

1 **Measurement report: Ambient volatile organic compounds (VOCs) pollution at urban**
2 **Beijing: characteristics, sources, and implications for pollution control**

3 Lulu Cui¹, Di Wu¹, Shuxiao Wang^{1,2*}, Qingcheng Xu¹, Ruolan Hu¹, Jiming Hao^{1,2}

4 ¹*State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment,*

5 *Tsinghua University, Beijing 100084, China*

6 ²*State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing*

7 *100084, China*

8 * Corresponding author. E-mail address: shxwang@tsinghua.edu.cn

9 **Abstract**

10 The increasing ozone (O_3) pollution and high fraction of secondary organic aerosols (SOA) in fine particle mass
11 highlighted the importance of volatile organic compounds (VOCs) in air pollution control. In this work, a
12 campaign of comprehensive field observations was conducted at an urban site in Beijing, from December 2018
13 to November 2019, to characterize VOCs sources and their contributions to air pollution. The total mixing ratio
14 of the 95 quantified VOCs (TVOC) observed in this study ranged from 5.5–118.7 ppbv with the mean value of
15 34.9 ppbv. Alkanes, OVOCs and halocarbons were the dominant chemical groups, accounting for 75–81% of the
16 TVOCs across the sampling months. The molar ratios of VOCs to NO_x indicated that O_3 formation was limited
17 by VOCs during the whole sampling period. Positive matrix factorization (PMF) analysis showed that diesel
18 vehicle exhaust, gasoline vehicle exhaust and industrial emissions were the main VOCs sources during both the
19 O_3 -polluted and $PM_{2.5}$ -polluted months. On the base of O_3 formation impact, VOCs from fuel evaporation and
20 diesel exhaust particularly toluene, xylenes, trans-2-butene, acrolein, methyl methacrylate, vinyl acetate, 1-
21 butene and 1-hexene were the main contributors, illustrating the necessity of conducting emission controls on
22 these pollution sources and species for alleviating O_3 pollution. Instead, VOCs from diesel exhaust and

23 coal/biomass combustion were found to be the dominant contributors for secondary organic aerosol formation
24 potential (SOAfp), particularly the VOC species of toluene, 1-hexene, xylenes, ethylbenzene and styrene, and
25 top priority should be given to these for the alleviation of haze pollution. This study provides insights for
26 government to formulate effective VOCs control measures for air pollution in Beijing.

27 **Key words:** VOCs, OFP, SOAfp, Source appointment

28 **1. Introduction**

29 The ozone (O_3) and fine particulate matter ($PM_{2.5}$) pollution has restricted improvements in air quality in China.
30 Observation data from the Chinese Ministry of Environment and Eclogy (MEE) network has witnessed an upward
31 trend for O_3 across the country over the period 2013-2019 (Fu et al., 2019; Li et al., 2017; Li et al., 2020; Shen
32 et al., 2019; Fan et al., 2020). Besides, haze pollution occurred in urban sites in recent years were commonly
33 characterized by enhanced formation of secondary organic aerosols (SOA) in fine particles, e.g., the fraction of
34 SOA in organic aerosols reached 58% in Xi'an during winter 2018 and 53% in urban Beijing during winter
35 2014(Kuang et al., 2020; Li et al., 2017b; Sun et al., 2020; Xu et al., 2019). Volatile organic compounds (VOCs)
36 are key precursors for the formation of O_3 via gas-phase reactions (Odum et al., 1997; Atkinson, 2000; Sato et
37 al., 2010; Huang et al., 2014). In highly polluted urban regions, the O_3 formation was generally VOCs-limited,
38 and it is suggested that VOCs emission control is necessary for effective alleviation of photochemical smog (Liu
39 et al., 2020a,b; Shao et al., 2009; Wang et al., 2020; Xing et al., 2011). Besides, the VOCs compounds including
40 aromatics and biogenic species have significant impact on SOA formation which play an important role in haze
41 formation (Huang et al., 2014; Tong et al., 2021). VOCs emission abatement is therefore imperative for
42 improving air quality in China.

43 VOCs in ambient air can be emitted by a variety of sources including both anthropogenic and biogenic
44 sources. While biogenic emissions are significantly greater than anthropogenic emissions globally (Doumbia et
45 al., 2021; Sindelarova et al., 2022), anthropogenic emissions play the dominant role in urban and surrounding
46 areas (Warneke et al., 2007; Ahmad et al., 2017; Wu and Xie, 2018). The VOC observations in China showed
47 distinct differences in anthropogenic sources among different regions. For example, solvent use and vehicle
48 exhaust are primary VOCs sources in urban Shanghai and urban Guangzhou, while the primary sources of VOCs

49 in Wuhan, Zhengzhou and Beijing cities are combustion and vehicle exhaust (Han et al., 2020; Shen et al., 2020;
50 Liu et al., 2020a; Li et al., 2019a). Apart from the diversity of emission sources, different VOCs species exhibited
51 different propensities to form O_3 and SOA. Observation-based studies commonly applied the O_3 formation
52 potential (OFP) and SOA formation potential (SOAFP) scales to quantify the relative effects of specific VOCs
53 and sources on O_3 and SOA formation and to aid in the development of efficient control strategies (Carter and
54 Atkinson, 1989; Chang and Rudy, 1990; Han et al., 2020; Zhang et al., 2017). Although there have been many
55 studies on ambient VOCs in various locations (e.g., urban, rural, and industrial areas), most of these
56 measurements were confined to short periods (a few days or a certain season), and the understanding of temporal
57 variations of concentrations, sources as well as the influence of photochemical reactions of VOCs on annual scale
58 was still limited. Besides, most of the available reports on VOCs analysis based on online analytical techniques
59 include mainly non-methane hydrocarbon compounds, and thus the characteristics of VOCs as well as their
60 relationships with $PM_{2.5}$ and O_3 cannot be fully revealed since OVOC also participate actively in chemical
61 reactions related to secondary formation (Li et al., 2019a; Zhao et al., 2020; Yang et al., 2018; Sinha and Sinha.,
62 2019). Therefore, the long-term and comprehensive monitoring of VOCs are desired.

63 As the capital and one of the largest megacities in China, Beijing has been suffering from severe O_3 pollution
64 due to rapid economic development and increases in precursor emissions (Wang et al., 2014a; Wang et al., 2017;
65 Li et al., 2019d; Zhao et al., 2020). According to the Report on the State of the Ecology and Environment in
66 Beijing, the average 90th percentile O_3 daily maximum 8 h concentration in Beijing exceeded the national
67 standards, reaching 193, 192, and 191 $\mu g/m^3$ in 2017, 2018, and 2019, respectively. In addition, the number of
68 motor vehicles in Beijing reached 6.365 million at the end of 2019 (<http://beijing.gov.cn>), making Beijing the
69 top city in China in terms of number of motor vehicles. The existing field measurements in Beijing were mostly

70 conducted before 2016, and the observation in most recent years is quite limited (Li et al., 2015; Li et al., 2019c;
71 Liu et al., 2020a; Yang et al., 2018). In this work, a campaign of comprehensive field observations was conducted
72 at an urban site in Beijing during December 2018 and November 2019 for the analysis of VOCs. Several O₃ and
73 PM_{2.5} pollution events were captured during the sampling period. The characteristics and the contribution of
74 specific species and sources of VOCs on O₃ and SOA formation, with a focus on photochemical and haze
75 pollution periods, were analyzed in detail. The results and implications from this study can provide useful guidance
76 for policymakers to alleviate ozone and haze pollution in Beijing.

77 **2. Methodology**

78 **2.1 Field measurement**

79 The sampling site is at the roof of a three-floor building on the campus of Tsinghua University (40.00°N,
80 116.33°E), northwest of Beijing urban area (Fig. S1). The altitude of the sampling site is 57 m. This sampling
81 site is surrounded by school and there are no large emission sources nearby, therefore it can represent the urban
82 air quality in Beijing. Details of the site description is found in Xu et al., (2019).

83 The air samples were collected using 6 L summa canisters (Entech, USA) with a stable rate of 4.26 ml/min.
84 The samples were pre-processed to remove N₂, O₂, CO₂, CO and H₂O in the samples and to further concentrate
85 the samples in volume by the cryogenic pre-concentrator (Model 7100, Entech Instruments Inc., USA). Pressure
86 gage was used to test if the canister has air leakage exist before sampling every time, and blanks were prepared
87 using cleaned canisters to fill with high purity nitrogen. The cryotrap of precooling system was baked before
88 analyses each day and between every samples. The VOCs in air samples were analyzed by a gas chromatography
89 system that was equipped with a mass spectrometric detector (GC-MS) (Agilent Tech., 7890/5975, USA). The
90 availability of this system for VOCs measurement are well verified and it has been used in field campaigns (Li

91 et al., 2014; Wu et al., 2016). The column temperature was controlled by an initial temperature of -40 °C. The
92 programmed temperature was used with helium as carrier gas, and the flow rate was set at 1.5 ml min⁻¹. The
93 initial temperature was set at 90 °C, and then switched to 220 °C. In this work, 95 target VOCs, including 25
94 alkanes, 8 alkenes, 16 aromatics, 34 halocarbons and 12 OVOC were quantified. It should be noted that VOCs
95 compounds (C2-C3) with low boiling point (i.e., ethane, ethene, acetylene, and propane) were not detected by
96 the GC-MS system. The standard substance (SPECTRA GASES Inc., USA) mentioned for Photochemical
97 Assessment Monitoring Stations (PAMS) and US EPA TO-15 standard was used to construct the calibration
98 curves for the target VOCs. Quality assurance and quality control, including method detection limit (MDL) of
99 each compound, laboratory and field blanks, retention time, accuracy and duplicate measurements of samples
100 were performed according to USEPA Compendium Method TO-15 (USEPA 1999). The correlated coefficients
101 of the calibration curves for all the compounds were > 0.95. The relative standard deviation (RSD) for all of
102 compounds of triplicates were 0.5%-6.0%. Previous field measurements have reported that the precision of
103 GC-MS system for hydrocarbons and aldehydes was below 6% and 15%, respectively (Li et al., 2014; Wu et al.,
104 2016). In this work, one kind of aldehyde substance, i.e., ethylacrolein was detected, with R² and RSD of 0.99
105 and 4.5%, respectively.

106 During the sampling periods, the measurements of PM_{2.5}, gaseous pollutants (NO_x and O₃), and
107 meteorological variables (such as temperature, relative humidity, wind speed, and wind direction) were
108 conducted simultaneously. NO_x and O₃ were analyzed using the Ozone Analyzer (Thermo Fisher Scientific USA,
109 49I) and NO-NO₂-NO_x Analyzer (Thermo Fisher Scientific USA, 17I), respectively. The mass concentration of
110 PM_{2.5} was measured using an oscillating balance analyzer (TH-2000Z, China) (Wang et al., 2014a). The quality
111 assurance of NO₂, O₃, and PM_{2.5} was conducted based on HJ 630-2011 specifications. Meteorological including

112 wind speed (WS), wind direction (WD), relative humidity (RH), air pressure, temperature, and precipitation were
113 measured by an automatic weather monitoring system. The planetary boundary height was obtained from the
114 European Centre for Medium-Range Weather Forecasts (<https://www.ecmwf.int/en/forecasts/datasets/browse-reanalysis-datasets>).
115

116 **2.2 Ozone formation potential (OFP) and secondary formation potential (SOAFP) calculation**

117 The formation potential of O₃ and SOA was used to characterize the relative importance of VOCs species and
118 sources in secondary formation, which were estimated using Eqs. (1) and (2).

$$119 OFP = \sum_i^n MIR_i \times [VOC(ppb)]_i \quad (1)$$

$$120 SOAFP = \sum_i^n Y_i \times [VOC(ppb)]_i \quad (2)$$

121 where n represents the number of VOCs, [VOC] $_i$ represents the i th VOC species concentration, MIR $_i$ is the
122 maximum incremental reactivity for the i th VOC species, and Y_i is the SOA yield of VOC $_i$ (McDonald et al.,
123 2018). The MIR for each VOC species were taken from the updated Carter research results
124 (<http://www.engr.ucr.edu/~carter/reactdat.htm>, last access: 24 February 2021). For species lacking yield curves,
125 the fractional aerosol coefficient (FAC) values proposed by Grosjean and Seinfeld (1989) were used.

126 **2.3 Deweathered model**

127 In this work, the influences of meteorological conditions on O₃ and PM_{2.5} were removed using the random forest
128 (RF) model. The meteorological predictors in the RF model include wind speed (WS), wind direction (WD), air
129 temperature (T), relative humidity (RH), precipitation (Prec), air pressure (P), time predictors (year, day of year
130 (DOY), hour) and planetary boundary layer height (BLH). These meteorological parameters have been reported
131 to be strongly associated with PM_{2.5} and O₃ concentrations in various regions in China (Chen et al., 2020; Feng
132 et al., 2020) and contributed significantly in previous PM_{2.5} and O₃ prediction models (She et al., 2020; Li et al.,

133 2020). The original dataset was randomly classified into a training dataset (90 % of input dataset) for developing
134 the RF model, and the remaining one was treated as the test dataset. After the building of the RF model, the
135 deweathered technique was applied to predict the air pollutant level at a specific time point. The differences in
136 original pollutant concentrations and deweathered pollutant concentrations were regarded as the concentrations
137 contributed by meteorology. Statistical indicators including R^2 , RMSE, and MAE values were regarded as the
138 major criteria to evaluate the modeling performance.

139 **2.4 Positive matrix factorization (PMF)**

140 In this study, the US EPA PMF 5.0 software was used for VOCs source apportionment (Abeleira et al., 2017; Li
141 et al., 2019a; Xue et al., 2017). The detailed description of the PMF model is found elsewhere (Ling et al., 2011;
142 Yuan et al., 2009). PMF uses both concentration and user-provided uncertainty associated with the data to weight
143 individual points. Species with high percentages of missing values (> 40 %) and with signal-to-noise ratio of
144 below 2 were excluded. Based on this, 53 VOC species including source tracers (e.g., chloromethane,
145 trichloroethylene, tetrachloroethylene and MTBE) and SO₂ were chosen for the source apportionment analysis.
146 Data values below the MDL were replaced by MDL/2, and the missing data were substituted with median
147 concentrations. If the concentration is less than or equal to the MDL provided, the uncertainty is calculated using
148 the equation of $Unc = 5/6 \times MDL$; if the concentration is greater than the MDL provided, the uncertainty is
149 calculated as $Unc = [(error\ fraction \times mixing\ ratio)^2 + (MDL)^2]^{1/2}$.

150 During the PMF analysis, the bootstraps (BS) method, displacement (DISP) analysis, and the combination
151 of the DISP and BS (BS–DISP) were used to evaluate the uncertainty of the base run solution. A total of 100
152 bootstrap runs were performed, and acceptable results were gained for all factors (above 90%). Based on the
153 DISP analysis, the observed drop in the Q value was below 0.1 %, and no factor swap occurred, confirming that

154 the solution was stable. The BS–DISP analysis showed that the observed drop in the Q value was less than 0.5 %,
155 demonstrating that the solution was useful.

156 **3. Results and discussion**

157 **3.1 TVOC mixing ratios and chemical composition**

158 The time series of meteorological parameters and concentrations of air pollutants during the measurement
159 period are shown in Fig. 1. The ambient temperature ranged from -13.3°C to 38.7°C and the RH varied between
160 5% and 99% across the sampling months. Prevailing winds shifted between southwesterly and northeasterly with
161 WS of 0–6.8 m s⁻¹. The mixing ratio of total VOCs (TVOC) ranged from 5.5–118.7 ppbv during the sampling
162 period with relatively higher values during September and November (49.9–51.6 ppbv) while relatively lower
163 values (22.2–27.5 ppbv) across the other months. Major VOC compositions were generally consistent during the
164 whole measurement period. Alkanes, OVOCs and halocarbons were the dominant chemical groups, accounting
165 for 75–81% of the TVOCs across the sampling months. In terms of individual species, acetone, dichloromethane,
166 butane, toluene, methyl tert butyl ether (MTBE), *i*-pentane, propylene, hexane, 1,1- dichloroethane, benzene and
167 1-butene made up the largest contribution, accounting for 50.6 % of the TVOC on average during the whole
168 measurement period.

169 The comparison of concentration and composition of chemical groups observed in this work and previous
170 studies is shown in Fig. 2. Clearly, the concentrations of TVOCs and major VOC groups observed in this study
171 were apparently lower than those in 2014 and 2016 in urban sites in Beijing (An et al., 2012; Liu et al., 2020a;
172 Li et al., 2015b), indicating the effectiveness of control measures in most recent years on lowering VOCs emission.
173 Besides, the composition of major chemical groups also showed remarkable changes, with decreased proportions

174 of alkanes while increased fractions of halocarbons, aromatics and OVOCs, reflecting the changes in emission
175 sources types in most recent years.

176 During the measurement period, 14 O₃ pollution days (days with maximum 8-h average O₃ exceeding 160
177 µg m⁻³) were observed, (i.e., 17-22 April, 3-17 May, 18-29 June, 2-13 July, and 25-29 September of 2019), and
178 April, May, June, July, and September of 2019 were defined as the O₃-polluted months. The comparison of
179 meteorological parameters and trace gases on O₃ pollution and compliance days (days with maximum 8-h average
180 O₃ below 160 µg m⁻³) of the four O₃-polluted months is shown in Fig. 3. The WS on O₃ pollution days (1.31 ±
181 0.90 m s⁻¹) was slightly lower than that on O₃ compliance days (1.47 ± 1.10 m s⁻¹), indicating that precursors
182 were more conducive to be diluted on O₃ compliance days. The variation trend of O₃ and temperature displayed
183 the negative correlation, and the linear correlations between O₃ and temperature on O₃ pollution days ($R^2 = 0.63$)
184 was stronger than that on O₃ compliance days ($R^2 = 0.35$). The mean TVOC concentration on O₃ pollution days
185 (32.3 ppbv) was higher than that on O₃ compliance days (29.6 ppbv), which was mainly attributed to higher
186 concentrations of MTBE, acrolein, trans-2-butene on pollution days. MTBE is widely used as a fuel additive in
187 motor gasoline (Liang et al., 2020), and trans-2-butene is the main component of oil/gas evaporation (Li et al.,
188 2019a). Such result suggested enhanced contribution of traffic emissions on O₃ pollution days. Besides, the
189 concentration of isoprene, which is primarily produced by vegetation through photosynthesis, increased
190 significantly on O₃ pollution days probably due to the stronger plant emission at elevated temperature (Guenther
191 et al., 1993, 2012; Stavrakou et al., 2014). The ratio of *m/p*-xylene to ethylbenzene (X/E) measured can be used
192 as an indicator of the photochemical aging of air masses because of their similar sources in urban environments
193 and differences in atmospheric lifetimes (Carter., 2010; Miller et al., 2012; Wang et al., 2013a). The mean X/E

194 value on O_3 compliance days (1.41) was higher than that on O_3 pollution days (1.17), indicating enhanced
195 secondary transformation of VOCs on O_3 pollution days.

196 The daily $PM_{2.5}$ concentrations ranged from 9-260 $\mu g m^{-3}$ with the mean value of 88.5 $\mu g m^{-3}$ during the
197 measurement period. 15 $PM_{2.5}$ pollution days (daily average $PM_{2.5}$ exceeding 75 $\mu g m^{-3}$) were observed(i.e., 1-2
198 December and 5 December of 2018, 3 January, 12-13 January, 22-23 April, 29 April, 12 May, 15 May, 19 October,
199 and 21-23 November of 2019), and December of 2018, January, April, May, October and November of 2019 were
200 identified as the $PM_{2.5}$ -polluted months. During the six $PM_{2.5}$ -polluted months, , the WS on $PM_{2.5}$ pollution days
201 ($1.05 \pm 1.06 m s^{-1}$) was lower than that on $PM_{2.5}$ compliance days ($1.43 \pm 1.06 m s^{-1}$), indicating the weaker
202 ability of winds for the dilution and diffusion of precursor on $PM_{2.5}$ pollution days. Both the value of relative
203 humidity (RH) and TVOCs increased significantly on $PM_{2.5}$ pollution days, suggesting that the secondary
204 transformation of VOCs was more conducive at higher RH. The mean X/E value on $PM_{2.5}$ compliance days (1.47)
205 was slightly higher than that on $PM_{2.5}$ pollution days (1.44), indicating enhanced secondary transformation of
206 VOCs on $PM_{2.5}$ pollution days.

207 **3.2 The role of VOCs on secondary pollution**

208 **3.2.1 Estimating O_3 and $PM_{2.5}$ levels contributed by emissions**

209 O_3 and secondary aerosols are primarily formed via photochemical reactions in the atmosphere, of which
210 concentrations could be largely influenced by meteorological conditions (Chen et al., 2020; Feng et al., 2020;
211 Zhai et al., 2019). In this work, the respective contributions of meteorology and emissions to $PM_{2.5}$ and O_3
212 variations were determined using the RF model as described in section 2.3. The coefficients of determination (R^2)
213 for the RF model in predicting $PM_{2.5}$ and O_3 are 0.85 and 0.91, respectively (Shown in Fig. S2). The respective
214 contributions of anthropogenic and meteorology to O_3 and $PM_{2.5}$ during each period is shown in Fig. 4. During

215 the O₃-polluted months, the meteorologically-driven O₃ level on O₃ pollution days (72.5 $\mu\text{g m}^{-3}$) was significantly
216 higher than that on O₃ compliance days (35.3 $\mu\text{g m}^{-3}$). After removing the meteorological contribution, the
217 residual emission-driven O₃ level on O₃ pollution (45.3 $\mu\text{g m}^{-3}$) and compliance days (44.9 $\mu\text{g m}^{-3}$) of the O₃-
218 polluted months was almost identical and were significantly higher than that during the non-O₃-polluted months
219 (23.8 $\mu\text{g m}^{-3}$). The emission-driven PM_{2.5} level was in the order of: PM_{2.5} pollution days of the PM_{2.5}-polluted
220 months (55 $\mu\text{g m}^{-3}$) > PM_{2.5} compliance days of the PM_{2.5}-polluted months (44 $\mu\text{g m}^{-3}$) > non-PM_{2.5}-polluted
221 months (29 $\mu\text{g m}^{-3}$). These results suggested that apart from meteorological factors, emissions also play a role in
222 deteriorating PM_{2.5} and O₃ pollution, and reducing anthropogenic emissions is essential for improving air quality.

223 The VOCs/NO_x ratio has been widely used to distinguish whether the O₃ formation is VOC limited or NO_x
224 limited (Li et al., 2019a). Generally, VOC-sensitive regime occurs when VOCs/NO_x ratios are below 10 while
225 NO_x-sensitive regime occurs when VOCs/NO_x ratios are higher than 20 (Hanna et al., 1996; Sillman, 1999). In
226 this study, the values of VOCs/NO_x (ppbv ppbv⁻¹) were all below 3 during both the O₃-polluted and non-O₃-
227 polluted months (Fig. S3), suggesting that the O₃ formation was sensitive to VOCs, and thus the reductions of
228 the emissions of VOCs will be beneficial for O₃ alleviation.

229 **3.2.2 Contribution of VOCs to OFP and SOA FP**

230 As discussed in 3.1, O₃ formation was generally VOCs-sensitive during the measurement period.
231 Quantifying the contribution of speciated VOCs species to O₃ is helpful for developing effective VOCs control
232 measures and alleviating O₃ pollution. The averaged OFP on O₃ pollution days of the O₃-polluted months, O₃
233 compliance days of the O₃-polluted months, and during the non-O₃-polluted months were 224.9, 201.4, and 187.5
234 $\mu\text{g m}^{-3}$, respectively (Fig. 5). According to our observations, the higher OFP on O₃ pollution days than that on O₃
235 compliance days during the O₃-polluted months was mainly attributed to higher levels of trans-2-butene, o-xylene

236 and acrolein O₃ on pollution days, in line with that in Fig. 3. Alkenes, aromatics and OVOCs were the three
237 biggest contributors to O₃ formation, accounting for 85.1%, 85.7% and 81.6% of the total OFP on O₃ pollution
238 days of the O₃-polluted months, O₃ compliance days of the O₃-polluted months, and during the non-O₃-polluted
239 months, respectively. In terms of the individual species, the top 10 highest contributors during the O₃-polluted
240 months were toluene (7.5% and 6.4% on O₃ compliance and polluted days, respectively), trans-2-butene (7.5%
241 and 9.6%), acrolein (5.7% and 10.8%), m/p-xylene (6.9% and 6.1%), o-xylene (5.8% and 6.6%), 1-butene (7.1%
242 and 5.2%), 1-hexene (5.4% and 4.4%), vinyl acetate (5.7% and 4.2%), methyl methacrylate (4.8% and 5.5%),
243 and 1-pentene (4.4% and 4.5%). During the non-O₃-polluted months, the overall OFP was mainly contributed
244 by toluene (10.8%), trans-2-butene (10.5%), 1-butene (7.3%), m/p-xylene (6.5%), 1-pentene (5.7%), 1-hexene
245 (5.0%), methyl methacrylate (4.9%), o-xylene (4.9%), vinyl acetate (3.8%), and isopentane (2.3%), respectively.

246 As shown in Fig. S3, the ratio of VOCs/NO_x was generally below 3 during the sampling period, indicating
247 high NO_x conditions. Based on the estimated yields of the VOCs shown in Table S2, the SOAFPs were calculated
248 and compared in Fig. 5. The mean SOAFP on PM_{2.5} pollution days of the PM_{2.5}-polluted months, PM_{2.5}
249 compliance days of the PM_{2.5}-polluted months, and during the non-PM_{2.5}-polluted months were 1.28, 1.07, and
250 0.89 $\mu\text{g m}^{-3}$. During the six PM_{2.5}-polluted months, the higher SOAFP on PM_{2.5} pollution days than that on PM_{2.5}
251 compliance days was mainly attributed to higher levels of 1,2,4-trimethylbenzene, n-undecanone, n-Nonane, 1,4-
252 diethylbenzene, and 1,3-diethylbenzene on PM_{2.5} pollution days. Aromatics have the largest SOAFP, accounting
253 for 74% and 75% of the total SOAFP on PM_{2.5} pollution and compliance days of the PM_{2.5}-polluted months, and
254 70% of the total SOAFP during the non-PM_{2.5}-polluted months, respectively. The 10 species responsible for most
255 of the SOAFP were toluene (41% and 40% on PM_{2.5} pollution and compliance days of the PM_{2.5}-polluted months,
256 and 33% during the non-PM_{2.5}-polluted months), 1-hexene (13.0%, 12.5%, and 15.2%), xylenes (11.6%, 14.1%

257 and 14.8%), ethylbenzene (4.9%, 5.3% and 6.0%), styrene (4.5%, 5.6% and 5.6%), 1-pentene (3.3%, 3.4% and
258 4.3%), methyl cyclopentane (2.1%, 2.7% and 3.6%), 1,2,3-trimethylbenzene (2.8%, 2.4% and 2.8%), m-ethyl
259 toluene (1.7%, 1.4% and 1.7%) and p-ethyl toluene (1.7%, 1.4% and 1.7%), respectively.

260 **3.3 Source apportionment of VOCs**

261 **3.3.1 Indication from tracers**

262 The great changes in the mixing ratios of VOCs species are mainly affected by the photochemical processing
263 and the emission inputs, and ambient ratios for VOCs species having similar atmospheric lifetimes are indicators
264 of different sources (Li et al., 2019a; Raysoni et al., 2017 Song et al., 2021). The ratio of *i*-pentane to *n*-pentane
265 are widely used to examine the impact of vehicle emissions, fuel evaporation and combustion emissions, within
266 the *i/n*-pentane ratios of ranging between 2.2–3.8, 1.8–4.6 and 0.56-0.80, respectively (McGaughey et al., 2004;
267 Jobson et al., 2004; Russo et al., 2010; Wang et al., 2013b; Yan et al., 2017). As shown in Fig. 6, the *i/n*-pentane
268 ratios during the PM_{2.5}-polluted months were mostly within the range of 0.3-2.0, suggesting the pentanes were
269 from the mixed sources of coal combustion and fuel evaporation. During the non-PM_{2.5}-polluted months, the *i/n*-
270 pentane ratios were distributed in the range of 1.3-3.4, indicating strong impacts from vehicle exhaust and fuel
271 evaporation. During the O₃-polluted months, most of the *i/n*-pentane ratios (1.5-2.5) were distributed within the
272 reference range of vehicle exhaust and fuel evaporation, whereas most of the *i/n*-pentane ratios during the non-
273 O₃-polluted months ranged between 1.7-2.1, suggesting the significant impact of fuel evaporation.

274 The toluene/benzene (T/B) ratio, a widely used indicator for sources of aromatics. In areas heavily impacted
275 by vehicle emissions, the T/B ratio lies in the range of 0.9–2.2 (Qiao et al., 2012; Dai et al., 2013; Wang et al.,
276 2013c; Yao et al., 2013; Zhang et al., 2013; Yao et al., 2015a; Mo et al., 2016; Deng et al., 2018). Higher T/B
277 ratios were reported for solvent use (greater than 8.8) (Yuan et al., 2010; Wang et al., 2014b; Zheng et al., 2013)

278 and industrial processes (1.4-5.8) (Mo et al., 2015; Shi et al., 2015). In burning source emission studies, the T/B
279 ratio was below 0.6 in different combustion process and raw materials (Tsai et al., 2003; Akagi et al., 2011; Mo
280 et al., 2016). Most of the T/B ratios during the PM_{2.5}-polluted and non-PM_{2.5}-polluted months were within the
281 range of 1.1-1.8 and 0.8-2.2, whereas the T/B ratios were mostly distributed within the range of 0.8-2.2 and 0.9-
282 1.9 during the O₃-polluted and non-O₃-polluted months, respectively, suggesting the significant impact of vehicle
283 and industrial emissions.

284 **3.3.2 PMF**

285 The factor profiles given by PMF and the contribution of each source to ambient VOCs during each period
286 is presented in Fig. 7 and Fig. 8, respectively. Six emission sources were identified: coal/biomass burning, solvent
287 use, industrial sources, oil gas evaporation, gasoline vehicle emission, and diesel vehicle emission based on the
288 corresponding markers for each source category. In general, diesel vehicle exhaust, gasoline vehicle exhaust and
289 industrial emissions were the main VOCs sources during both the O₃-polluted and PM_{2.5}-polluted months, with
290 total contributions of 62% and 62% on O₃ pollution and compliance days of the O₃-polluted months, and 66%
291 and 59% on PM_{2.5} pollution and compliance days of the PM_{2.5}-polluted months, respectively. The O₃-polluted
292 months exhibited higher proportions of diesel (24% on O₃ compliance days and 27% on O₃ pollution days) and
293 gasoline vehicle emission (17% on O₃ compliance days and 16% on O₃ pollution days) compared with the non-
294 O₃-polluted months (8% and 13%, respectively). During the O₃-polluted months, the contributions of industrial
295 emissions (22%) and fuel evaporation (18%) on O₃ pollution days were much higher than those on O₃ compliance
296 days (18% and 13%, respectively). Figure 9 presents the relative contributions of individual VOC sources from
297 PMF to OFP. On the base of O₃ formation impact, diesel and gasoline vehicle exhaust were major contributors.
298 During the O₃-polluted months, vehicle emissions and fuel evaporation showed higher OFP values on O₃

299 pollution days (93.9 and 35.5 $\mu\text{g m}^{-3}$) compared with those on O_3 compliance days (88.0 and 25.8 $\mu\text{g m}^{-3}$,
300 respectively). Although industrial emissions act as an important source for VOCs concentrations on O_3 -pollution
301 days (shown in Fig. 8), the potential to form O_3 is limited, accounting for 11% of the total OFP. As illustrated in
302 Fig.7, the industrial source was distinguished by high compositions of alkanes while relatively lower
303 compositions of alkenes and aromatics, resulting in low O_3 formation potentials. Such results suggested that the
304 fuel use and diesel vehicle exhaust should be controlled preferentially for O_3 mitigation.

305 The $\text{PM}_{2.5}$ -polluted months showed higher proportions of industrial (29% on both $\text{PM}_{2.5}$ compliance and
306 $\text{PM}_{2.5}$ pollution days) and coal/biomass combustion emissions (16% on $\text{PM}_{2.5}$ compliance days and 18% on $\text{PM}_{2.5}$
307 pollution days) compared with the non- $\text{PM}_{2.5}$ -polluted months (17% and 10%, respectively). The $\text{PM}_{2.5}$ pollution
308 days were dominated by industrial emission (29%), diesel vehicle exhaust (24%), and combustion source (18%).
309 During the $\text{PM}_{2.5}$ -polluted months, the contribution of diesel vehicle exhaust on $\text{PM}_{2.5}$ pollution days (24%) was
310 higher than that on $\text{PM}_{2.5}$ compliance days (16%). On the base of $\text{PM}_{2.5}$ formation impact, diesel vehicle exhaust
311 and combustion were two major contributors on $\text{PM}_{2.5}$ pollution days (shown in Fig. 9), and these two sources
312 showed obvious higher SOAFP on $\text{PM}_{2.5}$ pollution days (0.30 and 0.32 $\mu\text{g m}^{-3}$, respectively) compared with those
313 on $\text{PM}_{2.5}$ compliance days of the $\text{PM}_{2.5}$ -polluted months (0.15 and 0.14 $\mu\text{g m}^{-3}$, respectively). Although industrial
314 emissions act as an important source for VOCs concentrations on $\text{PM}_{2.5}$ pollution days, the potential to form $\text{PM}_{2.5}$
315 is limited, accounting for 16% of the total SOAFP. The above results suggested that diesel vehicle exhaust and
316 combustion should be controlled preferentially for alleviating $\text{PM}_{2.5}$ pollution.

317 Based on the mass concentrations of individual species in each source, m/p-xylene, o-xylene, methyl
318 methacrylate, vinyl acetate, 1-hexene, and acrolein in gasoline and diesel vehicular emissions; toluene, trans-2-
319 butene, and 1-pentene in fuel evaporation and diesel vehicular emissions; acrolein in solvent, gasoline vehicular

320 and diesel vehicular emissions were the dominant species contributing to photochemical O₃ formation (Fig. 10).
321 Toluene, m/p-xylene, o-xylene, styrene, ethylbenzene, 1-pentene, 1,2,3-trimethylbenzene from combustion and
322 diesel vehicular emissions; 1-hexene from diesel vehicular emission; and methyl cyclopentane from combustion,
323 industrial and diesel vehicular emissions were the dominant contributors for SOA formation during the PM_{2.5}
324 pollution periods (Fig. 10).

325 **4. Conclusions**

326 In this work, the field sampling campaign of VOCs was conducted at urban Beijing during December 2018
327 and November 2019. The VOCs concentrations ranged from 5.5 to 118.7 ppbv with mean value of 34.9 ppbv.
328 Alkanes, OVOCs and halocarbons were the dominant chemical groups, accounting for 75-81% of the TVOCs
329 across the sampling months. By excluding the meteorological impact, the emission-driven O₃ level during the
330 O₃-polluted months were higher than that during the non-O₃-polluted months, and similar pattern was found for
331 PM_{2.5}. The molar ratio of VOCs to NO_x indicated that O₃ formation was limited by VOCs during both the O₃-
332 polluted non-O₃-polluted months, and thus reducing VOCs emission is essential for alleviation of O₃ pollution.
333 The contributions of coal/biomass combustion, solvent use, industrial sources, oil/gas evaporation, gasoline
334 exhaust, and diesel exhaust were identified based on PMF analysis. Considering both the concentration and
335 maximum incremental reactivity of individual VOC species for each source, fuel use and diesel exhaust sources
336 were identified as the main contributors of O₃ formation during the O₃-polluted months, particularly the VOCs
337 species of toluene, xylenes, trans-2-butene, acrolein, methyl methacrylate, vinyl acetate, 1-butene and 1-hexene,
338 illustrating the necessity of conducting emission controls on these pollution sources and species for alleviating
339 O₃ pollution. VOCs from diesel vehicles and combustion were found to be the dominant contributors for SOAfp,

340 particularly the VOC species of toluene, 1-hexene, xylenes, ethylbenzene and styrene, and top priority should be
341 given to these for the alleviation of haze pollution.

342 **Acknowledgements**

343 This work was supported by the National Natural Science Foundation of China (92044302) and the Beijing
344 Municipal Science and Technology Project (Z211100004321006 & Z191100009119001).

345 **Data availability**

346 The meteorological data are available at <http://data.cma.cn/> (China Meteorological Administration). The
347 website can be browsed in English <http://data.cma.cn/en>. The concentrations of air pollutants including PM_{2.5},
348 O₃ and NO_x are available at <https://air.cnemc.cn:18007/> (Ministry of Ecology and Environment the People's
349 Republic of China). The website can be browsed in English <http://english.mee.gov.cn/>.

350 References Abeleira, A., Pollack, I. B., Sive, B., Zhou, Y., Fischer, E. V., Farmer, D. K., 2017. Source
351 characterization of volatile organic compounds in the Colorado Northern Front Range Metropolitan Area during
352 spring and summer 2015, *J. Geophys. Res.-Atmos.*, 122, 3595–3613, <https://doi.org/10.1002/2016jd026227>.

353 Ahmad, W., Coeur, C., Tomas, A., Fagniez, T., Brubach, J. B., Cuisset, A., 2017. Infrared spectroscopy of
354 secondary organic aerosol precursors and investigation of the hygroscopicity of SOA formed from the OH
355 reaction with guaiacol and syringol. *Appl. Opt.* 56, E116, <https://doi.org/10.1364/AO.56.00E116>. Akagi, S. K.,
356 Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., Wennberg, P. O., 2011.
357 Emission factors for open and domestic biomass burning for use in atmospheric models. *Atmos. Chem. Phys.* 11,
358 4039–4072.

359 Atkinson, R., 2000. Atmospheric chemistry of VOCs and NO_x. *Atmos. Environ.* 34, 2063–2101.

360 An, J.L., Wang, Y.S., Wu, F.K., Zhu, B., 2012. Characterizations of volatile organic compounds during high
361 ozone episodes in Beijing, China. *Environ. Monit. Assess.* 184, 1879e1889.

362 Carter, W.P.L. and Atkinson, R., 1989. Computer modeling study of incremental hydrocarbon reactivity. *Environ.*
363 *Sci. Technol.* 23, 864–880, <https://doi.org/10.1021/es00065a017>.

364 Carter, W.P.L., 2010. Development of the SAPRC-07 chemical mechanism, *Atmos. Environ.* 44, 5324–5335,
365 <https://doi.org/10.1016/j.atmosenv.2010.01.026>.

366 Chang, T.Y. and Rudy, S.J., 1990. Ozone-forming potential of organic emissions from alternative-fueled vehicles,
367 *Atmos. Environ.*, 24, 2421–2430, [https://doi.org/10.1016/0960-1686\(90\)90335-K](https://doi.org/10.1016/0960-1686(90)90335-K).

368 Chen, L., Zhu, J., Liao, H., Yang, Y., Yue, X., 2020. Meteorological influences on PM_{2.5} and O₃ trends and
369 associated health burden since China's clean air actions, *Sci. Total Environ.* 744, 140837,
370 <https://doi.org/10.1016/j.scitotenv.2020.140837>.

371 Dai, P., Ge, Y., Lin, Y., Su, S., and Liang, B., 2013. Investigation on characteristics of exhaust and evaporative
372 emissions from passenger cars fueled with gasoline/methanol blends. *Fuel*. 113, 10–16.

373 Deng, C. X., Jin, Y. J., Zhang, M., Liu, X. W., Yu, Z.M., 2018. Emission Characteristics of VOCs from On-Road
374 Vehicles in an Urban Tunnel in Eastern China and Predictions for 2017–2026. *Aerosol Air Qual. Res.* 18, 3025–
375 3034.

376 Doumbia, T., Granier, C., Elguindi, N., Bouarar, I., Darras, S., Brasseur, G., Gaubert, B., Liu, Y., Shi, X.,
377 Stavrakou, T., Tilmes, S., Lacey, F., Deroubaix, A., Wang, T., 2021. Changes in global air pollutant emissions
378 during the COVID-19 pandemic: a dataset for atmospheric modeling. *Earth Syst. Sci. Data*. 13, 4191–4206.

379 Fan, H., Zhao, C., Yang, Y., 2020. A Comprehensive Analysis of the Spatio-Temporal Variation of Urban Air
380 Pollution in China During 2014–2018, *Atmos. Environ.*, 220, 117066,
381 <https://doi.org/10.1016/j.atmosenv.2019.117066>.

382 Feng, J., Liao, H., Li, Y., Zhang, Z., Tang, Y., 2020. Long-term trends and variations in haze-related weather
383 conditions in north China during 1980–2018 based on emission-weighted stagnation intensity. *Atmos. Environ.*
384 240, 117830, <https://doi.org/10.1016/j.atmosenv.2020.117830>.

385 Fu, Y., Liao, H., Yang, Y., 2019. Interannual and Decadal Changes in Tropospheric Ozone in China and the
386 Associated Chemistry Climate Interactions: A Review, *Adv. Atmos. Sci.* 36, 975–993.

387 Gani, S., Bhandari, S., Seraj, S., Wang, D. S., Patel, K., Soni, P., Arub, Z., Habib, G., Hildebrandt Ruiz, L., Apte,
388 J. S., 2019. Submicron aerosol composition in the world's most polluted megacity: the Delhi Aerosol Supersite
389 study. *Atmos. Chem. Phys.* 19, 6843–6859.

390 Grosjean, D., and Seinfeld, J. H., 1989. Parameterization of the formation potential of secondary organic aerosols,
391 *Atmos. Environ.*, 23, 1733-1747, 10.1016/0004- 6981(89)90058-9.

392 Guenther, A.B., Zimmerman, P.R., Harley, P.C., Monson, R.K., Fall, R., 1993. Isoprene and monoterpene
393 emission rate variability: Model evaluations and sensitivity analyses. *J. Geophys. Res. Atmos.* 98, 12609–12617,
394 <https://doi.org/10.1029/93JD00527>.

395 Han, S., Zhao, Q., Zhang, R., Liu, Y., Li, C., Zhang, Y., Li, Y., Yin, S., Yan, Q., 2020. Emission characteristic
396 and environmental impact of process-based VOCs from prebaked anode manufacturing industry in Zhengzhou,
397 China. *Atmos. Pollut. Res.* 627 11, 67-77, 10.1016/j.apr.2019.09.016.

398 Hanna, S. R., Moore, G. E., Fernau, M., 1996. Evaluation of photochemical grid models (UAM-IV, UAM-V,
399 and the ROM/UAMIV couple) using data from the Lake Michigan Ozone Study (LMOS). *Atmos. Environ.* 30,
400 3265–3279.

401 Hong, Z., Li, M., Wang, H., Xu, L., Hong, Y., Chen, J., Chen, J., Zhang, H., Zhang, Y., Wu, X., Hu, B., Li, M.,
402 2019. Characteristics of atmospheric volatile organic compounds (VOCs) at a mountainous forest site and two
403 urban sites in the southeast of China. *Sci. Total. Environ.* 657, 1491–1500,
404 <https://doi.org/10.1016/j.scitotenv.2018.12.132>.

405 Huang, R.J., Zhang, Y., Bozzetti, C., Ho, K.F., Cao, J.J., Han, Y., Daellenbach, K. R., Slowik, J. G., Platt, S. M.,
406 Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G., Piazzalunga, A.,
407 Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J., Zimmermann, R., An, Z., Szidat, S., Baltensperger, U., El
408 Haddad, I., Prevot, A.S.H., 2014. High secondary aerosol contribution to particulate pollution during haze events
409 in China, *Nature*, 514, 218-222, 10.1038/nature13774.

410 Jobson, B. T., Berkowitz, C. M., Kuster, W. C., Goldan, P. D., Williams, E. J., Fesenfeld, F. C., Apel, E. C., Karl,
411 T., Lonneman, W. A., Riemer, D., 2004. Hydrocarbon source signatures in Houston, Texas: Influence of the
412 petrochemical industry. *J. Geophys. Res. Atmos.* 109, D24305, <https://doi.org/10.1029/2004jd004887>.

413 Kuang, Y., He, Y., Xu, W.Y., Yuan, B., Zhang, G., Ma, Z.Q., Wu, C.H., Wang, C.M., Wang, S.H., Zhang, H.Y.,

414 Tao, J.C., Ma, N., Su, H., Cheng, Y.F., Shao, M., Sun, Y.L., 2020. *Environ Sci & Techno.* 54 (7), 3849-3860.

415 Li, L., Chen, Y., Zeng, L., Shao, M., Xie, S., Chen, W., Lu, S., Wu, Y., Cao, W., 2014. Biomass burning

416 contribution to ambient volatile organic compounds (VOCs) in the Chengdu–Chongqing Region (CCR), China.

417 *Atmos. Environ.* 99, 403–410.

418 Li, J., Xie, S.D., Zeng, L.M., Li, L.Y., Li, Y.Q., Wu, R.R., 2015. Characterization of ambient volatile organic

419 compounds and their sources in Beijing, before, during, and after Asia-Pacific Economic Cooperation China

420 2014. *Atmos. Chem. Phys.* 15, 7945–7959

421 Li, G., Bei, N., Cao, J., Wu, J., Long, X., Feng, T., Dai, W., Liu, S., Zhang, Q., Tie, X., 2017a. Widespread and

422 persistent ozone pollution in eastern China during the non-winter season of 2015: observations and source

423 attributions, *Atmos. Chem. Phys.*, 17, 2759–2774, <https://doi.org/10.5194/acp-17-2759-2017>.

424 Li, Y. J., Sun, Y., Zhang, Q., Li, X., Li, M., Zhou, Z., Chan, C. K., 2017b. Real-time chemical characterization

425 of atmospheric particulate matter in China: A review, *Atmos. Environ.*, 158, 270–304.

426 Li, B., Ho, S.S.H., Gong, S., Ni, J., Li, H., Han, L., Yang, Y., Qi, Y., Zhao, D., 2019a. Characterization of VOCs

427 and their related atmospheric processes in a central Chinese city during severe ozone pollution periods. *Atmos.*

428 *Chem & Phys.* 19, 617-638.

429 Li, K., Jacob, D.J., Liao, H., Shen, L., Zhang, Q., Bates, K.H., 2019c. Anthropogenic Drivers of 2013–2017

430 Trends in Summer Surface Ozone in China. *Proc. Natl. Acad. Sci.* 116, 422–427.

431 Li, K., Li, J., Tong, S., Wang, W., Huang, R.-J., Ge, M., 2019d. Characteristics of wintertime VOCs in suburban

432 and urban Beijing: concentrations, emission ratios, and festival effects. *Atmos. Chem & Phys.* 19, 8021-8036.

433 Li, K., Jacob, D.J., Shen, L., Lu, X., De Smedt, I., Liao, H., 2020. Increases in surface ozone pollution in China

434 from 2013 to 2019: anthropogenic and meteorological influences. *Atmos. Chem & Phys.* 20, 11423–11433.

435 Liang, Y., Liu, X., Wu, F., Guo, Y., Xiao, H., 2020. The year-round variations of VOC mixing ratios and their
436 sources in Kuytun City (northwestern China), near oilfields. *Atmos. Pollut. Res.* 11, 9
437 DOI:10.1016/j.apr.2020.05.022.

438 Liu, B., Liang, D., Yang, J., Dai, Q., Bi, X., Feng, Y., Yuan, J., Xiao, Z., Zhang, Y., Xu, H., 2016a.
439 Characterization and source apportionment of volatile organic compounds based on 1-year of observational data
440 in Tianjin, China. *Environ. Pollut.* 218, 757–769, <https://doi.org/10.1016/j.envpol.2016.07.072>.

441 Liu, B. S., Liang, D. N., Yang, J. M., Dai, Q. L., Bi, X. H., Feng, Y. C., Yuan, J., Xiao, Z. M., Zhang, Y. F., and
442 Xu, H., 2019b. Characterization and source apportionment of volatile organic compounds based on 1-year of
443 observational data in Tianjin, China. *Environ. Pollut.* 218, 757–769.

444 Liu, Y., Wang, H., Jing, S., Gao, Y., Peng, Y., Lou, S., Cheng, T., Tao, S., Li, L., Li, Y., 2019. Characteristics
445 and sources of volatile organic compounds (VOCs) in Shanghai during summer: Implications of regional
446 transport. *Atmospheric Environment* 215, 116902.

447 Liu, Y.F., Song, M.D., Liu, X.G., Zhang, Y.P., Hui, L.R., Kong, L.W., Zhang, Y.Y., Zhang, C., Qu, Y., An, J.L.,
448 Ma, D.P., Tan, Q.W., Feng, M., 2020a. Characterization and sources of volatile organic compounds (VOCs) and
449 their related changes during ozone pollution days in 2016 in Beijing, China. *Environ Pollut.* 257, 113599.

450 Liu, Y.M., Wang, T., 2020b. Worsening urban ozone pollution in China from 2013 to 2017—Part 2: The effects
451 of emission changes and implications for multi-pollutant control. *Atmos. Chem. Phys.* 20, 6323–6337.

452 Liu, C., Shi, K., 2021. A review on methodology in O₃-NO_x-VOC sensitivity study. *Environmental pollution*,
453 118249.

454 Lu, X., Zhang, L., Wang, X., Gao, M., Li, K., Zhang, Y., Yue, X., Zhang, Y., 2020. Rapid increases in warm-

455 season surface ozone and resulting health impact in China since 2013. *Environ. Sci & Technol Lett.* 7, 240-247.

456 McDonald, B.C., de Gouw, J.A., Gilman, J.B., Jathar, S.H., Akherati, A., Cappa, C.D., Jimenez, J.L., Lee-Taylor,

457 J., Hayes, P.L., McKeen, S.A., Cui, Y.Y., Kim, S.W., Gentner, D.R., Isaacman-VanWertz, G., Goldstein, Allen

458 H., Harley, R.A., Frost, G.J., Roberts, J. M., Ryerson, T.B., Trainer, M., 2018. Volatile chemical products

459 emerging as largest petrochemical source of urban organic emissions, *Science*, 359, 760,

460 <https://doi.org/10.1126/science.aaq0524>.

461 McGaughey, G. R., Desai, N. R., Allen, D. T., Seila, R.L., Lonneman, W. A., Fraser, M. P., Harley, R. A., Pollack,

462 A. K., Ivy, J. M., Price, J. H., 2004. Analysis of motor vehicle emissions in a Houston tunnel during the TexasAir

463 Quality Study 2000. *Atmos. Environ.* 38, 3363 – 3372.

464 Miller, L., Xu, X., Grgicak-Mannion, A., Brook, J., Wheeler, A., 2012. Multi-season, multiyear concentrations

465 and correlations amongst the BTEX group of VOCs in an urbanized industrial city. *Atmos. Environ.* 61, 305–

466 315.

467 Mo, Z., Shao, M., Lu, S., Qu, H., Zhou, M., Sun, J., Gou, B., 2015. Process-specific emission characteristics of

468 volatile organic compounds (VOCs) from petrochemical facilities in the Yangtze River Delta, China. *Sci. Total*

469 *Environ.* 533, 422–431.

470 Mo, Z., Shao, M., Lu, S., 2016. Compilation of a source profile database for hydrocarbon and OVOC emissions

471 in China. *Atmos. Environ.* 143, 209–217.

472 Odum, J.R., Jungkamp, T.P.W., Griffifin, R.J., Flagan, R.C., Seinfeld, J.H., 1997. The atmospheric aerosol-

473 forming potential of whole gasoline vapor. *Science*. 276, 96–99.

474 Peng, J., Hu, M., Shang, D., Wu, Z., Du, Z., Tan, T., Wang, Y., Zhang, F., Zhang, R., 2021. Explosive secondary

475 aerosol formation during severe haze in the North China Plain. *Environ Sci & Technol.* 55, 2189-2207.

476 Polissar, A.V., Hopke, P.K., Paatero, P., Kaufmann, Y.J., Hall, D.K., Bodhaine, B.A., Dutton, E.G., Harris, J.M.,

477 1999. The aerosol at Barrow, Alaska: long-term trends and source locations. *Atmos. Environ.* 33, 2441–2458,

478 [https://doi.org/10.1016/S1352-2310\(98\)00423-3](https://doi.org/10.1016/S1352-2310(98)00423-3), 1999.

479 Qiao, Y.Z., Wang, H.L., Huang, C., Chen, C.H., Su, L.Y., Zhou, M., Xu, H., Zhang, G.F., Chen, Y.R., Li, L., Chen,

480 M.H., Huang, H.Y., 2012. Source Profile and Chemical Reactivity of VolatileOrganic Compounds from Vehicle

481 Exhaust. *Huanjing Kexue*. 33,1071–1079.

482 Raysoni, A.U., Stock, T.H., Sarnat, J.A., Chavez, M.C., Sarnat, S.E., Montoya, T., Holguin, F., Li, W.W., 2017.

483 Evaluation of VOC concentrations in indoor and outdoor microenvironments at near-road schools. *Environ.*

484 *Pollut.* 231, 681–693.

485

486 Russo, R. S., Zhou, Y., White, M. L., Mao, H., Talbot, R., Sive, B. C., 2010. Multi-year (2004–2008) record of

487 nonmethane hydrocarbons and halocarbons in New England: seasonal variations and regional sources. *Atmos.*

488 *Chem. Phys.* 10, 4909–4929.

489 Sato, K., Takami, A., Isozaki, T., Hikida, T., Shimono, A., Imamura, T., 2010. Mass spectrometric study of

490 secondary organic aerosol formed from the photo-oxidation of aromatic hydrocarbons. *Atmos. Environ.* 44,

491 1080–1087, <https://doi.org/10.1016/j.atmosenv.2009.12.013>.

492 Shao, M., Zhang, Y., Zeng, L., Tang, X., Zhang, J., Zhong, L., Wang, B., 2009. Ground-level ozone in the Pearl

493 River Delta and the roles of VOC and NOx in its production. *J. Environ. Manage.* 90, 512-518.

494 She, Q., Choi, M., Belle, J. H., Xiao, Q., Bi, J., Huang, K., Meng, X., Geng, G., Kim, J., He, K., Liu, M., Liu, Y.,

495 2020. Satellite-based estimation of hourly PM2.5 levels during heavy winter pollution episodes in the Yangtze

496 River Delta, China. *Chemosphere*. 239, 124678, <https://doi.org/10.1016/j.chemosphere.2019.124678>.

497 Shen, L., Jacob, D. J., Liu, X., Huang, G., Li, K., Liao, H., Wang, T., 2019. An evaluation of the ability of the
498 Ozone Monitoring Instrument (OMI) to observe boundary layer ozone pollution across China: application to
499 2005–2017 ozone trends. *Atmos. Chem. Phys.* 19, 6551–6560, <https://doi.org/10.5194/acp-19-6551-2019>.

500 Shen, L., Wang, Z., Cheng, H., Liang, S., Xiang, P., Hu, K., Yin, T., Yu, J., 2020. A Spatial-Temporal Resolved
501 Validation of Source Apportionment by Measurements of Ambient VOCs in Central China, *Int. J. Env. Res. Pub.*
502 He. 17, 791, <https://doi.org/10.3390/ijerph17030791>.

503 Shi, J., Deng, H., Bai, Z., Kong, S., Wang, X., Hao, J., Han, X., Ning, P., 2015. Emission and profile characteristic
504 of volatile organic compounds emitted from coke production, iron smelt, heating station and power plant in
505 Liaoning Province, China. *Sci. Total Environ.* 515, 101–108.

506 Sillman, S., 1999. The relation between ozone, NO_x and hydrocarbons in urban and polluted rural environments,
507 *Atmos. Environ.*, 33, 1821–1845, 1999.

508 Sindelarova, K., Markova, J., Simpson, D., Huszar, P., Karlicky, J., Darras, S., Granier, C., 2022. High-resolution
509 biogenic global emission inventory for the time period 2000–2019 for air quality modelling. *Earth Syst. Sci. Data.*
510 14, 251–270.

511 Sinha, B.P. and Sinha, V., 2019. Source apportionment of volatile organic compounds in the northwest Indo-
512 Gangetic Plain using a positive matrix factorization model. *Atmos. Chem. Phys.* 19, 15467–15482.

513 Song, M.D., Li, X., Yang, S.D., Yu, X.A., Zhou, S.X., Yang, Y.M., Chen, S.Y., Dong, H.B., Liao, K.R., Chen,
514 Q., Lu, K.D., Zhang, N.N., Cao, J.J., Zeng, L.M., Zhang, Y.H., 2021. Spatiotemporal variation, sources, and
515 secondary transformation potential of volatile organic compounds in Xi'an, China. *Atmos. Chem. Phys.* 21,
516 4939–4958.

517 Stavrakou, T., Müller, J.-F., Bauwens, M., De Smedt, I., Van Roozendael, M., Guenther, A., Wild, M., Xia, X.,

518 2014. Isoprene emissions over Asia 1979–2012: impact of climate and land-use changes. *Atmos. Chem. Phys.*

519 14, 4587–4605, <https://doi.org/10.5194/acp-14-4587-2014>.

520 Sun, W., Wang, D., Yao, L., Fu, H., Fu, Q., Wang, H., Li, Q., Wang, L., Yang, X., Xian, A. (2019) Chemistry-

521 triggered events of PM_{2.5} explosive growth during late autumn and winter in Shanghai, China. *Environmental*

522 *pollution.* 254, 112864.

523 Sun, Y. L., He, Y., Kuang, Y., Xu, W. Y., Song, S. J., Ma, N., Tao, J. C., Cheng, P., Wu, C., Su, H., Cheng, Y. F.,

524 Xie, C. H., Chen, C., Lei, L., Qiu, Y. M., Fu, P. Q., Croteau, P., Worsnop, D. R., 2020. Chemical Differences

525 Between PM₁ and PM_{2.5} in Highly Polluted Environment and Implications in Air Pollution Studies. *Geophys.*

526 *Res. Lett.* 47, No. e2019GL086288.

527 Tsai, S. M., Zhang, J. J., Smith, K. R., Ma, Y., Rasmussen, R. A., Khalil, M. A. K., 2003. Characterization of

528 Non-methane Hydrocarbons Emitted from Various Cookstoves Used in China. *Environ. Sci. Technol.* 37, 2869–

529 2877.

530 Tong, Y., Pospisilova, V., Qi, L., Duan, J., Gu, Y., Kumar, V., Rai, P., Stefenelli, G., Wang, L., Wang, Y., Zhong,

531 H., Baltensperger, U., Cao, J., Huang, R.J., Prévôt, A. S. H., Slowik, J. G., 2021. Quantification of solid fuel

532 combustion and aqueous chemistry contributions to secondary organic aerosol during wintertime haze events in

533 Beijing. *Atmos. Chem. Phys.* 21, 9859–9886.

534 Wang, H.L., Chen, C.H., Wang, Q., Huang, C., Su, L.Y., Huang, H.Y., Lou, S.R., Zhou, M., Li, L., Qiao, L.P.,

535 Wang, Y.H., 2013a. Chemical loss of volatile organic compounds and its impact on the source analysis through

536 a two-year continuous measurement. *Atmos. Environ.* 80, 488–498.

537 Wang, M., Shao, M., Lu, S.H., Yang, Y.D., Chen, W.T., 2013b. Evidence of coal combustion contribution to
538 ambient VOCs during winter in Beijing. *Chin. Chem. Lett.* 24, 829–832.

539 Wang, J., Jin, L., Gao, J., Shi, J., Zhao, Y., Liu, S., Jin, T., Bai, Z., Wu, C.Y., 2013c. Investigation of speciated
540 VOC in gasoline vehicular exhaust under ECE and EUDC test cycles. *Sci. Total Environ.* 445, 110–116.

541 Wang, Y.S., Yao, L., Wang, L.L., Liu, Z.R., Ji, D.S., Tang, G. Q., Zhang, J.K., Sun, Y., Hu, B., Xin, J.Y., 2014a.
542 Mechanism for the formation of the January 2013 heavy haze pollution episode over central and eastern China.
543 *Sci. China Earth Sci.* 57, 14–25, <https://doi.org/10.1007/s11430-013-4773-4>.

544 Wang, H., Qiao, Y., Chen, C., Lu, J., Dai, H., Qiao, L., Lou, S., Huang, C., Li, L., Jing, S., Wu, J., 2014b. Source
545 Profiles and Chemical Reactivity of Volatile Organic Compounds from SolventUse in Shanghai, China. *Aerosol*
546 *Air Qual. Res.* 14, 301–310.

547 Wang, T., Xue, L., Brimblecombe, P., Lam, Y.F., Li, L., Zhang, L., 2017. Ozone Pollution in China: A Review
548 of Concentrations, Meteorological Influences, Chemical Precursors, and Effects. *Sci. Total Environ.* 575,
549 1582–1596.

550 Wang, J., Yang, Y., Zhang, Y., Niu, T., Jiang, X., Wang, Y., Che, H., 2019. Influence of meteorological
551 conditions on explosive increase in O₃ concentration in troposphere. *Sci.Total Environ.* 652, 1228-1241.

552 Wang, M., Li, S.Y., Zhu, R.C., Zhang, R.Q., Zu, L., Wang, Y.J., Bao, X.F., 2020. On-road tailpipe emission
553 characteristics and ozone formation potentials of VOCs from gasoline, diesel and liquefied petroleum gas fueled
554 vehicles. *Atmos. Environ.* 223, 117294.

555 Warneke, C., McKeen, S. A., de Gouw, J. A., Goldan, P. D., Kuster, W. C., Holloway, J. S., Williams, E. J.,
556 Lerner, B. M., Parrish, D. D., Trainer, M., Fehsenfeld, F. C., Kato, S., Atlas, E. L., Baker, A., Blake, D. R., 2007.

557 Determination of urban volatile organic compound emission ratios and comparison with an emissions database.

558 *J. Geophys. Res.* 112, D10S47, <https://doi.org/10.1029/2006jd007930>.

559 Wu, R.R., Li, J., Hao, Y.F., Li, Y.Q., Zeng, L.M., Xie, S.D., 2016. Evolution process and sources of ambient

560 volatile organic compounds during a severe haze event in Beijing, China. *Sci. Total. Environ.* 560-561, 62-72.

561 Wu, R. and Xie, S., 2018. Spatial Distribution of Secondary Organic Aerosol Formation Potential in China

562 Derived from Speciated Anthropogenic Volatile Organic Compound Emissions, *Environ. Sci. Technol.* 52,

563 8146–8156, <https://doi.org/10.1021/acs.est.8b01269>.

564 Xing, J., Wang, S. X., Jang, C., Zhu, Y., Hao, J. M., 2011. Nonlinear response of ozone to precursor emission

565 changes in China: a modeling study using response surface methodology. *Atmos. Chem. Phys.* 11, 5027–5044.

566 Xu, W., Sun, Y., Wang, Q., Zhao, J., Wang, J., Ge, X., Xie, C., Zhou, W., Du, W., Li, J., Fu, P., Wang, Z., Worsnop,

567 D.R., Coe, H., 2019. Changes in Aerosol Chemistry From 2014 to 2016 in Winter in Beijing: Insights From High-

568 Resolution Aerosol Mass Spectrometry. *J. Geophys. Res.: Atmos.* 124 (2), 1132–1147

569 Xu, Q., Wang, S., Jiang, J., 2019. Nitrate dominates the chemical composition of PM2.5 during haze event in

570 Beijing, China. *Sci. Total. Environ.* 689:1293-1303.

571 Xue, Y., Ho, S. S. H., Huang, Y., Li, B., Wang, L., Dai, W., Cao, J., Lee, S., 2017. Source apportionment of

572 VOCs and their impacts on surface ozone in an industry city of Baoji, Northwestern China. *Sci. Rep.* 7, 9979,

573 <https://doi.org/10.1038/s41598-017-10631-4>.

574 Xue, T., Zheng, Y., Geng, G., Xiao, Q., Meng, X., Wang, M., Li, X., Wu, N., Zhang, Q., Zhu, T., 2020a.

575 Estimating Spatiotemporal Variation in Ambient Ozone Exposure during 2013–2017 Using a Data-Fusion Model.

576 *Environ Sci. Technol.* 54, 14877-14888.

577 Xue, Y., Huang, Y., Ho, S.S.H., Chen, L., Wang, L., Lee, S., Cao, J., 2020b. Origin and transformation of ambient

578 volatile organic compounds during a dust-to-haze episode in northwest China. *Atmos. Chem. Phys.* 20, 5425–
579 5436.

580 Yan, Y., Peng, L., Li, R., Li, Y., Li, L., Bai, H., 2017. Concentration, ozone formation potential and source analysis
581 of volatile organic compounds (VOCs) in a thermal power station centralized area: A study in Shuzhou, China.
582 *Environ. Pollut.* 223, 295–304.

583 Yang, W.Q., Zhang, Y.L., Wang, X.M., Li, S., Zhu, M., Yu, Q.Q., Li, G.H., Huang, Z.H., Zhang, H.N., Wu, Z.F.,
584 Song, W., Tan, J.H., Shao, M., 2018. Volatile organic compounds at a rural site in Beijing: influence of temporary
585 emission control and wintertime heating. *Atmos. Chem. Phys.* 18, 12663–12682.

586 Yao, Y.C., Tsai, J.H., Wang, I.T., 2013. Emissions of gaseous pollutant from motorcycle powered by ethanol-
587 gasoline blend. *Appl. Energy*. 102, 93–100.

588 Yao, Z., Wu, B., Shen, X., Cao, X., Jiang, X., Ye, Y., He, K., 2015. On-road emission characteristics of VOCs from
589 rural vehicles and their ozone formation potential in Beijing, China. *Atmos. Environ.* 105, 91–96.

590 Yao, L., Wang, D., Fu, Q., Qiao, L., Wang, H., Li, L., Sun, W., Li, Q., Wang, L., Yang, X., 2019. The effects of
591 firework regulation on air quality and public health during the Chinese Spring Festival from 2013 to 2017 in a
592 Chinese megacity. *Environ. Int.* 126, 96–106.

593 Yuan, B., Shao, M., Lu, S., Wang, B., 2010. Source profiles of volatile organic compounds associated with solvent
594 use in Beijing, China. *Atmos. Environ.* 44, 1919–1926.

595 Zhai, S., Jacob, D.J., Wang, X., Shen, L., Li, K., Zhang, Y., Gui, K., Zhao, T., Liao, H., 2019. Fine particulate
596 matter ($PM_{2.5}$) trends in China, 2013–2018: separating contributions from anthropogenic emissions and
597 meteorology, *Atmos. Chem. Phys.* 19, 11031–11041, <https://doi.org/10.5194/acp-19-11031-2019>.

598 Zhang, Y., Wang, X., Zhang, Z., Lu, S., Shao, M., Lee, F.S. C., Yu, J., 2013. Species profiles and normalized re

599 activity of volatile organic compounds from gasoline evaporation in China. *Atmos. Environ.* 79, 110–118.

600 Zhang, X., Xue, Z., Li, H., Yan, L., Yang, Y., Wang, Y., Duan, J., Li, L., Chai, F., Cheng, M., Zhang, W., 2017.

601 Ambient volatile organic compounds pollution in China. *J Environ. Sci.* 55, 69-75, 10.1016/j.jes.2016.05.036.

602 Zhang, Y., Li, R., Fu, H., Zhou, D., Chen, J., 2018. Observation and analysis of atmospheric volatile organic

603 compounds in a typical petrochemical area in Yangtze River Delta, China. *J. Environ. Sci.* 71, 233-248.

604 Zhao, D., Liu, G., Xin, J., Quan, J., Wang, Y., Wang, X., 2020. Haze pollution under a high atmospheric

605 oxidization capacity in summer in Beijing: insights into formation mechanism of atmospheric physicochemical

606 processes. *Atmos. Chem. Phys.* 20, 4575-4592.

607 Zhao, Q.Y., Bi, J., Liu, Q., Ling, Z.H., Shen, G.F., Chen, F., Qiao, Y.Z., Li, C.Y., Ma, Z.W., 2020. Sources of

608 volatile organic compounds and policy implications for regional ozone pollution control in an urban location of

609 Nanjing, East China. *Atmos. Chem. Phys.* 20, 3905–3919.

610 Zheng, J., Yu, Y., Mo, Z., Zhang, Z., Wang, X., Yin, S., Peng, K., Yang, Y., Feng, X., Cai, H., 2013. Industrial

611 sector-based volatile organic compound (VOC) source profiles measured in manufacturing facilities in the Pearl

612 River Delta, China. *Sci. Total Environ.* 456, 127–136.

613 Zheng, H., Kong, S., Xing, X., Mao, Y., Hu, T., Ding, Y., Li, G., Liu, D., Li, S., Qi, S., 2018. Monitoring of

614 volatile organic compounds (VOCs) from an oil and gas station in northwest China for 1 year. *Atmos. Chem.*

615 *Phys.* 18, 4567-4595.

616

Figure captions

618 **Figure 1.** Time series of meteorological parameters and levels of air pollutants during the sampling
619 period.

620 **Figure 2.** Comparison of the concentration and composition of major chemical groups observed in
 621 2019 (this study), 2016 (Liu et al., 2020) and 2014 (Li et al., 2015).

Figure 3. Comparison of major meteorological parameters and air pollutants on clean and polluted days.

624 **Figure 4.** Statistic decomposition of meteorological and emission contribution to O₃ and PM_{2.5}
625 levels during different periods.

626 **Figure 5.** OFP and SOAFP by chemical groups during different periods.

627 **Figure 6.** Ratios of i/n-pentane and toluene/benzene at different PM_{2.5} and O₃ levels. **Figure 7.**
628 Source profiles of VOCs identified using the PMF model and the relative contributions of the
629 individual VOC species.

630 **Figure 8.** Contributions of each source to VOCs during different periods.

631 **Figure 9.** Contributions of each source to OFP and SOAFP during different periods.

Figure 10. OFP values of the dominant VOC species in the different source categories for the O₃ pollution (a) and compliance (b) days of the O₃-polluted months, and SOAfp values for the PM_{2.5} pollution (c) and compliance (d) days of the PM_{2.5}-polluted months.

Fig. 1.

638

639

640 **Figure 2.**

641

Fig. 3.

645 **Fig. 4**

646

647

648

649 **Fig. 5**

650

651

Fig. 6**Ratios of i/n-pentane and toluene/benzene at different PM_{2.5} levels****Ratios of i/n-pentane and toluene/benzene at different O₃ levels**

Fig. 7.

659 **Fig. 8**660
661
662

Fig. 10

