March.

Three training sets, defining three different classes of spectra, are considered for the warm season: clear sky, ice cloud, and

mixed-phase cloud. The second macro-season is named the cold season and corresponds to the period from April to October.

For the cold season, only two classes are considered (clear sky and ice cloud) since layers in liquid phase are rarely observed560

during this period due to the extremely cold atmospheric temperatures.

A number of 1726 lidar co-located REFIR-PAD measurements are then used to select a test set of spectra, previously

classified according to the lidar backscatter and depolarization ratio vertical profiles. This sample is used to test the algorithm

performance, to estimate the CIC classification uncertainty, and to optimize the classification results for each class. For the

optimization process, the CIC algorithm is applied to classify the test set by considering different spectral intervals. A weighted565

Threat Score (ThS) is used to select the optimal spectral range for the classification. Results show that the spectral interval 380–

1000 cm−1 provides the best score due to the experimental and observational conditions. This result highlights the fundamental

role of the FIR part of the spectrum to improve the process of clear/cloud identification and cloud type classification in the

Antarctic.

The optimized CIC algorithm is then applied to the entire REFIR-PAD dataset from 2012 to 2015 consisting of 87758 spec-570

tra. On average, clear sky conditions are detected in almost 72% of the cases with an associated uncertainty of the order of

1.5%. The ice cloud occurrence is about 25% and the mixed-phase clouds are identified in less than 3% of the observations. The

uncertainty is 0.3% in cloudy conditions. The cloud occurrence over the Antarctic Concordia station is analysed at different

temporal scales: inter-annual, seasonal, monthly, and daily variability. The inter-annual variability of total cloud occurrence

spans between about 23 and 31%. A positive correlation is observed between mean air temperatures at surface level, in the575

warm macro-season, and the occurrence of mixed-phase clouds. This result suggests that (a) warm temperatures due to me-

teorological conditions (including warm and humid air advection) are favorable for the mixed-phase clouds formation or that

(b) the occurrence of warm cloud layers enhances the cloud radiative forcing at the surface with a consequent increase in the

surface temperature. Further work is needed for a better identification of the key atmospheric conditions and understanding of

the physical processes driving to mixed-phase clouds formation in the Antarctic.580

Seasonal analysis indicate that the mean total cloud occurrence varies from 23.9% in the spring (SON) to 33.2% in the cold

winter season (JJA), when only ice clouds are present. In fact, most of the mixed-phase clouds are observed in the summer

season, where they amount to more than one third of the total clouds over Concordia station. The seasonal scene classification

is analysed in accordance with meteorological parameters. Results show that highest values of surface air temperature (and
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relative humidity) are found in correspondence of the highest amounts of cloud for the summer, fall, and winter seasons; in585

the spring this relationship is minimal. The influence of the longwave radiative forcing of ice clouds on surface temperature

is most observed in the winter months where the insolation is negligible. For this season, the mean surface temperature is

about −68◦C in clear sky and −59◦C in presence of clouds. Furthermore, surface level winds from the South and South-West

are more frequently observed in clear sky conditions, while in presence of ice clouds the surface wind is primarly from the

South-East. When mixed-phase clouds are identified, surface winds from the East quadrant are more frequent. The mean wind590

intensity is about 2 ms−1 higher in presence of ice clouds than in clear atmospheric conditions.

CIC monthly mean cloud occurrences show, on average, a maximum in August and a minimum in November. The inter-

annual variability of monthly mean cloud occurrences can be very high. Noteworthy is the November case that registers a cloud

occurrence variation spanning from 0 to 40% among the four years of analysis.

The monthly mean data are compared with Level-3 satellite products derived from the MODIS (passive imager), CALIOP595

(lidar) and CPR (radar) sensors and referring to gridded areas covering the Dome C location. The discussion of the results

accounts for the different measurement techniques and sensitivity to cloud layers and for the large differences in the dimensions

of the gridded areas considered.

Some differences are observed among the analyzed products. In periods of higher insolation the lowest values of monthly

cloud occurrence are those derived from CALIOP. Despite the low scores, CALIOP data indicates that the maximum cloud600

occurrence in winter (August) similar to what is derived by the CIC algorithm. For the months from November to March,

which correspond to the warm season, the CIC cloud occurrence is larger but comparable to what is found by the MODIS

(whose algorithm benefits of the shortwave reflected radiation) and CPR sensors. The higher values detected by the CIC are

probably due to its greater sensitivity to thin cirrus clouds and to its ability to detect cloud layers near the surface. The added

value of both the local and continuous measurements is demonstrated. The CIC results, by exploitation of REFIR-PAD FIR605

and MIR spectral data available at all times during the year, provide a continuous record of cloud occurrence with excellent

classification scores.

Finally, an hourly cloud occurrence analysis is performed that shows the presence of a diurnal cycle with a maximum of about

36% and a minimum of 22% during the austral summer that follows the hourly mean insolation. The highest cloud occurrences

are observed during nighttime hours. Conversely, the season maximum of clear sky occurrence is observed in correspondence610

to the local noon time. For all the other seasons, diurnal cycles are not observed for either cloud or clear sky conditions. An

analysis between the daily sky condition and the surface mean air temperature reveals higher surface temperatures in cloudy

sky conditions, especially for mixed-phase clouds, than in clear sky for all the seasons and hours of the day. In summer, the

mean surface air temperature in the presence of clouds is on average 5◦C warmer than in clear sky. This difference is larger

during the night but smaller during the day probably due to the amount of insolation. The same effect, although smaller, is615

observed in fall and spring due to a weaker insolation cycle. In the winter, where the insolation is almost null, the difference

between surface air temperature measured in cloudy sky and clear sky is constant at about 9◦C throughout the day, which

quantifies the effect of the longwave radiative forcing of the antarctic winter clouds.
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The results of this work provide a basis for understanding of cloud occurrence at different time scales on the Antarctic Plateau

where cloud identification and classification from satellites is challenging. The obtained results provide a useful benchmark for620

satellite and model product comparisons and open the path to new investigations.

The use of FIR and MIR high spectral resolution radiances for the cloud identification and classification contributes to the

preparatory studies for the Far-infrared Outgoing Radiation Understanding and Monitoring (FORUM) mission. FORUM was

recently selected as the ESA’s 9th Earth Explorer mission and is scheduled for launch in 2026.
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εTS - Training Set Eigenvector Matrix

εETS - Extended Training Set Eigenvector Matrix

AMSL - Above Mean Sea Level775

AWS - Automatic Weather Station

BT - Brightness Temperature

CIC - Cloud Identification and Classification

CoMPASs - Concordia Multi-Process Atmospheric Studies

CALIOP - Cloud-Aerosol Lidar with Orthogonal Polarization780

CALIPSO - Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation
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ERB - Earth’s Radiation Budget

ETS - Extended Training Set

FIR - Far InfraRed785
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FORUM - Far-infrared Outgoing Radiation Understanding and Monitoring
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IND - INDicator function

IPEV - French Polar Institute Paul-Émile Victor (acronym from the French institute named "Institut Polaire Français Paul790

Émile Victor")
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di Ricerche in Antartide")
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REFIR-PAD - Radiation Explorer in the Far Infrared-Prototype for Applications and Development800
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TP - True Positive805
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TS - Training Set

WMO - World Meteorological Organization
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