
Overall: This paper presents results from a unique and valuable dataset. The two main 
contributions are cloud classification of this dataset into clear skies, ice cloud, and mixed 
phase cloud, and an algorithm that can quickly do this classification (which is 
presumably applicable elsewhere). However, we believe there are a number of serious 
problems with this paper. Most importantly, there is insufficient evidence that the 
authors are classifying cloud phase. Instead, it appears likely that they are grouping 
views into 3 types: 1) clear sky, 2) colder, optically thinner clouds, and 3) warmer, 
optically thicker clouds. Given this, it is not clear what value the algorithm adds to the 
literature, given that other methods exist that can classify phase that also classify optical 
depth and hydrometeor effective radius. The authors need to determine and report what 
they are actually classifying views into, e.g. using simulated data. More details follow.  

 

Respectfully, we disagree with the reader’s deductions. Regarding the two points 
(“problems”) raised: 

1) The category Mixed phase (in the training set, in the test set and in the entire 
dataset) comprises clouds with optical depths spanning from about 0.1 to the 
order of some unities.  

2) The article deals with the application of the identification and classification 
method. The algorithm’s features and edge on other methods are discussed in 
previous articles and only summarized here. 

More details follow. 

 

A better review of the literature and comparison to existing methods are 
needed  

Referencing of the lidar instrument and how phase is determined is insufficient.  

 

More details are provided in a new version of the article, also in response to another 
community comment. 

 

Referencing of recent work on Antarctic cloud properties and similar cloud property 
retrievals is insufficient. Reading this paper, it would seem that there have been no 
surface-based studies of Antarctic clouds after 2012. The authors should reference 
recent papers by Lachlan-Cope et al 2016, Silber et al 2018, Lubin et al 2020, etc.  

 

The current version of the article contains references to studies presented in 2019 and 
2020. Anyway, the suggested literature will be taken into consideration for the final 
version of the work (we already knew some of the suggested works) and we are grateful 
for the advice. New references will be eventually inserted in the article in accordance 
with the goal and focus of the present work. 

 



Machine learning concepts need to be referenced. Due to a complete lack of such 
references, it is unclear what are established methods (PCA, confusion matrix, hit rate, 
etc) and what was invented by the authors. E.g. are there references for the method of 
using a test set and an extended test set? Summing subtracted eigenvectors? Such 
references would be very helpful to fill in gaps and help understand what is novel.  

 

Suggestion accepted. 

 

The paper should compare this new method to existing methods for retrieving cloud 
phase from infrared radiances. For example, they reference Cox et al 2014, who retrieve 
cloud properties from Arctic infrared radiances, but do not compare to this work. They 
should also reference and discuss comparison to Rowe et al 2019 & Lubin et al 2020, 
which includes development and application of a cloud property retrieval, including 
phase, to clouds over McMurdo, Antarctica. Simulated datasets exist which could be used 
for an inter-comparison of methods. See, e.g. Cox et al 2016, Earth System Science 
Data, 8(1), 199–211.  

 

We don’t perform a retrieval but a cloud identification and classification. The cited 
references are all regarding retrievals. The CIC classification methodology was tested 
against synthetic and real data in previous publications and master thesis. In the paper 
by Di Natale et al. (2020) the reader can evaluate the results of a retrieval process 
considering of a large subset of the same dataset analyzed here.  

 

Examination of the data in a real-world context is needed  

The authors report the common occurrence of cloud with a liquid base and an ice layer at 
the top, which is contrary to what has been reported previously, both in the Arctic and 
Antarctic. This difference from previous work calls for some justification. This also 
underscores the need for a better explanation of the lidar design and methodology for 
determining cloud phase. What is meant by determining cloud layers from lidar by 
“human intervention?” Is this objective and repeatable? Why can’t it be automated? 
Overall, using lidar as truth is not properly justified.  

 

The procedure describing the usage of lidar data for the definition of the 3 classes will be 
better explained in the final version of the paper. See also reply to Reviewers 1 and 2. 
Moreover, the definition of mixed phase cloud will be better detailed.  The lidar data are 
perfectly appropriate for the definition of the 3 classes of observation (i.e Ricaud 2020, 
2017), especially for the Antarctic Plateau region conditions in which optically and 
geometrically thin clouds are very frequent. 

 

The authors use Principal Component Analysis (PCA), but they never explore, plot, or 
discuss the associated eigenvalues and eigenvectors. The retrieval is blind in the sense 
that it does not take into account the atmospheric state in terms of temperature, 



humidity, CO2 concentration etc. This would be ok if it was shown that the retrieval 
works without taking these into consideration, including some exploration of how it 
works, but this has not been done.  

 

There is a paper (see references) describing the CIC algorithm and its main features. 
One of the strengths of the algorithm (as described in the reference) is that it is based 
on the signal only and doesn’t need any other ancillary information to perform the 
classification. The present work is an application of the method and not a repetition of 
the description of the algorithm. 

 

It should be noted that almost all the variance, and thus the strongest PCs, will be 
associated with cloud temperature and optical depth, not phase. Which PCs are 
associated with phase? Why use all PCs believed to be above the noise level?  

 

We agree with the generic statement of the reader. Nevertheless, a one to one relation 
among the PCs and cloud features cannot be generalized. The reader is invited to review 
the algorithm methodology and in particular the metric defining the classification. We 
never analyze a spectrum singularly, but only in addition to all the training set elements.  

 

It seems likely that the classification is not based on cloud phase at all, but rather that 
scene views are subdivided into: 1) clear sky, 2) colder, optically thinner clouds, and 3) 
warmer, optically thicker clouds. They call category 2 “ice” and category 3 “mixed 
phase.” It is possible these classifications are often correct, since ice clouds tend to be 
optically thinner and colder, and liquid clouds tend to be optically thicker and warmer on 
the Antarctic Plateau. However, this needs to be characterized, addressed and discussed, 
including errors and caveats. Several lines of evidence support the idea that they are not 
classifying cloud phase but rather optically thick and warm vs optically thin and cold 
clouds. First, looking at Fig. 2, it is unlikely that it is possible to determine phase from 
the green spectrum. This spectrum looks saturated, which means phase will have no 
influence on it - that is, there is no information about phase. It does, however, indicate 
that the cloud is optically thick. The authors could assess for which cases phase cannot 
be retrieved, using simulated spectra. Instead, are all such cases classified as “mixed 
phase” by the algorithm?  

 

The deduction is erroneous and somehow unjustified.  

What shown in Figure 2 are just two examples of spectra. We agree that maybe two 
different spectra should be selected as examples to avoid possible confusion. In the new 
version of the paper this point will be made clearer. 

The training sets of ice and mixed-phase clouds are both composed of thin and thick 
clouds. Below one example of a thin ice cloud and one example of a thin mixed-phase 
cloud. Note that the spectra reported in the figure below are from the same day 
considered in Figure 2.  



See also Di Natale et al. 2020 which shows cloud properties retrievals (including OD) 
from a subset of the CIC classified spectra presented in this work. In the cited paper the 
range of values over which the cloud optical depths span can be evaluated both for ice 
and mixed phase clouds 

 

 

 

Second, as the authors point out, it has been shown that the far IR is critical for 
determining phase. Yet Fig. 6 suggests that a wavenumber range that excludes the far 
IR altogether would be equally good as one that includes it: the threat score is close to 1 
for a range of just above 560 cm-1 to ~1020 cm-1. Indeed, the authors find the best 
range to be 540-1020 cm-1 for mixed phased clouds (it is unclear how they determine 
this), excluding essentially all of the far IR.  

 

The methodology for the selection of the best range is described in the text. Probably the 
plots do not evidence enough the advantage of exploiting the FIR that is, anyway, clear 
from the numerical result concerning the Threat Score of the test set (for all the 
classes). A 3-d plot could be used in the new version of the article which better 
highlights the advantage of using FIR channels down to 380 cm-1. The scale can also be 
adapted to highlight the enhancement in the threat score. Note that an increase of few 
cents in the threat score means a large increase in the number of spectra correctly 
classified when dealing with the entire dataset (87960) 

Typically, mixed-phase clouds are associated to more humid conditions than ice clouds 
and also, as described in the new text, to precipitation of thin ice crystals. For these 
reasons, the inclusion of the smallest wavenumbers (associated to the less transparent 
part of the FIR) did not bring significant enhancement in the classification.  

Note that the classification of the dataset spectra is performed using the interval 
producing the best ThS over all classes: 380-1000 cm-1.   

 



Third, in the cold macro-season the algorithm does not retrieve cloud phase at all; 
instead all clouds are assumed to be ice.  

 

Correct 

 

Given the above, the authors should report the results of testing their method on 
simulated data, as has been done for other methods in the literature. This would allow 
them to test whether they truly have a cloud phase categorizer or if they are 
categorizing by cloud temperature / optical thickness. They could also determine and 
define characteristics of each category in terms of temperature, optical depth and phase 
ranges. This would also allow exploration of how errors propagate.  

 

Tests against simulated (and measured) data were performed in the papers introducing 
the CIC (see literature). We also recall to the reader that the CIC is the official cloud 
classificator in the ESA FORUM E2E simulator and it is severely tested everyday by many 
scientists in the community. 

Also, it is mentioned in the text that sensitivity tests. applied to synthetic stratified 
clouds with constant total OD, provide different classifications according to the relative 
amount of liquid/ice water content. The tests prove that CIC does not rely on a single 
parameter (i.e. optical depth) but on the entire spectrum characterization. 

In the current paper we don’t perform any retrieval. Nevertheless, the results of the 
classification include thin clouds both in the ice and mixed phase category. A large 
subset of the identified spectra is analyzed in the recent work by Di Natale et al. (2020). 
Di Natale et al. (2020) perform a cloud optical and microphysical retrieval. Please check 
the results. For example, you can evaluate the retrieved OD: it ranges from about 0.1 to 
about 4 in case of ice (figure 9) and about 0.1 to 10 in case of mixed phase (figure 10).  

 

The authors ignore previous work on the temperature dependence of the single-
scattering parameters (SSPs) of liquid water, which indicate that the SSPs of 
supercooled liquid water are intermediate between those of liquid and ice (Rowe et al 
2013 and 2020 and references therein). In particular, Rowe et al (2020) indicates that 
uncertainties are large in the far IR.  

 

We don’t ignore it. The paper was brought to our attention by the reader via email 2 
days before we submitted the present article. Anyway, we recall to the reader that the 
classification is a “discretized” result. We are aware that there are conditions “in the 
middle” not only due to the SSP, but also because of the physical structures of the 
observed scenes. It is noted, in the new version of the article, that what we call mixed 
phase cloud frequently occurs as a precipitating ice layer plus a thicker layer with low 
depolarization ratio values plus an upper layer with increasing depolarization ratio.  

 



Questions and Concerns about Methodology and use of Machine Learning  

The authors need to justify why they used the method they developed. It is not clear 
why PCA is used, or why the SID is used. Why isn’t a simpler method tried, or at least 
compared to, to justify the more complicated method used?  

 

The methodology is accurately described in previous papers. We regret that the details 
of the methodology applied are not clear to the reader and in particular the CIC ability in 
identifying optically thin clouds that are missed by simplistic (i.e. based on thresholds) 
methodologies. We also note that in Maestri et al. (2019) a methodology (CCREF) based 
on a combined linear discriminant analysis and support vector machine method is used 
on a similar dataset. Please refer to the cited literature. Some effort will be performed to 
better resume the CIC potentialities in the new version of the current paper.   

 

Fig. 5 suggests that only one wavenumber is needed to distinguish cloudy from clear 
skies. Such a cloud mask has been reported in the literature but is not referenced or 
noted here (e.g. Weaver et al 2017, Atmos. Meas. Tech., 10, 2851–2880, 2017, 
Appendix). Classification using a single wavenumber would be sufficient for all of the 
cold macro-season data. Why is a considerably more complicated method used?  

 

Fig 5 is used for illustrative goals only and shows the Training set mean BTs and their 
standard deviations. The figure just demonstrates what the reader is stating: “ice clouds 
tend to be optically thinner and colder, and liquid clouds tend to be optically thicker and 
warmer on the Antarctic Plateau”. Nevertheless, the mean spectra are not used in any 
part of the classification process. Otherwise, the plotted quantities suggest that a large 
variability exists within the elements composing the classes (note the magnitude of 1 
standard deviation).  

As far as very simple methodologies based on single channels or BT difference 
thresholds, it has been demonstrated that they fail in detecting optically thin clouds 
which are very frequent in the considered experimental conditions.  

 

To distinguish ice cloud from mixed-phase cloud, how many PCs are needed? Is PCA 
justified? Also, it seems odd to first divide cases into clear sky vs ice cloud and confusing 
that these each include mixed-phase. Why not divide first to clear and cloudy? Then 
subdivide cloudy into ice and mixed-phase. Such important details are left unexplored by 
the authors.  

 
The number of the PCA used comes from the empirical function, called the factor 
indicator function (IND), defined by Malinokowski (1977, 2002) and reported in Turner et 
al (2006). It is usually of the order of ten in our case and it represents the number of 
PCs that allows the correct identification of the elements of each training set.  
About the flow of the comparison, a team in one country may decide to do things quite 
differently than a team in another country. There is much to be learned from 
comparisons and discussion. 
 



The authors use PCA to remove noise (Eqns 3-4) using an established method. However, 
Antonelli et al (2004, J Geophys Res 109, D23102), who should be referenced, state that 
the size of the training set should be greater than the number of spectral elements 
(M>N) to most accurately reconstruct the atmospheric signal and most efficiently 
remove noise. Here it appears that M<<N. How does this affect the noise reduction and 
signal reconstruction?  

 

We know the work of Paolo, nevertheless we don’t want to accurately reconstruct the full 
radiometric signal of each selected spectrum. Otherwise, CIC defines a metric based on 
the changes in the main PCs characterizing a set of spectra (the training set spectra) 
when a new element (the analyzed spectrum) is added to the set. The evaluation of the 
change (the modified information content) is assessed always as a comparison with 
respect to the change obtained when a different training set is considered. This is a 
change of metric with respect to previous methods. Please refer to references cited in 
the text.  

 

Antonelli et al (2004) also state that if some spectra are not well-represented by the set 
of spectra used for noise reduction, a larger number of PCs may be needed to properly 
represent those spectra. This seems likely to be the case when the input spectrum is not 
a member of the training set in Eq. (6). How is this handled and how does it impact the 
results?  

 

This is one point that justify the methodology used. Please, see the two answers above. 

 

The authors reduced the dimensionality of the observations by modifying the spectral 
interval of the test set members and re-running the algorithm. Given that the authors 
are already using PCA, and that PCA is typically used for dimensionality reduction, why 
isn’t PCA used for this dimensionality reduction?  

 

PCA, as well as other techniques, could be used to reduce the dimensionality in this 
sense. We have used linear discriminant analysis in Maestri et al. (2019) to this goal. 
However, such a method would select specific wavenumbers along the 
spectrum, according with the highest eigenvectors elements. This is not what we are 
interested in at the moment. For general purpose and to maintain the methodology 
simplicity, we want to select continuous portions of the spectrum. This led the procedure 
to remove the smallest and largest measured wavenumbers which are affected by the 
largest instrument noise. In such a way the maximum amount of information is anyway 
passed to the PCA used in the CIC.  

 

Furthermore, it is not good practice to use the test set to select features (wavenumbers) 
to use. Using the test set to optimize the algorithm exaggerates the accuracy of the 
method and can lead to overfitting. Model development should be done using training or 
validation sets. See, e.g. Ripley, B.D. (1996) Pattern Recognition and Neural Networks, 



Cambridge: Cambridge University Press, p. 354. The data with known labels should be 
split into training, validation, and testing sets. The testing set should be held apart and 
only used to estimate the accuracy of the method. None of the training, testing, or 
validation data should then be included in the analysis. The authors need to clarify which 
data is being used in each step and ensure they are following established practice.  

 

We are aware of the procedure described by the reader and we have used it in the past. 
Nevertheless, the selection process of the input wavenumber interval cannot be properly 
defined as a hyper-parameter setting. It simply reduces the amount of channels ingested 
by the CIC. This is not a parameter that directly affects the behaviour of the 
algorithm. The algorithm operates exactly the same way independently of the selected 
interval. In this sense, a proper validation set is, therefore, not necessary.  

Indeed, splitting what is currently defined as “test set” into two distinct groups of equal 
size (a “validation set” and a “test set”) leads to the same exact results reported in the 
current version of the paper. We can provide these results if needed. The same 
wavenumber interval is selected on the validation set (380-1000 cm-1), and the same 
hit rates are found for the test set, implying the same results on the entire dataset.  

 

More detail is needed to allow the analysis to be repeated.  

It is not clear how the authors handle erroneous data points. One of the reviewers 
pointed out that a data point at the center of the CO2 band is erroneous, at 667 cm-1. 
This is typical with such instruments because calibration is impossible at such 
wavenumbers (see Rowe et al 2011, Optics Express, 19(6), 5451–5463, and Optics 
Express 19(7), 5930-5941). There are many other erroneous brightness temperatures 
evident - for example, none of the BTs below 200 cm-1 appear useable, as well as many 
between 200 and ~350 cm-1, where BTs are very high. How did the authors handle such 
points in their analysis? Were they included or omitted? The authors should briefly 
explain the instrument error characterization and point to a reference with more detail.  

 

Correct. The bad calibration points fall in spectral regions that are not considered in the 
analysis. This is explained in the answers to reviewers 1 and 3 and implemented in the 
new text.  

 

The algorithm description could use some clarification. The development should proceed 
linearly from training to testing to implementation. It seems that what is meant by the 
input spectrum on line 164 varies; this needs to be clarified. For example, it seems the 
SIDs and the CSIDs are developed from the training set first (to get Fig. 4)? How is this 
done? 

 

The request of clarification is not clear to us. The development proceeds exactly as 
described. The CSID definition is part of the optimization process. See the text and 
references. 



 

Finally, the utility of this algorithm seems likely to be specific to the unique conditions on 
the Antarctic Plateau. The authors should discuss whether it would be applicable 
elsewhere.  

 
We respectfully note that the CIC methodology, in less than 3 years, has been applied 
to: 

• Spectral radiance simulations over the globe  
• The airborne TAFTS data 
• The airborne ARIES data  
• Satellite FORUM simulated radiances within the ESA End2End simulator (two 

different instances of sensor are considered plus another ideal sensor) 
• the ground based REFIR-PAD 

It is all in the cited literature. At the moment we are applying the CIC to IASI and 
FIRMOS data.  
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