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Abstract

The increasing ozone (O3) pollution and high fraction of secondary organic aerosols (SOA) in fine particle mass

highlighted the importance of volatile organic compounds (VOCs) in air pollution control. In this work, a

campaign of comprehensive field observations was conducted at an urban site in Beijing, from December 2018

to November 2019, to characterize VOCs sources and their contributions to air pollution. The total mixing ratio

of the 95 quantified VOCs (TVOC) observed in this study ranged from 5.5-118.7 ppbv with the mean value of

34.9 ppbv. Alkanes, OVOCs and halocarbons were the dominant chemical groups, accounting for 75-81% of the

TVOCs across the sampling months. The molar ratios of VOCs to NOx indicated that Oz formation was limited

by VOCs during the whole sampling period. Positive matrix factorization (PMF) analysis showed that diesel

vehicle exhaust, gasoline vehicle exhaust and industrial emissions were the main VOCs sources during both the

Os-polluted and PM_2s-polluted months. On the base of O3 formation impact, VOCs from fuel evaporation and

diesel exhaust particularly toluene, xylenes, trans-2-butene, acrolein, methyl methacrylate, vinyl acetate, 1-

butene and 1-hexene were the main contributors, illustrating the necessity of conducting emission controls on

these pollution sources and species for alleviating Os pollution. Instead, VOCs from diesel exhaust and
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coal/biomass combustion were found to be the dominant contributors for secondary organic aerosol formation

potential (SOAFP), particularly the VOC species of toluene, 1-hexene, xylenes, ethylbenzene and styrene, and

top priority should be given to these for the alleviation of haze pollution. This study provides insights for

government to formulate effective VOCs control measures for air pollution in Beijing.

Key words: VOCs, OFP, SOAFP, Source appointment
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1. Introduction

The ozone (O3) and fine particulate matter (PM>.s) pollution has restricted improvements in air quality in China.

Observation data from the Chinese Ministry of Environment and Ecolgy (MEE) network has witnessed an upward

trend for O3 across the country over the period 2013-2019 (Fu et al., 2019; Li et al., 2017; Li et al., 2020; Shen

et al., 2019; Fan et al., 2020). Besides, haze pollution occurred in urban sites in recent years were commonly

characterized by enhanced formation of secondary organic aerosols (SOA) in fine particles, e.g., the fraction of

SOA in organic aerosols reached 58% in Xi’an during winter 2018 and 53% in urban Beijing during winter

2014(Kuang et al., 2020; Li et al., 2017b; Sun et al., 2020; Xu et al., 2019). Volatile organic compounds (VOCs)

are key precursors for the formation of O3 via gas-phase reactions (Odum et al., 1997; Atkinson, 2000; Sato et

al., 2010; Huang et al., 2014). In highly polluted urban regions, the O3 formation was generally VOCs-limited,

and it is suggested that VOCs emission control is necessary for effective alleviation of photochemical smog (Liu

et al., 2020a,b; Shao et al., 2009; Wang et al., 2020; Xing et al., 2011). Besides, the VOCs compounds including

aromatics and biogenic species have significant impact on SOA formation which play an important role in haze

formation (Huang et al., 2014; Tong et al., 2021). VOCs emission abatement is therefore imperative for

improving air quality in China.

VOCs in ambient air can be emitted by a variety of sources including both anthropogenic and biogenic

sources. While biogenic emissions are significantly greater than anthropogenic emissions globally (Doumbia et

al., 2021; Sindelarova et al., 2022), anthropogenic emissions play the dominant role in urban and surrounding

areas (Warneke et al., 2007; Ahmad et al., 2017; Wu and Xie, 2018). The VOC observations in China showed

distinct differences in anthropogenic sources among different regions. For example, solvent use and vehicle

exhaust are primary VOCs sources in urban Shanghai and urban Guangzhou, while the primary sources of VOCs
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in Wuhan, Zhengzhou and Beijing cities are combustion and vehicle exhaust (Han et al., 2020; Shen et al., 2020;
Liuetal., 2020a; Lietal., 2019a). Apart from the diversity of emission sources, different VOCs species exhibited
different propensities to form Oz and SOA. Observation-based studies commonly applied the Oz formation
potential (OFP) and SOA formation potential (SOAFP) scales to quantify the relative effects of specific VOCs
and sources on O3 and SOA formation and to aid in the development of efficient control strategies (Carter and
Atkinson, 1989; Chang and Rudy, 1990; Han et al., 2020; Zhang et al., 2017). Although there have been many
studies on ambient VOCs in various locations (e.g., urban, rural, and industrial areas), most of these
measurements were confined to short periods (a few days or a certain season), and the understanding of temporal
variations of concentrations, sources as well as the influence of photochemical reactions of VOCs on annual scale
was still limited. Besides, most of the available reports on VOCs analysis based on online analytical techniques
include mainly non-methane hydrocarbon compounds, and thus the characteristics of VOCs as well as their
relationships with PM25s and Os cannot be fully revealed since OVOC also participate actively in chemical
reactions related to secondary formation (Li et al., 2019a; Zhao et al., 2020; Yang et al., 2018; Sinha and Sinha.,
2019). Therefore, the long-term and comprehensive monitoring of VOCs are desired.

As the capital and one of the largest megacities in China, Beijing has been suffering from severe O3 pollution
due to rapid economic development and increases in precursor emissions (Wang et al., 2014a; Wang et al, 2017;
Li et al., 2019d; Zhao et al., 2020). According to the Report on the State of the Ecology and Environment in
Beijing, the average 90th percentile O3z daily maximum 8 h concentration in Beijing exceeded the national
standards, reaching 193, 192, and 191 pg/m?® in 2017, 2018, and 2019, respectively. In addition, the number of

motor vehicles in Beijing reached 6.365 million at of the end of 2019 (http:// beijing.gov.cn), making Beijing the

top city in China in terms of number of motor vehicles. The existing field measurements in Beijing were mostly
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conducted before 2016, and the observation in most recent years is quite limited (Li et al., 2015; Li et al., 2019c;
Liuetal., 2020a; Yang et al., 2018). In this work, a campaign of comprehensive field observations was conducted
at an urban site in Beijing during December 2018 and November 2019 for the analysis of VOCs. Several O3 and
PM, s pollution events were captured during the sampling period. The characteristics and the contribution of
specific species and sources of VOCs on O3 and SOA formation, with a focus on photochemical and haze
pollution periods, were analyzed in detail. The results and implications from this study can provide useful guidance
for policymakers to alleviate ozone and haze pollution in Beijing.
2. Methodology
2.1 Field measurement

The sampling site is at the roof of a three-floor building on the campus of Tsinghua University (40.00°N,
116.33°E), northwest of Beijing urban area (Fig. S1). The altitude of the sampling site is 57 m. This sampling
site is surrounded by school and there are no large emission sources nearby, therefore it can represent the urban
air quality in Beijing. Details of the site description is found in Xu et al., (2019).

The air samples were collected using 6 L summa canisters (Entech, USA) with a stable rate of 4.26 ml/min.
The samples were pre-processed to remove Nz, Oz, CO2, CO and HzO in the samples and to further concentrate
the samples in volume by the cryogenic pre-concentrator (Model 7100, Entech Instruments Inc., USA). Pressure
gage was used to test if the canister has air leakage exist before sampling every time, and blanks were prepared
using cleaned canisters to fill with high purity nitrogen. The cryotraps of precooling system was baked before
analyses each day and between every samples. The VOCs in air samples were analyzed by a gas chromatography
system that was equipped with a mass spectrometric detector (GC-MS) (Agilent Tech., 7890/5975, USA). The

availability of this system for VOCs measurement are well verified and it has been used in field campaigns (Li
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et al., 2014; Wu et al., 2016). The column temperature was controlled by an initial temperature of -40 <C. The
programmed temperature was used with helium as carrier gas, and the flow rate was set at 1.5 ml min-. The
initial temperature was set at 90 <C, and then switched to 220 <C. In this work, 95 target VOCs, including 25
alkanes, 8 alkenes, 16 aromatics, 34 halocarbons and 12 OVOC were quantified. It should be noted that VOCs
compounds (C2-C3) with low boiling point (i.e., ethane, ethene, acetylene, and propane) were not detected by
the GC-MS system. The standard substance (SPECTRA GASES Inc., USA) mentioned for Photochemical
Assessment Monitoring Stations (PAMS) and US EPA TO-15 standard was used to construct the calibration
curves for the target VOCs. Quality assurance and quality control, including method detection limit (MDL) of
each compound, laboratory and field blanks, retention time, accuracy and duplicate measurements of samples
were performed according to USEPA Compendium Method TO-15 (USEPA 1999). The correlated coefficients
of the calibration curves for all the compounds were > 0.95. The relative standard deviation (RSD) for all of
compounds of triplicates were 0.5%-6.0%. Previous field measurements have reported that the precision of
GC-MS system for hydrocarbons and aldehydes was below 6% and 15%, respectively (Li et al., 2014; Wu et al.,
2016). In this work, one kind of aldehyde substance, i.e., ethylacrolein was detected, with R? and RSD of 0.99
and 4.5%, respectively.

During the sampling periods, the measurements of PM.s, gaseous pollutants (NOx and Os), and
meteorological variables (such as temperature, relative humidity, wind speed, and wind direction) were
conducted simultaneously. NOx and Oz were analyzed using the Ozone Analyzer (Thermo Fisher Scientific USA,
491) and NO-NO2-NOx Analyzer (Thermo Fisher Scientific USA, 171), respectively. The mass concentration of
PM2s was measured using an oscillating balance analyzer (TH-2000Z, China) (Wang et al., 2014a). The quality

assurance of NO2, Oz, and PM_s was conducted based on HJ 630-2011 specifications. Meteorological including
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wind speed (WS), wind direction (WD), relative humidity (RH), air pressure, temperature, and precipitation were
measured by an automatic weather monitoring system. The planetary boundary height was obtained from the
European Centre for Medium-Range Weather Forecasts (https://www.ecmwf.int/en/forestcasts/datasets/browse-
reanalysis -datasets).

2.2 Ozone formation potential (OFP) and secondary formation potential (SOAFP) calculation
The formation potential of O3 and SOA was used to characterize the relative importance of VOCs species and

sources in secondary formation, which were estimated using Eqgs. (1) and (2).

OFP =""MIR, x [VOC(ppb)] 1)

SOAFP =>""Y, x[VOC(ppb)], @
where n represents the number of VOCs, [VOC]i represents the ith VOC species concentration, MIRi is the
maximum incremental reactivity for the ith VOC species, and Yi is the SOA yield of VOC; (McDonald et al.,
2018). The MIR for each VOC species were taken from the updated Carter research results
(http:/lwww.engr.ucr.edu/~carter/reactdat.htm, last access: 24 February 2021). For species lacking yield curves,
the fractional aerosol coefficient (FAC) values proposed by Grosjean and Seinfeld (1989) were used.

2.3 Deweathered model

In this work, the influences of meteorological conditions on Oz and PM3 s were removed using the random forest
(RF) model. The meteorological predictors in the RF model include wind speed (WS), wind direction (WD), air
temperature (T), relative humidity (RH), precipitation (Prec), air pressure (P), time predictors (year, day of year
(DQY), hour) and planetary boundary layer height (BLH). These meteorological parameters have been reported

to be strongly associated with PM2sand O3 concentrations in various regions in China (Chen et al., 2020; Feng

et al., 2020) and contributed significantly in previous PMzs and Os prediction models (She et al., 2020; Li et al.,
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2020). The original dataset was randomly classified into a training dataset (90 % of input dataset) for developing
the RF model, and the remaining one was treated as the test dataset. After the building of the RF model, the
deweathered technique was applied to predict the air pollutant level at a specific time point. The differences in
original pollutant concentrations and deweathered pollutant concentrations were regarded as the concentrations
contributed by meteorology. Statistical indicators including R?, RMSE, and MAE values were regarded as the
major criteria to evaluate the modeling performance.
2.4 Positive matrix factorization (PMF)
In this study, the US EPA PMF 5.0 software was used for VOCs source apportionment (Abeleira et al., 2017; Li
et al., 2019a; Xue et al., 2017). The detailed description of the PMF model is found elsewhere (Ling et al., 2011;
Yuan et al., 2009). PMF uses both concentration and user-provided uncertainty associated with the data to weight
individual points. Species with high percentages of missing values (> 40 %) and with signal-to-noise ratio of
below 2 were excluded. Based on this, 53 VOC species including source tracers (e.g., chloromethane,
trichloroethylene, tetrachloroethylene and MTBE) and SO, were chosen for the source apportionment analysis.
Data values below the MDL were replaced by MDL/2, and the missing data were substituted with median
concentrations. If the concentration is less than or equal to the MDL provided, the uncertainty is calculated using
the equation of Unc = 5/6 < MDL,; if the concentration is greater than the MDL provided, the uncertainty is
calculated as Unc = [(error faction xmixing ratio)?+ (MDL)?]1/2.

During the PMF analysis, the bootstraps (BS) method, displacement (DISP) analysis, and the combination
of the DISP and BS (BS-DISP) were used to evaluate the uncertainty of the base run solution. A total of 100
bootstrap runs were performed, and acceptable results were gained for all factors (above 90%). Based on the

DISP analysis, the observed drop in the QO value was below 0.1 %, and no factor swap occurred, confirming that
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the solution was stable. The BS-DISP analysis showed that the observed drop in the Q value was less than 0.5 %,

demonstrating that the solution was useful.

3. Results and discussion

3.1 TVOC mixing ratios and chemical composition

The time series of meteorological parameters and concentrations of air pollutants during the measurement
period are shown in Fig. 1. The ambient temperature ranged from -13.3°C to 38.7°C and the RH varied between
5% and 99% across the sampling months. Prevailing winds shifted between southwesterly and northeasterly with
WS of 0-6.8 m s'!. The mixing ratio of total VOCs (TVOC) ranged from 5.5-118.7 ppbv during the sampling
period with relatively higher values during September and November (49.9-51.6 ppbv) while relatively lower
values (22.2-27.5 ppbv) across the other months. Major VOC compositions were generally consistent during the
whole measurement period. Alkanes, OVOCs and halocarbons were the dominant chemical groups, accounting
for 75-81% of the TVOCs across the sampling months. In terms of individual species, acetone, dichloromethane,
butane, toluene, methyl tert butyl ether (MTBE), i-pentane, propylene, hexane, 1,1- dichloroethane, benzene and
1-butene made up the largest contribution, accounting for 50.6 % of the TVOC on average during the whole
measurement period.

The comparison of concentration and composition of chemical groups observed in this work and previous
studies is shown in Fig. 2. Clearly, the concentrations of TVOCs and major VOC groups observed in this study
were apparently lower than those in 2014 and 2016 in urban sites in Beijing (An et al., 2012; Liu et al., 2020a;
Lietal., 2015b), indicating the effectiveness of control measures in most recent years on lowering VOCs emission.

Besides, the composition of major chemical groups also showed remarkable changes, with decreased proportions
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of alkanes while increased fractions of halocarbons, aromatics and OVOCs, reflecting the changes in emission
sources types in most recent years.

During the measurement period, 14 O3 pollution days (days with maximum 8-h average O3z exceeding 160
ug m~) were observed, (i.e., 17-22 April, 3-17 May, 18-29 June, 2-13 July, and 25-29 September of 2019), and
April, May, June, July, and September of 2019 were defined as the Os-polluted months. The comparison of
meteorological parameters and trace gases on Os pollution and compliance days (days with maximum 8-h average
O3 below 160 pg m3) of the four Os-polluted months is shown in Fig. 3. The WS on O3 pollution days (1.31 +
0.90 m s!) was slightly lower than that on O3 compliance days (1.47 + 1.10 m s!), indicating that precursors
were more conductive to be diluted on O3 compliance days. The variation trend of Oz and temperature displayed
the negative correlation, and the linear correlations between Oz and temperature on Os pollution days (R? = 0.63)
was stronger than that on Os compliance days (R? = 0.35). The mean TVOC concentration on O3 pollution days
(32.3 ppbv) was higher than that on O; compliance days (29.6 ppbv), which was mainly attributed to higher
concentrations of MTBE, acrolein, trans-2-butene r on pollution days. MTBE is widely used as a fuel additive in
motor gasoline (Liang et al., 2020), and trans-2-butene is the main component of oil/gas evaporation (Li et al.,
2019a). Such result suggested enhanced contribution of traffic emissions on Oz pollution days. Besides, the
concentration of isoprene, which is primarily produced by vegetation through photosynthesis, increased
significantly on Os pollution days probably due to the stronger plant emission at elevated temperature (Guenther
etal., 1993, 2012; Stavrakou et al., 2014). The ratio of m/p-xylene to ethylbenzene (X/E) measured can be used
as an indicator of the photochemical aging of air masses because of their similar sources in urban environments

and differences in atmospheric lifetimes (Carter., 2010; Miller et al., 2012; Wang et al., 2013a). The mean X/E
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value on Oz compliance days (1.41) was higher than that on O; pollution days (1.17), indicating enhanced
secondary transformation of VOCs on O3 pollution days.

The daily PM» s concentrations ranged from 9-260 pg m> with the mean value of 88.5 pg m during the
measurement period. 15 PMz s pollution days (daily average PM, s exceeding 75 ug m~) were observed(i.e., 1-2
December and 5 December of 2018, 3 January, 12-13 January, 22-23 April, 29 April, 12 May, 15 May, 19 October,
and 21-23 November of 2019), and December of 2018, January, Apri, May, October and November of 2019 were
identified as the PMa s-polluted months. During the six PM s-polluted months, , the WS on PM> s pollution days
(1.05 £ 1.06 m s™") was lower than that on PMys compliance days (1.43 + 1.06 m s!), indicating the weaker
ability of winds for the dilution and diffusion of precursor on PM; s pollution days. Both the value of relative
humidity (RH) and TVOCs increased significantly on PM,s pollution days, suggesting that the secondary
transformation of VOCs was more conducive at higher RH. The mean X/E value on PMy s compliance days (1.47)
was slightly higher than that on PM; s pollution days (1.44), indicating enhanced secondary transformation of
VOCs on PM_; pollution days.

3.2 The role of VOCs on secondary pollution
3.2.1 Estimating O3 and PM: s levels contributed by emissions

O; and secondary aerosols are primarily formed via photochemical reactions in the atmosphere, of which
concentrations could be largely influenced by meteorological conditions (Chen et al., 2020; Feng et al., 2020;
Zhai et al., 2019). In this work, the respective contributions of meteorology and emissions to PM2s and O3
variations were determined using the RF model as described in section 2.3. The coefficients of determination (R?)
for the RF model in predicting PM2s and O3 are 0.85 and 0.91, respectively (Shown in Fig. S2). The respective

contributions of anthropogenic and meteorology to Os and PM3 s during each period is shown in Fig. 4. During
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the Os-polluted months, the meteorologically-driven Os level on O3 pollution days (72.5 g m3) was significantly
higher than that on O3 compliance days (35.3 g m3). After removing the meteorological contribution, the
residual emission-driven O3 level on O3 pollution (45.3 pg m3) and compliance days (44.9 g m3) of the Os-
polluted months was almost identical and were significantly higher than that during the non-Os-polluted months
(23.8 g m3). The emission-driven PM:s level was in the order of: PM_ s pollution days of the PM_s-polluted
months (55 g m3) > PM_s compliance days of the PM2s-polluted months (44 pg m=) > non-PM_s-polluted
months (29 g m3). These results suggested that apart from meteorological factors, emissions also play a role in
deteriorating PM, 5 and O3 pollution, and reducing anthropogenic emissions is essential for improving air quality.

The VOCs/NOx ratio has been widely used to distinguish whether the Oz formation is VOC limited or NOx
limited (Li et al., 2019a). Generally, VOC-sensitive regime occurs when VOCs/NOx ratios are below 10 while
NOx-sensitive regime occurs when VOCs/NOx ratios are higher than 20 (Hanna et al., 1996; Sillman, 1999). In
this study, the values of VOCs/NOx (ppbv ppbv?) were all below 3 during both the Osz-polluted and non-Os-
polluted months (Fig. S3), suggesting that the O3z formation was sensitive to VOCs, and thus the reductions of
the emissions of VOCs will be beneficial for Oz alleviation.

3.2.2 Contribution of VOCs to OFP and SOAFP

As discussed in 3.1, O3 formation was generally VOCs-sensitive during the measurement period.
Quantifying the contribution of speciated VOCs species to Os is helpful for developing effective VOCs control
measures and alleviating Oz pollution. The averaged OFP on Oz pollution days of the Os-polluted months, O3
compliance days of the Os-polluted months, and during the non-Oz-polluted months were 224.9, 201.4, and 187.5
g m3, respectively (Fig. 5). According to our observations, the higher OFP on O3 pollution days than that on O3

compliance days during the O3z-polluted months was mainly attributed to higher levels of trans-2-butene, o-xylene

12
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and acrolein O3 on pollution days, in line with that in Fig. 3. Alkenes, aromatics and OVOCs were the three
biggest contributors to Oz formation, accounting for 85.1%, 85.7% and 81.6% of the total OFP on O3 pollution
days of the Os-polluted months, Os compliance days of the Os-polluted months, and during the non-Oz-polluted
months, respectively. In terms of the individual species, the top 10 highest contributors during the Os-polluted
months were toluene (7.5% and 6.4% on O3 compliance and polluted days, respectively), trans-2-butene (7.5%
and 9.6%), acrolein (5.7% and 10.8%), m/p-xylene (6.9% and 6.1%), o-xylene (5.8% and 6.6%), 1-butene (7.1%
and 5.2%), 1-hexene (5.4% and 4.4%), vinyl acetate (5.7% and 4.2%), methyl methacrylate (4.8% and 5.5%),
and 1-pentene (4.4% and 4.5%). During the non-Os-polluted months, the overall OFP was mainly contributed
by toluene (10.8%), trans-2-butene (10.5%), 1-butene (7.3%), m/p-xylene (6.5%), 1-pentene (5.7%), 1-hexene
(5.0%), methyl methacrylate (4.9%), o-xylene (4.9%), vinyl acetate (3.8%), and isopentane (2.3%), respectively.

As shown in Fig. S3, the ratio of VOCs/NOx was generally below 3 during the sampling period, indicating
high NOx conditions. Based on the estimated yields of the VOCs shown in Table S2, the SOAFPs were calculated
and compared in Fig. 5. The mean SOAFP on PMas pollution days of the PMzs-polluted months, PM2s
compliance days of the PM_s-polluted months, and during the non-PM3 s-polluted months were 1.28, 1.07, and
0.89 g m3. During the six PM,s-polluted months, the higher SOAFP on PM 5 pollution days than that on PM;s
compliance days was mainly attributed to higher levels of 1,2,4-trimethylbenzene, n-undecanone, n-Nonane, 1,4-
diethylbenzene, and 1,3-diethylbenzene on PMz s pollution days. Aromatics have the largest SOAFP, accounting
for 74% and 75% of the total SOAFP on PM2 s pollution and compliance days of the PM2s-polluted months, and
70% of the total SOAFP during the non-PM; s-polluted months, respectively. The 10 species responsible for most
of the SOAFP were toluene (41% and 40% on PM_ s pollution and compliance days of the PM2s-polluted months,

and 33% during the non-PM s-polluted months), 1-hexene (13.0%, 12.5%, and 15.2%), xylenes (11.6%, 14.1%
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and 14.8%), ethylbenzene (4.9%, 5.3% and 6.0%), styrene (4.5%, 5.6% and 5.6%), 1-pentene (3.3%, 3.4% and
4.3%), methyl cyclopentane (2.1%, 2.7% and 3.6%), 1,2,3-trimethylbenzene (2.8%, 2.4% and 2.8%), m-ethyl
toluene (1.7%, 1.4% and 1.7%) and p-ethyl toluene (1.7%, 1.4% and 1.7%), respectively.
3.3 Source apportionment of VOCs
3.3.1 Indication from tracers

The great changes in the mixing ratios of VOCs species are mainly affected by the photochemical processing
and the emission inputs, and ambient ratios for VOCs species having similar atmospheric lifetimes are indicators
of different sources (Li et al., 2019a; Raysoni et al., 2017 Song et al., 2021). The ratio of i-pentane to n-pentane
are widely used to examine the impact of vehicle emissions, fuel evaporation and combustion emissions, within
the i/n-pentane ratios of ranging between 2.2-3.8, 1.8—4.6 and 0.56-0.80, respectively (McGaughey et al., 2004;
Jobson et al., 2004; Russo et al., 2010; Wang et al., 2013b; Yan et al., 2017). As shown in Fig. 6, the i/n-pentane
ratios during the PM; s-polluted months were mostly within the range of 0.3-2.0, suggesting the pentanes were
from the mixed sources of coal combustion and fuel evaporation. During the non-PM s-polluted months, the i/n-
pentane ratios were distributed in the range of 1.3-3.4, indicating strong impacts from vehicle exhaust and fuel
evaporation. During the Os-polluted months, most of the i/n-pentane ratios (1.5-2.5) were distributed within the
reference range of vehicle exhaust and fuel evaporation, whereas most of the i/n-pentane ratios during the non-
Os-polluted months ranged between 1.7-2.1, suggesting the significant impact of fuel evaporation.

The toluene/benzene (T/B) ratio, a widely used indicator for sources of aromatics. In areas heavily impacted
by vehicle emissions, the T/B ratio lies in the range of 0.9-2.2 (Qiao et al., 2012; Dai et al., 2013; Wang et al.,
2013c; Yao et al., 2013; Zhang et al., 2013; Yao et al., 2015a; Mo et al., 2016; Deng et al., 2018). Higher T/B

ratios were reported for solvent use (greater than 8.8) (Yuan et al., 2010; Wang et al.,2014b; Zheng et al., 2013)
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and industrial processes (1.4-5.8) (Mo et al., 2015; Shi et al.,2015). In burning source emission studies, the T/B

ratio was below 0.6 in different combustion process and raw materials (Tsai et al., 2003; Akagi et al., 2011; Mo

et al., 2016). Most of the T/B ratios during the PM> s-polluted and non-PM; s-polluted months were within the

range of 1.1-1.8 and 0.8-2.2, whereas the T/B ratios were mostly distributed within the range of 0.8-2.2 and 0.9-

1.9 during the Os-polluted and non-Os-polluted months, respectively, suggesting the significant impact of vehicle

and industrial emissions.

3.3.2 PMF

The factor profiles given by PMF and the contribution of each source to ambient VOCs during each period

is presented in Fig. 7 and Fig. 8, respectively. Six emission sources were identified: coal/biomass burning, solvent

use, industrial sources, oil gas evaporation, gasoline vehicle emission, and diesel vehicle emission based on the

corresponding markers for each source category. In general, diesel vehicle exhaust, gasoline vehicle exhaust and

industrial emissions were the main VOCs sources during both the Os-polluted and PM2 s-polluted months, with

total contributions of 62% and 62% on Os pollution and compliance days of the Os-polluted months, and 66%

and 59% on PM_s pollution and compliance days of the PM2s-polluted months, respectively. The Oz-polluted

months exhibited higher proportions of diesel (24% on Oz compliance days and 27% on Os pollution days) and

gasoline vehicle emission (17% on Oz compliance days and 16% on O3 pollution days) compared with the non-

Os-polluted months (8% and 13%, respectively). During the Os-polluted months, the contributions of industrial

emissions (22%) and fuel evaporation (18%) on O3 pollution days were much higher than those on Oz compliance

days (18% and 13%, respectively). Figure 9 presents the relative contributions of individual VOC sources from

PMF to OFP. On the base of Oz formation impact, diesel and gasoline vehicle exhaust were major contributors.

During the Os-polluted months, vehicle emissions and fuel evaporation showed higher OFP values on O3
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pollution days (93.9 and 35.5 g m3) compared with those on O; compliance days (88.0 and 25.8 g m3,
respectively). Although industrial emissions act as an important source for VOCs concentrations on Os-pollution
days (shown in Fig. 8), the potential to form Os is limited, accounting for 11% of the total OFP. As illustrated in
Fig.7, the industrial source was distinguished by high compositions of alkanes while relatively lower
compositions of alkenes and aromatics, resulting in low Oz formation potentials. Such results suggested that the
fuel use and diesel vehicle exhaust should be controlled preferentially for Oz mitigation.

The PMas-polluted months showed higher proportions of industrial (29% on both PM;s compliance and
PM_ s pollution days) and coal/biomass combustion emissions (16% on PM_ s compliance days and 18% on PMzs
pollution days) compared with the non-PM s-polluted months (17% and 10%, respectively). The PM2 s pollution
days were dominated by industrial emission (29%), diesel vehicle exhaust (24%), and combustion source (18%).
During the PM2s-polluted months, the contribution of diesel vehicle exhaust on PM2 s pollution days (24%) was
higher than that on PM2 s compliance days (16%). On the base of PM_ s formation impact, diesel vehicle exhaust
and combustion were two major contributors on PMa s pollution days (shown in Fig. 9), and these two sources
showed obvious higher SOAFP on PM s pollution days (0.30 and 0.32 |.g m3, respectively) compared with those
on PM_ s compliance days of the PM_ s-polluted months (0.15 and 0.14 pg m3, respectively). Although industrial
emissions act as an important source for VOCs concentrations on PMz spollution days, the potential to form PM_s
is limited, accounting for 16% of the total SOAFP. The above results suggested that diesel vehicle exhaust and
combustion should be controlled preferentially for alleviating PM2 s pollution.

Based on the mass concentrations of individual species in each source, m/p-xylene, o-xylene, methyl
methacrylate, vinyl acetate, 1-hexene, and acrolein in gasoline and diesel vehicular emissions; toluene, trans-2-

butene, and 1-pentene in fuel evaporation and diesel vehicular emissions; acrolein in solvent, gasoline vehicular
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and diesel vehicular emissions were the dominant species contributing to photochemical O3z formation (Fig. 10).

Toluene, m/p-xylene, o-xylene, styrene, ethylbenzene, 1-pentene, 1,2,3-trimethylbenzene from combustion and

diesel vehicular emissions; 1-hexene from diesel vehicular emission; and methyl cyclopentane from combustion,

industrial and diesel vehicular emissions were the dominant contributors for SOA formation during the PM2s

pollution periods (Fig. 10).

4. Conclusions

In this work, the field sampling campaign of VOCs was conducted at urban Beijing during December 2018

and November 2019. The VOCs concentrations ranged from 5.5 to 118.7 ppbv with mean value of 34.9 ppbv.

Alkanes, OVOCs and halocarbons were the dominant chemical groups, accounting for 75-81% of the TVOCs

across the sampling months. By excluding the meteorological impact, the emission-driven O3 level during the

Os-polluted months were higher than that during the non-Os-polluted months, and similar pattern was found for

PM2s. The molar ratio of VOCs to NOx indicated that Oz formation was limited by VOCs during both the Os-

polluted non-Oz-polluted months, and thus reducing VOCs emission is essential for alleviation of O3 pollution.

The contributions of coal/biomass combustion, solvent use, industrial sources, oil/gas evaporation, gasoline

exhaust, and diesel exhaust were identified based on PMF analysis. Considering both the concentration and

maximum incremental reactivity of individual VOC species for each source, fuel use and diesel exhaust sources

were identified as the main contributors of O3 formation during the Os-polluted months, particularly the VOCs

species of toluene, xylenes, trans-2-butene, acrolein, methyl methacrylate, vinyl acetate, 1-butene and 1-hexene,

illustrating the necessity of conducting emission controls on these pollution sources and species for alleviating

O3 pollution. VOCs from diesel vehicles and combustion were found to be the dominant contributors for SOAFP,

17



340

341

342

343

344

345

346

347

348

349

particularly the VOC species of toluene, 1-hexene, xylenes, ethylbenzene and styrene, and top priority should be
given to these for the alleviation of haze pollution.
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Figure captions
Figure 1. Time series of meteorological parameters and levels of air pollutants during the sampling
period.
Figure 2. Comparison of the concentration and composition of major chemical groups observed in
2019 (this study), 2016 (Liu et al., 2020) and 2014 (Li et al., 2015).
Figure 3. Comparison of major meteorological parameters and air pollutants on clean and polluted
days.
Figure 4. Statistic decomposition of meteorological and emission contribution to O3 and PMz s
levels during different periods.
Figure 5. OFP and SOAFP by chemical groups during different periods.
Figure 6. Ratios of i/n-pentane and toluene/benzene at different PM2 s and O3 levels. Figure 7.
Source profiles of VOCs identified using the PMF model and the relative contributions of the
individual VOC species.
Figure 8. Contributions of each source to VOCs during different periods.
Figure 9. Contributions of each source to OFP and SOAFP during different periods.
Figure 10. OFP values of the dominant VOC species in the different source categories for the O3
pollution (a) and compliance (b) days of the Os-polluted months, and SOAFP values for the PM2s

pollution (c) and compliance (d) days of the PM2s-polluted months.
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