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Scheme S1. An overview of the chemical analysis performed in this work.
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Scheme S2. Possible formation mechanisms for m/z = 247 (C1o0Hi505S") ion.



R1: RO, + RO, -> 2 RC(=0) 8

R2: RO, + RO,* -> RC(=0) + ROH 5
R3: RO*+ 0, -> R(=0) + HO, 9

R4: RO*+ RH -> ROH + R* 3 4

R5: RO*-> decomposition
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Scheme S3. Formation mechanisms tentatively proposed for the formation of more oxygenated

OSs (m/z =279 and 281) and inorganic sulfates involving the decomposition of alkoxy radicals.



Table S1. MS parameters of MRM transition for quantifying apOS-249.

Products Mass DP? EP® CE® CXP¢ | MDL® | LOQ¢®
Analyst i .
ion transition | (volts) | (volts) | (volts) | (volts) | (ng/mL) | (ng/mL)
apOS-249 HSO4 249/97 -95.51 -7.79 -37.34 | -14.97 2.95 9.82
Di7-octyl
HSO4~ 225/97 -83.46 | -9.05 -25.97 -5.98 - -
sulfate

3DP: declustering potential., ® EP: entrance potential., © CE: collision energy, ¢ CXP: collision cell exit
potential. * Method detection limit defined as 3-fold standard deviation of 10 ng/mL standard solution signals
and limit of quantification defined as 10-fold standard deviation of 10 ng/mL standard solution signals. And

these values were obtained by Wang et al. (2017) using the same instrument and similar detection conditions.

Table S2. The hydrogen abstraction rate for different reaction sites of apOS-249 predicted by the
SAR model developed by Monod and Doussin (2008)*.

Name apOS-249
OH
Chemical structure SO,Na
) ) Rate
Reaction site
(x 107" cm® molecule ' s™")
8-C 7.50
Primary carbon 9-C 7.50
11-C 2.82
4-C 18.00
Secondary carbon
7-C 14.63
1-C 6.99
Tertiary carbon 3-C 17.20
5-C 1.29
Hydroxyl (-OH) group 10-O 1.48

* It is noted that the SAR model does not include the parameterization of sulfate group. As a first
approximation, the effect of sulfate group on the reactivity is evaluated using the descriptor of carboxylate
anion (COO").
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Figure S1. MS? spectrum for apOS-249 and reaction products in the HPLC/ESI-QToF-MS/MS

measurements.
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Figure S2. The total ion chromatograms (TICs) of apOS-249 aerosols characterized by the
HPLC/ESI-QToF-MS to examine the effects of UV light and ozone on apOS-249 in control

experiments.
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Figure S3. The ion chromatograms before (a) and after (b) heterogeneous OH oxidation of

opOS-249.



Determination of measurement uncertainties:

The uncertainty for the quantification of apOS-249 (C190H170sS") and sulfate (SO4>") ion
Measurement precisions for the concentration of species i (o¢;) are propagated from precisions of
volumetric measurements, chemical composition measurements, and blank sample variability and
sample repeatability referring to Bevington et al. (1993), and Williams et al. (2012). For

simplicity, the following equations are used to calculate the uncertainty associated with our filter-

based measurements:

1
Bi =; ;l:lBi]- fOTBL- > O-Bi

Bi=0f0TBi S O-Bi

1

o5, = STDy, = [:11 " (By — B)* for STDy > SIGy,

1

o3, = STDy, = [iZ}Ll(aBU)Z]E for STDy, < SIGy

9y
— =0.05
14
1

— [”Miz"'f’Biz + UVZ(Mi—Bi)Z]Z
Oc¢, = V2 v
where
B; = average amount of species i on blank samples

B =the amount of species i found on blank sample j
C; = the concentration of species i
M; = amount of species i on the substrate

n = total number of samples in the sum

SIG3; = the root mean square error (RMSE), the square root of the averaged sum of the squared opjj

STDg;= standard deviation of the blank samples

opi = blank precision for species i

op; = precision of the species 7 found on blank sample j

oci = propagated precision for the concentration of species i
omi = precision of amount of species i on the substrate

oy = precision of sample volume

V' =sample volume

M
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The precisions (ou;) were determined from duplicate analysis of samples. When duplicate sample analysis
is made, the range of results, R, is nearly as efficient as the standard deviation since two measures differ by
a constant (1.1280u; = R). Based on the blank samples and duplicate samples, coefficients needed for

determining uncertainty are given in following table:

) ) No. of Blank Duplicate
. Quantification | No. of . o .
Species duplicate Precision Precision
method Blanks
standard (oBi, mg) (omi, mg)
HPLC/ESI-
apOS-249 3 3 0.0023 0.0216
QTRAP-MS
Sulfate/
) IC 3 3 0.0019 0.0017
bisulfate




The uncertainty for the yield, Oyield

1

2 2 2 2
aapOS—249j + a(xpOS—2490 asulfatej + asulfateo

_|._
(apOS — 249, — apOS — 249].)2 (sulfate]. — sulfate)

Tyield; = [ 7| * yleld,

where

Oyie1q,= precision of molar yield on sample j
J

O apos—249, = precision of apOS-249 on sample j
J
O op0s—-249, = precision of apOS-249 on first sample (prior to oxidation)
O suifate = Precision of sulfate on sample j
J

Osulfate,~ precision of sulfate on first sample (prior to oxidation)

apO0S — 249,= the amount of apOS-249 on first sample (prior to oxidation)
apOS — 249 ;= the amount of apOS-249 on sample j

yield].= molar yield for sample j

The uncertainty for OH exposure, .,

Oexp = 0.005 (OH exposure)\[<16 + 2 >

(oH exposurexksoz)2

where 0.005 is the precision of SO> analyzer (0.5 % of the reading), kg, is the second-order rate constant

of the gas-phase OH and SO, reaction: 9 x 1073, cm® molecule™ s™'.

The uncertainty for parent decay index, O'IL
0

I a; 2 ar 2
o =—X —] + (—0)
where [ is the concentration of apOS-249 at a given OH exposure, Iy is the concentration of apOS-249

before oxidation, gy is the uncertainty of apOS-249 on sample at a given OH exposure.

The uncertainty for atmospheric lifetime, o,

where £ is the fitted heterogeneous OH rate constant.
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