

1 **Autoxidation of terpenes, a common pathway in tropospheric
2 and low temperature combustion conditions: the case of
3 limonene and α -pinene.**

4 Roland Benoit¹ Nesrine Belhadj^{1,2}, Maxence Lailliau^{1,2}, and Philippe Dagaut¹

5 ¹CNRS-INSIS, ICARE, Orléans, France, roland.benoit@cnrs-orleans.fr, nesrine.belhadj@cnrs-orleans.fr,
6 maxence.lailliau@cnrs-orleans.fr, dagaut@cnrs-orleans.fr

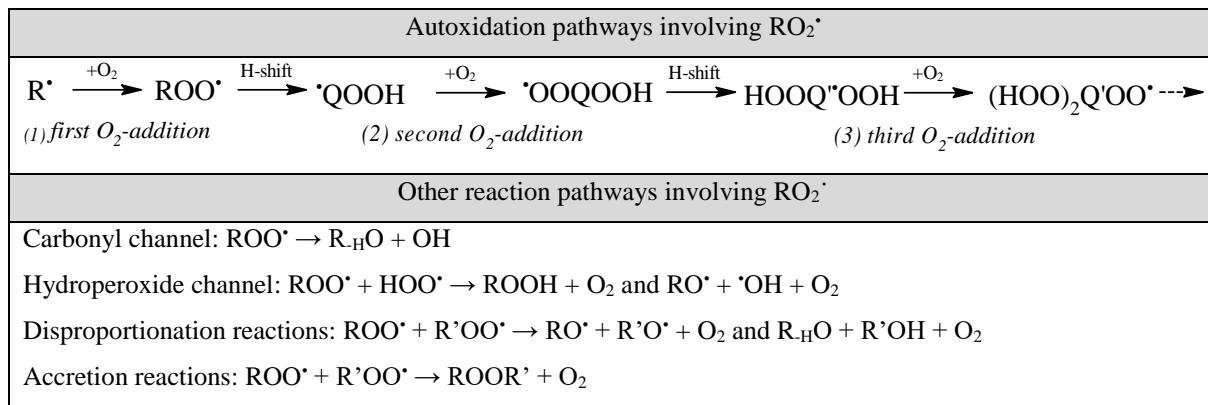
7 ²Université d'Orléans, Orléans, France

8 **Correspondence:** Roland Benoit (roland.benoit@cnrs-orleans.fr)

9

10 **Abstract.**

11 The oxidation of monoterpenes under atmospheric conditions has been the subject of numerous studies. They were
12 motivated by the formation of oxidized organic molecules (OOM) which, due to their low vapor pressure,
13 contribute to the formation of secondary organic aerosols (SOA). Among the different reaction mechanisms
14 proposed for the formation of these oxidized chemical compounds, it appears that the autoxidation mechanism,
15 common to both low-temperature combustion and atmospheric conditions, is important. We used the present
16 combustion data and literature data from tropospheric oxidation studies to investigate possible similarities in terms
17 of observed chemical formulae of OOM. Two terpenes, α -pinene and limonene, among the most abundant biogenic
18 components in the atmosphere were considered. We built an experimental database consisting of literature
19 atmospheric oxidation data and presently obtained combustion data. In order to probe the effects of the type of
20 ionization used in mass spectrometry analyses on the detection of OOM, we used heated electrospray ionization
21 (HESI) and atmospheric pressure chemical ionization (APCI), in positive and negative modes. The oxidation of
22 limonene-oxygen-nitrogen and α -pinene-oxygen-nitrogen mixtures was performed using a jet-stirred reactor at
23 elevated temperature (590 K), a residence time of 2 s, and atmospheric pressure. Samples of the reacting mixtures
24 were collected in acetonitrile and analyzed by high-resolution mass spectrometry (Orbitrap Q-Exactive) after direct
25 injection and soft ionization. This work shows a surprisingly similar set of chemical formulae of OOM and
26 oligomers, formed in cool flames and under simulated atmospheric conditions. Data analysis showed that a non-
27 negligible subset of chemical formulae is common to all experiments, independently of experimental parameters.
28 Finally, this study indicates that more than 40% of the detected chemical formulae in this full dataset can be
29 ascribed to an autoxidation mechanism.


30 **1 Introduction**

31 The links between atmospheric and combustion chemistry have often been studied from the point of view of
32 tropospheric reactions of combustion effluents or pollutants, e.g., oxidation of volatile organic compounds,
33 nitrogen oxides reactions, sulfur chemistry (Barsanti et al., 2017;Shrivastava et al., 2017;Zhao et al., 2018;Bianchi
34 et al., 2019). Climate change and the increase of large wildfire events have profoundly modified the relationship
35 between atmospheric chemistry and combustion at large. Among the factors contributing to climate change,

36 biomass burning is an important source of gases and aerosols in the atmosphere on a regional and global scale.
37 These contributions, estimated at more than 90% for primary aerosols at the global level, have an impact on the
38 chemical composition of the atmosphere (Chen et al., 2017; Andreae, 2019; Fawaz et al., 2021). Furthermore, Van
39 Krevelen analyses of biomass burning samples indicated the presence of HOMs with $O/C > 0.6$ (Smith et al.,
40 2009). When studying the oxidation of chemicals and the formation of SOA in the atmosphere, it becomes
41 necessary to determine the contribution of different oxidation pathways pertaining to atmospheric chemistry,
42 combustion chemistry, or both.

In low-temperature combustion (cool flame) the formation of oxidized organic molecules (OOM) is mainly attributed to autoxidation reactions (Affleck and Fish, 1967; Fish, 1968; Belhadj et al., 2021; Benoit et al., 2021), whereas in atmospheric chemistry, it is only relatively recently that this pathway has been considered (Vereecken et al., 2007; Crounse et al., 2013; Jokinen et al., 2014a; Berndt et al., 2015; Jokinen et al., 2015b; Berndt et al., 2016; Iyer et al., 2021). Also, it has been identified that highly oxygenated molecules (HOMs), a source of secondary organic aerosols (SOA), can result from autoxidation processes (Wang et al., 2021b; Tomaz et al., 2021; Bianchi et al., 2019). Modeling studies complemented by laboratory experiments showed that autoxidation mechanisms proceed simultaneously on different peroxy radicals (RO_2^{\cdot} stands for peroxy radicals) leading to, through isomerization and addition of O_2 , the production of a wide range of oxidized compounds in a few hundred of a seconds (Jokinen et al., 2014a; Berndt et al., 2016; Bianchi et al., 2019). Autoxidation is based on an H-shift and oxygen addition which starts with the initial production of RO_2^{\cdot} . This mechanism can repeat itself several times, yielding HOMs. It can be competitive under atmospheric conditions, in pristine environments, with other reaction pathways involving RO_2^{\cdot} (Bianchi et al., 2019; Vereecken and Nozière, 2020). Scheme 1 presents the autoxidation mechanism and complementary reaction pathways.

57 Scheme 1. Autoxidation mechanism and complementary reaction pathways

58

59 A study published in 2021 showed that the oxidation of alkanes follows this autoxidation mechanism under both
 60 atmospheric and combustion conditions (Wang et al., 2021b). Also, that work confirmed that internal H-shifts in
 61 autoxidation can be promoted by the presence of functional groups, as predicted earlier (Otkjær et al., 2018) for
 62 RO₂· containing OOH, OH, OCH₃, CH₃, C=O, or C=C groups. To further assess the importance of these pathways,
 63 available data must be compared along with their experimental specificities. In laboratory studies under simulated
 64 atmospheric conditions, oxidation occurs at near-ambient temperatures (250–300 K), at atmospheric pressure, in
 65 the presence of ozone and/or OH· radicals (OH· stands for hydroxyl radicals), and with low initial terpene

concentrations (5-50 ppm). In combustion, OH^- , temperature, and pressure are driving autoxidation. Initial reactant concentrations are generally higher compared to atmospheric conditions, so as to compensate for the absence of ozone and/or OH^- as reactant, and get oxidation to proceed, since terpenes, as other hydrocarbons, react very slowly with O_2 . Rising temperature increases isomerization rates and favors autoxidation, at the expense of other possible reactions of RO_2^- (Wang et al., 2021a). In atmospheric chemistry, at near room temperature, autoxidation can be initiated via two reaction mechanisms: reactions with ozone or with the OH^- . Suppression of one of these pathways by scavengers generally changes the amount of chemical compound formed (sometimes a drastic decrease >90% was observed e.g. (Kenseth et al., 2018;Meusinger et al., 2017;Pospisilova et al., 2020), but does not affect the diversity of observed chemical formulae (Zhao et al., 2018;Pospisilova et al., 2020). It has been reported earlier that a temperature rise from 250 to 273K does not affect the distribution of HOMs (Quéléver et al., 2019) whereas Trostl et al. suggested that the distribution of HOMs is affected by temperature, α -pinene or particle concentration (Tröstl et al., 2016). Similarly, the experiments of Huang et al. (Huang et al., 2018) performed at different temperatures (223 K and 296 K) and precursor concentration (0.714 and 2.2 ppm of α -pinene) suggested that the physicochemical properties, such as the composition of the oligomers, can be affected by a variation of temperature. Both in combustion and atmospheric chemistry, autoxidation of carbon skeleton mainly with more than 10 carbon atoms can yield highly oxygenated molecules (HOMs), e.g., compounds containing more than 7 oxygen atoms (Benoit et al., 2021;Bianchi et al., 2019). The term 'HOM' is generally associated with atmospheric chemistry (Bianchi et al., 2019), but this nomenclature does not specify the chemical properties of a compound. In other words, in combustion we can also observe highly oxidized chemical compounds similar to those relevant to atmospheric chemistry. The broad range of chemical molecules formed and the impact of the experimental conditions on their character remain a subject for atmospheric chemistry and combustion chemistry studies. Moreover, whatever the mechanism of aerosol formation, i.e., oligomerization, addition, or accretion, their composition will be linked to that of the initial radicals pool (Tomaz et al., 2021).

In low-temperature combustion, when the temperature is increased, autoxidation rate goes through a maximum between 500 and 670 K, depending on the nature of the fuel (Belhadj et al., 2020;Belhadj et al., 2021), and the rate of formation of HOM also increases (Bianchi et al., 2019). Therefore, temperature has a measurable effect on the amount of HOMs formed (Wang et al., 2021b). In low-temperature combustion chemistry as in atmospheric chemistry, the oxidation of a chemical compound leads to the formation of several thousands of chemical compounds which result from successive additions of oxygen, isomerization, accretion, fragmentation, and oligomerization (Benoit et al., 2021). The exhaustive analysis of chemical compounds remains difficult, in the current state of instrumental limitations. This would consist in analyzing several thousands of molecules in MS^2 mode using separative techniques such as ultra-high pressure liquid chromatography (UHPLC) or ion mobility spectrometry (IMS) (Krechmer et al., 2016;Kristensen et al., 2016). Nevertheless, it is possible to classify these molecular compounds, considering only $\text{C}_x\text{H}_y\text{O}_z$ compounds, according to various criteria accessible via graphic tools representation such as van Krevelen diagrams, double bond equivalent number (DBE), and average carbon oxidation state (OSc) versus the number of carbon atoms (Kourtchev et al., 2015;Nozière et al., 2015). Such postprocessing of large datasets has the advantage of immediately highlighting families of compounds or physicochemical properties such as the condensation of molecules (vapor pressure), the large variety of oxygenated chemical compounds ($\text{C}_x\text{H}_y\text{O}_{1-15}$ in the present experiments) and the formation of oligomers (Kroll et al., 2011;Xie et al., 2020).

106 In addition to the recent studies focusing on the first steps of autoxidation, a more global approach, based on the
107 comparison of possible chemical transformations related to autoxidation in low temperature combustion and
108 atmospheric chemistry, is needed for evaluating the importance of autoxidation under tropospheric and low-
109 temperature combustion conditions. In order to study the effects of ozonolysis and combustion on the diversity of
110 chemical molecules formed by autoxidation, we have selected α -pinene (AP) and limonene (LM), two terpene
111 isomers among the most abundant in the troposphere. These two monoterpenes with their distinctive characters
112 are good candidates for studying autoxidation versus initial chemical structure and temperature. For AP, in addition
113 to the reactivity of its endo-cyclic double bond, chemical compounds arising from ring opening of the cyclobutyl
114 group have been detected, which could explain the diversity of observed oxidation chemical compounds as proposed
115 earlier (Kurtén et al., 2015; Iyer et al., 2021). This large pool of chemical compounds is increased in the case of
116 LM by the presence of two double bonds (Hammes et al., 2019; Jokinen et al., 2015b). Nevertheless, the diversity
117 of oxidation chemical compounds can be compensated by similarities in terms of reaction mechanisms and
118 intermediates formed through autoxidation (Savee et al., 2015).

119 The present work is a prolongation of that published earlier for the oxidation of LM alone (Benoit et al., 2021).
120 We attempted to probe possible similitudes in terms of products' chemical formulae (product signals appearing
121 with the same exact mass) observed under two different experimental conditions, i.e., (i) atmospheric oxidation
122 and (ii) cool flame oxidation of terpenes and link them to common oxidation routes (Scheme 1). AP and LM were
123 oxidized in a jet-stirred reactor at atmospheric pressure, excess of oxygen, and at a temperature of 590 K where
124 the concentration of hydroperoxides and HOMs is maximal, under our experimental conditions. Then, we
125 characterized the impact of using different ionization techniques (HESI and APCI) in positive and negative modes
126 on the pool of detected chemical formulae. The particularities of each ionization mode were analyzed to identify
127 the most suitable ionization technique for exploring the formation of autoxidation chemical compounds under low
128 temperature combustion. Chemical formulae detected here and in atmospheric chemistry studies were compiled
129 and tentatively used to evaluate the importance of autoxidation under both conditions.

130 2 Experiments

131 2.1 Oxidation experiments

132 The present experiments were carried out in a fused silica jet-stirred reactor (JSR) setup presented earlier (Dagaut
133 et al., 1986; Dagaut et al., 1988) and used in previous studies (Dagaut et al., 1987; Benoit et al., 2021; Belhadj et al.,
134 2021). AP and LM were studied separately, AP (+) (Sigma Aldrich, 98%) and LM (R)- (+) (Sigma-Aldrich, >97%),
135 were pumped by an HPLC pump (Shimadzu LC10 AD VP) with an online degasser (Shimadzu DGU-20 A3) and
136 sent to a vaporizer assembly where it was diluted by a nitrogen flow. Each terpene and oxygen, both diluted by
137 N₂, were sent separately to a 42 mL JSR to avoid oxidation before reaching 4 injectors (nozzles of 1 mm I.D.)
138 providing stirring. The flow rates of nitrogen and oxygen were controlled by mass flow meters. Good thermal
139 homogeneity along the vertical axis of the JSR was recorded (gradients of < 1 K/cm) by thermocouple
140 measurements (0.1 mm Pt-Pt/Rh-10% wires located inside a thin-wall silica tube) (Benoit et al., 2021; Belhadj et
141 al., 2021). In order to observe the oxidation of these terpenes, which are not prone to strong self-ignition, the
142 oxidation of 1% of these chemical compounds under lean fuel conditions (equivalence ratio 0.25, 56% O₂, 43%
143 N₂), was carried out at 590 K, atmospheric pressure, and a residence time of 2 s. Under these conditions, the

144 oxidation of the two terpenes is initiated by slow H-atom abstraction by molecular oxygen. The experimental
145 temperature was selected in order to be able to detect the formation of products of oxidation such as
146 ketohydroperoxides and HOMs. Previous studies of ours showed a maximum formation of these chemical products
147 at such a temperature (Belhadj et al., 2021). The fuel's radicals react rapidly with O₂ to form peroxy radicals which
148 undergo further oxidation, characteristic of autoxidation. The absence of ozone, and no need for the addition of a
149 scavenger, allow probing reaction mechanisms and observing chemical compounds potentially specific to
150 autoxidation initiated by OH[·]. A 2 mm I.D. probe was used to collect samples. To measure low-temperature
151 oxidation chemical compounds ranging from early oxidation steps products to highly oxidized molecules, the sonic
152 samples were bubbled in cooled acetonitrile (UHPLC grade ≥99.9%, T= 0°C, 250 mL) for 90 min. The resulting
153 solution was stored in a freezer at -15°C. The stability of the chemical compounds collected in acetonitrile was
154 verified and no detectable changes on a mass spectrum obtained on the orbitrap were observed after more than one
155 month.

156

157 **2.2 Chemical analyses**

158 Analyses of samples collected in acetonitrile were performed by direct sample infusion (rate: 3µL/min and
159 recorded for 1 min for data averaging) in the ionization chamber of a high-resolution mass spectrometer (Thermo
160 Scientific Orbitrap® Q-Exactive, mass resolution 140,000 and mass accuracy <0.5 ppm RMS). Only qualitative
161 measurements were performed here because of missing standards for calibration. Nevertheless, for products with
162 the same exact mass, one can assume the signal increases with concentration. Both heated electrospray ionization
163 (HESI) and atmospheric chemical ionization (APCI) were used in positive and negative modes. HESI settings
164 were: spray voltage 3.8 kV, T vaporizer of 150°C, T capillary 200°C, sheath gas flow of 8 arbitrary units (a.u.),
165 auxiliary gas flow of 1 a.u., sweep gas flow of 0 a.u.. In APCI, settings were: spray voltage 3.8 kV, vaporizer
166 temperature of 150°C, capillary temperature of 200°C, sheath gas flow of 8 a.u., auxiliary gas flow of 1 a.u., sweep
167 gas flow of 0 a.u., corona current of 3µA. In order to avoid transmission and detection effects of ions depending
168 on their mass inside the C-Trap (Hecht et al., 2019), acquisitions with three mass ranges were performed (*m/z* 50-
169 750; *m/z* 150-750; *m/z* 300-750). The upper limit of *m/z* 750 was chosen because of the absence of signal beyond
170 this value. We verified that no significant oxidation occurred in the HESI and APCI ion sources by injecting a
171 LM-ACN mixture. The optimization of the Orbitrap ionization parameters in HESI and APCI did not show any
172 clustering phenomenon for these two terpenes. The parameters evaluated were: injection source, capillary distance,
173 vaporization and capillary temperatures, applied difference of potential, injected volume, flow rate of nitrogen in
174 the ionization source. Positive and negative HESI mass calibrations were performed using Pierce™ calibration
175 mixtures (Thermo Scientific). Chemical compounds with relative intensity less than 1 ppm to the highest mass
176 peak in the mass spectrum were not considered. Nevertheless, it should be considered that some of the chemical
177 formulae reported in this study could result from our experimental conditions (continuous flow reactor, reagent
178 concentration, temperature, reaction time) and to some extent from our acquisition conditions, different from those
179 of the previous studies (Deng et al., 2021;Quéléver et al., 2019;Meusinger et al., 2017;Krechmer et al.,
180 2016;Tomaz et al., 2021;Fang et al., 2017;Witkowski and Gierczak, 2017;Jokinen et al., 2015a;Nørgaard et al.,
181 2013;Bateman et al., 2009;Walser et al., 2008;Warscheid and Hoffmann, 2001;Hammes et al., 2019;Kundu et al.,
182 2012). Indeed, the use of a continuous flow reactor operating at elevated temperature, as well as a high initial

183 concentration of reagents can induce the formation of combustion-specific chemical compounds, which does not
 184 exclude their possible formation under atmospheric conditions.

185 **3 Data Processing**

186 High resolution mass spectrometry (HR-MS) generates a large amount of data that is difficult to fully analyze by
 187 sequential methods. When the study requires the processing of several thousands of molecules, the use of statistical
 188 tools and graphical representation means becomes necessary. In this study, we have chosen to use the van Krevelen
 189 diagram (Van Krevelen, 1950) by adding an additional dimension, the double bond equivalent (DBE). The DBE
 190 number represents the sum of unsaturation and rings present in a chemical compound (Melendez-Perez et al.,
 191 2016).

192
$$\text{DBE} = 1 + \text{C} - \text{H}/2 - \text{O} \quad (1)$$

193 This number is independent of the number of oxygen atoms, but changes with the number of hydrogen atoms.
 194 Decimal values of this number, which correspond to an odd number of hydrogen atoms, were not considered in
 195 this study. Then, duplications of chemical formulae in the O/C vs. H/C space are eliminated. The oxidation state
 196 of carbon (OSc) provides a measure of the degree of oxidation of chemical compounds (alcohols, aldehydes,
 197 carboxylic acids, esters, ethers and ketones, but not peroxides) (Kroll et al., 2011). This provides a framework for
 198 describing the chemistry of organic compounds. It is defined by the following equation:

199
$$\text{OSc} \approx 2 \text{ O/C} - \text{H/C} \quad (2)$$

200 **4 Results and discussion**

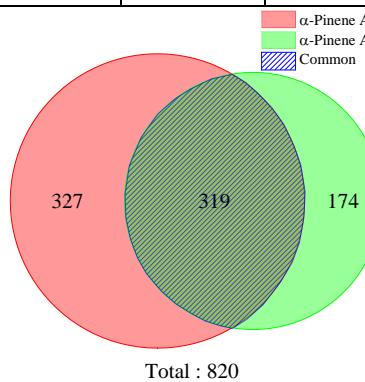
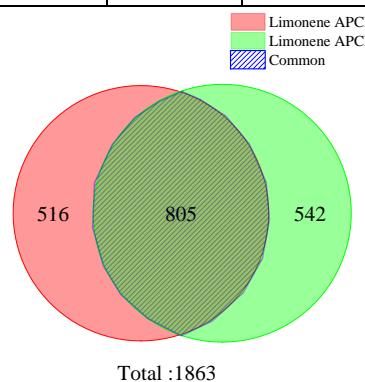
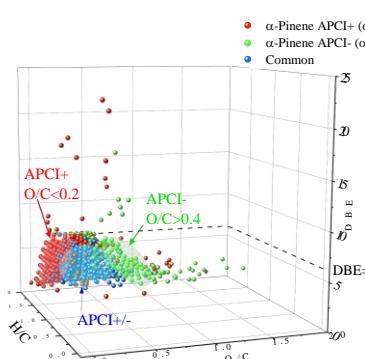
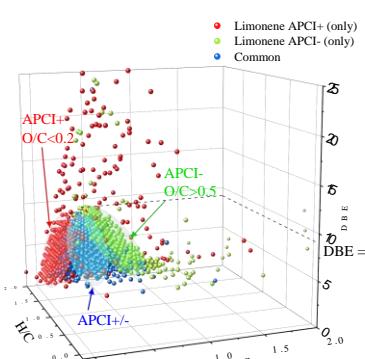
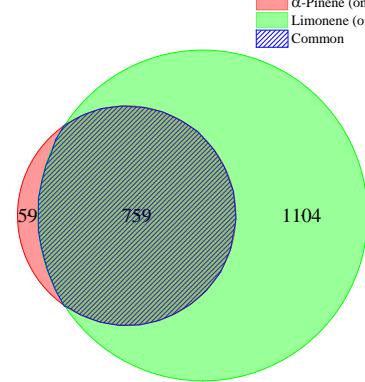
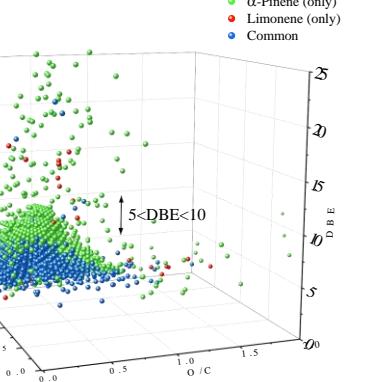
201 **4.1 Characterization of ionization sources**

202 According to the experimental conditions described in Section 2, we obtained a different number of ions depending
 203 on the ionization source and the polarity used. Table 1 shows the number of ions detected according to the
 204 experimental conditions.

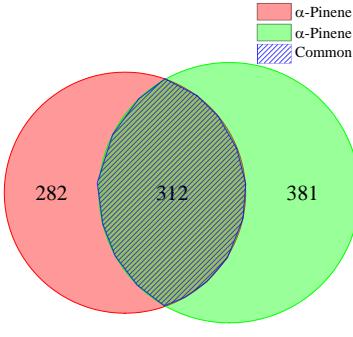
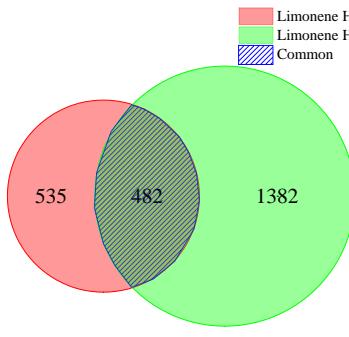
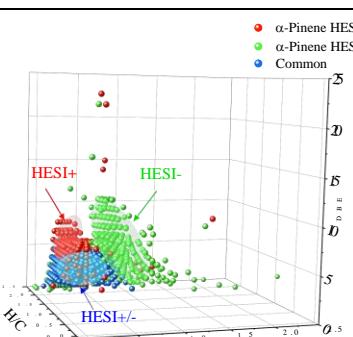
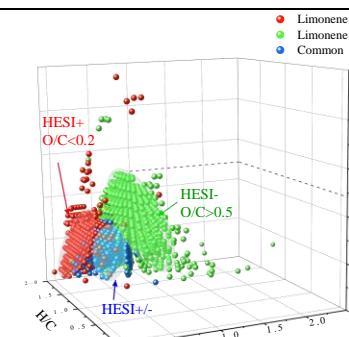
205 **Table 1.** Number of ions detected for each source in positive and negative modes.

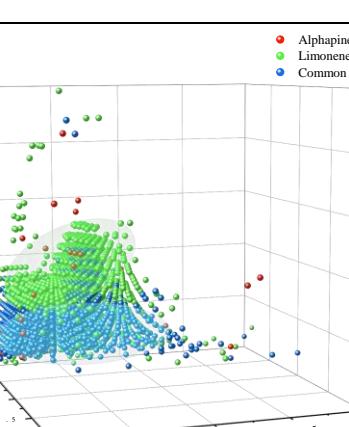
Ionization source	α -Pinene		Limonene	
	646 (+)	503(-)	1321(+)	1346(-)
APCI	646 (+)	503(-)	1321(+)	1346(-)
HESI	594(+)	693(-)	1017(+)	1864(-)

206







207 The sets of chemical compounds obtained were compared (under their molecular form) thanks to Venn diagrams.
 208 These sets have common data, but also specific chemical formulae. For a given ionization source, less than 50%
 209 of the chemical formulae are common to both polarities. In other words, between 30 and 50% of molecular
 210 compounds are ignored when using a single polarity. It is therefore essential to use both polarities in order to better
 211 describe the chemical compounds present. In negative mode, the HESI source data were compared to the APCI
 212 data (Tables 2 and 3), showing an increase of the number of chemical formulae detected by 20 to 30%. This

213 increase is characterized by a better detection of negatively ionized chemical compounds and those with a higher
214 unsaturation number (DBE). In order to evaluate further the interest for using these ionization sources, we
215 compiled these data in Venn diagrams and proposed a visualization of these sets with a van Krevelen
216 representation; we added the number of DBE in the third dimension. These results are presented in Tables 2 and
217 3.

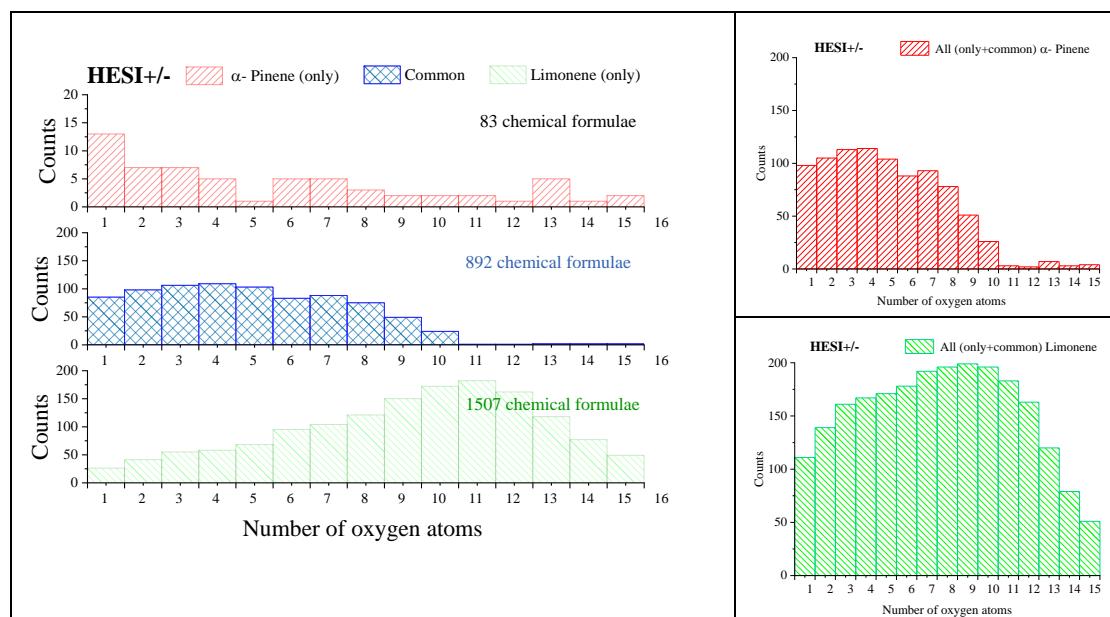

218 In positive ionization mode, independently of the ionization source and in addition to the common molecular
219 formulae, we detected chemical compounds with an O/C ratio < 0.2 whereas in the negative ionization mode, we
220 detected molecular formulae with an O/C ratio > 0.5 . In addition to these observations, we noted that HESI is more
221 appropriate for studying chemical compounds with a large number of unsaturation (DBE > 5). Finally, for an
222 optimal detection of the oxidation chemical compounds, it is necessary to consider the transmission limits of the
223 C-Trap. Here, we could increase by more than 60% the number of molecular formulae detected using several mass
224 ranges for data acquisition. The most appropriate ionization polarity to be used is tight to chemical functions
225 present in chemical compounds to be detected. We could increase by 30 to 100% the number of chemical formulae
226 detected by using both positive and negative ionization modes. The ionization source used is also important. We
227 could increase the number of detected chemical formulae by 20 to 30% using HESI. We believe that this approach
228 to data validation and these results, although specific to this study, are applicable to any characterization by
229 Orbitrap. To illustrate the present results, spectra of AP and LM acquired with a HESI source in negative mode
230 are given in supplement (Fig. S1).

231

232 **Table 2.** Representation of the mass spectrometry data characterizing the oxidation of AP and LM
 233 (ionization source: APCI positive and negative mode, JSR experiments). Enlarged formats of the 3D
 234 graphs are presented in supplement S2.

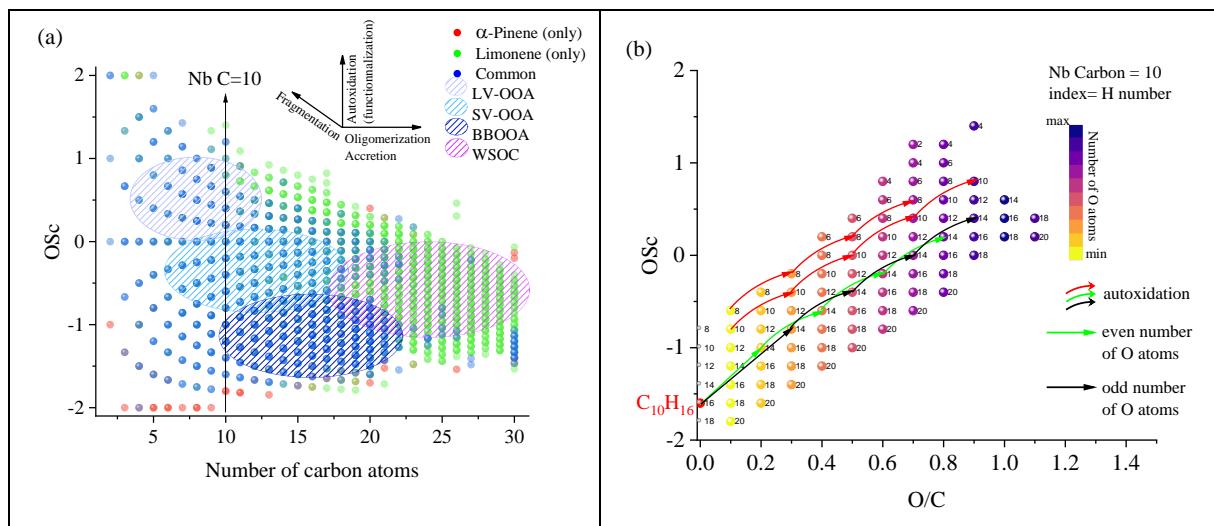
	α-Pinene			Limonene		
Source and mode	APCI⁺		APCI⁻	APCI⁺		APCI⁻
Number of compounds	646		503	1321		1346
Distribution	specific to positive mode 327	common 319	specific to negative mode 174	specific to positive mode 516	common 805	specific to negative mode 542
Venn graph	 Total : 820			 Total : 1863		
VK vs DBE	 Total : 1920					

237 **Table 3.** Representation of the mass spectrometry data characterizing the oxidation of α -pinene and
 238 limonene (ionization source: HESI positive and negative modes, JSR experiments). Enlarged formats
 239 of the 3D graphs are presented in supplement S3.

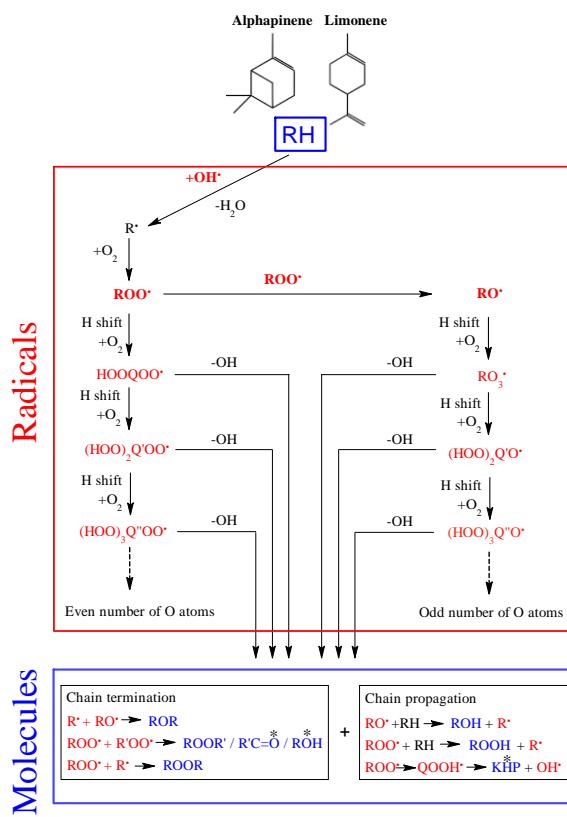

	α -Pinene			Limonene		
Source and mode	HESI⁺		HESI⁻	HESI⁺		HESI⁻
Number of compounds	594		603	1017		1864
Distribution	specific to positive mode 282	common 312	specific to negative mode 381	specific to positive mode 353	common 482	specific to negative mode 1342
Venn Graph	 Total : 975			 Total : 2399		
VK vs DBE	 Total : 2482					

240
241

242


243 **4.2 Autoxidation chemical compounds detected in a JSR**

244 In order to compare the oxidation of AP and LM, we compiled the positive and negative ionization data obtained
 245 with APCI (Table 2) and HESI (Table 3) ionization sources to obtain a more exhaustive database. For the APCI
 246 and HESI sources, we distinguished three datasets, two of which are specific to the oxidation of AP and LM and
 247 one which is common to both isomers. In the following, the name "only" will be used to describe the molecules
 248 specific to the oxidation of one of the terpenes. This common dataset represents more than 90% of the chemical
 249 formulae identified in AP oxidation samples, detected with both APCI and HESI. For LM, where the number of
 250 identified chemical formulae is greater, this common dataset ranges between 68% in APCI and 37% in HESI. In
 251 these two cases, the relatively low residence time (2 seconds) and the diversity of the chemical formulae obtained
 252 show that the oxidation of these two terpenes leads to the opening of the ring, a phenomenon also observed in
 253 atmospheric chemistry (Berndt et al., 2016; Zhao et al., 2018; Iyer et al., 2021). Concerning the molecular formulae
 254 common to both terpenes, Figure 1 shows that they are limited to 10 oxygen atoms. This limit is linked to AP
 255 whose oxidation beyond 10 oxygen atoms remains low (less than 2% of the totality of the observed chemical
 256 formulae for this terpene). The autoxidation will allow keeping this similarity in the different steps of the oxidation
 257 by simple addition of two atoms of oxygen. In the case of LM, the presence of an exocyclic double bond will
 258 increase, in a similarly to atmospheric chemistry conditions (Kundu et al., 2012), the possibilities of oxidation and
 259 accretion. It remains however impossible, considering the size of the sets and the diversity of the isomers, to
 260 formalize all the reaction mechanisms. Nevertheless, the formation of oxidized chemical compounds can be
 261 described with the help of graphical tools. The dispersion of the number of oxygen atoms per molecule shows for
 262 example that LM oxidizes more than AP (Tables 2 and 3). In the case of LM, using a HESI source, an oxygen
 263 number of up to 15 is measured, with maximum counts recorded for 10 O-atoms (Fig. 1), whereas it remains
 264 mostly less than or equal to 10 for AP (Fig. 1). Moreover, this graph shows, for the chemical compounds specific
 265 of LM oxidation, a distribution centered on 11 oxygen atoms with carbon skeletons probably resulting from
 266 accretion.


267
 268 **Figure 1:** Distribution of AP and LM autoxidation chemical compounds as a function of their oxygen content
 269 (ionization source: HESI, combined positive and negative modes data).

270 To verify this accretion hypothesis, we can plot the OSc as a function of the number of carbon atoms or the O/C
 271 ratio at fixed number of C-atoms (Fig. 2). One can visualize the evolution of the molecular oxidation for each
 272 carbon skeleton and the formation of oligomers. Chemical compounds which are unique to one of the isomers, or
 273 common to both are differentiated using different colors. In addition to the autoxidation represented by the vertical
 274 axes for a given number of carbon atoms (Fig. 2a), we observe mechanisms of fragmentation, accretion and
 275 oligomerization between the carbon skeleton. These reaction mechanisms contribute to forming families according
 276 to the rate of oxidation and the size of their carbon skeleton. The increase in the number of oxygen atoms, but also
 277 of carbon atoms will decrease chemical compounds volatility. We distinguish four families: low volatile
 278 oxygenated organic aerosols (LV-OOA), semi-volatile oxygenated organic aerosols (SV-OOA), biomass burning
 279 organic aerosols (BBOA) and water-soluble organic carbons (WSOC) following a classification proposed in the
 280 literature (Kroll et al., 2011). If we analyze the two sets of molecules from the APCI and HESI sources, positive
 281 and negative ionization modes combined, we find that nearly 73% of the molecules are linked to each other by a
 282 single difference of 2 oxygen atoms which reflects an autoxidation mechanism (Fig. 3).

283 **Figure 2:** Overview of the distribution of LM and AP oxidation chemical compounds observed in a JSR: (a) OSc
 284 versus carbon number in detected chemical formulae from APCI and HESI data. (b) OSc versus O/C atomic ratio
 285 for a carbon number of 10; index of the chemical compounds: number of hydrogen atoms. Arrows indicate
 286 autoxidation from a C_6H_{16} isomer, according to the oxygen parity in chemical compounds.

287 We can measure the amplitude of autoxidation for each carbon skeleton from the OSc vs. O/C space. For the two
 288 terpenes, for which the initial carbon number (C) is equal to 10, one can observe (Fig. 2b) two autoxidation routes
 289 with an even and odd number of oxygen atoms. This parity distinction is initially present for the two main radicals,
 290 ROO^\cdot and RO^\cdot , responsible for autoxidation. However, the termination and propagation reactions will change the
 291 oxygen parity to form a new distribution where the parity links between radicals and molecules are lost, making
 292 any interpretation of radicals oxidation route impossible (Fig. 3). The autoxidation mechanisms indicated by
 293 arrows in Figure 2b characterize systematic peroxy chain terminations which do not change oxygen parity. HESI
 294 data showed an equivalent distribution of the two oxygen parities in chemical compounds (odd: 51%; even 49%)
 295 therefore confirming a lack of selectivity of the reaction mechanisms with respect to the parity of the radicals.

296

297 **Figure 3:** Autoxidation reaction mechanisms in combustion (left) and in the atmosphere (left and right). * indicates
 298 a change in number of oxygen atoms.

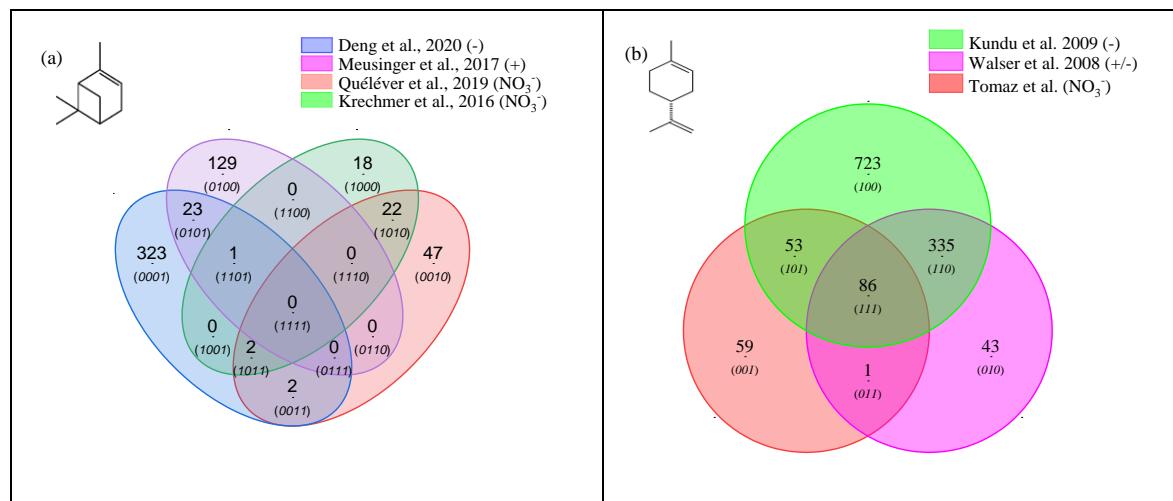
299 4.3 Combustion versus atmospheric oxidation

300 We have explored potential chemical pathways related to autoxidation in the previous section. For this purpose,
 301 we have performed experiments under cool flame conditions (590 K). This autoxidation mechanism is also present
 302 in atmospheric chemistry, but it is only recently that it has been found that this mechanism could be one of the
 303 main formation pathways for SOA (Savee et al., 2015). Studies have described this mechanism in the case of
 304 atmospheric chemistry with the identification of radicals and molecular compounds (Tomaz et al., 2021). However,
 305 previous studies mainly focused on the initial skeletons of the 10-carbon terpenes, whereas the other carbon
 306 skeletons are also concerned by autoxidation. It is therefore useful to evaluate the proportion of chemical
 307 compounds of autoxidation among the total chemical compounds formed.

308 We propose a new approach which consists in assessing a set of molecules mainly resulting from autoxidation
 309 against different sets of experimental studies related to atmospheric chemistry. The objective is to compare the
 310 similarity between these conditions on the basis of autoxidation by considering different experimental parameters
 311 chosen for their diversity. For this purpose, we selected, a HESI ionization source, better adapted to the
 312 electronegativity of the oxidized molecules, as well as to higher m/z . Moreover, we have already shown in this
 313 paper that the HESI (+/-) ionization source is better suited for detecting autoxidation chemical compounds
 314 (detection of 96% of the total chemical formulae observed in autoxidation).

315 Among published atmospheric chemistry studies of terpenes oxidation, we have selected 15 studies, 4 for AP and
 316 11 for LM. The data were acquired using different experimental procedures (methods of oxidation, techniques of
 317 characterization). Table 4 summarizes all the experimental parameters of the selected studies.

318 **Table 4.** Experimental settings of 15 oxidation studies of two terpenes under atmospheric conditions and cool
 319 flames.


Reference	Oxidation mode	Sampling	Experimental setup	Concentrations of reactants	Ionization /source	Instrument	Chemical formulae
α-Pinene							
Y. Deng et al. (2021)	Dark ozonolysis seed particles OH scavenger	online	Teflon bag; 0.7m ³	3.3±0.6 ncps ppbv ⁻¹ AP	ESI	ToF-MS	351
Quéléver et al. (2019)	Ozonolysis	online	Teflon bag 5 m ³	10 & 50 ppb AP	NO ₃ ⁻ (CI)	CI-APi-TOF	68
Meusinger et al. (2017)	Dark Ozonolysis OH scavenger no seed particles	offline	Teflon bag 4.5 m ³	60 ppb AP	Proton transfer	PTR-MS-ToF	153
Krechmer et al. (2016)	Ozonolysis	offline	PAM Oxidation reactor	Field measurement	ESI (-) and NO ₃ ⁻ (CI)	CI-IMS-ToF	43
This work	Cool-flame autoxidation	offline	jet-stirred reactor	1%, AP No ozone	APCI(3kV) HESI (3kV)	Orbitrap® Q-Exactive	820 (APCI) 975 (HESI)
Limonene							
Krechmer et al. (2016)	Ozonolysis	offline	PAM Oxidation reactor	not specified	ESI (-) and NO ₃ ⁻ (CI)	CI-IMS-ToF	63
Tomaz et al. (2021)	Ozonolysis	online	flow tube reactor (18 L)	45-227 ppb LM	NO ₃ ⁻ (CI) - Neg	Orbitrap® Q-Exactive	282
Fang et al. (2017)	OH-initiated photooxidation dark ozonolysis	online	smog chamber	900-1500 ppb LM	UV; 10 eV	Time-of-Flight (ToF)	17
Witkowski and Gierczak (2017)	Dark ozonolysis	offline	flow reactor	2 ppm, LM	ESI,4.5 kV	Triple quadrupole	12
(Jokinen et al., 2015b)	Ozonolysis	online	flow glass tube	1-10000 x10 ⁹ molec.cm ⁻³ , LM	chemical ionization	Time-of-Flight (ToF)	11
Nørgaard et al. (2013)	Ozone (plasma)	online	direct on the support	850 ppb ozone 15-150 ppb LM	plasma	Quadrupole time-of-flight (QToF)	29
Bateman et al. (2009)	Dark and UV radiations ozonolysis	offline	Teflon FEP reaction chamber	1 ppm ozone 1 ppm LM	modified ESI (+/-)	LTQ-Orbitrap Hybrid Mass (ESI)	924
Walser et al. (2008)	Dark ozonolysis	offline	Teflon FEP reaction chamber	1-10 ppm ozone 10 ppm LM	ESI (+/-); 4.5 kV	LTQ-Orbitrap Hybrid Mass (ESI)	465
Warscheid and Hoffmann (2001)	Ozonolysis	online	Smog chamber	300-500 ppb LM	APCI; 3kV	Quadrupole ion trap mass	21
Hammes et al. (2019)	Dark ozonolysis	online	flow reactor	15, 40, 150 ppb LM	²¹⁰ Po α -	HR-ToF-CIMS	20
Kundu et al. (2012)	Dark ozonolysis	offline	Teflon reaction chamber	250 ppb ozone 500 ppb LM	ESI; 3.7 and 4 kV	LTQ FT Ultra, Thermo Sct (ESI)	1199
This work	Cool-flame autoxidation	offline	jet-stirred reactor	1%, LM No ozone	APCI(3kV) HESI (3kV)	Orbitrap® Q-Exactive	1863(APCI) 2399(HESI)

321 The data are from the articles or files provided in the Supplementary S4. In these studies, oxidation was performed
 322 mostly by ozonolysis (Fang et al., 2017) with different experimental conditions that gather the main methods
 323 described in the literature: ozonolysis, dark ozonolysis, ozonolysis with OH scavenger, ozonolysis with or without
 324 seed particles. We considered that the methods of analysis by mass spectrometry did not modify the nature of the
 325 chemical species but only their relative importance, because of the type of ionization and the sensitivity of the
 326 instruments. The combination of data obtained using (+/-) HESI gives a rather complete picture of the autoxidation
 327 chemical compounds.

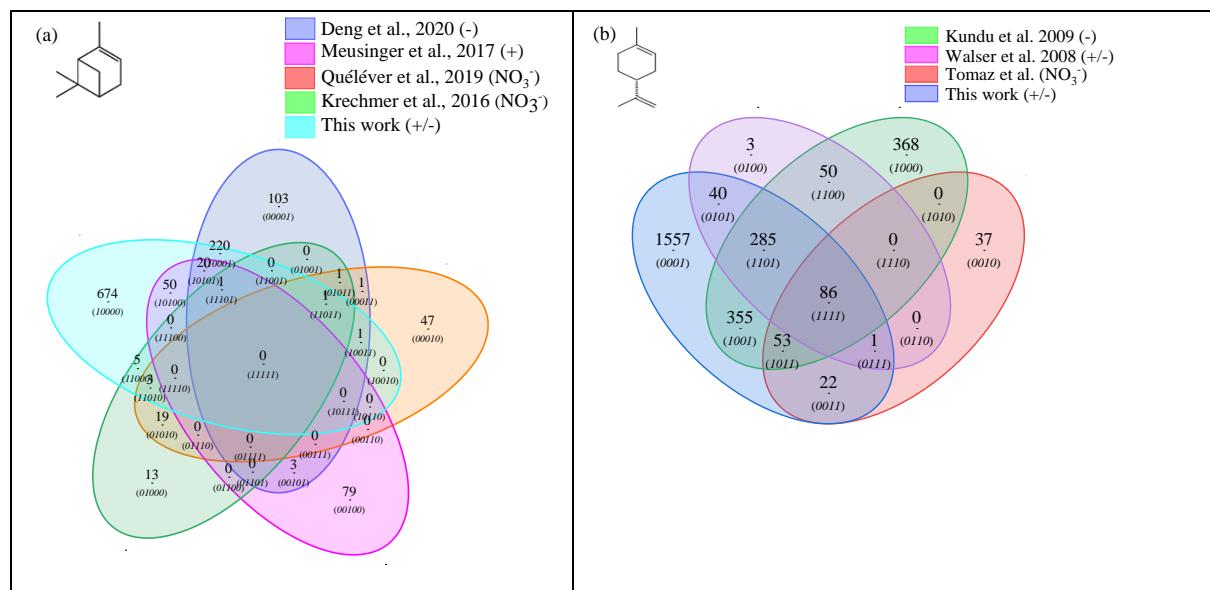
328 First, we compared the data from ozonolysis studies of each terpene and identified similarities through a Venn
 329 diagram. For studies with two ionization sources, duplicate chemical formulae were removed. We selected the
 330 three most representative studies, by the number of chemical formulae detected. Then, we compared the set of
 331 chemical formulae identified after ozonolysis to those produced in low-temperature combustion. The objective
 332 was (i) to highlight similarities in terms of chemical compounds generated by the two oxidation modes and (ii) to
 333 identify data resulting from autoxidation.

334 For AP oxidation, the four studies identified 566 chemical formulae, all polarities combined. Only the study by
 335 (Meusinger et al., 2017) was performed in positive mode and none of the studies reported data obtained with two
 336 ionization modes (+/-). For LM oxidation, the three studies identified 1862 chemical formulae. Only the studies
 337 by (Walser et al., 2008; Bateman et al., 2009) used (+) and (-) ionization modes. In the case of LM oxidation, for
 338 which accretion is more important than for AP, and for which a greater number of chemical formulae were
 339 identified, the similarity is more important. These results are presented in Figure 4 where the ionization polarity
 340 used in each study is specified.

341

342 **Figure 4:** Venn diagrams comparing the oxidation results from ozonolysis of (a) AP and (b) LM (see conditions
 343 in Table 1). Each digit of the binary numbers in parentheses identifies the datasets being compared.

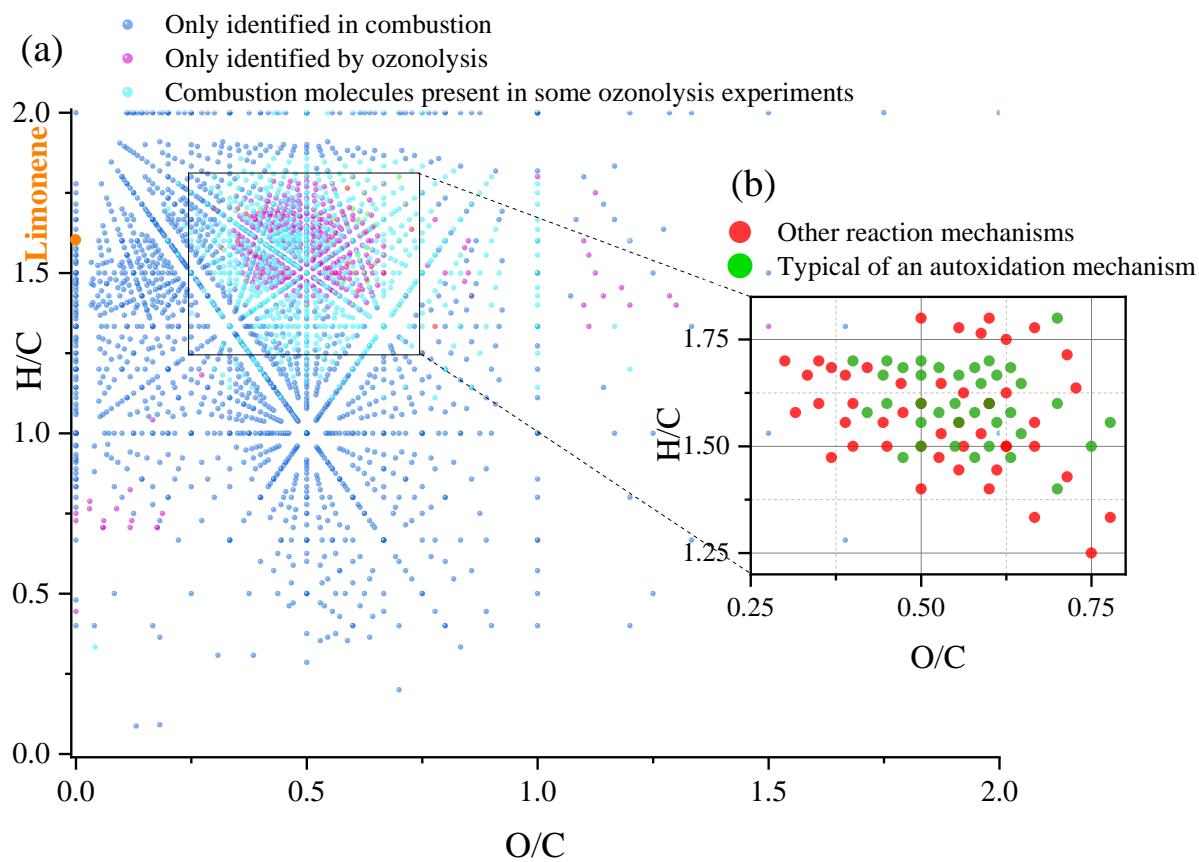
344 For α -pinene, no global similarity is observed for the detected chemical formulae. Different hypotheses can be
 345 offered to explain this result. Among them, the number of chemical formulae identified per study remains limited
 346 (a few dozen to several hundreds) and these small datasets are sometimes restricted to specific mass ranges (e.g.
 347 C_{10} to C_{20} (Quéléver et al., 2019)). In the case of studies carried out with an NO_3^- source, sensitive to HOMS,


348 produced preferentially by autoxidation, we note that nearly 50% of the chemical formulae (10/22) are linked by
 349 a simple difference of 2 oxygen atoms.

350 For LM, 86 chemical formulae are common to the three studies considered here. In this dataset, nearly 43% of the
 351 chemical formulae present a relation similar to that of autoxidation (simple difference of two oxygen atoms) with
 352 less than 5% of fragments (Nb C<10). This result seems to indicate that autoxidation dominates.

353 Then, one can ask if reaction mechanisms common to atmospheric and combustion chemistry can generate, despite
 354 radically different experimental conditions, a set of common chemical formulae and if in this common dataset, a
 355 common link, characteristic of autoxidation, is observable?

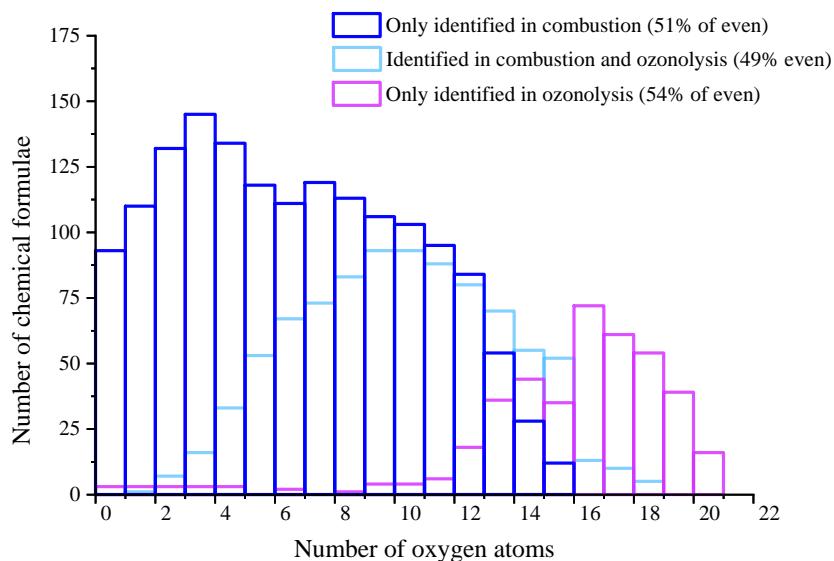
356 To address that question, we compared all the previous results, for AP and LM to those obtained under the present
 357 combustion study. The comparisons were made using HESI data. One should remember that the oxidation
 358 conditions in a JSR were chosen in order to maximize low-temperature autoxidation. Again, we used Venn
 359 diagrams to analyze these datasets composed of 1590 chemical formulae in the case of AP and 2857 chemical
 360 formulae in the case of LM. The results of these analyses are presented in Figure 5.


361 It turned out that 301 chemical formulae for AP and 735 chemical formulae for LM were identified to be common
 362 to oxidation by ozonolysis and combustion. This represents 31% of the chemical formulae for the ozonolysis of
 363 AP and 31% for those of LM ozonolysis. For AP, the similarities compared to combustion are specific to each
 364 study: 69% (Deng et al., 2021), 46% (Meusinger et al., 2017), 7% (Quéléver et al., 2019), 23% (Krechmer et al.,
 365 2016). Chemical formulae common to all studies were not identified. This may be due to a partial characterization
 366 of the chemical formulae, a weaker oxidation of AP with an ionization mode less favorable to low molecular
 367 weights.

368 **Figure 5:** Venn diagrams comparing the oxidation results from ozonolysis and combustion of (a) AP and (b) LM
 369 (see conditions in Table 1).

370 For LM, the similarities between oxidation by ozonolysis and combustion are more important and less spread out.
 371 They represent for the different studies: 65% (Kundu et al., 2012), 88% (Walser et al., 2008), 81% (Tomaz et al.,

372 2021). Moreover, there is a common dataset of 86 chemical formulae which can derive from autoxidation
 373 mechanisms. Whereas different reaction mechanisms can cause the observed similarities, the preponderance of
 374 autoxidation in cool flame combustion is obvious (Affleck and Fish, 1967; Fish, 1968). In atmospheric chemistry,
 375 this reaction mechanism remains competitive or dominates (Crounse et al., 2013; Jokinen et al., 2014b). If we
 376 search for an autoxidation link between these 86 chemical formulae, i.e., $C_nH_mO_x$ to $C_nH_mO_{x+2}$, we observe that
 377 40% of these chemical formulae meet this condition (Fig. 6b). Indeed, a difference of two oxygen atoms, at
 378 constant number of carbon and hydrogen atoms is observed. In order to visualize the 'autoxidation' links between
 379 these chemical compounds, a three dimensional graph is presented in the Supplements (Fig S5). More precisely,
 380 these molecules are centered in a van Krevelen diagram on the ratios $O/C=0.6$ and $H/C=1.6$, in the range $0.25 <$
 381 $O/C < 0.8$ and $1.25 < H/C < 1.85$. All oxidized molecules associated with this dataset are presented in Figure 6.
 382 The dispersion of the chemical formulae, far from being random, remains consistent with an autoxidation
 383 mechanism where the number of carbon atoms is constant.



384

385 **Figure 6:** Van Krevelen diagram showing (a) specific and common chemical formulae detected after the
 386 oxidation of LM by ozonolysis and combustion and (b) the 86 chemical formulae common to all studies.

387 A 3-D representation of all LM oxidation data is given in Fig. S6 (Supplement) where DBE is used as third
 388 dimension. From that figure, one can note that chemical compounds with higher DBE are preferably formed under
 389 JSR conditions, i.e. at elevated temperature. These chemical formulae could correspond to carbonyls and / or cyclic
 390 ethers ($\text{QOOH} \rightarrow \text{carbonyl} + \text{alkene} + \text{OH}$ and / or cyclic ether + OH).

391 Specificities and similarities of these two oxidation modes were further investigated by plotting the distribution of
 392 the number of oxygen atoms in detected chemical formulae (Fig. 7). Indeed, the distribution of the number of
 393 oxygen atoms allows, in addition to the Van Krevelen diagram, to provide some additional details on these two
 394 modes of oxidation. It is in ozonolysis that we observe the chemical formulae having the largest number of oxygen
 395 atoms. There, oxidation proceeds over a long reaction time where the phenomenon of aging appears by promoting
 396 accretion or oligomerization. Whereas a short residence time (2 s) was used in JSR experiments. A short residence
 397 time should limit accretion which is favored under simulated atmospheric oxidation experiments performed over
 398 long reaction times. In combustion, the number of oxygen atoms remains limited to 18, with a lower number of
 399 detected chemical formulae compared to the case of ozonolysis. However, it is in combustion that we observe the
 400 highest O/C ratios, indicating the formation of the most oxidized chemical compounds. This difference, however,
 401 does not affect the similarities between the chemical formulae detected in the two modes of oxidation. Finally, the
 402 analysis of the parities in oxygen atoms, very similar in the three datasets, confirms that the reaction mechanisms
 403 presented in Figure 3 do not allow a simple link to be established between the parity of radicals and that of chemical
 404 compounds.

405

406 **Figure 7:** Oxygen number distribution for all the molecules identified for the oxidation of LM: only in combustion,
 407 only in ozonolysis and common to both processes. For each of these distributions, the parity in oxygen number is
 408 specified

409 4.3 Atmosphere implication

410 While this study has shown similarities in oxidation chemistries under atmospheric and cool flame
 411 conditions, and considering recent findings in biomass burning (Smith et al., 2009) and large wildfires
 412 (Khaykin et al., 2020; Ohneiser et al., 2020) studies, it would be interesting to apply and extend the
 413 analytical procedure developed in the present work to other chemical systems. One could investigate the
 414 chemical reaction mechanisms involved in biomass burning. For example, it has been reported (Smith
 415 et al., 2009) the detection of HOMs in aerosol samples generated by biomass burning, consistent with

416 other measurements (Oros and Simoneit, 2001;Hays et al., 2002;Mazzoleni et al., 2007;Iinuma et al.,
417 2007). One could then propose potential chemical compounds to be tracked, e.g., in tropospheric field
418 measurements and in balloon-borne air sampling since biomass burning aerosols can be transported far
419 from their emission area and to high altitude.

420 **5 Conclusion**

421 We have analyzed and compared, thanks to different mathematical and visualization tools, the oxidation of AP
422 and LM under simulated tropospheric and cool flame oxidation conditions. We have restricted the field of this
423 study to organic compounds ($C_nH_yO_z$) in order to study specifically autoxidation. This work is in the continuity of
424 recently published studies which established the importance of autoxidation under tropospheric oxidation and low-
425 temperature combustion conditions. Faced with the analytical limits of the chemical speciation of thousands of
426 molecules, and in order to complete the work carried out on the reaction mechanisms of the first steps of oxidation,
427 we have developed a global approach based on the study of families of chemical compounds present in these large
428 sets (van Krevelen diagram, oxygen number distribution, oxidation state of carbon -OSc, chemical relationship
429 between molecules). We selected existing databases on ozonolysis with a purposive diversity of experimental
430 conditions and compared these data to those obtained in low-temperature combustion conditions where
431 autoxidation is important (cool flame combustion at 590 K). We showed that a significant portion of the chemical
432 compounds were common to both atmospheric and combustion products. Surprisingly, the numerous oxidation
433 mechanisms and the isomerization of chemical compounds proceeding under these two conditions did not lead to
434 diverging data, but, on the contrary, to similarities. More than 40% of the chemical formulae detected in
435 combustion chemistry experiments using a JSR have been detected in the studies carried out under atmospheric
436 conditions. Finally, we have outlined the existence of a substantial common dataset of autoxidation products. This
437 result tends to show that autoxidation is indeed inducing similarity between atmospheric and combustion chemical
438 compounds. This work could be extended by studying in detail, the formation of HOMs during, biomass fire
439 reported earlier (Smith et al., 2009).

440

441 **Acknowledgements**

442 The authors gratefully acknowledge funding from the Labex Caprysses (ANR-11-LABX-0006-01), the Labex
443 Voltaire (ANR-10-LABM/zX-100-01), CPER, and EFRD (PROMESTOCK and APPROPOR-e projects). We
444 also thank Matthieu RIVA for sharing his experimental data on LM oxidation.

445

446 **References**

447 Affleck, W. S., and Fish, A.: Two-stage ignition under engine conditions parallels that at low
448 pressures, *Symposium (International) on Combustion*, 11, 1003-1013, 10.1016/S0082-
449 0784(67)80227-3, 1967.

450 Andreae, M. O.: Emission of trace gases and aerosols from biomass burning – an updated
451 assessment, *Atmos. Chem. Phys.*, 19, 8523-8546, 10.5194/acp-19-8523-2019, 2019.

452 Barsanti, K. C., Kroll, J. H., and Thornton, J. A.: Formation of Low-Volatility Organic Compounds in the
453 Atmosphere: Recent Advancements and Insights, *J Phys Chem Lett*, 8, 1503-1511,
454 10.1021/acs.jpclett.6b02969, 2017.

455 Bateman, A. P., Nizkorodov, S. A., Laskin, J., and Laskin, A.: Time-resolved molecular characterization
456 of limonene/ozone aerosol using high-resolution electrospray ionization mass spectrometry,
457 *Physical Chemistry Chemical Physics*, 11, 7931-7942, 10.1039/B905288G, 2009.

458 Belhadj, N., Benoit, R., Dagaut, P., Lailliau, M., Serinyel, Z., Dayma, G., Khaled, F., Moreau, B., and
459 Foucher, F.: Oxidation of di-n-butyl ether: Experimental characterization of low-temperature
460 products in JSR and RCM, *Combustion and Flame*, 222, 133-144,
461 10.1016/j.combustflame.2020.08.037, 2020.

462 Belhadj, N., Lailliau, M., Benoit, R., and Dagaut, P.: Experimental and kinetic modeling study of n-
463 hexane oxidation. Detection of complex low-temperature products using high-resolution mass
464 spectrometry, *Combustion and Flame*, 233, 111581, 10.1016/j.combustflame.2021.111581, 2021.

465 Benoit, R., Belhadj, N., Lailliau, M., and Dagaut, P.: On the similarities and differences between the
466 products of oxidation of hydrocarbons under simulated atmospheric conditions and cool flames,
467 *Atmos. Chem. Phys.*, 21, 7845-7862, 10.5194/acp-21-7845-2021, 2021.

468 Berndt, T., Richters, S., Kaethner, R., Voigtländer, J., Stratmann, F., Sipilä, M., Kulmala, M., and
469 Herrmann, H.: Gas-Phase Ozonolysis of Cycloalkenes: Formation of Highly Oxidized RO₂ Radicals
470 and Their Reactions with NO, NO₂, SO₂, and Other RO₂ Radicals, *The Journal of Physical Chemistry*
471 A, 119, 10336-10348, 10.1021/acs.jpca.5b07295, 2015.

472 Berndt, T., Richters, S., Jokinen, T., Hyttinen, N., Kurtén, T., Otkjær, R. V., Kjaergaard, H. G.,
473 Stratmann, F., Herrmann, H., Sipilä, M., Kulmala, M., and Ehn, M.: Hydroxyl radical-induced
474 formation of highly oxidized organic compounds, *Nature Communications*, 7, 13677,
475 10.1038/ncomms13677, 2016.

476 Bianchi, F., Kurtén, T., Riva, M., Mohr, C., Rissanen, M. P., Roldin, P., Berndt, T., Crounse, J. D.,
477 Wennberg, P. O., Mentel, T. F., Wildt, J., Junninen, H., Jokinen, T., Kulmala, M., Worsnop, D. R.,
478 Thornton, J. A., Donahue, N., Kjaergaard, H. G., and Ehn, M.: Highly Oxygenated Organic Molecules
479 (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals: A Key Contributor to Atmospheric
480 Aerosol, *Chemical Reviews*, 119, 3472-3509, 10.1021/acs.chemrev.8b00395, 2019.

481 Chen, J., Li, C., Ristovski, Z., Milic, A., Gu, Y., Islam, M. S., Wang, S., Hao, J., Zhang, H., He, C., Guo, H.,
482 Fu, H., Miljevic, B., Morawska, L., Thai, P., Lam, Y. F., Pereira, G., Ding, A., Huang, X., and Dumka, U.
483 C.: A review of biomass burning: Emissions and impacts on air quality, health and climate in China,
484 *Science of The Total Environment*, 579, 1000-1034, 10.1016/j.scitotenv.2016.11.025, 2017.

485 Crounse, J. D., Nielsen, L. B., Jørgensen, S., Kjaergaard, H. G., and Wennberg, P. O.: Autoxidation of
486 organic compounds in the atmosphere, *J. Phys. Chem. Lett.*, 4, 3513, 2013.

487 Dagaut, P., Cathonnet, M., Rouan, J. P., Foulquier, R., Quilgars, A., Boettner, J. C., Gaillard, F., and
488 James, H.: A jet-stirred reactor for kinetic studies of homogeneous gas-phase reactions at pressures
489 up to ten atmospheres (\approx 1 MPa), *Journal of Physics E: Scientific Instruments*, 19, 207-209,
490 10.1088/0022-3735/19/3/009, 1986.

491 Dagaut, P., Cathonnet, M., Boettner, J. C., and Gaillard, F.: Kinetic Modeling of Propane Oxidation,
492 *Combustion Science and Technology*, 56, 23-63, 10.1080/00102208708947080, 1987.

493 Dagaut, P., Cathonnet, M., Boettner, J. C., and Gaillard, F.: Kinetic modeling of ethylene oxidation,
494 *Combustion and Flame*, 71, 295-312, 10.1016/0010-2180(88)90065-X, 1988.

495 Deng, Y., Inomata, S., Sato, K., Ramasamy, S., Morino, Y., Enami, S., and Tanimoto, H.: Temperature
496 and acidity dependence of secondary organic aerosol formation from α -pinene ozonolysis with a
497 compact chamber system, *Atmos. Chem. Phys.*, 21, 5983-6003, 10.5194/acp-21-5983-2021, 2021.

498 Fang, W., Gong, L., and Sheng, L.: Online analysis of secondary organic aerosols from OH-initiated
499 photooxidation and ozonolysis of α -pinene, β -pinene, Δ^3 -carene and d-limonene by thermal
500 desorption–photoionisation aerosol mass spectrometry, *Environmental Chemistry*, 14, 75-90,
501 10.1071/EN16128, 2017.

502 Fawaz, M., Avery, A., Onasch, T. B., Williams, L. R., and Bond, T. C.: Technical note: Pyrolysis
503 principles explain time-resolved organic aerosol release from biomass burning, *Atmos. Chem.*
504 *Phys.*, 21, 15605-15618, 10.5194/acp-21-15605-2021, 2021.

505 Fish, A.: The Cool Flames of Hydrocarbons, *Angewandte Chemie International Edition in English*, 7,
506 45-60, 10.1002/anie.196800451, 1968.

507 Hammes, J., Lutz, A., Mentel, T., Faxon, C., and Hallquist, M.: Carboxylic acids from limonene
 508 oxidation by ozone and hydroxyl radicals: insights into mechanisms derived using a FIGAERO-CIMS,
 509 *Atmos. Chem. Phys.*, 19, 13037-13052, 10.5194/acp-19-13037-2019, 2019.

510 Hays, M. D., Geron, C. D., Linna, K. J., Smith, N. D., and Schauer, J. J.: Speciation of Gas-Phase and Fine
 511 Particle Emissions from Burning of Foliar Fuels, *Environmental Science & Technology*, 36, 2281-
 512 2295, 10.1021/es0111683, 2002.

513 Hecht, E. S., Scigelova, M., Eliuk, S., and Makarov, A.: Fundamentals and Advances of Orbitrap Mass
 514 Spectrometry, in: *Encyclopedia of Analytical Chemistry*, 1-40, 2019.

515 Huang, W., Saathoff, H., Pajunoja, A., Shen, X., Naumann, K. H., Wagner, R., Virtanen, A., Leisner, T.,
 516 and Mohr, C.: α -Pinene secondary organic aerosol at low temperature: chemical composition and
 517 implications for particle viscosity, *Atmos. Chem. Phys.*, 18, 2883-2898, 10.5194/acp-18-2883-2018,
 518 2018.

519 Iinuma, Y., Brüggemann, E., Gnauk, T., Müller, K., Andreae, M. O., Helas, G., Parmar, R., and
 520 Herrmann, H.: Source characterization of biomass burning particles: The combustion of selected
 521 European conifers, African hardwood, savanna grass, and German and Indonesian peat, *Journal of
 522 Geophysical Research: Atmospheres*, 112, 10.1029/2006JD007120, 2007.

523 Iyer, S., Rissanen, M. P., Valiev, R., Barua, S., Krechmer, J. E., Thornton, J., Ehn, M., and Kurtén, T.:
 524 Molecular mechanism for rapid autoxidation in α -pinene ozonolysis, *Nature Communications*, 12,
 525 878, 10.1038/s41467-021-21172-w, 2021.

526 Jokinen, T., Sipilä, M., Richters, S., Kerminen, V.-M., Paasonen, P., Stratmann, F., Worsnop, D.,
 527 Kulmala, M., Ehn, M., Herrmann, H., and Berndt, T.: Rapid Autoxidation Forms Highly Oxidized RO₂
 528 Radicals in the Atmosphere, *Angewandte Chemie International Edition*, 53, 14596-14600,
 529 10.1002/anie.201408566, 2014a.

530 Jokinen, T., Sipila, M., Richters, S., Kerminen, V. M., Paasonen, P., Stratmann, F., Worsnop, D.,
 531 Kulmala, M., Ehn, M., and Herrmann, H.: Rapid autoxidation forms highly oxidized RO₂ radicals in
 532 the atmosphere, *Angew. Chem., Int. Ed.*, 53, 14596, 2014b.

533 Jokinen, T., Berndt, T., Makkonen, R., Kerminen, V.-M., Junninen, H., Paasonen, P., Stratmann, F.,
 534 Herrmann, H., Guenther, A. B., Worsnop, D. R., Kulmala, M., Ehn, M., and Sipilä, M.: Production of
 535 extremely low volatile organic compounds from biogenic emissions: Measured yields and
 536 atmospheric implications, *Proceedings of the National Academy of Sciences*, 112, 7123,
 537 10.1073/pnas.1423977112, 2015a.

538 Jokinen, T., Berndt, T., Makkonen, R., Kerminen, V.-M., Junninen, H., Paasonen, P., Stratmann, F.,
 539 Herrmann, H., Guenther, A. B., Worsnop, D. R., Kulmala, M., Ehn, M., and Sipilä, M.: Production of
 540 extremely low volatile organic compounds from biogenic emissions: Measured yields and
 541 atmospheric implications, *Proceedings of the National Academy of Sciences*, 112, 7123-7128,
 542 10.1073/pnas.1423977112, 2015b.

543 Kenseth, C. M., Huang, Y., Zhao, R., Dalleska, N. F., Hethcox, J. C., Stoltz, B. M., and Seinfeld, J. H.:
 544 Synergistic O₃ + OH oxidation pathway to extremely low-volatility dimers revealed in β -pinene
 545 secondary organic aerosol, *Proceedings of the National Academy of Sciences*, 201804671,
 546 10.1073/pnas.1804671115, 2018.

547 Khaykin, S., Legras, B., Bucci, S., Sellitto, P., Isaksen, L., Tencé, F., Bekki, S., Bourassa, A., Rieger, L.,
 548 Zawada, D., Jumelet, J., and Godin-Beckmann, S.: The 2019/20 Australian wildfires generated a
 549 persistent smoke-charged vortex rising up to 35 km altitude, *Communications Earth &*
 550 *Environment*, 1, 22, 10.1038/s43247-020-00022-5, 2020.

551 Kourtchev, I., Doussin, J. F., Giorio, C., Mahon, B., Wilson, E. M., Maurin, N., Pangui, E., Venables, D.
 552 S., Wenger, J. C., and Kalberer, M.: Molecular Composition of Fresh and Aged Secondary Organic
 553 Aerosol from a Mixture of Biogenic Volatile Compounds: A High-Resolution Mass Spectrometry
 554 Study, *Atmos. Chem. Phys.*, 15, 5683, 2015.

555 Krechmer, J. E., Groessl, M., Zhang, X., Junninen, H., Massoli, P., Lambe, A. T., Kimmel, J. R., Cubison,
 556 M. J., Graf, S., Lin, Y. H., Budisulistiorini, S. H., Zhang, H., Surratt, J. D., Knochenmuss, R., Jayne, J. T.,
 557 Worsnop, D. R., Jimenez, J. L., and Canagaratna, M. R.: Ion mobility spectrometry-mass

558 spectrometry (IMS-MS) for on- and offline analysis of atmospheric gas and aerosol species, *Atmos.*
 559 *Meas. Tech.*, 9, 3245-3262, 10.5194/amt-9-3245-2016, 2016.

560 Kristensen, K., Watne, Å. K., Hammes, J., Lutz, A., Petäjä, T., Hallquist, M., Bilde, M., and Glasius, M.:
 561 High-Molecular Weight Dimer Esters Are Major Products in Aerosols from α -Pinene Ozonolysis and
 562 the Boreal Forest, *Environmental Science & Technology Letters*, 3, 280-285,
 563 10.1021/acs.estlett.6b00152, 2016.

564 Kroll, J. H., Donahue, N. M., Jimenez, J. L., Kessler, S. H., Canagaratna, M. R., Wilson, K. R., Altieri, K.
 565 E., Mazzoleni, L. R., Wozniak, A. S., Bluhm, H., Mysak, E. R., Smith, J. D., Kolb, C. E., and Worsnop, D.
 566 R.: Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol,
 567 *Nature Chemistry*, 3, 133-139, 10.1038/nchem.948, 2011.

568 Kundu, S., Fisseha, R., Putman, A. L., Rahn, T. A., and Mazzoleni, L. R.: High molecular weight SOA
 569 formation during limonene ozonolysis: insights from ultrahigh-resolution FT-ICR mass spectrometry
 570 characterization, *Atmos. Chem. Phys.*, 12, 5523-5536, 10.5194/acp-12-5523-2012, 2012.

571 Kurtén, T., Rissanen, M. P., Mackeprang, K., Thornton, J. A., Hyttinen, N., Jørgensen, S., Ehn, M., and
 572 Kjaergaard, H. G.: Computational Study of Hydrogen Shifts and Ring-Opening Mechanisms in α -
 573 Pinene Ozonolysis Products, *The Journal of Physical Chemistry A*, 119, 11366-11375,
 574 10.1021/acs.jpca.5b08948, 2015.

575 Mazzoleni, L. R., Zielinska, B., and Moosmüller, H.: Emissions of Levoglucosan, Methoxy Phenols, and
 576 Organic Acids from Prescribed Burns, Laboratory Combustion of Wildland Fuels, and Residential
 577 Wood Combustion, *Environmental Science & Technology*, 41, 2115-2122, 10.1021/es061702c,
 578 2007.

579 Melendez-Perez, J. J., Martínez-Mejia, M. J., and Eberlin, M. N.: A reformulated aromaticity index
 580 equation under consideration for non-aromatic and non-condensed aromatic cyclic carbonyl
 581 compounds, *Organic Geochemistry*, 95, 29-33, j.orggeochem.2016.02.002, 2016.

582 Meusinger, C., Dusek, U., King, S. M., Holzinger, R., Rosenørn, T., Sperlich, P., Julien, M., Remaud, G.
 583 S., Bilde, M., Röckmann, T., and Johnson, M. S.: Chemical and isotopic composition of secondary
 584 organic aerosol generated by α -pinene ozonolysis, *Atmos. Chem. Phys.*, 17, 6373-6391,
 585 10.5194/acp-17-6373-2017, 2017.

586 Nørgaard, A. W., Vibenholt, A., Benassi, M., Clausen, P. A., and Wolkoff, P.: Study of Ozone-Initiated
 587 Limonene Reaction Products by Low Temperature Plasma Ionization Mass Spectrometry, *Journal of*
 588 *The American Society for Mass Spectrometry*, 24, 1090-1096, 10.1007/s13361-013-0648-3, 2013.

589 Nozière, B., Kalberer, M., Claeys, M., Allan, J., D'Anna, B., Decesari, S., Finessi, E., Glasius, M., Grgić, I.,
 590 Hamilton, J. F., Hoffmann, T., Iinuma, Y., Jaoui, M., Kahnt, A., Kampf, C. J., Kourtchev, I., Maenhaut,
 591 W., Marsden, N., Saarikoski, S., Schnelle-Kreis, J., Surratt, J. D., Szidat, S., Szmigielski, R., and
 592 Wisthaler, A.: The Molecular Identification of Organic Compounds in the Atmosphere: State of the
 593 Art and Challenges, *Chemical Reviews*, 115, 3919-3983, 10.1021/cr5003485, 2015.

594 Ohneiser, K., Ansmann, A., Baars, H., Seifert, P., Barja, B., Jimenez, C., Radenz, M., Teisseire, A.,
 595 Floutsi, A., Haarig, M., Foth, A., Chudnovsky, A., Engelmann, R., Zamorano, F., Bühl, J., and
 596 Wandinger, U.: Smoke of extreme Australian bushfires observed in the stratosphere over Punta
 597 Arenas, Chile, in January 2020: optical thickness, lidar ratios, and depolarization ratios at 355 and
 598 532 nm, *Atmos. Chem. Phys.*, 20, 8003-8015, 10.5194/acp-20-8003-2020, 2020.

599 Oros, D. R., and Simoneit, B. R. T.: Identification and emission factors of molecular tracers in organic
 600 aerosols from biomass burning Part 1. Temperate climate conifers, *Applied Geochemistry*, 16,
 601 1513-1544, 10.1016/S0883-2927(01)00021-X, 2001.

602 Otkjær, R. V., Jakobsen, H. H., Tram, C. M., and Kjaergaard, H. G.: Calculated Hydrogen Shift Rate
 603 Constants in Substituted Alkyl Peroxy Radicals, *The Journal of Physical Chemistry A*, 122, 8665-
 604 8673, 10.1021/acs.jpca.8b06223, 2018.

605 Pospisilova, V., Lopez-Hilfiker, F. D., Bell, D. M., El Haddad, I., Mohr, C., Huang, W., Heikkinen, L., Xiao,
 606 M., Dommen, J., Prevot, A. S. H., Baltensperger, U., and Slowik, J. G.: On the fate of oxygenated
 607 organic molecules in atmospheric aerosol particles, *Science Advances*, 6, eaax8922,
 608 10.1126/sciadv.aax8922, 2020.

609 Quéléver, L. L. J., Kristensen, K., Normann Jensen, L., Rosati, B., Teiwes, R., Daellenbach, K. R.,
 610 Peräkylä, O., Roldin, P., Bossi, R., Pedersen, H. B., Glasius, M., Bilde, M., and Ehn, M.: Effect of
 611 temperature on the formation of highly oxygenated organic molecules (HOMs) from alpha-pinene
 612 ozonolysis, *Atmos. Chem. Phys.*, 19, 7609-7625, 10.5194/acp-19-7609-2019, 2019.

613 Savee, J. D., Papajak, E., Rotavera, B., Huang, H., Eskola, A. J., Welz, O., Sheps, L., Taatjes, C. A., Zádor,
 614 J., and Osborn, D. L.: Carbon radicals. Direct observation and kinetics of a hydroperoxyalkyl radical
 615 (QOOH), *Science*, 347, 643-646, 10.1126/science.aaa1495, 2015.

616 Shrivastava, M., Cappa, C. D., Fan, J. W., Goldstein, A. H., Guenther, A. B., Jimenez, J. L., Kuang, C.,
 617 Laskin, A., Martin, S. T., Ng, N. L., Petaja, T., Pierce, J. R., Rasch, P. J., Roldin, P., Seinfeld, J. H.,
 618 Shilling, J., Smith, J. N., Thornton, J. A., Volkamer, R., Wang, J., Worsnop, D. R., Zaveri, R. A.,
 619 Zelenyuk, A., and Zhang, Q.: Recent advances in understanding secondary organic aerosol:
 620 Implications for global climate forcing, *Rev. Geophys.*, 55, 509, 2017.

621 Smith, J. S., Laskin, A., and Laskin, J.: Molecular Characterization of Biomass Burning Aerosols Using
 622 High-Resolution Mass Spectrometry, *Analytical Chemistry*, 81, 1512-1521, 10.1021/ac8020664,
 623 2009.

624 Tomaz, S., Wang, D., Zabalegui, N., Li, D., Lamkaddam, H., Bachmeier, F., Vogel, A., Monge, M. E.,
 625 Perrier, S., Baltensperger, U., George, C., Rissanen, M., Ehn, M., El Haddad, I., and Riva, M.:
 626 Structures and reactivity of peroxy radicals and dimeric products revealed by online tandem mass
 627 spectrometry, *Nature Communications*, 12, 300, 10.1038/s41467-020-20532-2, 2021.

628 Tröstl, J., Chuang, W. K., Gordon, H., Heinritzi, M., Yan, C., Molteni, U., Ahlm, L., Frege, C., Bianchi, F.,
 629 Wagner, R., Simon, M., Lehtipalo, K., Williamson, C., Craven, J. S., Duplissy, J., Adamov, A., Almeida,
 630 J., Bernhammer, A.-K., Breitenlechner, M., Brilke, S., Dias, A., Ehrhart, S., Flagan, R. C., Franchin, A.,
 631 Fuchs, C., Guida, R., Gysel, M., Hansel, A., Hoyle, C. R., Jokinen, T., Junninen, H., Kangasluoma, J.,
 632 Keskinen, H., Kim, J., Krapf, M., Kürten, A., Laaksonen, A., Lawler, M., Leiminger, M., Mathot, S.,
 633 Möhler, O., Nieminen, T., Onnela, A., Petäjä, T., Piel, F. M., Miettinen, P., Rissanen, M. P., Rondo, L.,
 634 Sarnela, N., Schobesberger, S., Sengupta, K., Sipilä, M., Smith, J. N., Steiner, G., Tomè, A., Virtanen,
 635 A., Wagner, A. C., Weingartner, E., Wimmer, D., Winkler, P. M., Ye, P., Carslaw, K. S., Curtius, J.,
 636 Dommen, J., Kirkby, J., Kulmala, M., Riipinen, I., Worsnop, D. R., Donahue, N. M., and
 637 Baltensperger, U.: The role of low-volatility organic compounds in initial particle growth in the
 638 atmosphere, *Nature*, 533, 527-531, 10.1038/nature18271, 2016.

639 Van Krevelen, D. W.: Graphical-statistical method for the study of structure and reaction processes of
 640 coal, *Fuel*, 29, 269-284, 1950.

641 Vereecken, L., Müller, J. F., and Peeters, J.: Low-volatility poly-oxygenates in the OH-initiated
 642 atmospheric oxidation of α -pinene: impact of non-traditional peroxy radical chemistry, *Physical
 643 Chemistry Chemical Physics*, 9, 5241-5248, 10.1039/B708023A, 2007.

644 Vereecken, L., and Nozière, B.: H migration in peroxy radicals under atmospheric conditions, *Atmos.
 645 Chem. Phys.*, 20, 7429-7458, 10.5194/acp-20-7429-2020, 2020.

646 Walser, M. L., Desyaterik, Y., Laskin, J., Laskin, A., and Nizkorodov, S. A.: High-resolution mass
 647 spectrometric analysis of secondary organic aerosol produced by ozonation of limonene, *Physical
 648 Chemistry Chemical Physics*, 10, 1009-1022, 10.1039/B712620D, 2008.

649 Wang, Z., Ehn, M., Rissanen, M. P., Garmash, O., Quéléver, L., Xing, L., Monge-Palacios, M., Rantala,
 650 P., Donahue, N. M., Berndt, T., and Sarathy, S. M.: Efficient alkane oxidation under combustion
 651 engine and atmospheric conditions, *Communications Chemistry*, 4, 18, 10.1038/s42004-020-
 652 00445-3, 2021a.

653 Wang, Z., Ehn, M., Rissanen, M. P., Garmash, O., Quéléver, L., Xing, L., Monge Palacios, M., Rantala,
 654 P., Donahue, N. M., Berndt, T., and Sarathy, M.: - Efficient alkane oxidation under combustion
 655 engine and atmospheric conditions, - Springer Science and Business Media LLC, 2021b.

656 Warscheid, B., and Hoffmann, T.: Structural elucidation of monoterpane oxidation products by ion
 657 trap fragmentation using on-line atmospheric pressure chemical ionisation mass spectrometry in
 658 the negative ion mode, *Rapid Communications in Mass Spectrometry*, 15, 2259-2272,
 659 10.1002/rcm.504, 2001.

660 Witkowski, B., and Gierczak, T.: Characterization of the limonene oxidation products with liquid
661 chromatography coupled to the tandem mass spectrometry, *Atmospheric Environment*, 154, 297-
662 307, 10.1016/j.atmosenv.2017.02.005, 2017.

663 Xie, Q., Su, S., Chen, S., Xu, Y., Cao, D., Chen, J., Ren, L., Yue, S., Zhao, W., Sun, Y., Wang, Z., Tong, H.,
664 Su, H., Cheng, Y., Kawamura, K., Jiang, G., Liu, C. Q., and Fu, P.: Molecular characterization of
665 firework-related urban aerosols using Fourier transform ion cyclotron resonance mass
666 spectrometry, *Atmos. Chem. Phys.*, 20, 6803-6820, 10.5194/acp-20-6803-2020, 2020.

667 Zhao, Y., Thornton, J. A., and Pye, H. O. T.: Quantitative constraints on autoxidation and dimer
668 formation from direct probing of monoterpane-derived peroxy radical chemistry, *Proc Natl Acad
669 Sci U S A*, 115, 12142-12147, 10.1073/pnas.1812147115, 2018.

670