Supplementary Animation http://www.seevccc.rs/HLDpaper/NMMB DREAM circumpolar dustload animation.gif

Table S1. The contemporary category of the newly identified high latitude dust sources included in this study, based on the5currently available observations. The number refers to the source number in the map of Figure 1. In addition, McMurdo Dry<br/>Valley is estimated to best fit to Category 3 and the McMurdo Ice shelf 'debris bands' to Category 2.

| Cat | HLD No.                   | Description                        | Climatic or environmental significance | Criteria                                                                |
|-----|---------------------------|------------------------------------|----------------------------------------|-------------------------------------------------------------------------|
| 1   | 30, 31, 32, 34            | Active source                      | High                                   | Frequently active dust source with >10 dust events documented           |
| 2   | 25, 26, 27, 35            | Moderately active source           | Moderate                               | 5-10 dust events documented or a smaller potential source area          |
| 3   | 1, 2-24, 28-29, 33, 36-64 | Source with<br>unknown<br>activity | Small/Currently unknown                | Infrequent activity or a new source with 1-<br>5 dust events documented |

| Location in Iceland           | Satellite observations                  |
|-------------------------------|-----------------------------------------|
| No. 23 Reykjanes              | 2 events, 2004 and 2011                 |
| No. 24 Eyrabakki              | 3 events, 2002-2011                     |
| No. 25 Hagavatnssvæði         | 8 events, 2002-2011                     |
| No. 26 Fljótshlíð             | 8 events, 2002-2011                     |
| No. 27 Langisjór              | 5 events in 2010; 3 events in 2002-2011 |
| No. 28 Eldhraun/Landbrot      | 3 events 2002-2011                      |
| No. 29 Eldhraun               | 3 events 2002-2011                      |
| No. 30 Klausturfjara          | 17 events 2002-2011                     |
| No. 31 Núpsvötn               | 39 events 2002-2011                     |
| No. 32 Holuhraun              | 29 events 2002-2011                     |
| No. 33 Vikurhraun/Vikursandur | 2 events 2002-2011                      |
| No. 34 Höfn í Hornarfirði     | 13 events 2002-2011                     |
| No. 35 Lónsvík                | 8 events 2002-2011                      |

 Table S3. West coast of Greenland observations for the new dust sources identified for the first time in this study (No. 53-58),

 based on satellite observations from 2021, and earlier satellite observations for sources identified in East Greenland and Canada

(No. 59-64), north of 70 °N.

| Latitude | Longitude | No. | Description                    | Dust example                | Observed events      |
|----------|-----------|-----|--------------------------------|-----------------------------|----------------------|
|          |           |     |                                |                             |                      |
| 63.5059  | -51.0454  | 53  | West coast of Greenland, the   | https://go.nasa.gov/3biOSt9 | 26 Oct 2021          |
|          |           |     | source appears to be in the    |                             |                      |
|          |           |     | delta area, not in the valley  |                             |                      |
| 62.2421  | -49.0481  | 54  | West coast of Greenland, the   | https://go.nasa.gov/3Gw80SV | 23/25 Oct 2021       |
|          |           |     | source appears to be a small   |                             |                      |
|          |           |     | valley with a glacier          |                             |                      |
| 63.5163  | -50.9652  | 55  | West coast of Greenland,       | https://go.nasa.gov/3Ct5cmY | 18,19,25,26 Oct 2021 |
|          |           |     | source appears to be the       |                             |                      |
|          |           |     | delta area (Sentinel shows     |                             |                      |
|          |           |     | dust plumes up 10 km from      |                             |                      |
| (5.7(2)) | 51 2966   | 50  | the coast, east of delta)      | http:///                    | 18 and 22 Oct 2021   |
| 03.7021  | -31.2800  | 50  | west coast of Greenland, a     | https://go.nasa.gov/2ZBLVV2 | 18 and 22 Oct 2021   |
|          |           |     | if dust comes from the valley  |                             |                      |
|          |           |     | or termination tip of glacier) |                             |                      |
|          |           |     | Clear dust plumes when         |                             |                      |
|          |           |     | flipping images Aqua/Terra     |                             |                      |
| 62.4791  | -50.2146  | 57  | West coast of Greenland,       | https://go.nasa.gov/2ZyWbea | 18 Oct 2021          |
|          |           |     | small trip of land between     |                             |                      |
|          |           |     | sea and glacier                |                             |                      |
| 67.359   | -52.3693  | 58  | West coast of Greenland, a     | https://go.nasa.gov/3vU4qwR | 18 Oct 2021          |
|          |           |     | short valley, several dust     |                             |                      |
|          |           |     | clouds appear                  |                             |                      |
| 71.8288  | -22.8017  | 59  | East Greenland                 | https://go.nasa.gov/3pOPjnq | 3 Oct 2019           |
| 70.4565  | -22.2694  | 60  | East Greenland                 | https://go.nasa.gov/3Gx1paM | 15 Sep 2020          |
| 78.0407  | -21.4572  | 61  | East Greenland                 | https://go.nasa.gov/3Gw4g3R | 24 Sep 2003          |
| 81.3073  | -78.2145  | 62  | Canada                         | https://go.nasa.gov/3mxJxEZ | 2 July 2020          |
| 71.8426  | -22.7902  | 63  | East Greenland, better seen    | https://go.nasa.gov/3Bt9jy2 | 30 Sept 2018         |
| 72 3006  | 25 1555   | 64  | Fast Greenland                 | https://go.pasa.gov/3vVOWb6 | 23 Sap 2003          |
| 12.3900  | -23.1333  | 04  | Last Oleenianu                 | https://go.nasa.gov/3vAOwbo | 25 Sep 2005          |

30 Table S4. Locations of the HLD sources and G-SDS-SBM source intensity (SI) values at location and maximum values find in certain environment given location (areas within the distance from location of 30 arcsec, 0.1°, 0.5° and 1°); SI is undefined (-99.0) if location mark is not over land; area south of 60°S is not included in G-SDS-SBM and values at locations in this area are marked with a dash.

| No. | lat     | lon       | at    | loc.  | <b>30</b> ai | rcsec | 0.  | <b>1</b> ° | 0.  | 5°  | 1   | 0   |
|-----|---------|-----------|-------|-------|--------------|-------|-----|------------|-----|-----|-----|-----|
|     |         |           | max   | min   | max          | min   | max | min        | max | min | max | min |
|     |         |           |       |       |              |       |     |            |     |     |     |     |
| 1   | 57.6482 | 10.4059   | 0.8   | 0.0   | 0.9          | 0.0   | 1.0 | 0.0        | 1.0 | 1.0 | 1.0 | 1.0 |
| 2   | 63.2    | 75.5      | 0.1   | 0.0   | 0.1          | 0.0   | 0.1 | 0.0        | 0.3 | 0.2 | 0.5 | 0.2 |
| 3   | 60.1    | 71.4      | 0.0   | 0.0   | 0.0          | 0.0   | 0.3 | 0.0        | 0.3 | 0.0 | 0.8 | 0.3 |
| 4   | 58.9    | 69.2      | 0.0   | 0.0   | 0.0          | 0.0   | 0.2 | 0.0        | 0.7 | 0.3 | 0.8 | 0.3 |
| 5   | 56.5    | 67.5      | 0.1   | 0.0   | 0.2          | 0.0   | 0.2 | 0.0        | 0.3 | 0.1 | 0.5 | 0.1 |
| 6   | 67.6    | 33.4      | 0.0   | 0.0   | 0.0          | 0.0   | 0.8 | 0.0        | 0.9 | 0.0 | 1.0 | 0.0 |
| 7   | 51.3    | 88.5      | 0.0   | 0.0   | 0.0          | 0.0   | 0.2 | 0.0        | 0.4 | 0.0 | 0.4 | 0.2 |
| 8   | 47.3    | 66.7      | 0.5   | 0.0   | 0.5          | 0.0   | 0.6 | 0.3        | 0.7 | 0.4 | 1.0 | 0.7 |
| 9   | -77.9   | 165.2     | -     | -     | -            | -     | -   | -          | -   | -   | -   | -   |
| 10  | 63.5    | -18.2     | 1.0   | 0.0   | 1.0          | 0.0   | 1.0 | 1.0        | 1.0 | 1.0 | 1.0 | 1.0 |
| 11  | 71.4    | 128.5     | 0.0   | 0.0   | 0.3          | 0.0   | 0.4 | 0.0        | 1.0 | 0.0 | 1.0 | 0.0 |
| 12  | 81.7    | -71.1     | 0.7   | 0.0   | 0.8          | 0.0   | 1.0 | 0.0        | 1.0 | 0.0 | 1.0 | 0.0 |
| 13  | 77      | 16        | -99.0 | -99.0 | -99.0        | -99.0 | 0.9 | 0.0        | 1.0 | 0.0 | 1.0 | 0.0 |
| 14  | 60.5    | -144.9    | 0.6   | 0.0   | 0.9          | 0.0   | 1.0 | 0.0        | 1.0 | 0.5 | 1.0 | 0.5 |
| 15  | 56.0054 | 8.1138    | 0.0   | 0.0   | 0.9          | 0.0   | 1.0 | 0.0        | 1.0 | 1.0 | 1.0 | 1.0 |
| 16  | 69.36   | -123.97   | 0.7   | 0.0   | 1.0          | 0.0   | 1.0 | 0.0        | 1.0 | 0.0 | 1.0 | 0.0 |
| 17  | -45.48  | -68.78    | 0.0   | 0.0   | 0.7          | 0.7   | 0.8 | 0.7        | 0.9 | 0.8 | 0.9 | 0.8 |
| 18  | 77      | 15        | -99.0 | -99.0 | -99.0        | -99.0 | 1.0 | 0.0        | 1.0 | 0.0 | 1.0 | 0.0 |
| 19  | -63.9   | -57.9     | -     | -     | -            | -     | -   | -          | -   | -   | -   | -   |
| 20  | -64.2   | -56.6     | -     | -     | -            | -     | -   | -          | -   | -   | -   | -   |
| 21  | 70.4    | -52.5     | 0.5   | 0.0   | 0.6          | 0.0   | 0.8 | 0.0        | 1.0 | 0.0 | 1.0 | 0.0 |
| 22  | 78.7    | 15.7      | 0.3   | 0.0   | 0.3          | 0.0   | 0.7 | 0.0        | 1.0 | 0.0 | 1.0 | 0.0 |
| 23  | 63.85   | -22.21635 | 0.0   | 0.0   | 0.7          | 0.1   | 1.0 | 0.9        | 1.0 | 1.0 | 1.0 | 1.0 |
| 24  | 63.87   | -21.18885 | 0.0   | 0.0   | 1.0          | 0.0   | 1.0 | 0.0        | 1.0 | 1.0 | 1.0 | 1.0 |
| 25  | 64.47   | -20.32702 | 0.4   | 0.0   | 0.4          | 0.0   | 0.6 | 0.2        | 0.8 | 0.5 | 1.0 | 1.0 |
| 26  | 63.72   | -20.14013 | 0.2   | 0.0   | 0.2          | 0.0   | 0.3 | 0.1        | 1.0 | 1.0 | 1.0 | 1.0 |
| 27  | 64.14   | -18.29022 | 0.3   | 0.0   | 0.3          | 0.0   | 0.4 | 0.0        | 0.9 | 0.7 | 1.0 | 1.0 |
| 28  | 63.69   | -18.20012 | 0.0   | 0.0   | 0.4          | 0.0   | 1.0 | 1.0        | 1.0 | 1.0 | 1.0 | 1.0 |
| 29  | 64.03   | -17.99276 | 0.0   | 0.0   | 0.2          | 0.0   | 0.3 | 0.0        | 1.0 | 1.0 | 1.0 | 1.0 |

|    |          |           |     |     |     |     |     | r   |     |     |     |     |
|----|----------|-----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 30 | 63.7     | -17.75925 | 0.9 | 0.0 | 0.9 | 0.0 | 1.0 | 0.7 | 1.0 | 1.0 | 1.0 | 1.0 |
| 31 | 63.91    | -17.54640 | 0.6 | 0.0 | 0.6 | 0.5 | 1.0 | 0.5 | 1.0 | 1.0 | 1.0 | 1.0 |
| 32 | 64.84    | -16.84550 | 0.2 | 0.0 | 0.3 | 0.0 | 0.5 | 0.0 | 0.5 | 0.0 | 1.0 | 1.0 |
| 33 | 65.02    | -16.49492 | 0.0 | 0.0 | 0.2 | 0.0 | 0.5 | 0.0 | 0.6 | 0.3 | 1.0 | 1.0 |
| 34 | 64.24    | -15.21443 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.1 | 1.0 | 1.0 | 1.0 | 1.0 |
| 35 | 64.38    | -14.76743 | 0.3 | 0.0 | 0.7 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
| 36 | -45.56   | -68.7378  | 0.0 | 0.0 | 0.7 | 0.6 | 0.8 | 0.7 | 0.9 | 0.8 | 0.9 | 0.9 |
| 37 | -53.217  | -68.6934  | 0.0 | 0.0 | 0.3 | 0.2 | 1.0 | 0.9 | 1.0 | 1.0 | 1.0 | 1.0 |
| 38 | -53.78   | -67.8064  | 0.9 | 0.0 | 1.0 | 0.0 | 1.0 | 0.9 | 1.0 | 1.0 | 1.0 | 1.0 |
| 39 | -49.53   | -68.1744  | 0.9 | 0.9 | 0.9 | 0.9 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
| 40 | -47.61   | -65.7979  | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
| 41 | -47.94   | -66.2073  | 0.8 | 0.7 | 0.8 | 0.7 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
| 42 | -46.72   | -69.0699  | 0.8 | 0.7 | 0.8 | 0.7 | 0.9 | 0.8 | 0.9 | 0.8 | 0.9 | 0.9 |
| 43 | -46.53   | -69.401   | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.9 | 0.9 | 0.9 | 0.9 |
| 44 | -48.54   | -67.015   | 0.8 | 0.8 | 0.8 | 0.8 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
| 45 | -41.14   | -69.46    | 0.0 | 0.0 | 0.5 | 0.3 | 0.6 | 0.4 | 0.6 | 0.5 | 0.8 | 0.5 |
| 46 | 70.47    | -52.88    | 0.5 | 0.0 | 0.9 | 0.0 | 0.9 | 0.0 | 1.0 | 0.0 | 1.0 | 0.0 |
| 47 | 71.36    | -24.53    | 0.6 | 0.0 | 0.6 | 0.0 | 1.0 | 0.0 | 1.0 | 0.0 | 1.0 | 0.0 |
| 48 | 47.6     | -111.25   | 0.5 | 0.1 | 0.8 | 0.1 | 0.8 | 0.7 | 1.0 | 0.7 | 1.0 | 0.9 |
| 49 | 67.87    | 44.13     | 1.0 | 0.0 | 1.0 | 0.0 | 1.0 | 0.0 | 1.0 | 0.0 | 1.0 | 0.0 |
| 50 | 60.9987  | -138.5294 | 0.6 | 0.0 | 0.7 | 0.3 | 0.7 | 0.3 | 0.9 | 0.5 | 1.0 | 0.6 |
| 51 | 56.4772  | 12.9260   | 0.0 | 0.0 | 0.0 | 0.0 | 0.9 | 0.0 | 1.0 | 0.6 | 1.0 | 0.6 |
| 52 | -70.7583 | 11.6444   | _   | -   | _   | -   | -   | -   | -   | -   | -   | -   |
| 53 | 63.5059  | -51.0454  | 0.0 | 0.0 | 0.5 | 0.0 | 1.0 | 0.2 | 1.0 | 1.0 | 1.0 | 1.0 |
| 54 | 62.2421  | -49.0481  | 0.4 | 0.0 | 0.5 | 0.0 | 0.8 | 0.3 | 1.0 | 1.0 | 1.0 | 1.0 |
| 55 | 63.5163  | -50.9652  | 0.0 | 0.0 | 0.5 | 0.0 | 1.0 | 0.2 | 1.0 | 1.0 | 1.0 | 1.0 |
| 56 | 65.7621  | -51.2866  | 0.0 | 0.0 | 0.6 | 0.0 | 0.9 | 0.0 | 0.9 | 0.0 | 1.0 | 1.0 |
| 57 | 62.4791  | -50.2146  | 0.5 | 0.0 | 0.6 | 0.0 | 0.6 | 0.3 | 1.0 | 0.9 | 1.0 | 1.0 |
| 58 | 67.359   | -52.3693  | 0.4 | 0.0 | 0.5 | 0.0 | 1.0 | 0.0 | 1.0 | 0.1 | 1.0 | 1.0 |
| 59 | 71.8288  | -22.8017  | 0.0 | 0.0 | 1.0 | 0.0 | 1.0 | 0.0 | 1.0 | 0.0 | 1.0 | 0.0 |
| 60 | 70.4565  | -22.2694  | 0.9 | 0.0 | 1.0 | 0.0 | 1.0 | 0.0 | 1.0 | 0.0 | 1.0 | 0.0 |
| 61 | 78.0407  | -21.4572  | 1.0 | 0.0 | 1.0 | 0.0 | 1.0 | 0.0 | 1.0 | 0.0 | 1.0 | 0.0 |
| 62 | 81.3073  | -78.2145  | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9 | 0.0 | 1.0 | 0.0 |

| 63 | 71.8426 | -22.7902 | 0.0   | 0.0   | 0.0   | 0.0   | 1.0 | 0.0 | 1.0 | 0.0 | 1.0 | 0.0 |
|----|---------|----------|-------|-------|-------|-------|-----|-----|-----|-----|-----|-----|
| 64 | 72.3906 | -25.1555 | -99.0 | -99.0 | -99.0 | -99.0 | 0.3 | 0.0 | 0.4 | 0.0 | 1.0 | 0.0 |

40 Table S5. Number of locations for north and south HLD regions which have SI value above a certain threshold (0.9, 0.8, 0.7, 0.6, 0.5, 0.4) depending on the environment size (30 arcsec, 0.1°, 0.5° and 1°).

| No.          | lat         | lon       | at       | loc. | 30 ar | cesec | 0.  | 1°  | 0.  | 5°  | 1   | 0   |
|--------------|-------------|-----------|----------|------|-------|-------|-----|-----|-----|-----|-----|-----|
|              |             |           | max      | min  | max   | min   | max | min | max | min | max | min |
| NORT         | H HLD REGI  | ON (NORTH | OF 50°N  | )    |       |       |     |     |     |     |     |     |
| SI > 0       | 9           |           | 5        | 0    | 12    | 0     | 27  | 4   | 39  | 16  | 44  | 23  |
| $SI \ge 0$   | .8          |           | 6        | 0    | 14    | 0     | 31  | 4   | 40  | 16  | 46  | 23  |
| 51 > 0       | 7           |           | 8        | 0    | 17    | 0     | 33  | 6   | 42  | 18  | 46  | 24  |
| $SI \ge 0$   | .6          |           | 12       | 0    | 22    | 0     | 36  | 6   | 43  | 19  | 46  | 26  |
| $SI \ge 0.$  | .5          |           | 17       | 0    | 27    | 1     | 38  | 7   | 44  | 22  | 48  | 27  |
| $SI \ge 0$ . | .4          |           | 20       | 0    | 29    | 1     | 40  | 7   | 46  | 23  | 49  | 27  |
| SOUTI        | H HLD REGIO | ON (SOUTH | OF 40°S) |      |       |       |     |     |     |     |     |     |
| $SI \ge 0.$  | .9          |           | 3        | 2    | 3     | 2     | 7   | 6   | 10  | 7   | 10  | 9   |
| $SI \ge 0$ . | .8          |           | 6        | 3    | 6     | 3     | 9   | 7   | 10  | 10  | 11  | 10  |
| $SI \ge 0.$  | .7          |           | 7        | 6    | 9     | 7     | 10  | 10  | 10  | 10  | 11  | 10  |
| $SI \ge 0.$  | .6          |           | 7        | 6    | 9     | 8     | 11  | 10  | 11  | 10  | 11  | 10  |
| $SI \ge 0$ . | .5          |           | 7        | 6    | 10    | 8     | 11  | 10  | 11  | 11  | 11  | 11  |
| $SI \ge 0.$  | .4          |           | 7        | 6    | 10    | 8     | 11  | 11  | 11  | 11  | 11  | 11  |

| Proxy                              | HLD#3    | (Podz     | ols)       | HL   | D #5 (<br>Gle | (Retisol<br>eysols) | s and   | HL   | D #6 (<br>Gle | (Retisols<br>eysols) | s and   | HL   | D #8 (I<br>Stag | Phaeozer<br>gnosols) | ns and  |
|------------------------------------|----------|-----------|------------|------|---------------|---------------------|---------|------|---------------|----------------------|---------|------|-----------------|----------------------|---------|
|                                    | PM2, n=1 | PM1<br>n= | 000,<br>10 | PM2  | , n=4         | PM100               | 00, n=7 | PM2  | , n=5         | PM100                | 00, n=5 | PM2  | , n=8           | PM100                | 0, n=11 |
|                                    | М        | М         | SD         | М    | SD            | М                   | SD      | М    | SD            | М                    | SD      | М    | SD              | М                    | SD      |
| Smectite                           | 36.7     | 0.0       | 0.0        | 51.5 | 4.1           | 13.7                | 10.4    | 46.8 | 5.5           | 17.7                 | 10.5    | 47.6 | 11.6            | 23.2                 | 8.7     |
| Illite, %                          | 5.5      | 2.9       | 1.0        | 8.7  | 1.4           | 9.3                 | 0.8     | 8.1  | 0.9           | 6.3                  | 0.7     | 8.3  | 2.2             | 10.1                 | 1.5     |
| I/Sm, %                            | 23.6     | < 0.1     | -          | 18.2 | 1.0           | < 0.1               | -       | 20.1 | 5.1           | < 0.1                | -       | 26.0 | 10.1            | < 0.1                | -       |
| Kaolinite                          | e 6.7    | 1.4       | 1.2        | 3.5  | 0.8           | 2.3                 | 0.6     | 6.5  | 2.5           | 2.2                  | 1.1     | 5.3  | 1.7             | 3.4                  | 0.7     |
| Chlorite,<br>%                     | , 2.1    | 0.4       | 0.5        | 2.4  | 0.8           | 1.0                 | 0.7     | 1.1  | 1.1           | 2.1                  | 0.8     | 1.9  | 0.5             | 1.7                  | 0.7     |
| Pls, %                             | 6.4      | 5.5       | 2.7        | 4.3  | 0.8           | 15.5                | 3.2     | 4.5  | 0.7           | 14.6                 | 3.4     | 3.5  | 1.3             | 13.8                 | 2.5     |
| PFS, %                             | 7.1      | 4.9       | 3.0        | 4.9  | 1.3           | 8.3                 | 1.9     | 4.3  | 0.9           | 8.3                  | 1.4     | 5.4  | 1.8             | 8.1                  | 1.6     |
| Quartz,<br>%                       | 11.2     | 84.6      | 6.8        | 5.7  | 1.7           | 49.8                | 10.2    | 7.6  | 4.5           | 48.7                 | 8.9     | 4.1  | 2.6             | 38.4                 | 6.2     |
| Calcite,<br>%                      | 0.8      | 0.4       | 0.2        | 1.1  | 0.2           | 0.0                 | 0.0     | 1.0  | 0.7           | 0.0                  | 0.0     | 2.0  | 2.6             | 1.4                  | 3.1     |
| TOC, %                             | n.a.     | 1.7       | 3.7        | 1.0  | 1.0           | 4.7                 | 7.3     | 6.0  | 4.3           | 1.8                  | 2.9     | 2.4  | 3.1             | 1.0                  | 1.4     |
| Na <sub>2</sub> O, %               | 0.71     | 0.54      | 0.32       | 0.25 | 0.14          | 0.99                | 0.33    | 0.19 | 0.09          | 1.23                 | 0.26    | 0.18 | 0.05            | 0.87                 | 0.24    |
| MgO, %                             | 1.14     | 0.13      | 0.11       | 1.97 | 0.22          | 1.18                | 0.67    | 1.73 | 0.37          | 1.28                 | 0.29    | 2.33 | 0.29            | 1.75                 | 0.43    |
| Al <sub>2</sub> O <sub>3</sub> , % | 20.7     | 3.5       | 2.0        | 15.6 | 3.1           | 10.9                | 2.8     | 16.2 | 2.7           | 10.9                 | 1.3     | 17.2 | 3.3             | 12.0                 | 1.9     |
| P <sub>2</sub> O <sub>5</sub> , %  | 0.34     | 0.47      | 0.47       | 0.34 | 0.47          | 0.13                | 0.07    | 0.44 | 0.26          | 0.16                 | 0.15    | 0.25 | 0.21            | 0.27                 | 0.41    |

Table S6. Mineralogical and elemental composition of PM2 and PM1000 of soils at Western Siberia.

| S, %                               | 0.24 | 0.04 | 0.02 | 0.14 | 0.25 | 0.09 | 0.04 | 0.12 | 0.15 | < 0.1 | -    | 0.06 | 0.07 | 0.06 | 0.02 |
|------------------------------------|------|------|------|------|------|------|------|------|------|-------|------|------|------|------|------|
| K <sub>2</sub> O, %                | 1.64 | 1.18 | 0.54 | 1.86 | 0.32 | 1.74 | 0.29 | 1.59 | 0.17 | 1.88  | 0.16 | 2.50 | 0.42 | 2.14 | 0.26 |
| CaO, %                             | 0.48 | 0.16 | 0.07 | 1.20 | 0.34 | 0.75 | 0.36 | 1.05 | 0.47 | 1.18  | 0.36 | 2.32 | 1.77 | 1.97 | 2.00 |
| TiO <sub>2</sub> , %               | 0.92 | 0.33 | 0.19 | 0.71 | 0.14 | 1.03 | 0.04 | 0.61 | 0.14 | 1.00  | 0.21 | 0.62 | 0.11 | 0.97 | 0.08 |
| MnO, %                             | 0.29 | 0.02 | 0.01 | 0.10 | 0.06 | 0.06 | 0.04 | 0.13 | 0.08 | 0.10  | 0.09 | 0.07 | 0.04 | 0.12 | 0.08 |
| Fe <sub>2</sub> O <sub>3</sub> , % | 9.1  | 0.5  | 0.4  | 8.8  | 2.2  | 3.6  | 2.0  | 9.2  | 2.8  | 4.9   | 1.2  | 8.8  | 1.1  | 5.3  | 1.5  |
| V,<br>mg/kg                        | 171  | 30   | 17   | 174  | 45   | 123  | 24   | 164  | 35   | 115   | 14   | 168  | 24   | 140  | 16   |
| Cr,<br>mg/kg                       | 754  | 36   | 26   | 298  | 251  | 129  | 20   | 231  | 67   | 144   | 16   | 216  | 96   | 154  | 28   |
| Co,<br>mg/kg                       | 62   | <10  | -    | 22   | 4.4  | 15.3 | 3.5  | 26.2 | 6.4  | 20    | 7.5  | 17   | 2.1  | 17   | 3.8  |
| Ni,<br>mg/kg                       | 182  | <10  | -    | 115  | 45   | 29   | 15   | 85   | 8.0  | 32    | 9.4  | 90   | 25   | 47   | 11   |
| Cu,<br>mg/kg                       | 59   | <10  | -    | 54   | 5.0  | 20   | 5.3  | 38   | 10   | 15    | 1.5  | 48   | 9.9  | 28   | 4.5  |
| Zn,<br>mg/kg                       | 180  | 26   | 8.1  | 144  | 21   | 50   | 22   | 136  | 25   | 61    | 17   | 126  | 9.7  | 75   | 12   |
| As,<br>mg/kg                       | 15   | <10  | -    | 13   | 2.4  | <10  | -    | 14   | 4.5  | <10   | -    | 12   | 3.2  | <10  | -    |
| Pb,<br>mg/kg                       | 36   | <10  | -    | 32   | 21   | 19   | 5.3  | 28   | 7.1  | 23.3  | 12   | 19   | 3.3  | 27   | 5.1  |

I/Sm – illite-smectite mixed-layer minerals with predomination of illite interlayers, PLs – Plagioclases PFS – potassium
 feldspars, TOC – total organic carbon. M – mean, n – number of observations, SD – standard deviation

| HLD no                                     | М     | SD    | Me    | min  | max  | n   |
|--------------------------------------------|-------|-------|-------|------|------|-----|
| No 4                                       |       |       |       |      |      |     |
| Dust content, mg/m <sup>2</sup>            | 316   | 439   | 112   | 0    | 1542 | 30  |
| $\rm NH_4^+,mg$ / L                        | 0.75  | 0.98  | 0.30  | 0    | 3.60 | 43  |
| _                                          | 0.015 | 0.019 | 0.008 | 0    | 0.08 | 107 |
| $NO_2$ , $mg$ / $L$                        |       |       |       |      |      |     |
| _                                          | 2.3   | 3.4   | 1.4   | 0    | 20.4 | 118 |
| $NO_3$ , $mg$ / $L$                        |       |       |       |      |      |     |
| рН                                         | 6.6   | 0.8   | 6.7   | 4.1  | 8.4  | 129 |
| No 7                                       |       |       |       |      |      |     |
| Dust deposition rate, mg/m <sup>2</sup> /d | 1.67  | 1.67  | 1.08  | 0.05 | 6.6  | 38  |
| NH4 <sup>+</sup> , mg / L                  | 0.20  | 0.009 | 0.10  | 0    | 1.34 | 682 |
| -                                          | 0.027 | 0.007 | 0     | 0    | 0.61 | 127 |
| $MO_2$ , mg / L                            |       |       |       |      |      |     |
| _                                          | 0.47  | 0.02  | 0.19  | 0    | 3.93 | 697 |
| $NO_3$ , $mg$ / $L$                        |       |       |       |      |      |     |
| pН                                         | 6.1   | 0.02  | 6.1   | 4.6  | 8.0  | 585 |

Table S7. Major ions, pH value, dust content (in snow) and deposition rate during winter at HLD sources no 4 and 7.

55 M - mean, max - maximum, Me - median, min - minimum, N - number of observations, SD - standard deviation.

| No. | Object                                                                              | Exploitation period    | Total area,<br>ha | Resource,<br>mln. t |
|-----|-------------------------------------------------------------------------------------|------------------------|-------------------|---------------------|
| 1   | Tailing pond of processing plant no. 1 of the<br>Pechenganickel works, JSC Kola MMC | 1945 - 1994            | 1033              | ~220                |
| 2   | Tailing pond of processing plant no. 2 of the<br>Pechenganickel works, JSC Kola MMC | 1965 -<br>present time | -                 | 22.4                |
| 3   | Tailing pond of processing plant of the<br>Severonikel works, JSC Kola MMC          | 1935 - 1978            | No data           | 5.3                 |
| 4   | Dumps of granulated slag of the<br>Pechenganickel works, JSC Kola MMC               | 1945 -<br>present time | 80                | 47                  |
| 5   | Tailing pond No 1 and No 2 of crushing<br>and processing plant, JSC Olkon           | 1954 -<br>present time | 1400              | ~300                |
| 6   | Tailing pond of apatite-nepheline processing plant no.1 (ANOF-1), JSC Apatit        | 1957 - 1963            | 120               | 24.4                |
| 7   | Tailing pond of apatite-nepheline processing plant no. 2 (ANOF-2), JSC Apatit       | 1963 -<br>present time | 1652              | ~550                |
| 8   | Tailing pond of apatite-nepheline processing<br>plant no. 3 (ANOF-3), JSC Apatit    | 1988 -<br>present time | 1158              | ~250                |
| 9   | Tailing pond of JSC Kovdorskiy GOK, (field no. 1)                                   | 1962 -1980             | 330               | 53.8                |
| 10  | Tailing pond of JSC Kovdorskiy GOK, (field no. 2)                                   | 1988 -<br>present time | 900               | 80                  |
| 11  | Tailing pond of LLC Lovoserskiy GOK                                                 | 1951 -<br>present time | No data           | 12                  |
| 12  | Tailing pond of LLC Kovdorslyuda                                                    | 1959 -<br>present time | 35                | 6                   |

## Table S8. Some characteristics of tailing ponds on the Kola Peninsula (Masloboev et al., 2016).

## Supplement: Central part of East European Plain: partitioning elements among five particle size-fractions

Topsoil (0-10 cm) samples were collected along several transects (Samonova et al., 2020) crossing gully and bulka (Fig 1A). The collected bulk samples (n = 22) were physically fractionated into five particle size fractions (1000-250, 250-50, 50-10, 10-1 and <1  $\mu$ m, n=100). The boundaries between particle size classes were defined in accordance with the Russian

conventional fraction groups: coarse and medium sand (1000-250 μm), fine sand (250-50 μm), coarse silt (50-10 μm), medium and fine silt (10-1 μm), clay (<1 μm). The concentrations of Al, Fe, Mn, Ti, Li, Be, Sc, V, Cr, Co, Ni, Cu, Zn, Ga, As, Rb, Mo, Cd, Sn, Sb, Cs, Pb, Ta, Tl, Bi, Th, Y, Nb, Ba, U, Zr, Sr, Hf, were determined on Elan-6100 and Optima-4300 DV spectrometers (Perkin Elmer Inc., USA) by ICP-AES/MS after digestion of samples in a mixture of acids (NSAM-499-AES/MS method). In</li>
physical fractionation the sand fractions were separated from the bulk soil samples by wet sieving while the silt fractions, as well as the clay fraction, were obtained by sedimentation and siphoning, during times determined by Stokes' law.

The boundaries between particle size classes were defined in accordance with the Russian conventional fraction groups: coarse and medium sand (1000-250  $\mu$ m), fine sand (250-50  $\mu$ m), coarse silt (50-10  $\mu$ m), medium and fine silt (10-1  $\mu$ m), clay (<1 75 μm). The measured concentrations and element distribution among soil particle size fractions are shown in Fig. 2A, Fig. 3A and Fig. 4A. Because of the different ways in which the elements can occur in the soils (Samonova and Aseveva, 2019) their distribution among particle size fractions varies. However, we observed some common patterns in the partitioning of the elements, which allowed us to arrange them into several distinct groups (group A, group B, and group C). According to our results, the majority of elements (Al, Cd, Zn, Sc, V, Tl, Pb, Rb, Ti, Nb, Th, Y, U, Li, Cs, Be, Ga) show the progressive 80 accumulation from coarser to the finer fractions and a maximum of the element concentration in the clay fraction (Fig.2A). The predominant accumulation of metals in the fine fractions was reported earlier both for the natural and polluted soils (Hardy and Cornu 2006; Ljung et al. 2006) suggesting that these elements are mainly found in the secondary minerals such as phyllosilicate clays, where they occur as structural components or in the form of the adsorbed ions. The further study of the element partitioning showed that group A is not homogeneous because of some differences in the distribution of the elements 85 among the two sand fractions, which allowed to incorporate the elements in several subgroups. In the first subgroup, which

- allong the two said fractions, which allowed to incorporate the elements in several subgroups. In the first subgroup, which includes Al, Cd, Zn, Sc, V, Tl, Pb, Rb, the two sand fractions hosts nearly equal average amounts of the elements, while in the second subgroup (Ti, Nb, Th, Y, U) the finer sand fraction (presumably due to preferential accumulation of stable minerals like rutile, titanite) shows higher concentrations of the elements (especially in case of Ti and Nb). The lithic elements (Li, Cs, Be, Ga), which make up the third subgroup in group A, tend to enrich the coarse sand fraction. The elements from group B in
- 90 contrast to group A revealed the minimal concentrations not in the sand but in the silt fractions, specifically, in coarse silt fraction (Cr, Ni, Sn, Bi, Sb, As, Mn, Co) or both silt fractions (Fe, Mo), but major element-hosting particle size fraction remained the same (the clay fraction). The majority of the elements that comprise this group participate in redox reactions and

belong to arsenic group or represent typical elements of the ferro-family. The latter group can occur in soil as structural components of primary ferrous minerals or/and as co-precipitates in secondary Fe-Mn (hydr)oxides. Most of the elements from

- 95 group B do not accumulate in the sand fractions, except for Mn, Co and Mo, which in some cases enrich the sand fraction. Such bimodal distribution with two concentration maxima (one in clay and one in sand) was reported earlier and can be explained by the presence of several hosting minerals and phases having high retention for these metals. In the clay Mn and Co are apparently associated with secondary clay minerals, but in the sand they are likely bound to newly formed Mn (hydr)oxides. The last group (group C) incorporates stable elements Zr and Hf. They reveal the maximum concentrations in
- 100 the silt fractions, with a maximum in the coarse silt, and minimal concentration in the coarse and medium sand fraction. Such distribution among different particle size fractions can be explained by the occurrence of these elements in detrital grains of primary accessory minerals, such as zircon, usually concentrating in the fine sand to coarse silt fractions. In conclusion, it is worth pointing out that our geochemical study conducted in the central part of European Russia showed that the majority of the elements in topsoil horizons of typical soils (Retisols and Regosols) have common types of distribution among particle
- 105 size fractions displaying the progressive accumulation in the finer fractions. However, our data also provide the evidence that preferential association of metals with particle size fractions is not limited to the clay fraction. Such elements as Mn, Co tend to have bimodal distribution with concentration maxima in the clay and the sand fraction. The partitioning of Zr and Nb accumulating in the silt fractions is governed by their presence in the mineral structure of accessory minerals that are stable during the processes of transport, physicochemical weathering, and soil formation. The coarse silt fraction, with particle sizes
- 110 50-10  $\mu$ m, in many cases is depleted in elements which can be a result of its loessial origin.

## References

120

Samonova O.A. and Aseyeva E.N.: Particle size partitioning of metals in humus horizons of two small erosional landforms in
the middle Protva basin – a comparative study. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2020;13(1):260-271.
https://doi.org/10.24057/2071-9388-2019-116, 2020.

Samonova O. A., Aseyeva E. N., Chernitsova O. V. Data on rare earth elements in different particle size fractions of topsoil for two small erosional landforms in central European Russia. // Data in Brief, 30, pp. 105450, https://doi.org/10.1016/j.dib.2020.105450, 2020.



Figure S1. The map of the study area in the Central European Russia with the study objects and sampling locations (Samonova and Aseyeva, 2020)



Figure S2. The abundances of elements (group A) in the soil particle size fractions. Median – is indicated as a line across
the box. X-axe: particle size fractions Fr1 – coarse and medium sand (1000-250µm); Fr2 – fine sand (250-50µm); Fr3 – coarse silt (50-10µm); Fr4 – medium and fine silt (10-1µm); Fr5 – clay (<1 µm).</li>



Figure S3. The abundances of elements (group B) in the soil particle size fractions. Median – is indicated as a line across the box. X-axe: particle size fractions Fr1 – coarse and medium sand (1000-250µm); Fr2 – fine sand (250-50µm); Fr3 – coarse
silt (50-10µm); Fr4 – medium and fine silt (10-1µm); Fr5 – clay (<1 µm).</li>



140 Figure S4. The abundances of elements (group C) in the soil particle size fractions. Median – is indicated as a line across the box. X-axe: particle size fractions Fr1 – coarse and medium sand (1000-250µm); Fr2 – fine sand (250-50µm); Fr3 – coarse silt (50-10µm); Fr4 – medium and fine silt (10-1µm); Fr5 – clay (<1 µm).</p>