Measurement report: The importance of biomass burning in light extinction and direct radiative effect of urban aerosol during the COVID-19 lockdown in Xi'an, China

Jie Tian^{1,2}, Qiyuan Wang^{1,2,3}, Huikun Liu¹, Yongyong Ma⁴, Suixin Liu^{1,2}, Yong Zhang¹, Weikang Ran¹, Yongming Han^{1,2,3}, and Junji Cao⁵ 5

¹State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China

²CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China

³National Observation and Research Station of Regional Ecological Environment Change and Comprehensive Management 10 in the Guanzhong Plain, Shaanxi, Xi'an 710061, China

⁴Meteorological Institute of Shaanxi Province, Xi'an 710015, China ⁵Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

Correspondence: Qiyuan Wang (wangqy@ieecas.cn) and Junji Cao (jjcao@mail.iap.ac.cn)

- 15 **Abstract.** Due to the complexity of emission sources, a better understanding of aerosol optical properties is required to mitigate climate change in China. Here, an intensive real-time measurement was conducted in an urban area of China before and during the lockdown of Coronavirus Disease 2019 (COVID-19), to explore the impacts of anthropogenic activities on aerosol light extinction and direct radiative effect (DRE). The mean light extinction coefficient (b_{ext}) reduced from 774.7 \pm 298.1 Mm⁻¹ during the normal period to 544.3 \pm 179.4 Mm⁻¹ during the lockdown period. The generalized
- 20 additive model analysis indicated that the large decline of b_{ext} (29.7%) was attributed to the sharp reductions in anthropogenic emissions. Chemical calculation of *b*ext based on the ridge regression analysis showed that organic aerosol (OA) was the largest contributor to b_{ext} in both periods (45.1–61.4%), and contributions of two oxygenated OAs to b_{ext} increased by 3.0–14.6% during the lockdown. A hybrid environmental receptor model combining with chemical and optical variables identified six sources of b_{ext} . It was found that b_{ext} from traffic-related emission, coal combustion,
- 25 fugitive dust, nitrate plus secondary OA (SOA) source, and sulfate plus SOA source decreased by 21.4–97.9% in the lockdown, whereas b_{ext} from biomass burning increased by 27.1% mainly driven by undiminished needs of residential cooking and heating. The atmospheric radiative transfer model was further used to illustrate that biomass burning instead of traffic-related emission became the largest positive effect $(10.0 \pm 10.9 \text{ W m}^2)$ on aerosol DRE in the atmosphere during the lockdown. Our study provides insights into aerosol b_{ext} and DRE from anthropogenic sources, and the results
- 30 implied the importance of controlling biomass burning for tackling climate change in China in the future.

1 Introduction

The abrupt outbreak of Coronavirus Disease 2019 (COVID-19) caused unprecedented economic and social disruption (Yao et al., 2020). Most worldwide countries implemented the city lockdown to curb the virus spread among humans, providing a rare opportunity to investigate the impacts of anthropogenic activities on the air quality (Ibrahim et al., 2021;

- 35 Kumar et al., 2021; Sanap, 2021; Weber et al., 2020). The Chinese government also enforced a series of strict restrictions on travel, transport, manufacture, and constructive activities during the lockdown. Recent studies on the aerosols in China which were conducted during the lockdown period focused on primary emissions and secondary formation, and most of them had revealed changes in aerosol compositions, sources, and processes under a variety of emission control measures (Le et al., 2020; Li et al., 2020; Wang et al., 2020a; Wang et al., 2020c; Zhao et al., 2020; Zheng et al., 2020).
- 40 However, only a few studies were conducted to explore the link of chemical constituents in aerosol with light absorption during the lockdown (Chen et al., 2020; Lin et al., 2021; Xu et al., 2020a). The influences of reduced anthropogenic activities on the variations of aerosol optical properties and direct radiative effect (DRE) are less understood.

Atmospheric aerosols alter the radiative energy budget by directly scattering and absorbing solar and terrestrial radiation to affect global climate change (Bellouin et al., 2013; Yao et al., 2017). The spatiotemporal variations of aerosol optical

- 45 properties (e.g., light scattering coefficient (b_{scat}), light absorption coefficient (b_{abs}), light extinction coefficient (b_{ext}), and single scattering albedo (SSA)) highly depended on their chemical compositions and sources (Malm and Hand, 2007; Tao et al., 2014; Yao et al., 2021), can elevate uncertainties in estimating aerosol DRE (IPCC, 2013; Ma et al., 2012). Therefore, distinguishing chemical composition- and source-specific aerosol optical properties from a mixture of aerosols in the atmosphere would make a better understanding of the climate change during the COVID-19 lockdown.
- 50 The relationship between aerosol optical coefficients and chemical compositions can be built by the Interagency Monitoring of Protected Visual Environments algorithm and multiple linear regression (MLR) (Deng et al., 2016; Malm and Hand, 2007; Shen et al., 2014; Tao et al., 2014, 2015). However, previous studies often regarded organic aerosol (OA) as a whole light scattering component only. In reality, some OA components can absorb light, which is collectively termed as brown carbon (BrC) (Andreae and Gelencsér, 2006). The DRE caused by BrC has been reported to be
- 55 nonnegligible (e.g., 0.04 W m⁻² to 0.57 W m⁻²) (Feng et al., 2013; Lin et al., 2014; Wang et al., 2014). Furthermore, the optical properties of OA can vary widely due to the complexity of OA components associated with primary sources, formation pathways, and aging processes (Laskin et al., 2015). For instance, primary OA (POA) from anthropogenic sources (e.g., biomass burning and coal combustion) usually has different mass scattering and absorption efficiencies (MSE and MAE) in the atmosphere compared to secondary OA (SOA) formed though photochemical or aqueous-phase
- 60 oxidations (Han et al., 2015; Qin et al., 2018). Therefore, investigating POA and SOA contributions to aerosol light scattering and absorption would reduce uncertainties in the chemical apportionment of aerosol optical properties.

Previous studies have been conducted on the aerosol optical source apportionment. According to the multi-wavelength aethalometer measurement, the source of aerosol b_{abs} can be investigated by exploiting the differences in absorption spectra of light-absorbing materials (Herich et al., 2011; Sandradewi et al., 2008; Zotter et al., 2017). In this method, the

- 65 aerosol absorption near-ultraviolet and short-visible regions of the spectrum from biomass burning are assumed to be enhanced because of BrC emitted, compared to that from fossil fuel combustion (Kirchstetter et al., 2004; Tian et al., 2019). This makes it possible to derive their contributions to light absorption by using the specific source absorption Ångström exponent (AAE), but the so-called "aethalometer model" could not distinguish as many sources resolved by receptor models due to the similar optical properties of the aerosol sources (Saarikoski et al., 2021). In contrast, receptor
- 70 models can be utilized to resolve multiple optical source apportionment of aerosol. Several studies used a combination of the receptor model and MLR to indirectly identify sources of aerosol b_{scat} , b_{abs} , and b_{ext} (Cao et al., 2012; Tian et al., 2020; Zhou et al., 2017). For example, Zhou et al. (2017) firstly used positive matrix factorization analysis to quantify the mass contributions of aerosol from secondary aerosol, biomass burning, traffic-related emissions, and coal combustion based on the sole chemical species, and then the MLR was used to apportion the contribution of each source
- 75 to b_{scat} and b_{abs} . In addition, recent studies have attempted to conduct direct optical source apportionment by combining aerosol chemical species with optical coefficients in one receptor model (Forello et al., 2019; Wang et al., 2020b; Xie et al., 2019). This promising method can provide both chemical and optical profiles in each source to improve the performance of source identification, and may eliminate potential uncertainties caused by the indirect approach.
- The Fenwei Plain is designated as the key region of pollution treatment in the "Three-year action plan to fight air 80 pollution" implemented by the Chinese State Council in 2018. As one of the megacities in this plain, Xi'an has been facing severe air pollution problem, especially in winter (Niu et al., 2016; Wang et al., 2015). Here, we conducted high time-resolved aerosol *b*_{scat} and *b*_{abs} measurements in Xi'an before and during the city lockdown in China. The main objectives are to (1) characterize the changes of aerosol optical properties since COVID-19 lockdown; (2) quantify the contributions of individual chemical composition and specific source to *b*ext; and (3) evaluate source-specific aerosol 85 DRE based on a radiative transfer model. This study provides insights into the response of aerosol b_{ext} and DRE to
- anthropogenic emission sources, which is a scientific basis for establishing future emission control policies to deal with climate change in China.

2 Methodology

2.1 Sampling site and period

90 Intensive measurements of aerosol optical properties were conducted at one urban sampling site of the National Observation and Research Station of Regional Ecological Environment Change and Comprehensive Management in the Guanzhong Plain, southwest of Xi'an downtown (34°13' N, 108°52' E, Figure S1). All instruments were placed at the rooftop of an office building $($ \sim 10 m above the ground) and approximately 30 m from the nearest traffic road. A detailed description of the sampling site can be found in Tian et al. (2021). In this study, the sampling campaign consisted of two

95 distinct periods: normal period (January 1st to 23rd, 2020) and COVID-19 lockdown period (January 27th to February 7th, 2020). Three days of January $24th-26th$, 2020 were excluded due to the intensive influence of fireworks for the Chinese New Year celebration.

2.2 Measurements

2.2.1 Real-time measurements of b_{scat} and b_{abs}

- 100 A single wavelength integrating nephelometer (Aurora 1000, Ecotech, Melbourne, Australia) was carried out to measure aerosol *b*scat at a wavelength of 525 nm with a 5-min time resolution. In the measurement volume, the ambient air sampled with a flow rate of 5 L min⁻¹ was illuminated by the light source, that only light scattered at scattering angles between 10 $^{\circ}$ and 170 $^{\circ}$ can reach the photomultiplier tube. Thereafter, b_{scat} can be calculated by the proportion of the electrical signals produced by the photomultiplier tube. Span calibration was made using $CO₂$ to ensure the accuracy of the 105 instrument before sampling, and zero calibration was performed twice each day with particle-free air to subtract the
- Rayleigh scattering. More detailed principles of the Aurora 1000 have been described elsewhere (Chamberlain-Ward and Sharp, 2011).

Aerosol *b*abs at wavelengths of 370 nm, 470 nm, 520 nm, 590 nm, 660 nm, and 880 nm were measured by a newly developed Aethalometer (model AE33, Magee Scientific, Berkeley, CA, USA) with a 1-min time resolution. Briefly, the

110 model AE33 was the filter-based absorption photometer that simultaneously measured the light attenuation transmitted through two parallel spots of the aerosol filter with 3.85 L min⁻¹ and 1.15 L min⁻¹, respectively. Based on "dual-spot" measurements, it used a real-time loading effect compensation algorithm to eliminate the nonlinear loading effect by increasing the deposition amount of aerosol on the filter. Additionally, a factor of 2.14 was used in the model AE33 to automatically modify the quartz filter matrix scattering effect. A detailed description of this instrument can be found in 115 Drinovec et al. (2015).

Both of the Aurora 1000 and model AE33 instruments equipped with a PM2.5 cyclone separator in the sampling inlet to remove particles larger than 2.5 μm, and a Nafion® dryer (MD-700-24S, Perma Pure, Inc., Lakewood, NJ, USA) to retain particles (relative humidity < 40%) before entering these instruments. Considering the relative error (1.5% \pm 0.1%) between b_{abs} at 520 nm and 525 nm is negligible, the amount of b_{ext} in this study was defined as the sum of b_{scat} at 525 120 nm and b_{abs} at 520 nm.

2.2.2 Complementary data

A quadrupole aerosol chemical speciation monitor (Q-ACSM, Aerodyne Research Inc., Billerica, Massachusetts, USA) and a Xact 625 ambient metals monitor (Xact 625i, Cooper Environmental Services, Beaverton, OR, USA) were operated to obtain chemical composition characteristics (Furger et al., 2020; Ng et al., 2011). The Q-ACSM measured

- 125 concentrations of non-refractory species in PM_1 (NO₃, SO₄², NH₄⁺, Cl⁻, and OA), and OA was further resolved into POA, less-, and more-oxidized oxygenated OA (LO-OOA and MO-OOA). Detailed information on the Q-ACSM data process and source apportionment of OA can be found in our previous paper (Tian et al., 2021). The Xact 625i quantified hourly element concentrations in $PM_{2.5}$ through X-ray fluorescence analysis, including Si, K, Ca, Cr, Mn, Fe, Zn, As, Se, Ba, Hg, and Pb. Additionally, BC concentration was calculated using *b*abs at 880 nm (Kirchstetter et al., 2004). Online
- 130 PM2.5 and NO*^x* concentrations were obtained from the Department of Ecology and Environment of Shaanxi Province. More detailed descriptions of these complementary data can be found in Table S1.

2.3 Meteorological conditions separation

A generalized additive model (GAM) combined with integrated smoothness estimation was used to establish the relationship between *b*ext and several meteorological parameters as follows (Wood, 2004):

135
$$
\ln b_{\text{ext}}(i) = \sum_{j=1}^{7} f_j(\text{MP}_j(i)) + \beta_0 + e_i
$$
 (1)

where $b_{\text{ext}}(i)$ is the b_{ext} in Mm⁻¹ averaged over the *i*th hour; MP_{*j*} represents the *j*th meteorological parameter, such as wind speed, wind direction, temperature, pressure, dew point, and planetary boundary layer height, where the data sources can be found in Table S1; *f* corresponds to the smooth function describing the association between b_{ext} and meteorological parameters; β⁰ is the model intercept; and e*ⁱ* is the regression residuals which is assumed to be normally distributed.

140 Based on the R package "mgcv" (Wood, 2017), the whole campaign dataset was divided into three parts: a model data (80% of data during the normal period) for establishing the *b*ext GAM, a test data (20% of data during the normal period) for verifying the accuracy of the model, and a forecast data (100% of data during the lockdown period) for estimating the contributions of meteorological conditions and emissions on b_{ext} reduction.

2.4 Chemical calculation of b_{scat} **and** b_{abs}

145 Because of POA and SOA with nonnegligible light scattering and absorbing abilities, the amount of b_{scat} and b_{abs} associated with individual chemical species can be estimated statistically using the ridge regression method:

150
$$
b_{\text{scat}} = a_1 \left[\text{NH}_4 \text{NO}_3 \right] + a_2 \left[(\text{NH}_4)_2 \text{SO}_4 \right] + a_3 \left[\text{fine soil} \right] + a_4 \left[\text{POA} \right] + a_5 \left[\text{LO-OOA} \right] + a_6 \left[\text{MO-OOA} \right] + c_1
$$
(1)

$$
b_{\text{abs}} = b_1 [BC] + b_2 [POA] + b_3 [LO-OOA] + b_4 [MO-OOA] + c_2
$$
 (2)

where b_{scat} and b_{abs} are given in unit of Mm⁻¹; the bracket notation [] represents the specific chemical species concentration in μ g m⁻³; the a_i and b_i (*i* = 1–6) describe the MSE and MAE of each chemical species in the unit of m² g

- 155 $\,$ ¹, respectively; and c_i (*i* = 1 or 2) is the constant. In equation (2), the concentrations of [NH₄NO₃], [(NH₄)₂SO₄], and [fine soil] were calculated using $1.29 \times [NO_3]$, $1.35 \times [SO_4^2]$, and [Fe]/0.032, respectively (Chow et al., 2015; CNEMC, 1990). In equation (3), b_1 was calculated by the absorption Ångström exponent method, and the detailed description can be seen in Text S1. The reconstructed $[PM]$ $([PM] = [NH_4NO_3] + [(NH_4)_2SO_4] + [POA] + [LO-OOA] + [MO-OOA] + [BC] +$ [fine soil]) is strongly correlated with the measured [PM_{2.5}] ($R^2 = 0.86$), with a slope of 0.79 (Figure S2). That is, the
- 160 reconstructed [PM] accounted for ~79% of the measured [PM_{2.5}]. The NH₄NO₃, (NH₄)₂SO₄, POA, LO-OOA, and MO-OOA in $PM_{1-2.5}$ are not included in the calculation (equations 2 and 3). A sensitivity analysis concludes that if their concentrations increased by 21% to match the measured $PM_{2.5}$, then the estimated MSEs and MAEs will correspondingly decrease by 21%.

2.5 Hybrid environmental receptor model (HERM) for source apportionment

165 The source apportionment of *b*ext was performed with HERM which is a newly developed bilinear model (Chen and Cao, 2018). Briefly, the HERM solves non-negative matrices of unknown factor profiles and contributions with a pre-set number of factors K by iteratively minimizing the object function Q defined as follows:

$$
Q = \sum_{j=1}^{J} \sum_{i=1}^{I} \frac{\left(x_{ij} - \sum_{k=1}^{K} g_{ik} f_{kj}\right)^2}{\sigma_{xy}^2 + \sum_{k=1}^{K} \left(g_{ik}^2 \sigma_{ky}^2 + \delta_{ik} \sigma_{xy}^2\right)}
$$
(4)

where I, J, and K are the number of samples, aerosol variables, and factors, respectively; the indices of *i*, *j*, *k* represent 170 the sample, aerosol variable, and factor, respectively; x_{ij} is the measured ambient data spectral matrix; f_{kj} is the factor profile matrix; g_{ik} is factor contribution matrix; $\sigma_{x_{ij}}$ and $\sigma_{f_{kj}}$ represent the error in measured ambient data and variability in constrained factor profile, respectively; δ_{ik} is set to 0 or 1 depending on whether the k^{th} factor profile is constrained or unconstrained, respectively.

In this study, both chemical species $(PM_{2.5}, NO_3, SO_4^2, NH_4^+, Cl, BC, POA, LO-OOA, MO-OOA, Si, K, Ca, Cr, Mn,$ 175 Fe, Zn, As, Se, Ba, Hg, and Pb in μ g m⁻³) and optical variables (b_{scat} and b_{abs} in Mm⁻¹) were used as input data for the HERM analysis. The uncertainties of hourly ambient data except elements were introduced by the standard deviation of

samples with higher time resolution (< 1-hour); the uncertainty of the element was estimated using its concentration, the default analytical relative error (10%) (Rai et al., 2020), and method detection limit (MDL) (Norris et al., 2014) (Text S2). All input variables were classified as strong due to the high signal-to-noise (SNR $>$ 2). Here, the HERM had 180 predetermined: (1) the *i*th sample was excluded from source apportionment when missing values occurred in variables; (2) PM_{2.5} value in factor profile was set to unity as a reference standard for both chemical and optical variables.

A range of factor numbers from two to eight was selected to run in the HERM software with completely unconstrained factor profiles, and diagnostic plots are detailed in the supplementary material (Text S3 and Figures S3–S8). The sixfactor solution without mixed source was found to be the optimal solution based on multiple criteria including (1) 185 variations in $Q/Q_{\rm exp}$ that can be used as a metric for choosing the best number of resolved factors (Ulbrich et al., 2009); (2) physical meaningfulness of distinct factor profiles and explained variations (EV) of variables; (3) agreement between

the measured and modeled values; and (4) good correlations with external and internal tracers. Detailed information on the final selected factor profiles and contributions are presented in Section 3.4.

2.6 DRE calculations

- 190 The Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) developed by the Institute for Computational Earth System Science, University of California was utilized to estimate the source-specific aerosol DRE. It can calculate the downwelling and upwelling radiative flux (F_{down} and F_{up}), in which the difference indicates the net radiative flux (ΔF $F_{\text{down}} - F_{\text{up}}$). A detailed description of the SBDART can be found in Ricchiazzi et al. (1998). Based on the optical source apportionment results, the SBDART model input values of aerosol optical depth, SSA, asymmetry factor, and
- 195 optical coefficients were retrieved using the Optical Properties of Aerosol and Cloud (OPAC) model (Hess et al., 1998). The aerosol DRE can be calculated as follows:

$$
DRE_{atmosphere} = DRE_{top} - DRE_{surface}
$$
 (5)

$$
DRE_{\text{top}} = \Delta F_{\text{top}}(\text{with aerosol}) - \Delta F_{\text{top}}(\text{without aerosol}) \tag{6}
$$

$$
DRE_{\text{surface}} = \Delta F_{\text{surface}}(\text{with aerosol}) - \Delta F_{\text{surface}}(\text{without aerosol}) \tag{7}
$$

200 where the indices of atmosphere, top, and surface indicate the DRE in the atmosphere, at the top of the atmosphere, and the earth's surface, respectively; ∆F(with aerosol) and ∆F(without aerosol) represent the net radiative flux with and without aerosol, respectively.

3 Results and discussion

3.1 General descriptions of aerosol optical properties

- 205 The temporal variations of hourly mean *b*scat, *b*abs, *b*ext, and SSA together with PM2.5 mass concentrations for the entire sampling period are depicted in Figure 1, while a statistics summary of optical and chemical parameters during the normal and COVID-19 lockdown periods is shown in Table 1. The optical coefficients decreased dramatically in accord with the significant reduction of $PM_{2.5}$ since stringent control measures on emission sources were implemented during the lockdown period (Tian et al., 2021; Zheng et al., 2020). The mean values of b_{scat} , b_{abs} , and b_{ext} during the normal
- 210 period were 688.1 \pm 261.4 Mm⁻¹, 86.6 \pm 43.0 Mm⁻¹, and 774.7 \pm 298.1 Mm⁻¹, respectively, which are consistent with the values (657.4 \pm 436.9 Mm⁻¹, 104.0 \pm 69.6 Mm⁻¹, and 761.4 \pm 506.5 Mm⁻¹) reported previously in winter of 2009 in Xi'an (Cao et al., 2012), even though a series of nationwide air quality standards and long-term pollution control policies have been implemented in the 74 major cities since 2013 (Xu et al., 2020b; Zheng et al., 2018). Comparatively, the kind of control measures aiming to curb the outbreaks did not last long, but it was unprecedentedly strictest in China. The large
- 215 decreases (27.6–47.0%) were found in b_{scat} , b_{abs} , and b_{ext} in the lockdown (498.4 \pm 159.0 Mm⁻¹, 45.9 \pm 22.9 Mm⁻¹, and 544.3 ± 179.4 Mm⁻¹, respectively), providing insights into the role of anthropogenic emissions on aerosol optical properties.

The SSA defined as the ratio of *b*_{scat} to *b*_{ext} increased from 0.89 \pm 0.03 during the normal period to 0.92 \pm 0.02 during the lockdown period. As presented in Figure 2a and b, SSA showed linear increases with the mass fractions of secondary

220 inorganic aerosol (SIA = NH₄NO₃ + (NH₄)₂SO₄) to PM_{2.5} ($R^2 = 0.83-0.84$) and SOA (SOA = LO-OOA + MO-OOA) to OA (\mathbb{R}^2 = 0.94–0.99), indicating an enhanced role of secondary formation in the lockdown. In addition, the correlations of SSA and the ratio of LO-OOA to MO-OOA were established to reveal a more complex influence of SOA on SSA (Figure 2c), which showed negative relationships ($R^2 = 0.69 - 0.79$). It indicated that SSA can be impacted by the degree of oxidation on aerosol, and higher scattering and lower absorption abilities are usually found for more oxidized OA 225 (Han et al., 2015; Lee et al., 2014).

3.2 Effects of emission reduction and meteorological conditions on reduced *b***ext**

Figure 3 shows the time series of the measured and GAM-predicted b_{ext} for the model data, test data, and forecast data. As shown in Tables S2 and S3, the constructed GAM with adjusted \mathbb{R}^2 value (0.54) can explain 54% of the variation in *b*ext after incorporating the nonlinear relationships between optical and meteorological parameters. Independent 230 smoothed meteorological variables of the model were statistically significant by according to *p* values (< 0.05) from F test. Concurvity indices between each independent smoothed parameter were within 0.5, indicating there was no serious multicollinearity (Schimek, 2009).

Before applying the constructed GAM to predict the *b*_{ext} during the lockdown period, the cross-validation test was used to evaluate the model. For the test data (20% of data during the normal period), the R^2 value of the linear regression and

235 index of agreement (IOA) (Wu et al., 2018) between the measured and GAM-predicted b_{ext} was 0.83 and 0.92, respectively, suggesting a good performance of the constructed GAM. The difference between the measured and GAMpredicted b_{ext} in the lockdown can be attributed to emission reduction through the implementation of stringent control measures on emission sources. The emission reduction decreased b_{ext} by 299.2 Mm⁻¹ during the lockdown period, higher than the decline of measured b_{ext} (230.4 Mm⁻¹) from normal to lockdown periods. It is indicated that the meteorological 240 conditions enhanced b_{ext} by 68.8 Mm⁻¹ during the lockdown period, further reflecting the effective control of anthropogenic emissions.

3.3 Contribution of chemical components to b_{ext}

Table 2 presents the estimated MSE and MAE of an individual chemical component during the normal and lockdown periods. NH₄NO₃ and (NH₄)₂SO₄ had different MSEs, probably due to their different size distributions (Hu et al., 2017; 245 Zhang et al., 2013b; Zhu et al., 2021). The MSEs of NH₄NO₃ (3.74 \pm 0.18 m² g⁻¹) and (NH₄)₂SO₄ (7.35 \pm 0.25 m² g⁻¹) during the normal period were higher than those $(3.23 \pm 0.18 \text{ m}^2 \text{ g}^{-1}$ and $4.78 \pm 0.35 \text{ m}^2 \text{ g}^{-1})$ during the lockdown period. This may be explained by the higher mass loadings and peak diameters of aerosol without control measures (Cheng et al., 2015; Tao et al., 2015). The MAE of BC decreased from 15.00 $m^2 g^{-1}$ to 13.27 $m^2 g^{-1}$ related to the decline of AAE of BC (Text S1). The MSEs and MAEs of OA factors varied widely, from 3.48 $m^2 g^{-1}$ to 12.89 $m^2 g^{-1}$ and from 0.25 m^2 250 g^{-1} to 0.59 m² g⁻¹, respectively, due to the complex chemical variability of OA constituents (Hallquist et al., 2009; Moise et al., 2015). The MSEs of OA increased with oxidation level from POA to MO-OOA. This could be explained by the increased mass diameter of OA with increasing OA oxidation level (Wang et al., 2021; Xu et al., 2015). The MSE of MO-OOA was larger during the lockdown period than that during the normal period, probably related to the enhanced atmospheric oxidation capacity during the lockdown period (Tian et al., 2021), which is found to result in higher aging 255 state of OA with larger diameter (Hu et al., 2016; Zhu et al., 2021). The dependence on oxidation level of OA MAEs presented a more complex trend. LO-OOA had higher MAE values than those of POA, indicating more BrC chromophores with stronger light-absorbing capacity formed under less-oxidized condition (Zhang et al., 2020). Additionally, the effect of photo-bleaching in the atmosphere that can weaken the light absorption ability of BrC resulted in the reduction of MO-OOA MAEs (Wang et al., 2021).

260 The b_{ext} reconstructed by chemical compositions was strongly correlated with the measured optical b_{ext} ($\mathbb{R}^2 = 0.94$), with a slope of 0.78 (Figure S9). As shown in Figure 4, OA (POA + LO-OOA + MO-OOA) was the largest contributor to *b*ext in both periods, accounting for $45.1-61.4\%$, followed by NH₄NO₃ (16.5–24.1%), BC (9.3–13.1%), (NH₄)₂SO₄ (7.9– 11.2%), and fine soil (4.9–6.5%). This result was different from previous findings that SIA was often the largest

contributor to b_{ext} in China, such as Beijing (46–54%) (Han et al., 2015), Chengdu (43%) (Tao et al., 2014), Nanjing 265 (53%) (Shen et al., 2014), and Xi'an (63%) (Cao et al., 2012), highlighting the dominant role of organic matters in aerosol light extinction in Xi'an today. Compared to the normal period, the contributions of NH_4NO_3 , $(NH_4)_2SO_4$, fine soil, and BC, and POA to b_{ext} decreased by 1.3–7.6% in the lockdown, whereas contributions of two SOAs to b_{ext} increased by 3.0–14.6%. On the one hand, the mass concentrations of LO-OOA and MO-OOA decreased by 20.9–34.7% from normal to lockdown periods, lower than those of other chemical species (35.8–72.5%); On the other hand, both of 270 SOAs MSEs and MAEs showed higher values during the lockdown period, especially MO-OOA. The combination of

effects eventually led to an enhanced role of SOA in light extinction during the lockdown.

3.4 Contribution of sources to *b***ext**

The six-factor solution was selected to be the optimal solution, which can adequately account for the variability in PM_{2.5} concentration and optical coefficients (Figures S10 and S11). Six sources were determined by the HERM analysis, 275 consisting of traffic-related emission, biomass burning, coal combustion, fugitive dust, nitrate plus SOA source, and sulfate plus SOA source. Details about their characteristics are presented in Figure 5. The first source identified as trafficrelated emission was characterized by high EV values of Cr (77%), Mn (53%), Fe (36%), and Zn (39%), which can be released from lubricating oils, fuel additives, and brake and tire wear (Ålander et al., 2005; Geivanidis et al., 2003; Tao et al., 2017; Zhang et al., 2013a). Moderate contributions of POA (26%) and BC (28%) were commonly regarded as 280 species of diesel and gasoline engine exhaust (Chow et al., 2004; Liu et al., 2017). Additionally, the temporal variations in b_{ext} from this source correlated well with NO_x ($\mathbb{R}^2 = 0.72$), suggesting an association with motor vehicle emissions (Huang et al., 2017; Li et al., 2017a). The second source with high EV values of POA (45%), LO-OOA (41%), BC

- (32%), Cl (34%), and K (41%) was judged to be biomass burning. K was regarded as an excellent tracer of biomass burning (Li et al., 2007; Ni et al., 2017), and good correlations were also found between b_{ext} from biomass burning and 285 K (R^2 = 0.64). Previous studies have shown that POA from biomass burning can be rapidly oxidized in the atmosphere (Cubison et al., 2011), therefore, the abundant LO-OOA observed in this source might be indicative of aged biomass-
- burning aerosol (Crippa et al., 2013; Kim et al., 2017; Xu et al., 2015). The third source, coal combustion, was characterized by high EV values of Cl (42%), As (38%), Se (46%), and Pb (25%). Of these elements, As and Se were enriched in coals (Tian et al., 2013), which were reliable indicators for coal combustion (Tan et al., 2017; Yu et al.,
- 290 2019); and Pb was found to possibly emitted from coal combustion in Xi'an (Xu et al., 2012). The fourth source was defined as fugitive dust due to significant EV values of Si (92%), Ca (63%), and Fe (31%), which were the dominant chemical species in natural and construction dust profiles (Liu et al., 2017; Zhao et al., 2006). Two secondary sources were resolved in our study as nitrate plus SOA source with high EV values of $NO₃$ (42%), $NH₄$ (33%), and MO-OOA (34%) and sulfate plus SOA source with high EV values of SO_4^2 (58%) and MO-OOA (39%), respectively. Since SO_2

295 oxidation to sulfate needs a long time (e.g., 1 week) at the typical atmospheric level of OH radicals, SO_4^2 was likely associated with the regional source, while NO_3^- was often formed more locally due to the intense NO_x emissions in China (Zhang et al., 2015; Zheng et al., 2014). The defined nitrate and sulfate plus SOA sources appeared to have stronger associations with local and regional processes, respectively.

As shown in Figure 6, the average b_{ext} from traffic-related emission, coal combustion and fugitive dust decreased from 77.3 \pm 46.8 Mm⁻¹, 73.6 \pm 60.9 Mm⁻¹, and 93.3 \pm 82.7 Mm⁻¹ during the normal period to 1.7 \pm 4.0 Mm⁻¹, 38.5 \pm 34.5 Mm⁻¹ 300 ¹, and 30.8 \pm 24.4 Mm⁻¹ during the lockdown period, respectively, which can be explained by traffic restriction, closure of industries and stopping construction activities. *b*ext from traffic-related emission with the largest reduction (97.9%) emphasized the effectiveness of controlling private gasoline cars and commercial and construction diesel trucks in the lockdown (Wang et al., 2020c). For two secondary sources, though previous studies reported the enhancement of 305 secondary aerosol formation efficiencies as the increase of atmospheric oxidation capacity in the lockdown (Huang et al., 2020; Le et al., 2020; Tian et al., 2021), the decreases in gas and organic precursors (e.g., NO_2 , SO_2 , and VOCs) led to the 47.5% and 21.4% reductions of *b*ext from sources of nitrate plus SOA and sulfate plus SOA, respectively. That is, the enhanced secondary aerosol cannot offset the primary emission reduction in Xi'an, confirming that reducing anthropogenic primary emissions is still the most effective treatment of aerosol pollution.

310 By contrast, the average b_{ext} from biomass burning during the lockdown period (215.4 \pm 163.9 Mm⁻¹) was higher than that during the normal period (169.4 \pm 196.9 Mm⁻¹). The government didn't strengthen the past control policies that forbade biomass burning in the lockdown. Moreover, strict controls were enforced on the movements of people, even in the countryside, possibly resulting more consumption of biomass for cooking and heating. As shown in Figure 7, the rising stages of PM_{2.5} during the lockdown period were all accompanied by the increase in b_{ext} from biomass burning, 315 accounting for 46.4–55.6% of the total *b*ext. Take the rising stage of PM2.5 from 13:00 30 to 7:00 31 January as an example, b_{ext} from POA and LO-OOA increased rapidly at rates of 8.6 Mm⁻¹ hour⁻¹ and 8.2 Mm⁻¹ hour⁻¹, respectively. Correspondingly, b_{ext} from biomass burning showed the fastest rise (26.0 Mm⁻¹ hour⁻¹) in all primary sources, which led

320 **3.5 Impacts of COVID-19 lockdown on aerosol DRE**

Figure 8 shows the range of source-specific aerosol DRE_{top}, DRE_{surface}, and DRE_{atmosphere} during the normal and lockdown periods. For all sources, the aerosol DREatmosphere values in both periods were positive, producing net warming effects in the atmosphere. The mean aerosol DRE_{atmosphere} decreased from 31.0 \pm 23.2 W m⁻² before the lockdown to 14.1 \pm 11.5

to biomass burning becoming the most important source to b_{ext} (36.7%) in the lockdown (Figure 6). Hence, additional

actions and investigations on biomass burning emissions would be taken into consideration.

 W m⁻² in the lockdown, with a reduction of 54.5%. This can be explained by the reduced aerosol concentration and 325 increased SSA (Liu et al., 2020).

With regard to the contributions of specific sources on the DRE_{atmosphere}, traffic-related emission had the largest positive effect on DRE_{atmosphere} during the normal period, with the value of 13.3 \pm 9.2 W m⁻², followed by biomass burning (8.4) \pm 13.0 W m⁻²), coal combustion (7.8 \pm 7.2 W m⁻²), sulfate plus SOA source (1.7 \pm 3.0 W m⁻²), and fugitive dust (1.1 \pm 2.4 W m⁻²). Nitrate and plus SOA source presented the negative value of DRE_{atmosphere} (-1.2 ± 0.7 W m⁻²), suggesting the

- 330 cooling effect in the atmosphere. Due to the strictest traffic restrictions implemented, the DRE $_{atmosphere}$ from trafficrelated emission (0.4 \pm 1.0 W m⁻²) showed a significant reduction (97.0%) in the lockdown. However, the DRE_{atmosphere} from biomass burning increased to 10.0 ± 10.9 W m⁻², indicating that biomass burning was not effectively controlled during the lockdown period. The other four sources contributed relatively small amounts of DRE_{atmosphere}; that is 4.5 \pm 4.5 W m⁻² for coal combustion, -0.3 \pm 0.8 W m⁻² for fugitive dust, -1.4 \pm 0.8 W m⁻² for nitrate plus SOA source, and 1.0
- 335 ± 1.8 W m⁻² for sulfate plus SOA source. Similar to Xi'an city, the pollution sources of traffic and biomass burning were the two most significant anthropogenic sources of aerosol in most Chinese cities, such as Chengdu, Guangzhou, Jinan, Tianjin, and etc (Cheng et al., 2021; Huang et al., 2018; Khan et al., 2021; Li et al., 2017b). The results in this study indicated that the control measures on traffic in the lockdown were highly effective for mitigating the effects of climate change in the short term, while future emission control policies should consider the importance of biomass burning to 340 tackle climate change in China.

4 Conclusion

This study conducted an intensive real-time measurement campaign in an urban city of China before and during the lockdown of Coronavirus Disease 2019 to investigate the impacts of anthropogenic emissions on aerosol optical properties and direct radiative effect (DRE). Decreases in light scattering coefficient (b_{scat}) , light absorption coefficient 345 (b_{abs}), and light extinction coefficient (b_{ext}) were observed in the lockdown with reductions of 27.6–47.0%, in accord with the decline of $PM_{2.5}$ under strict emission control measures. Single scattering albedo during the lockdown period (0.92 ± 0.02) was higher than that during the normal period (0.89 ± 0.03) , suggesting an enhanced role of secondary formation in the lockdown. The generalized additive model analysis showed that meteorological conditions enhanced b_{ext} by 68.8 Mm⁻¹ during the lockdown period, thus, the dramatical reduction of b_{ext} was credited to anthropogenic 350 emission reductions.

The relationship between b_{ext} and chemical components was established based on the ridge regression analysis. Using the estimated mass scattering and absorption efficiencies (MSEs and MAEs) of chemical components, OA including primary OA, less-, and more-oxidized oxygenated OA was found to be the largest contributor (45.1–61.4%) to b_{ext} before and during the lockdown period, followed by NH_4NO_3 (16.5–24.1%), BC (9.3–13.1%), (NH₄)₂SO₄ (7.9–11.2%), and

355 fine soil (4.9–6.5%). Particularly, secondary OA played an increasingly important part in light extinction during the lockdown when contributions of two oxygenated OAs to b_{ext} increased by 3.0–14.6%.

A hybrid environmental receptor model coupled with chemical and optical variables was utilized to carry out optical source apportionment. Six sources of *b*_{ext} were resolved, including traffic-related emission, biomass burning, coal combustion, fugitive dust, nitrate plus SOA source, and sulfate plus SOA source. Most sources showed reductions of

360 *b*ext (21.4–97.9%) during the lockdown, confirming the effectiveness of reducing anthropogenic primary emissions for treating aerosol pollution. *b*ext from traffic-related emission had the most evident decrement (97.9%), whereas that from biomass burning increased by 27.1% during the lockdown due to the undiminished needs of residential cooking and heating in winter.

The atmospheric radiative transfer further illustrated that aerosol produced net warming effects $(14.1-31.0 \text{ W m}^2)$ in the 365 atmosphere during the normal and lockdown periods. Biomass burning instead of traffic-related emission became the largest positive effect (10.0 \pm 10.9 W m⁻²) on aerosol DRE in the atmosphere in the lockdown. The results implied that reducing biomass burning would be another direct and effective way of climate change mitigation besides traffic restriction, therefore, the Chinese government should further tighten the policy on controlling biomass burning in the future.

370 *Data availability.* Data used to support the findings in this study are archived at the Institute of Earth Environment, Chinese Academy of Sciences, and are publicly available at https://doi.org/10.5281/zenodo.6457841.

Competing interests. The authors declare that they have no conflict of interest.

Author contributions. QW, YH, and JC designed the campaign. SL, YZ, and WR conducted field measurements. JT, HL, and YM made data analysis and interpretation. JT wrote the paper with contributions from all co-authors.

375 *Acknowledgments.* The authors are grateful to the staff from the National Observation and Research Station of Regional Ecological Environment Change and Comprehensive Management in the Guanzhong Plain, Shaanxi for their assistance with field sampling.

Financial support. This research was jointly supported by the Key Research and Development Program of Shaanxi Province (grant no. 2018-ZDXM3-01), the Strategic Priority Research Program of Chinese Academy of Sciences (grant 380 no. XDB40000000), the West Light Foundation of the Chinese Academy of Sciences (grant no. XAB2019B05), the Sino-Swiss Cooperation on Air Pollution Source Apportionment for Better Air (grant no. 7F-09802.01.02), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (grant no. 2019402 and 2022416).

References

- Ålander, T., Antikainen, E., Raunemaa, T., Elonen, E., Rautiola, A., and Torkkell, K.: Particle emissions from a small 385 two-stroke engine: Effects of fuel, lubricating oil, and exhaust aftertreatment on particle characteristics, Aerosol Sci. Tech., 39, 151–161, https://doi.org/1 0.1080/027868290910224, 2005.
	- Andreae, M. O. and Gelencs $\acute{\sigma}$, A.: Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols, Atmos. Chem. Phys., 6, 3131–3148, https://doi.org/10.5194/acp-6-3131-2006, 2006.
- Bellouin, N., Quaas, J., Morcrette, J. J., and Boucher, O.: Estimates of aerosol radiative forcing from the MACC re-390 analysis, Atmos. Chem. Phys., 13, 2045–2062, https://doi.org/10.5194/acp-13-2045-2013, 2013.
	- Cao, J. J., Wang, Q. Y., Chow, J. C., Watson, J. G., Tie, X. X., Shen, Z. X., Wang, P., and An, Z. S.: Impacts of aerosol compositions on visibility impairment in Xi'an, China, Atmos. Environ., 59, 559–566, https://doi.org/10.1016/j.atmosenv.2012.05.036, 2012.
- Chamberlain-Ward, S. and Sharp, F.: Advances in Nephelometry through the Ecotech Aurora Nephelometer, The 395 Scientific World Journal, 11, 2530–2535, https://doi.org/10.1100/2011/310769, 2011.
	- Chen, L. W. and Cao, J.: $PM_{2.5}$ source apportionment using a Hybrid Environmental Receptor Model, Environ. Sci. Technol., 52, 6357–6369, https://doi.org/10.1021/acs.est.8b00131, 2018.
- Chen, Y., Zhang, S. M., Peng, C., Shi, G. M., Tian, M., Huang, R. J., Guo, D. M., Wang, H. B., Yao, X. J., and Yang, F. M.: Impact of the COVID-19 pandemic and control measures on air quality and aerosol light absorption in 400 southwestern China, Sci. Total Environ., 749, 141419, https://doi.org/10.1016/j.scitotenv.2020.141419, 2020.
	- Cheng, M. T., Tang, G. O., Lv, B., Li, X. R., Wu, X. R., Wang, Y. M., and Wang, Y. S.: Source apportionment of $PM_{2.5}$ and visibility in Jinan, China, J. Environ. Sci., 102, 207–215, https://doi.org/10.1016/j.jes.2020.09.012, 2021.
- Cheng, Z., Jiang, J. K., Chen, C. H., Gao, J., Wang, S. X., Watson, J. G., Wang, H. L., Deng, J. G., Wang, B. Y., Zhou, M., Chow, J. C., Pitchford, M. L., and Hao, J. M.: Estimation of aerosol mass scattering efficiencies under high 405 mass loading: Case study for the megacity of Shanghai, China, Environ. Sci. Technol., 49, 831–838, https://doi.org/10.1021/es504567q, 2015.
	- China National Environmental Monitoring Centre (CNEMC).: Background values of soil elements in China, Chinese Environmental Press, Beijing (in Chinese), 1990.
- Chow, J. C., Lowenthal, D. H., Chen, L. W. A., Wang, X. L., and Watson, J. G.: Mass reconstruction methods for PM2.5: 410 a review, Air Qual. Atmos. Health, 8, 243–263, https://doi.org/10.1007/s11869-015-0338-3, 2015.
	- Chow, J. C., Watson, J. G., Kuhns, H., Etyemezian, V., Lowenthal, D. H., Crow, D., Kohl, S. D., Engelbrecht, J. P., and Green, M. C.: Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational study, Chemosphere, 54, 185–208, https://doi.org/10.1016/j.chemosphere.2003.07.004, 2004.
- Crippa, M., DeCarlo, P. F., Slowik, J. G., Mohr, C., Heringa, M. F., Chirico, R., Poulain, L., Freutel, F., Sciare, J., Cozic, 415 J., Di Marco, C. F., Elsasser, M., Nicolas, J. B., Marchand, N., Abidi, E., Wiedensohler, A., Drewnick, F., Schneider, J., Borrmann, S., Nemitz, E., Zimmermann, R., Jaffrezo, J. L., Prévôt, A. S. H., and Baltensperger, U.: Wintertime aerosol chemical composition and source apportionment of the organic fraction in the metropolitan area of Paris, Atmos. Chem. Phys., 13, 961–981, https://doi.org/10.5194/acp-13-961-2013, 2013.

Cubison, M. J., Ortega, A. M., Hayes, P. L., Farmer, D. K., Day, D., Lechner, M. J., Brune, W. H., Apel, E., Diskin, G. 420 S., Fisher, J. A., Hecobian, A., Knapp, D. J., Mikoviny, T., Riemer, D., Sachse, G. W., Sessions, W., Weber, R. J., Weinheimer, A. J., and Jimenez, J. L.: Effects of aging on organic aerosol from open biomass burning smoke in aircraft and lab studies, Atmos. Chem. Phys., 11, 12049–12064, https://doi.org/10.5194/acpd-11-12103-2011, 2011.

Deng, J. J., Zhang, Y. R., Hong, Y. W., Xu, L. L., Chen, Y. T., Du, W. J., and Chen, J. S.: Optical properties of PM_{2.5} and the impacts of chemical compositions in the coastal city Xiamen in China, Sci. Total Environ., 557–558, 665– 425 675, https://doi.org/10.1016/j.scitotenv.2016.03.143, 2016.

- Drinovec, L., Močnik, G., Zotter, P., Prévôt, A. S. H., Ruckstuhl, C., Coz, E., Rupakheti, M., Sciare, J., Müller, T., Wiedensohler, A., and Hansen, A. D. A.: The "dual-spot" Aethalometer: an improved measurement of aerosol black carbon with real-time loading compensation, Atmos. Meas. Tech., 8, 1965–1979, https://doi.org/10.5194/amt-8- 1965-2015, 2015.
- 430 Feng, Y., Ramanathan, V., and Kotamarthi, V. R.: Brown carbon: a significant atmospheric absorber of solar radiation? Atmos. Chem. Phys., 13, 8607–8621, https://doi.org/10.5194/acp-13-8607-2013, 2013.
- Forello, A. C., Bernardoni, V., Calzolai, G., Lucarelli, F., Massabò, D., Nava, S., Pileci, R. E., Prati, P., Valentini, S., Valli, G., and Vecchi, R.: Exploiting multi-wavelength aerosol absorption coefficients in a multi-time resolution source apportionment study to retrieve source-dependent absorption parameters, Atmos. Chem. Phys., 19, 11235– 435 11252, https://doi.org/10.5194/acp-19-11235-2019, 2019.
	- Furger, M., Rai, P., Slowik, J. G., Cao, J. J., Visser, S., Baltensperger, U., and Prévôt, A. S. H.: Automated alternating sampling of PM_{10} and $PM_{2.5}$ with an online XRF spectrometer, Atmos. Environ.: X, 5, 100065, https://doi.org/10.1016/j.aeaoa.2020.100065, 2020.
- Geivanidis, S., Pistikopoulos, P., and Samaras, Z.: Effect on exhaust emissions by the use of methylcyclopentadienyl 440 manganese tricarbonyl (MMT) fuel additive and other lead replacement gasolines, Sci. Total Environ., 305, 129– 141, https://doi.org/10.1016/S0048-9697(02)00476-X, 2003.

Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, Th. F., Monod, A., Prévôt, A. S. H.,

- 445 Seinfeld, J. H., Surratt, J. D., Szmigielski, R., and Wildt, J.: The formation, properties and impact of secondary organic aerosol: current and emerging issues, Atmos. Chem. Phys., 9, 5155–5236, https://doi.org/10.5194/acp-9- 5155-2009, 2009.
- Han, T. T., Xu, W. Q., Chen, C., Liu, X. G., Wang, Q. Q., Li, J., Zhao, X. J., Du, W., Wang, Z. F., and Sun, Y. L.: Chemical apportionment of aerosol optical properties during the Asia-Pacific Economic Cooperation summit in 450 Beijing, China, J. Geophys. Res.-Atmos., 120, 12281–12295, https://doi.org/10.1002/2015JD023918, 2015.
	- Herich, H., Hueglin, C., and Buchmann, B.: A 2.5 year's source apportionment study of black carbon from wood burning and fossil fuel combustion at urban and rural sites in Switzerland, Atmos. Meas. Tech., 4, 1409–1420, https://doi.org/10.5194/amt-4-1409-2011, 2011.

Hess, M., Koepke, P., and Schult, I.: Optical properties of aerosols and clouds: The software package OPAC, B. Am. 455 Meteorol. Soc., 79, 831–844, https://doi.org/10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2, 1998.

Hu, W., Hu, M., Hu, W. W., Zheng, J., Chen, C., Wu, Y. S., and Guo, S.: Seasonal variations in high time-resolved chemical compositions, sources, and evolution of atmospheric submicron aerosols in the megacity Beijing, Atmos. Chem. Phys., 17, 9979–10000, https://doi.org/10.5194/acp-17-9979-2017, 2017.

Hu, W. W., Hu, M., Hu, W., Jimenez, J. L., Yuan, B., Chen, W. T., Wang, M., Wu, Y. S., Chen, C., Wang, Z. B., Peng, 460 J. F., Zeng, L. M., and Shao, M.: Chemical composition, sources, and aging process of submicron aerosols in Beijing:

Contrast between summer and winter, J. Geophys. Res.-Atmos., 121, 1955–1977, https://doi.org/10.1002/2015JD024020, 2016.

- Huang, X., Ding, A. J., Gao, J., Zheng, B., Zhou, D. R., Qi, X. M., Tang, R., Wang, J. P., Ren, C. H., Nie, W., Chi, X. G., Xu, Z., Chen, L. D., Li, Y. Y., Che, F., Pang, N. N., Wang, H. K., Tong, D., Qin, W., Cheng, W., Liu, W. J., 465 Fu, Q. Y., Liu, B. X., Chai, F., Davis, J. S., Zhang, Q., and He, K. B.: Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China, Natl. Sci. Rev., 8, nwaa137, https://doi.org/10.1093/nsr/nwaa137, 2020.
- Huang, X. F., Zou, B. B., He, L. Y., Hu, M., Pr $\& \hat{\alpha}$, A. S. H., and Zhang, Y. H.: Exploration of PM_{2.5} sources on the regional scale in the Pearl River Delta based on ME-2 modeling, Atmos. Chem. Phys., 18, 11563–11580, 470 https://doi.org/10.5194/acp-18-11563-2018, 2018.
	- Huang, X. J., Liu, Z. R., Liu, J. Y., Hu, B., Wen, T. X., Tang, G. Q., Zhang, J. K., Wu, F. K., Ji, D. S., Wang, L. L., and Wang, Y. S.: Chemical characterization and source identification of $PM_{2.5}$ at multiple sites in the Beijing-Tianjin-Hebei region, China, Atmos. Chem. Phys., 17, 12941–12962, https://doi.org/10.5194/acp-17-12941-2017, 2017.
- Ibrahim, S., Landa, M., Pešek, O., Pavelka, K., and Halounova, L.: Space-time machine learning models to analyze 475 COVID-19 pandemic lockdown effects on aerosol optical depth over Europe, Remote Sens., 13, 3027, https://doi.org/10.3390/rs13153027, 2021.
- IPCC: Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment reprot of the intergovemental panel on climate change [Stocker, T. F., D. Qin, G. -K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridage University Press, Cambrigde, United 480 Kingdom and New York, NY, USA, 1535pp, 2013.
	- Khan, J. Z., Sun, L., Tian, Y. Z., Shi, G. L., and Feng, Y. C.: Chemical characterization and source apportionment of PM_1 and PM_2 ₅ in Tianjin, China: Impacts of biomass burning and primary biogenic sources, J. Environ. Sci., 99, 196–209, https://doi.org/10.1016/j.jes.2020.06.027, 2021.
- Kim, H., Zhang, Q., Bae, G. N., Kim, J. Y., and Lee, S. B.: Sources and atmospheric processing of winter aerosols in 485 Seoul, Korea: Insights from real-Time measurements using a high-resolution aerosol mass spectrometer, Atmos. Chem. Phys., 17, 2009–2033, https://doi.org/10.5194/acp-17-2009-2017, 2017.
	- Kirchstetter, T.W., Novakov, T., and Hobbs, P. V.: Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon, J. Geophys. Res.-Atmos., 109, D21208, doi:10.1029/2004JD004999, 2004.
- Kumar, D., Singh, A. K., Kumar, V., Poyoja, R., Ghosh, A., and Singh, B.: COVID-19 driven changes in the air quality; 490 a study of major cities in the Indian state of Uttar Pradesh, Environ. Pollut., 274, 116512, https://doi.org/10.1016/j.envpol.2021.116512, 2021.
	- Laskin, A., Laskin, J., and Nizkorodov, S. A.: Chemistry of atmospheric brown carbon, Chem. Rev., 115, 10, 4335– 4382, https://doi.org/10.1021/cr5006167, 2015.
- Le, T. H., Wang, Y., Liu, L., Yang, J. N., Yung, Y., Li, G. H., and Seinfeld, J. H.: Unexpected air pollution with marked 495 emission reductions during the COVID-19 outbreak in China, Science, 369, 702–706, https://doi.org/10.1126/science.abb7431, 2020.
	- Lee, H. J., Aiona, P. K., Laskin, A., Laskin, J., and Nizkorodov, S. A.: Effect of solar radiation on the optical properties and molecular composition of laboratory proxies of atmospheric brown carbon, Environ. Sci. Technol., 48, 10217– 10226, https://doi.org/10.1021/es502515r, 2014.
- 500 Li, H. Y., Zhang, Q., Zhang, Q., Chen, C. R., Wang, L. T., Wei, Z., Zhou, S., Parworth, C., Zheng, B., Canonaco, F., Prévôt, A. S. H., Chen, P., Zhang, H. L., Wallington, T. J., and He, K. B.: Wintertime aerosol chemistry and haze

evolution in an extremely polluted city of the North China Plain: significant contribution from coal and biomass combustion, Atmos. Chem. Phys., 17, 4751–4768, https://doi.org/10.5194/acp-17-4751-2017, 2017a.

- Li, L., Li, Q., Huang, L., Wang, Q., Zhu, A. S., Xu, J., Liu, Z. Y., Li, H. L., Shi, L. S., Li, R., Azari, M., Wang, Y. J., 505 Zhang, X. J., Liu, Z. Q., Zhu, Y. H., Zhang, K., Xue, S. H., Ooi, M. C. G., Zhang, D. P., and Chan, A.: Air quality changes during the COVID-19 lockdown over the Yangtze River Delta Region: An insight into the impact of human activity pattern changes on air pollution variation, Sci. Total Environ., 732, 139282, https://doi.org/10.1016/j.scitotenv.2020.139282, 2020.
- Li, L. L, Tan, Q. W., Zhang, Y. H., Feng, M., Qu, Y., An, J. L., and Liu, X. G.: Characteristics and source apportionment 510 of PM2.5 during persistent extreme haze events in Chengdu, southwest China, Environ. Pollut., 230, 718–729, https://doi.org/10.1016/j.envpol.2017.07.029, 2017b.
	- Li, X. H., Wang, S. X., Duan, L., Hao, J. M., Li, C., Chen, Y. S., and Yang, L.: Particulate and trace gas emissions from open burning of wheat straw and corn stover in China, Environ. Sci. Technol., 41, 6052–6058, https://doi.org/10.1021/es0705137, 2007.
- 515 Lin, G. X., Penner, J. E., Flanner, M. G., Sillman, S., Xu, L., and Zhou, C.: Radiative forcing of organic aerosol in the atmosphere and on snow: Effects of SOA and brown carbon, J. Geophys. Res.-Atmos., 119, 7453–7476, https://doi.org/10.1002/2013JD021186, 2014.
- Lin, Y. C., Zhang, Y. L., Xie, F., Fan, M. Y., and Liu, X.: Substantial decreases of light absorption, concentrations and relative contributions of fossil fuel to light-absorbing carbonaceous aerosols attributed to the COVID-19 lockdown 520 in east China, Environ. Pollut., 275, 116615, https://doi.org/10.1016/j.envpol.2021.116615, 2021.
	- Liu, B. S., Wu, J. H., Zhang, J. Y., Wang, L., Yang, J. M., Liang, D. N., Dai, Q. L., Bi, X. H., Feng, Y. C., Zhang, Y. F., and Zhang, Q. X.: Characterization and source apportionment of PM2.5 based on error estimation from EPA PMF 5.0 model at a medium city in China, Environ. Pollut., 222, 10–22, https://doi.org/10.1016/j.envpol.2017.01.005, 2017.
- 525 Liu, D. T., Hu, K., Zhao, D. L., Ding, S., Wu, Y. F., Zhou, C., Yu, C. J., Tian, P., Liu, Q., Bi, K., Wu, Y. Z., Hu, B., Ji, D. S., Kong, S. F., Ouyang, B., He, H., Huang, M. Y., and Ding, D. P.: Efficient vertical transport of black carbon in the planetary boundary layer, Geophys. Res. Lett., 47, e2020GL088858, https://doi.org/10.1029/2020GL088858, 2020.
- Ma, X., Yu, F., and Luo, G.: Aerosol direct radiative forcing based on GEOS-Chem-APM and uncertainties, Atmos. 530 Chem. Phys., 12, 5563–5581, https://doi.org/10.5194/acp-12-5563-2012, 2012.
	- Malm, W. C. and Hand, J. L.: An examination of the physical and optical properties of aerosols collected in the IMPROVE program, Atmos. Environ., 41, 3407–3427, https://doi.org/10.1016/j.atmosenv.2006.12.012, 2007.
	- Moise, T., Flores, J. M., and Rudich, Y.: Optical properties of secondary organic aerosols and their changes by chemical processes, Chem. Rev., 115, 4400–4439, https://doi.org/10.1021/cr5005259, 2015.
- 535 Ng, N. L., Herndon, S. C., Trimborn, A., Canagaratna, M. R., Croteau, P. L., Onasch, T. B., Sueper, D., Worsnop, D. R., Zhang, Q., Sun, Y. L., and Jayne, J. T.: An aerosol chemical speciation monitor (ACSM) for routine monitoring of the composition and mass concentrations of ambient aerosol, Aerosol Sci. Technol., 45, 780–794, https://doi.org/10.1080/02786826.2011.560211, 2011.
- Ni, H. Y., Tian, J., Wang, X. L., Wang, Q. Y., Han, Y. M., Cao, J. J., Long, X., Chen, L.-W. A., Chow, J. C., and Watson, 540 J. G.: PM2.5 emissions and source profiles from open burning of crop residues, Atmos. Environ., 169, 229–237, https://doi.org/10.1016/j.atmosenv.2017.08.063, 2017.
- Niu, X. Y., Cao, J. J., Shen, Z. X., Ho, S. S. H., Tie, X. X., Zhao, S. Y., Xu, H. M., Zhang, T., and Huang, R. J.: PM2.5 from the Guanzhong Plain: Chemical composition and implications for emission reductions, Atmos. Environ., 147, 458–469, https://doi.org/10.1016/j.atmosenv.2016.10.029, 2016.
- 545 Norris, G., Duvall, R., Brown, S., and Bai, S.: EPA positive matrix factorization (PMF) 5.0 fundamentals and user guide, 2014.
	- Qin, Y. M., Tan, H. B., Li, Y. J., Li, Z. J., Schurman, M. I., Liu, L., Wu, C., and Chan, C. K.: Chemical characteristics of brown carbon in atmospheric particles at a suburban site near Guangzhou, China, Atmos. Chem. Phys., 18, 16409–16418, https://doi.org/10.5194/acp-18-16409-2018, 2018.
- 550 Rai, P., Furger, M., Slowik, J. G., Canonaco, F., Fröhlich, R., Hüglin, C., Minguillón, M. C., Petterson, K., Baltensperger, U., and Pr $\acute{\alpha}$, A. S. H.: Source apportionment of highly time-resolved elements during a firework episode from a rural freeway site in Switzerland, Atmos. Chem. Phys., 20, 1657–1674, https://doi.org/10.5194/acp-20-1657-2020, 2020.
- Ricchiazzi, P., Yang, S. R., Gautier, C., and Sowle, D.: SBDART: A research and teaching software tool for Plane-555 parallel radiative transfer in the Earth's atmosphere, B. Am. Meteorol. Soc., 79, 2101–2114, https://doi.org/10.1175/1520-0477(1998)079<2101:SARATS>2.0.CO;2, 1998.
	- Saarikoski, S., Niemi, J. V., Aurela, M., Pirjola, L., Kousa, A., Rönkkö, T., and Timonen, H.: Sources of black carbon at residential and traffic environments obtained by two source apportionment methods, Atmos. Chem. Phys., 21, 14851–14869, https://doi.org/10.5194/acp-21-14851-2021, 2021.
- 560 Sanap, S. D.: Global and regional variations in aerosol loading during COVID-19 imposed lockdown, Atmos. Environ., 246, 118132, https://doi.org/10.1016/j.atmosenv.2020.118132, 2021.
- Sandradewi, J., Pr év $\hat{\alpha}$, A. S. H., Szidat, S., Perron, N., Alfarra, M. R., Lanz, V. A., Weingartner, E., and Baltensperger, U.: Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter, Environ. Sci. Technol., 42, 3316–3323, 565 https://doi.org/10.1021/es702253m, 2008.
	- Schimek, M. G.: Semiparametric penalized generalized additive models for environmental research and epidemiology, Environmetrics, 20, 699–717, https://doi.org/10.1002/env.972, 2009.
- Shen, G. F., Xue, M., Yuan, S. Y., Zhang, J., Zhao, Q. Y., Li, B., Wu, H. S., and Ding, A. J.: Chemical compositions and reconstructed light extinction coefficients of particulate matter in a mega-city in the western Yangtze River 570 Delta, China, Atmos. Environ., 83, 14–20, https://doi.org/10.1016/j.atmosenv.2013.10.055, 2014.
	- Tan, J. H., Zhang, L. M., Zhou, X. M., Duan, J. C., Li, Y., Hu, J. N., and He, K. B.: Chemical characteristics and source apportionment of PM_2 ₅ in Lanzhou, China, Sci. Total Environ., $601-602$, 1743–1752, https://doi.org/10.1016/j.scitotenv.2017.06.050, 2017.
- Tao, J., Zhang, L. M., Cao, J. J., Zhong, L. J., Chen, D. S., Yang, Y. H., Chen, D. H., Chen, L. G., Zhang, Z. S., Wu, Y., 575 Xia, Y. J., Ye, S. Q., and Zhang, R. J.: Source apportionment of PM2.5 at urban and suburban areas of the Pearl River Delta region, south China - With emphasis on ship emissions, Sci. Total Environ., 574, 1559–1570, https://doi.org/10.1016/j.scitotenv.2016.08.175, 2017.
- Tao, J., Zhang, L. M., Cao, J., Hsu, S. C., Xia, X. G., Zhang, Z. S., Lin, Z. J., Cheng, T. T., and Zhang, R. J.: Characterization and source apportionment of aerosol light extinction in Chengdu, southwest China, Atmos. 580 Environ., 95, 552–562, https://doi.org/10.1016/j.atmosenv.2014.07.017, 2014.
	- Tao, J., Zhang, L. M., Gao, J., Wang, H., Chai, F. H., and Wang, S. L: Aerosol chemical composition and light scattering during a winter season in Beijing, Atmos. Environ., 110, 36–44, https://doi.org/10.1016/j.atmosenv.2015.03.037, 2015.
- Tian, H. Z., Lu, L., Hao, J. M., Gao, J. J., Cheng, K., Liu, K. Y., Qiu, P. P., and Zhu, C. Y.: A review of key hazardous 585 trace elements in Chinese coals: Abundance, occurrence, behavior during coal combustion and their environmental impacts, Energ. Fuel., 27, 601–614, https://doi.org/10.1021/ef3017305, 2013.
	- Tian, J., Wang, Q. Y., Han, Y. M., Ye, J. H., Wang, P., Pongpiachan, S., Ni, H. Y., Zhou, Y. Q., Wang, M., Zhao, Y. Z., and Cao, J. J.: Contributions of aerosol composition and sources to particulate optical properties in a southern coastal city of China, Atmos. Res., 235, 104744, https://doi.org/ 10.1016/j.atmosres.2019.104744, 2020.
- 590 Tian, J., Wang, Q. Y., Ni, H. Y., Wang, M., Zhou, Y. Q., Han, Y. M., Shen, Z. X., Pongpiachan, S., Zhang, N. N., Zhao, Z. Z., Zhang, Q., Zhang, Y., Long, X., and Cao, J. J.: Emission characteristics of primary brown carbon absorption from biomass and coal burning: Development of an optical emission inventory for China, J. Geophys. Res.-Atmos., 124, 1879–1893, https://doi.org/10.1029/2018JD029352, 2019.
- Tian, J., Wang, Q. Y., Zhang, Y., Yan, M. Y., Liu, H. K., Zhang, N. N., Ran, W. K., and Cao, J. J.: Impacts of primary 595 emissions and secondary aerosol formation on air pollution in an urban area of China during the COVID-19 lockdown, Environ. Int., 150, 106426, https://doi.org/10.1016/j.envint.2021.106426, 2021.
	- Ulbrich, I. M., Canagaratna, M. R., Zhang, Q., Worsnop, D. R., and Jimenez, J. L.: Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data, Atmos. Chem. Phys., 9, 2891–2918, https://doi.org/10.5194/acp-9-2891-2009, 2009.
- 600 Wang, J. F., Ye, J. H., Zhang, Q., Zhao, J., Wu, Y. Z., Li, J. Y., Liu, D. T., Li, W. J., Zhang, Y. G., Wu, C., Xie, C. H., Qin, Y. M., Lei, Y. L., Huang, X. P., Guo, J. P., Liu, P. F., Fu, P. Q., Li, Y. J., Lee, H. C., Choi, H., Zhang, J., Liao, H., Chen, M. D., Sun, Y. L., Ge, X. L., Martin, S. T., and Jacob, D. J.: Aqueous production of secondary organic aerosol from fossil-fuel emissions in winter Beijing haze, P. Natl. Acad. Sci. USA., 118, e2022179118, https://doi.org/10.1073/pnas.2022179118, 2021.
- 605 Wang, P., Cao, J. J., Shen, Z. X., Han, Y. M., Lee, S. C., Huang, Y., Zhu, C. S., Wang, Q. Y., Xu, H. M., and Huang, R. J.: Spatial and seasonal variations of PM_{2.5} mass and species during 2010 in Xi'an, China, Sci. Total Environ., 508, 477–487, https://doi.org/10.1016/j.scitotenv.2014.11.007, 2015.
- Wang, P.F., Chen, K.Y., Zhu, S.Q., Wang, P., and Zhang, H.L.: Severe air pollution events not avoided by reduced anthropogenic activities during COVID-19 outbreak, Resour. Conserv. Recycl., 158, 104814, 610 https://doi.org/10.1016/j.resconrec.2020.104814, 2020a.
	- Wang, Q. Y., Liu, H. K., Wang, P., Dai, W. T., Zhang, T., Zhao, Y. Z., Tian, J., Zhang, W. Y., Han, Y. M., and Cao, J. J.: Optical source apportionment and radiative effect of light-absorbing carbonaceous aerosols in a tropical marine monsoon climate zone: the importance of ship emissions, Atmos. Chem. Phys., 20, 15537–15549, https://doi.org/10.5194/acp-20-15537-2020, 2020b.
- 615 Wang, X., Heald, C. L., Ridley, D. A., Schwarz, J. P., Spackman, J. R., Perring, A. E., Coe, H., Liu, D., and Clarke, A. D.: Exploiting simultaneous observational constraints on mass and absorption to estimate the global direct radiative forcing of black carbon and brown carbon, Atmos. Chem. Phys., 14, 17527–17583, https://doi.org/10.5194/acp-14- 10989-2014, 2014.
- Wang, Y. C., Yuan, Y., Wang, Q. Y., Liu, C. G., Zhi, Q., and Cao, J. J.: Changes in air quality related to the control of 620 coronavirus in China: Implications for traffic and industrial emissions, Sci. Total Environ., 731, 139133, https://doi.org/10.1016/j.scitotenv.2020.139133, 2020c.
	- Weber, J., Shin, Y. M., Staunton Sykes, J., Archer-Nicholls, S., Abraham, N. L., and Archibald, A. T.: Minimal climate impacts from short-lived climate forcers following emission reductions related to the COVID-19 pandemic, Geophys. Res. Lett., 47, e2020GL090326. https://doi.org/10.1029/2020GL090326, 2020.
- 625 Wood, S. N.: Generalized additive models: An introduction with R (2nd ed), CRC press, 496pp, https://doi.org/10.1201/9781315370279, 2017.
	- Wood, S. N.: Stable and efficient multiple smoothing parameter estimation for generalized additive models, J. Am. Stat. Assoc., 99, 673–686, https://doi.org/10.1198/016214504000000980, 2004.
- Wu, J. R., Bei, N. F., Li, X., Cao, J. J., Feng, T., Wang, Y. C., Tie, X. X., and Li, G. H.: Widespread air pollutants of the 630 North China Plain during the Asian summer monsoon season: a case study, Atmos. Chem. Phys., 18, 8491–8504, https://doi.org/10.5194/acp-18-8491-2018, 2018.
	- Xie, M. J., Chen, X., Holder, A. L., Hays, M. D., Lewandowski, M., Offenberg, J. H., Kleindienst, T. E., Jaoui, M., and Hannigan, M. P.: Light absorption of organic carbon and its sources at a southeastern U.S. location in summer, Environ. Pollut., 244, 38–46, https://doi.org/10.1016/j.envpol.2018.09.125, 2019.
- 635 Xu, H. M., Cao, J. J., Ho, K. F., Ding, H., Han, Y. M., Wang, G. H., Chow, J. C., Watson, J. G., Khol, S. D., Qiang, J., Li, W. T.: Lead concentrations in fine particulate matter after the phasing out of leaded gasoline in Xi'an, China, Atmos. Environ., 46, 217–224, https://doi.org/10.1016/j.atmosenv.2011.09.078, 2012.
- Xu, L., Zhang, J., Sun, X., Xu, S. C., Shan, M., Yuan, Q., Liu, L., Du, Z. H., Liu, D. T., Xu, D., Song, C. B., Liu, B. W., Lu, G. D., Shi, Z. B., and Li, W. J.: Variation in concentration and sources of black carbon in a megacity of China 640 during the COVID‐19 pandemic, Geophys. Res. Lett., 47, e2020GL090444, https://doi.org/10.1029/2020GL090444, 2020a.
- Xu, W. Q., Sun, Y. L., Chen, C., Du, W., Han, T. T., Wang, Q. Q., Fu, P. Q., Wang, Z. F., Zhao, X. J., Zhou, L. B., Ji, D. S., Wang, P. C., and Worsnop, D. R.: Aerosol composition, oxidation properties, and sources in Beijing: results from the 2014 Asia-Pacific Economic Cooperation summit study, Atmos. Chem. Phys., 15, 13681–13698, 645 https://doi.org/10.5194/acp-15-13681-2015, 2015.
-

Xu, W. Y., Kuang, Y., Bian, Y. X., Liu, L., Li, F., Wang, Y. Q., Xue, B., Luo, B., Huang, S., Yuan, B., Zhao, P. S., and Shao, M.: Current challenges in visibility improvement in southern China, Environ. Sci. Technol. Lett., 7, 395–401, https://doi.org/10.1021/acs.estlett.0c00274, 2020b.

- Yao, H., Song, Y., Liu, M. X., Archer-Nicholls, S., Lowe, D., McFiggans, G., Xu, T. T., Du, P., Li, J. F., Wu, Y. S., Hu, 650 M., Zhao, C., and Zhu, T.: Direct radiative effect of carbonaceous aerosols from crop residue burning during the summer harvest season in East China, Atmos. Chem. Phys., 17, 5205–5219, https://doi.org/10.5194/acp-17-5205- 2017, 2017.
- Yao, L. Q., Kong, S. F., Zheng, H., Chen, N., Zhu, B., Xu, K., Cao, W. X., Zhang, Y., Zheng, M. M., Cheng, Y., Hu, Y., Zhang, Z. X., Yan, Y. Y., Liu, D. T., Zhao, T. L., Bai, Y. Q., and Qi, S. H.: Co-benefits of reducing PM2.5 and 655 improving visibility by COVID-19 lockdown in Wuhan, NPJ Clim. Atmos. Sci., 4, 40, https://doi.org/ 10.1038/s41612-021-00195-6, 2021.
	- Yao, M. S., Zhang, L., Ma, J. X., and Zhou, L.: On airborne transmission and control of SARS-Cov-2, Sci. Total Environ., 731, 139178, https://doi.org/10.1016/j.scitotenv.2020.139178, 2020.
- Yu, Y. Y., He, S. Y., Wu, X. L., Zhang, C., Yao, Y., Liao, H., Wang, Q. G., and Xie, M. J.: PM2.5 elements at an urban 660 site in Yangtze River Delta, China: High time-resolved measurement and the application in source apportionment, Environ. Pollut., 253, 1089–1099, https://doi.org/10.1016/j.envpol.2019.07.096, 2019.
	- Zhang, R., Jing, J., Tao, J., Hsu, S. C., Wang, G., Cao, J., Lee, C. S. L., Zhu, L., Chen, Z., Zhao, Y., and Shen, Z.: Chemical characterization and source apportionment of $PM_{2.5}$ in Beijing: seasonal perspective, Atmos. Chem. Phys., 13, 7053–7074, https://doi.org/10.5194/acp-13-7053-2013, 2013a.
- 665 Zhang, R. Y., Wang, G. H., Guo, S., Zamora, M. L., Ying, Q., Lin, Y., Wang, W. G., Hu, M., and Wang, Y.: Formation of urban fine particulate matter, Chem. Rev., 115, 3803–3855, https://doi.org/10.1021/acs.chemrev.5b00067, 2015.
- Zhang, Q., Shen, Z. X., Zhang, L. M., Zeng, Y. L., Ning, Z., Zhang, T., Lei, Y. L., Wang, Q. Y., Li, G. H., Sun, J., Westerdahl, D., Xu, H. M., and Cao, J. J.: Investigation of primary and secondary particulate brown carbon in two Chinese cities of Xi'an and Hong Kong in wintertime, Environ. Sci. Technol., 54, 3803 – 3813, 670 https://doi.org/10.1021/acs.est.9b05332, 2020.
	- Zhang, Y. M., Sun, J. Y., Zhang, X. Y., Shen, X. J., Wang, T. T., and Qin, M. K.: Seasonal characterization of components and size distributions for submicron aerosols in Beijing, Sci. China-Earth Sci., 56, 890–900, https://doi.org/10.1007/s11430-012-4515-z, 2013b.
- Zhao, P. S., Feng, Y. C., Tan, Z., and Wu, J. H.: Characterizations of resuspended dust in six cities of North China, 675 Atmos. Environ., 40, 5807–5814, https://doi.org/10.1016/j.atmosenv.2006.05.026, 2006.
	- Zhao, Y. B., Zhang, K., Xu, X. T., Shen, H. Z., Zhu, X., Zhang, Y. X., Hu, Y. T., and Shen, G. F.: Substantial changes in nitrogen dioxide and ozone after excluding meteorological impacts during the COVID-19 outbreak in mainland China, Environ. Sci. Technol. Lett., 7, 402–408, https://doi.org/10.1021/acs.estlett.0c00304, 2020.
- Zheng, B., Huo, H., Zhang, Q., Yao, Z. L., Wang, X. T., Yang, X. F., Liu, H., and He, K. B.: High-resolution mapping 680 of vehicle emissions in China in 2008, Atmos. Chem. Phys., 14, 9787–9805, https://doi.org/10.5194/acp-14-9787- 2014, 2014.
- Zheng, B., Tong, D., Li, M., Liu, F., Hong, C. P., Geng, G. N., Li, H. Y., Li, X., Peng, L. Q., Qi, J., Yan, L., Zhang, Y. X., Zhao, H. Y., Zheng, Y. X., He, K. B., and Zhang, Q.: Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions, Atmos. Chem. Phys., 18, 14095–14111, https://doi.org/10.5194/acp-18- 685 14095-2018, 2018.
	- Zheng, H., Kong, S. F., Chen, N., Yan, Y. Y., Liu, D. T., Zhu, B., Xu, K., Cao, W. X., Ding, Q. Q., Lan, B., Zhang, Z. X., Zheng, M. M., Fan, Z. W., Cheng, Y., Zheng, S. R., Yao, L. Q., Bai, Y. Q., Zhao, T. L., and Qi, S. H.: Significant changes in the chemical compositions and sources of $PM_{2.5}$ in Wuhan since the city lockdown as COVID-19. Sci. Total Environ., 739, 140000, https://doi.org/10.1016/j.scitotenv.2020.140000, 2020.
- 690 Zhou, Y. Q., Wang, Q. Y., Huang, R. J., Liu, S. X., Tie, X. X., Su, X. L., Niu, X. Y., Zhao, Z. Z., Ni, H. Y., Wang, M., Zhang, Y. G., and Cao, J. J.: Optical properties of aerosols and implications for radiative effects in Beijing during the Asia‐Pacific Economic Cooperation (APEC) Summit 2014, J. Geophys. Res.-Atmos., 122, 10119–10132, https://doi.org/10.1002/2017jd026997, 2017.
- Zhu, W. F., Zhou, M., Cheng, Z., Yan, N. Q., Huang, C., Qiao, L. P., Wang, H. L., Liu, Y, C., Lou, S. R., and Guo, S.: 695 Seasonal variation of aerosol compositions in Shanghai, China: Insights from particle aerosol mass spectrometer observations, Sci. Total Environ., 771, 144948, https://doi.org/10.1016/j.scitotenv.2021.144948, 2021.
- Zotter, P., Herich, H., Gysel, M., El-Haddad, I., Zhang, Y., Močnik, G., Hüglin, C. Baltensperger, U., Szidat, S., and Prévôt, A. S. H.: Evaluation of the absorption Ångström exponents for traffic and wood burning in the Aethalometer-based source apportionment using radiocarbon measurements of ambient aerosol, Atmos. Chem. 700 Phys., 17, 4229–4249, https://doi.org/10.5194/acp-17-4229-2017, 2017.

Parameters*	Entire campaign	Normal period	COVID-19 lockdown period	Change ratio**
Optical coefficients				
$b_{\rm scat}$	623.2 ± 248.3	688.1 ± 261.4	498.4 ± 159.0	27.6%
$b_{\rm abs}$	72.6 ± 42.1	86.6 ± 43.0	45.9 ± 22.9	47.0%
$b_{\rm ext}$	695.8 ± 285.3	774.7 ± 298.1	544.3 ± 179.4	29.7%
SSA	0.90 ± 0.03	0.89 ± 0.03	0.92 ± 0.02	-3.2%
Chemical species				
PM _{2.5}	116.4 ± 56.3	134.4 ± 56.9	81.8 ± 34.9	39.1%
NH ₄ NO ₃	33.1 ± 17.3	40.2 ± 16.4	19.5 ± 8.8	51.6%
$(NH4)_{2}SO_{4}$	8.3 ± 4.6	9.5 ± 4.9	5.9 ± 2.5	38.1%
fine soil	11.8 ± 8.0	15.8 ± 7.2	4.3 ± 1.9	72.5%
BC	4.4 ± 2.6	5.4 ± 2.6	2.7 ± 1.3	50.6%
POA	18.3 ± 12.4	20.9 ± 12.7	13.4 ± 10.1	35.8%
LO-OOA	7.6 ± 5.8	8.6 ± 6.4	5.6 ± 3.7	34.7%
MO-OOA	11.1 ± 4.5	12.0 ± 4.8	9.5 ± 3.3	20.9%

Table 1. Summary of optical coefficients and chemical species in Xi'an observed in the entire campaign, normal period (January 1st to 23rd, 2020), and COVID-19 lockdown period (January 27th to February 7th, 2020).

^{*}The units for b_{scat} , b_{abs} , b_{ext} are Mm⁻¹; SSA is dimensionless; The units of chemical species are μ g m⁻³.

705 ** Change ratio = ([Normal period] – [COVID-19 lockdown period])/[Normal period] \times 100%.

Components	Normal period		COVID-19 lockdown period	
	MSE	MAE	MSE	MAE
NH ₄ NO ₃	3.74 ± 0.18		3.23 ± 0.18	
$(NH_4)_2SO_4$	7.35 ± 0.25		4.78 ± 0.35	
fine soil	2.46 ± 0.35		3.39 ± 0.79	
BC		15.00		13.27
POA	3.90 ± 0.18	0.25 ± 0.01	3.48 ± 0.16	0.29 ± 0.01
LO-OOA	8.62 ± 0.27	0.27 ± 0.02	9.87 ± 0.35	0.59 ± 0.03
MO-OOA	9.87 ± 0.45		12.89 ± 0.55	0.31 ± 0.04

Table 2. Estimated MSEs and MAEs $(m^2 g^{-1})$ of individual chemical components during normal and COVID-19 lockdown periods.

*MAE of MO-OOA during the normal period was negative (near zero) and not listed in the table.

Figure captions:

Figure 1. Hourly variations of light scattering (b_{scat}), absorption (b_{abs}), and extinction (b_{ext}) coefficients, single scattering albedo (SSA), and PM_{2.5} mass concentrations in Xi'an during the normal (January 1st to 23rd, 2020) and COVID-19 lockdown (January 27th to February 7th, 2020) periods.

715 **Figure 2.** Variations of single scattering albedo (SSA) as a function of (a) secondary inorganic aerosol (SIA = $NH₄NO₃$ $+$ (NH₄)₂SO₄)/PM_{2.5}, (b) secondary organic aerosol (SOA = LO-OOA + MO-OOA)/OA, and (c) LO-OOA/MO-OOA ratios during the normal and COVID-19 lockdown periods.

Figure 3. Time series of the measured and GAM-predicted light extinction coefficient (b_{ext}) for the model data, test data, and forecast data.

720 **Figure 4.** Contributions of NH4NO3, (NH4)2SO4, fine soil, BC, POA, LO-OOA, and MO-OOA to the reconstructed chemical light extinction coefficient (*b*ext) during the normal and COVID-19 lockdown periods.

Figure 5. (a) Profiles and (b) time series plots of the resolved source factors in the six-factor solution, including trafficrelated emission, biomass burning, coal combustion, fugitive dust, nitrate plus SOA source, and sulfate plus SOA source. The columns in each factor are the profile that displays the relative relation of absolute values of variables. The red dot

725 represents the explained variation of species for different factors. The corresponding time trends of chemical tracers are also shown.

Figure 6. Contributions of six resolved sources to the modeled source light extinction coefficient (b_{ext}) during the normal and COVID-19 lockdown periods, including traffic-related emission, biomass burning, coal combustion, fugitive dust, nitrate plus SOA source, and sulfate plus SOA source.

730 **Figure 7.** Time series of PM2.5 mass concentration, the light extinction coefficient (*b*ext) of chemical species, and the *b*ext from six resolved sources during the lockdown period. Pie charts depicting the average fractional contributions of chemical species and sources to b_{ext} during the PM₂, rising stages, which were marked in light gray.

Figure 8. Direct radiative effect (DRE) of aerosol from traffic-related emission, biomass burning, coal combustion, fugitive dust, nitrate plus SOA source, and sulfate plus SOA source at the earth's surface, the top of the atmosphere, and 735 in the atmosphere during the normal (a) and COVID-19 lockdown (b) periods.

Figure 1. Hourly variations of light scattering (b_{scat}), absorption (b_{abs}), and extinction (b_{ext}) coefficients, single scattering albedo (SSA), and PM_{2.5} mass concentrations in Xi'an during the normal (January 1st to 23rd, 2020) and COVID-19 740 lockdown (January $27th$ to February $7th$, 2020) periods.

Figure 2. Variations of single scattering albedo (SSA) as a function of (a) secondary inorganic aerosol (SIA = $NH₄NO₃$ $+(NH_4)_2SO_4)/PM_{2.5}$, (b) secondary organic aerosol (SOA = LO-OOA + MO-OOA)/OA, and (c) LO-OOA/MO-OOA ratios during the normal and COVID-19 lockdown periods.

745

Figure 3. Time series of the measured and GAM-predicted light extinction coefficient (*b*_{ext}) for the model data, test data, and forecast data.

Figure 4. Contributions of NH₄NO₃, (NH₄)₂SO₄, fine soil, BC, POA, LO-OOA, and MO-OOA to the reconstructed 750 chemical light extinction coefficient (b_{ext}) during the normal and COVID-19 lockdown periods.

Figure 5. (a) Profiles and (b) time series plots of the resolved source factors in the six-factor solution, including trafficrelated emission, biomass burning, coal combustion, fugitive dust, nitrate plus SOA source, and sulfate plus SOA source.

755 The columns in each factor are the profile that displays the relative relation of absolute values of variables. The red dot represents the explained variation of species for different factors. The corresponding time trends of chemical tracers are also shown.

760 **Figure 6.** Contributions of six resolved sources to the modeled source light extinction coefficient (b_{ext}) during the normal and COVID-19 lockdown periods, including traffic-related emission, biomass burning, coal combustion, fugitive dust, nitrate plus SOA source, and sulfate plus SOA source.

765 **Figure 7.** Time series of PM2.5 mass concentration, the light extinction coefficient (*b*ext) of chemical species, and the *b*ext from six resolved sources during the lockdown period. Pie charts depicting the average fractional contributions of chemical species and sources to b_{ext} during the PM_{2.5} rising stages, which were marked in light gray.

770 **Figure 8.** Direct radiative effect (DRE) of aerosol from traffic-related emission, biomass burning, coal combustion, fugitive dust, nitrate plus SOA source, and sulfate plus SOA source at the earth's surface, the top of the atmosphere, and in the atmosphere during the normal (a) and COVID-19 lockdown (b) periods.