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Abstract.  
High levels of fine particulate matter (PM2.5) pollution in East Asia often exceed local air quality standards. Observations from 

the Korea United States-Air Quality (KORUS-AQ) field campaign in May and June 2016 showed that development of extreme 30 

pollution (haze) occurred through a combination of long-range transport and favorable meteorological conditions that enhanced 

local production of PM2.5. Atmospheric models often have difficulty simulating PM2.5 chemical composition during haze, 

which is of concern for the development of successful control measures. We use observations from KORUS-AQ to examine 

the ability of the GEOS-Chem chemical transport model to simulate PM2.5 composition throughout the campaign and identify 

the mechanisms driving the pollution event. In the surface levelAt the surface, the model underestimates campaign average 35 

sulfate aerosol by -64% but overestimates nitrate aerosol by +36%. The largest underestimate in sulfate occurs during the 

pollution event in conditions of high relative humidity, where models typically struggle to generate the high 
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concentrationselevated sulfate concentrations due to missing heterogeneous chemistry in aerosol liquid water in the polluted 

boundary layer. Hourly surface observations show that the model nitrate bias is driven by an overestimation of the nighttime 

peak. In the model, nitrate formation is limited by the supply of nitric acid, which is biased by +100% against aircraft 40 

observations. We hypothesize that this is due to a large missing sink, which we implement here as a factor of five increase in 

dry deposition. We show that the resulting increased deposition velocity is consistent with observations of total nitrate as a 

function of photochemical age. The model does not account for factors such as the urban heat island effect or the heterogeneity 

of the built-up urban landscape resulting in insufficient model turbulence and surface area over the study area that likely results 

in insufficient dry deposition. Other species such as NH3 could be similarly affected but were not measured during the 45 

campaign. Nighttime production of nitrate is driven by NO2 hydrolysis in the model, while observations show that 

unexpectedly elevated nighttime ozone (not present in the model) should result in N2O5 hydrolysis as the primary pathway. 

The model is unable to represent nighttime ozone due to an overly rapid collapse of the afternoon mixed layer and excessive 

titration by NO. We attribute this to missing nighttime heating driving deeper nocturnal mixing that would be expected to 

occur in a city like Seoul. This urban heating is not considered in air quality models run at large enough scales to treat both 50 

local chemistry and long-range transport. Key model failures in simulating nitrate, mainly overestimated daytime nitric acid, 

incorrect representation of nighttime chemistry, and an overly shallow and insufficiently turbulent nighttime mixed layer, 

exacerbate the model’s inability to simulate the buildup of PM2.5 during haze pollution. To address the underestimate in sulfate 

most evident during the haze event, heterogeneous aerosol uptake of SO2 is added to the model which previously only 

considered aqueous production of sulfate from SO2 in cloud water. Implementing a simple parameterization of this chemistry 55 

improves the model abundance of sulfate but degrades the SO2 simulation implying that emissions are underestimated. We 

find that improving model simulations of sulfate has direct relevance to determining local vs. transboundary contributions to 

PM2.5. During the haze pollution event, the inclusion of heterogeneous aerosol uptake of SO2 decreases the fraction of PM2.5 

attributable to long-range transport from 66% to 54%. Locally-produced sulfate increased from 1% to 4625% of locally-

produced PM2.5, implying that local emissions controls would have a larger effect than previously thought. However, this 60 

additional uptake of SO2 is coupled to the model nitrate prediction which affects the aerosol liquid water abundance and 

chemistry driving sulfate-nitrate-ammonium partitioning. An additional simulation of the haze pollution with heterogeneous 

uptake of SO2 to aerosol and simple improvements to the model nitrate simulation results in 30% less sulfate due to 40% less 

nitrate and aerosol water, and results in an underestimate of sulfate during the haze event. Future studies need to better consider 

the impact of model physical processes such as dry deposition and nighttime boundary layer mixing on the simulation of nitrate 65 

and the effect of improved nitrate simulations on the overall simulation of secondary inorganic aerosol 

(sulfate+nitrate+ammonium) in East Asia. Foreign emissions are rapidly changing, increasing the need to understand the 

impact of local emissions on PM2.5 in South Korea to ensure continued air quality improvements. 
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1 1 Introduction 

South Korea enacted legislation in 2018 to address local air pollution, which ranked 13th in the world for the worst annual 70 

average fine particulate matter (PM2.5) exposure levels (Energy Policy Institute, 2019). Ambient PM2.5 was the 5th highest risk 

factor for human health in South Korea in 2018, leading to over 20,000 attributable deaths (GBD, 2021). The government 

plans to reduce the number of days with pollution warnings (PM2.5 > 90 µg m-3 for two hours) by 50% in 2022 from the 89 that 

occurred in 2016 (Kim et al., 2018). The reduction of PM2.5 levels through policy measures relies on a thorough understanding 

of pollution sources and the ability of models to simulate potential control measures. Modeling studies have concluded that on 75 

average, approximately half of observed PM2.5 in South Korea is attributable to long-range transport from China (Lee et al., 

2017; Choi et al., 2019; Jung et al., 2019; Kumar et al., 2021). Quantifying the effect of long-range transport relies on regional 

to global-scale models that trade-off the high resolution needed to resolve urban scales with a large enough domain to represent 

both the study area and upwind source regions. Estimates of long-range transport This finding isare based on models that have 

received limited testing of their ability to simulate PM2.5 chemical composition, particularly during extreme pollution events. 80 

Quantifying the effect of long-range transport relies on regional to global-scale models that trade-off the high resolution needed 

to resolve urban scales with a large enough domain to represent both the study area and upwind source regions. This evaluation 

is critical as the contribution of long-range transport to PM2.5 in South Korea may be declining due to effective emission 

controls in China (Han et al., 2021), increasing the need to understand the impact of local emissions on pollution events.  

 85 

Across East Asia, densely populated regions experience haze events with extremely high levels of PM2.5 frequently associated 

with periods of elevated relative humidity and low daytime mixed layer heights (An et al., 2019). These conditions are 

favorable for increasing gas-particle partitioning of aerosol precursors. In haze, secondarySecondary inorganic aerosol 

(secondary sulfate+nitrate+ammonium ≡	SNA) is often the dominant component of PM2.5 in haze, but models have difficulty 

SNA, particularly simulating sulfate, during these periods likely due to missing conversion of SO2 in aqueous aerosol (Wang 90 

et al., 2014; Zheng et al., 2015a, 2015b; Shao et al., 2019). More generally, theThe MICS-Asia multi-model comparison 

showed that the annual contribution of SNA to total PM2.5 varied by a factor of two across models, and the models also 

overpredicted the gas-particle partitioning of nitrate (Chen et al., 2019). In the global AeroCom III intercomparison, models 

differed in their annual concentrations of nitrate and its precursor, nitric acid, by factors of thirteen and nine, respectively (Bian 

et al., 2017). Models also struggle to represent organic aerosol,  (Zhao et al., 2016), overestimating primary organic aerosol 95 

(POA) but underestimating secondary organic aerosol (SOA, Zhao et al., 2016), possibly likely due to missing sources from 

anthropogenic precursors (Nault et al., 20202021a). ThisThe wide range of model performance in simulating PM2.5 

composition emphasizes the urgent need for better model constraintsto improve our understanding of the sources and 

conditions driving haze events.  

 100 
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Improving model representation of sulfate chemistry cannot be considered entirely separately from model nitrate biases. In the 

atmosphere, aqueous-phase chemistry is a major source of sulfate, where clouds provide the dominant source of liquid water 

(Herrmann et al., 2015). Recent studies have hypothesized that the high aerosol liquid water content (ALWC) associated with 

PM2.5 during extreme pollution events in East Asia allows for significant sulfate production not considered in most models 

(Wang et al., 2014; Zheng et al., 2015a, 2015b; Shao et al., 2019). Levels of ALWC are very sensitive to). Early modeling 105 

work suggested that this chemistry must be occurring generally in the polluted boundary layer in the United States and Europe 

(Kasibhatla et al., 1997).  aerosol nitrate (Ge et al., 2012; Sun et al., 2018)A. The aqueous SO2 oxidation pathway(s) for SO2 

oxidation in ALWC are uncertain in part due to poor understanding of aerosol acidity (An et al., 2019). Aerosol acidity , a key 

factor partially controllsing nitric acid - nitrate partitioning (Guo et al., 2016). Nitrate aerosol has the greatest impact on ALWC 

which affects acidity (Ge et al., 2012; Sun et al., 2018). Due to this coupled nature of SNA aerosol, improving model 110 

representation of one component (i.e sulfate) cannot be considered entirely separately from the rest (nitrate + ammonium). 

Accurate simulation of aerosol composition and water uptake is required to interpret satellite observations of aerosol optical 

depth (AOD) (Saide et al., 2020) and evaluate the reponse to emission changes.  

The Korea United States-Air Quality campaign (KORUS-AQ), conducted in May and June 2016 in South Korea (Crawford et 

al., 2021), provides an extensive set of ground and aircraft-based observations that can further constrain model simulations of 115 

the chemical and physical drivers of PM2.5. The campaign included a haze event with concentrations exceeding local air quality 

standards, characterized by rapid buildup of SNA aerosol. Throughout KORUS-AQ, surprisingly high levels of nighttime 

ozone, particularly prevalent during haze, appeared to drive nighttime nitrate formation through N2O5 hydrolysis (Jordan et 

al., 2020). This was attributed to elevated nocturnal mixed layer heights (MLH). Zhai et al. (2021) found a severe model 

overestimate in nighttime nitrate during KORUS-AQ, implying a failure to correctly simulate these conditions. We use the 120 

GEOS-Chem chemical transport model applied at high resolution (0.25o × 0.3125o) over East Asia to investigate model 

representation of PM2.5 mass and chemical composition during KORUS-AQ. We specifically evaluate model performance 

during the conditions governing the development of haze pollution such as elevated relative humidity, increased SNA, and 

high nighttime ozone levels. We demonstrate how addressing deficiencies in model physical processes (e.g., nighttime mixing, 

deposition) are fundamental to the successful simulation of PM2.5. 125 

2 KORUS-AQ observations 

The KORUS-AQ campaign (Crawford et al., 2021) was a joint field campaign organized by South Korea’s National Institute 

of Environmental Research (NIER) and the United States National Aeronautics and Space Administration (NASA). KORUS-

AQ included twenty flights using the NASA DC-8 aircraft from May 1 to June 9, 2016, complemented by heavily instrumented 

ground sites including aerosol composition at Olympic Park and the Korea Institute of Science and Technology (KIST) in 130 

Seoul. The NIER maintains the extensive AirKorea monitoring network for hourly observations of PM2.5 mass, ozone, and 
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other pollutants, with 329 sites available during the campaign, including locations near Olympic Park and KIST. There were 

four distinct meteorological periods during KORUS-AQ, described in Peterson et al. (2019). These included a dynamic period 

characterized by a series of frontal passages (Dynamic Period, May 1-16), dry, clear, and stagnant conditions (Stagnant Period, 

May 17-22), long-range transport and haze conditions with high humidity and extensive cloud cover (Transport/Haze Period, 135 

May 25-31), and blocking conditions limiting transport (Blocking Period, June 1-7). Details on the impact of the different 

meteorological periods on PM2.5 are provided in Jordan et al. (2020). We focus on the Seoul Metropolitan Area (SMA) with 

the highest density of KORUS-AQ observations and the highest PM2.5 levels observed by the AirKorea network during the 

campaign. Crawford et al. (2021) provides a full listing of all observations made during KORUS-AQ. Table 1 describes the 

aircraft and ground observations used in this work.  140 

3 GEOS-Chem model  

We use the GEOS-Chem chemical transport model (CTM) in version 12.7.2 (doi: 10.5281/zenodo.3701669) to simulate 

KORUS-AQ. The model is driven by assimilated meteorological data from the NASA Global Modeling and Assimilation 

Office (GMAO) Goddard Earth Observing System Forward-Processing (GEOS-FP) atmospheric data assimilation system. 

GEOS-FP has a native horizontal resolution of 0.25o × 0.3125o, which we apply with the nested version of GEOS-Chem (Chen 145 

et al., 2009) over East Asia (70° - 140°E, 15°S - 55°N) using boundary conditions from a global simulation at 2.0° × 2.5° with 

a 1-month initialization period. The model has 47 vertical layers, with the first layer centered at approximately 60 m above the 

surface. Model timesteps are 20 min (chemistry) and 10 min (transport) as recommended by Philip et al. (2016).  

 

Global emissions are from the Community Emissions Database System (CEDS) inventory (Hoesly et al., 2018) overwritten 150 

by the KORUSv5 anthropogenic and shipping emissions (Woo et al., 2020) for Asia (60° - 146°E, 10°S - 54°N) developed for 

the KORUS-AQ campaign. The translation from KORUSv5, provided using the SAPRC99 chemical mechanism, to the GEOS-

Chem mechanism is given in Table S1. We apply sector-specific diurnal variation from the Multi-resolution Emission 

Inventory for China (MEIC) as in Miao et al. (2020) to the monthly KORUSv5 emissions. Natural emissions are from the 

Global Emissions Initiative (GEIA, Bouwman et al., 1997) for ammonia and from MEGANv2.1 (Guenther et al., 2012) for 155 

biogenic species. We include lightning emissions (Murray et al., 2012), biomass burning emissions (GFED4s, Werf et al., 

2017), soil NOx emissions (Hudman et al., 2012), and volcanic SO2 emissions (Carn et al., 2015). Table 2 shows the emissions 

inventory for key emitted species in the nested East Asia domain for May 2016.  

 

Model dry deposition for gas-phase species is based on the resistance-in-series scheme from Wesely (1989) as implemented 160 

by Wang et al. (1998), where species deposition is limited by aerodynamic resistance, quasi-laminar layer resistance, and 

canopy or surface resistance. Species with low surface resistance, such as HNO3, are limited in their deposition velocity by 

aerodynamic resistance only. Aerosol deposition is from Zhang et al. (2001). The original model wet deposition scheme is 
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described by Liu et al. (2001) for water-soluble aerosols and Amos et al. (2012) for gases. Wet deposition includes scavenging 

from moist convective updrafts and rainout and washout from precipitation. We include the revised wet deposition scheme of 165 

Luo et al. (2019) that uses an empirical washout rate for nitric acid two orders of magnitude higher than the previous value 

and replaces the standard constant value for in-cloud condensation water content with the value calculated by the 

meteorological fields (GEOS-FP). GEOS-Chem uses a non-local boundary layer mixing scheme (Holtslag and Boville, 1993; 

Lin and McElroy, 2010) where mixing is calculated explicitly from meteorological variables provided by GEOS-FP (i.e. 

sensible and latent heat flux, temperature, friction velocity). The mixing height is restricted from dropping below a minimum 170 

mechanical mixing depth, defined as a function of local friction velocity (Lin and McElroy, 2010). 

 

The GEOS-Chem HOx-NOx-VOC-ozone-halogen-aerosol mechanism includes improvements to PAN chemistry (Fischer et 

al., 2014), isoprene oxidation (Fisher et al., 2016; Travis et al., 2016; Chan Miller et al., 2017), halogen chemistry (Sherwen 

et al., 2016), Criegee intermediates (Millet et al., 2015), and methyl, ethyl, and propyl nitrates (Fisher et al., 2018). 175 

Heterogeneous aerosol uptake of HO2 produces H2O2 (Mao et al., 2013), with a reactive uptake coefficient (𝛾) of 0.2 (Jacob, 

2000). We implement aromatic chemistry from Yan et al. (2019) for the simulation of KORUS-AQ. 

 

We use the model “simple scheme” for organic aerosol (OA) where OA is generated using fixed empirically derived yields 

from isoprene, monoterpenes, biomass burning, and anthropogenic fuel combustion (Pai et al., 2020). This scheme includes 180 

an emitted hydrophobic component (OCPO) with an assumed organic-mass-to-organic carbon (OM:OC) ratio of 1.4 that is 

aged to a hydrophilic oxygenated component (OCPI) with an OM:OC ratio of 2.1. Secondary organic aerosol (SOA) is a 

lumped product (SOAS) with a molecular weight of 150 g mol-1. For comparison to observations, primary organic aerosol 

(POA) is defined as OCPO and SOA is the sum of OCPI and SOAS. The sulfate-nitrate-ammonium (SNA) aerosol simulation 

(Park, 2004) includes the addition of metal-catalyzed oxidation of SO2 (Alexander et al., 2009), sulfur oxidation by reactive 185 

halogens (Chen et al., 2017), and improved implementation of aerosol cloud-processing and revised uptake coefficients for 

NO2 (Holmes et al., 2019). Uptake of N2O5 on SNA includes dependence on aerosol water, organic coatings, nitrate aerosol 

fraction, and particulate chloride (McDuffie et al., 2018). SNA partitioning is calculated with ISORROPIA v2.2 (Pye et al., 

2009). The model includes accumulation mode (SALA) and coarse mode (SALC) sea salt aerosol (Alexander et al., 2005; 

Jaeglé et al., 2011) and dust in four size bins (DST1 to 4) (Fairlie et al., 2010), where the first bin and 38% of the second bin 190 

are included in PM2.5. The recommended definition of dry PM2.5 is given by Eq 1. 

 

𝑃𝑀!.# = 𝑆𝑂$!% +𝑁𝑂&% +𝑁𝐻$' + 𝐵𝐶 + 𝑂𝐶𝑃𝑂 ∗ 1.4 + 𝑂𝐶𝑃𝐼 ∗ 2.1 + 𝑆𝑂𝐴𝑆 + 𝑆𝐴𝐿𝐴 + 𝐷𝑆𝑇1 + 𝐷𝑆𝑇2 ∗ 0.38,                          (1) 

 

The AirKorea PM2.5 observations provided by NIER are obtained using the beta-ray attenuation method (BAM-1020, Table 195 

1). We do not adjust modeled PM2.5 for any measurement relative humidity effects as the BAM-1020 has been shown to 

perform well against federal reference method monitors (Le et al., 2020). 
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Specific details of production of model nitric acid (HNO3), the gas-phase precursor to aerosol nitrate (𝑁𝑂&% = pNO3), are 

provided below as KORUS-AQ provides detailed observations of this chemistry. Reactions R1-R6 describe model production 200 

of HNO3 from oxidation of NO2 (R1), aqueous uptake and reaction of N2O5, NO2, and NO3 on aerosol (R2, R4, R5), aqueous 

uptake and reaction of N2O5 and NO3 in cloud water (R3, R5), heterogeneous halogen chemistry (Table S2), and oxidation of 

VOCs by the nitrate radical (R6). Heterogeneous halogen chemistry is provided in Table S2.  In R2, aqueous uptake and 

reaction of N2O5 with particle chloride (Cl-) produces nitryl chloride (ClNO2) with a yield (∅) of 1 on sea salt aerosol and zero 

on all other aerosol types. 205 

𝑁𝑂! + 𝑂𝐻
(
→𝐻𝑁𝑂&                                                         (R1) 

𝑁!𝑂#
)*+,-,.
>⎯⎯⎯⎯@(2 − ∅)𝐻𝑁𝑂& + ∅𝐶𝑙𝑁𝑂!                                                       (R2) 

𝑁!𝑂#
/.,01
>⎯⎯@2𝐻𝑁𝑂&                                                                                    (R3) 

𝑁𝑂!
)*+,-,.
>⎯⎯⎯⎯@0.5𝐻𝑁𝑂& + 0.5𝐻𝑁𝑂!                                                                     (R4) 

𝑁𝑂&
)*+,-,.//.,01
>⎯⎯⎯⎯⎯⎯⎯⎯⎯@𝐻𝑁𝑂&                                                                                    (R5) 210 

𝑁𝑂& + 𝑉𝑂𝐶	 → 𝐻𝑁𝑂&	                 (R6) 

4 Simulation of PM2.5 during KORUS-AQ 

Figure 1a shows the model simulation of daily average PM2.5 (Eq. 1) compared to the observed average of the 15 AirKorea 

sites within the GEOS-Chem grid box containing the major SMA monitoring sites (KIST and Olympic Park). These two sites 

are in close proximity to the AirKorea monitors (Fig. 1b). Campaign average PM2.5 is 29 µg m-3, but this increases to 53 µg 215 

m-3 during the Transport/Haze period (Table 3). The model reproduces the low PM2.5 during the Dynamic period, the increase 

during the Transport/Haze period, and the variable concentrations during the Blocking period. Across the campaign, the model 

underestimates PM2.5 (NMB = -15%) due to a low bias during the Stagnant period and the initial build-up during the 

Transport/Haze period. This model performance is similar to Choi et al. (2019) using a different GEOS-Chem configuration.  

Figure 2 compares observed PM2.5 composition against the model for the gridbox containing the KIST ground site. . Speciated 220 

PM2.5 is derived from KIST PM1 composition and AirKorea PM2.5 mass as described in Section S2, as the difference in 

composition between PM1 and PM2.5 is expected to be minor (Sun et al., 2020; Schlosser et al., 2022). PM2.5 Measured 

composition from the KIST HR-ToF-AMS instrument (Table 1), representative of PM1 (Guo et al., 2021), is used to speciate 

daily average PM2.5 from the AirKorea sites (Fig. 1a). Jordan et al. (2020) showed that speciated PM1 was generally 

representative of PM2.5 mass throughout KORUS-AQ, except for the Transport/Haze period when PM2.5 significantly exceeded 225 

PM1. The strong correlation between PM2.5 and PM1 during the campaign implied growth of PM1 to larger sizes. Dust is not a 

major component of PM2.5 at the surface after May 9th, as further discussed in Section S1. Therefore PM1 composition likely 
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represents the composition of PM2.5 with the exception of a small contribution from primary aerosol species. Sun et al. (2020) 

showed that PM2.5 can be up to 50% greater than PM1 in polluted, humid environments and the mass at sizes >PM1 is secondary 

(not BC or POA). We remove BC and POA from observed PM2.5 and scale the remaining components (SNA, SOA) to the 230 

remaining PM2.5. The resulting speciated PM2.5, derived from KIST PM1 composition and AirKorea PM2.5 mass, is is provided 

for each meteorological period in Table 3. Figure 2 and Table 3 include the ALWC associated with PM2.5, calculated for the 

observations using the E-AIM IV thermodynamic model (Clegg and Brimblecombe, 1990; Clegg et al., 1998; Massucci et al., 

1999; Wexler and Clegg, 2002; (Nault et al., 2021)), b), and ISORROPIAv2.2 (Pye et al., 2009) in GEOS-Chem. During 

KORUS-AQ, Kim et al. (2022) found that ISORROPIAv2.2 provided similar results as the E-AIM model, reproducing E-AIM 235 

pH within ~0.4 units. 

On average, the model simulates SNA within 20%. However, this is due to compensating biases which has implications for 

controlling precursor species. The primary campaign average model biases are The model underestimated sulfate (-64%), 

overestimated nitrate (+36%), and underestimated SOA (-43%). The excess model nitrate is the primary driver of 

overestimated ALWC (+82%). During the Stagnant period, the model low bias is primarily due to underestimated SOA (-9 µg 240 

m-3). This may be due to missing local production from emissions of semi- and intermediate-volatility volatile organic 

compounds (S/IVOCs, McDonald et al., 2018) and aromatics (Nault et al., 2018), primarily attributable to solvents and vehicle 

emissions (Shin et al., 2013a, 2013b; Simpson et al., 2020). During the Dynamic and Blocking periods, the model PM2.5 bias 

is within 20% of the observations but with overestimated nitrate and underestimated sulfate. The model severely 

underestimates sulfate during the Transport/Haze period (-11 µg m-3, Table 3) suggesting that the model fails to reproduce the 245 

processes driving the pollution episode. As described by Jordan et al. (2020) showed, tboth ground and aircraft observations 

during KORUS-AQ showed that cloudy and humid conditions during the Transport/Haze period increased PM2.5 through 

heterogeneous production of SNA and this is not included in the model. 

The KORUS-AQ aircraft observations included detailed daytime (available from ~8am to 4pm KST) aerosol and gas-phase 

observations that we use to determine the cause of model sulfate and nitrate biases and their regional extent. Model SOA biases 250 

will be the subject of future work as here they do not contribute to PM2.5 exceedances (50 µg m-3 daily average in 2016). The 

KORUS-AQ campaign included frequent sampling along a repeated flight pattern or “stereoroute” over the SMA up to three 

times a day, supplemented by less frequent flights to investigate specific source regions or transport events (Crawford et al., 

2021). Figure S2 shows the high data density in the SMA compared to the rest of the study region. We use the 55 descents 

over Olympic Park from the SMA stereoroute to compare against the daily surface observations shown in Fig. 2. 255 

 

Figure 3 shows the mean daytime aircraft profiles of sulfate and nitrate for the descents over Olympic Park below 2 km 

separated by the same meteorological periods as Fig. 2. The corresponding profiles for SO2 and nitric acid are shown in Fig. 

S3. The model is sampled along the flight tracks and both the model and the observations are averaged to the model grid, 
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timestep and nearest vertical 0.5 km. Similar to the daily surface average, the model underestimates daytime sulfate below 2 260 

km with the most severe bias (-8 µg m-3 in the lowest altitude bin of 0.5 km) occurring during the Transport/Haze period. 

Unlike in the daily surface average, the model underestimates daytime nitrate below ~1 km with the exception of the Dynamic 

period when nitrate is in good agreement. The model nitrate underestimate could be partially related to the low low model 

RHbias in model RH of up to -83% (Blocking Stagnant period, 39 28 vs. 4731%) below 0.5 km (Fig. S3) or overestimated 

mixed layer height (Oak et al., 2019). Recent work suggests that If the model RH simulation was unbiased, we would expect 265 

an improved simulation of nitrate as the minimal RH bias during the Dynamic period corresponds to the best nitrate simulation 

(Fig. 3, Fig. S3). Mmodel aerosol dry deposition may also beis too fast but this effect would increase model concentrations by 

only ~10% (Emerson et al., 2020).  

There is no available measurement of PM2.5 from the aircraft to provide a similar scaling from PM1 to PM2.5 as was done in 

for Fig. 2 and described in Section S2. However, any increase to the observed profiles of PM1 sulfate or nitrate to account for 270 

possible growth to larger sizes would exacerbate the model underestimate of these species. The discrepancy between the model 

low to minimal bias against daytime aircraft nitrate observations (Fig. 3) and the overestimate against daily average nitrate at 

the KIST ground site (Fig. 2) implies a failure of the model to represent nighttime chemical production. We investigate the 

possible causes of overestimated daily average model nitrate in Section 5 and underestimated model sulfate in Section 6.  

5 Model errors representing the nitrate diurnal cycle 275 

The discrepancy between the model daytime and vs. daily average performance for nitrate demonstrates the need to evaluate 

the compare the model mean nitrate diurnal cycle against the nitrate fraction of PM2.5 derived from KIST observations as 

described in Section 4. Figure 4a shows the observed nitrate component of PM2.5 calculated from PM1 composition and PM2.5 

mass as described in Section S2.  that bBetween 6am and 6pm KST (daytime) the model bias is minimal (< 1 µg m-3) while 

the bias from 6pm to 6am KST (nighttime) is +3 µg m-3. As described in Section 3, the model has a newly revised treatment 280 

of wet scavenging that significantly reduces the model nitrate and nitric acid biases present in previous model versions (Luo 

et al., 2019). Without this improvement, the model would have an average nighttime bias of +7 µg m-3. Figure S4 shows daily 

precipitation in Seoul from the Korea Meteorological Administration (KMA, 2021) which wais infrequent and negligible in 

the later part of the campaign. The model underestimate in total precipitation across the campaign is minimal (121 vs. 112 

mm). Insufficient wet scavenging is unlikely to be the cause of the remaining model nitrate bias. 285 

We perform a sensitivity test (Table 4) to determine the relative impact of daytime (R1) vs. nighttime (R2-R5, Section 3) 

production of HNO3 on the model bias by shutting off the nighttime reactions. Figure 4c shows that the main model nighttime 

pathway is aerosol uptake of NO2 (R4) with a small contribution from N2O5 hydrolysis (R2/3) in the early morning hours. 

Figure 4a shows that removing nighttime chemistry results in improved early morning agreement (1am to 8am KST) but the 
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evening overestimate (8pm to 1am KST) is less affected. Jordan et al. (2020) showed observational evidence for significant 290 

nighttime production of nitrate by N2O5 hydrolysis (R2). We use the removal of nighttime chemistry to hypothesize that part 

of the model nighttime bias is due to excess daytime HNO3 that has not yet been lost to deposition and is converted to nitrate 

as conditions become thermodynamically favorable for partitioning to the aerosol-phase. The dominance of NO2 uptake over 

N2O5 hydrolysis in the model suggests that there are additional errors in simulated nighttime chemistry. 

5.1 Sensitivity of model nitrate bias to gas-phase precursors 295 

Inorganic aerosol ammonium nitrate (NH4NO3) is formed by dissolution of HNO3, which reacts in the aqueous phase with 

ammonia (NH3) to establish a thermal equilibrium with NH4NO3. The conditions that favor NH4NO3 are generally cool and 

humid (i.e., nighttime) and characterized by high NH3 and HNO3 concentrations relative to sulfate (Guo et al., 2016). We 

calculate that average nighttime RH (temperature) in the SMA is 7469% (290K291K) compared to the model value of 7167% 

(288K291K), indicating that significant errors in RH or temperature are not the cause of nighttime biases. Overproduction of 300 

model nighttime nitrate could be due to overestimated NH3 if this species limits NH4NO3 production. In South Korea, and 

generally East Asia, NH4NO3 is limited by availability of HNO3. This is due to high levels of NH3 (~10 ppb) observed in East 

Asia, attributable to non-agricultural sources such as transportation (Song et al., 2009; Phan et al., 2013; Link et al., 2017; Sun 

et al., 2017; Chang et al., 2019; Lim et al., 2022). The model reproduces the expected high concentration of NH3 with an 

average of 9 ppb at Olympic Park. Ibikunle et al. (2020) performed a rigorous thermodynamic assessment of KORUS-AQ 305 

observations confirming that aerosol was always sensitive to HNO3 in polluted conditions. Nitrate-limited SNA 

thermodynamics were observed in similar conditions in China and successfully represented by ISORROPIA v2.2 in GEOS-

Chem (Zhai et al., 2021). 

 

Few datasets exist to further test the performance of HNO3-pNO3 partitioning in the model but KORUS-AQ observations 310 

provide this opportunity. This partitioning is described by Eq. 2, where the ratio of pNO3 to total nitrate (TNO3 = HNO3 and 

pNO3), known as εNO3, is impacted by temperature, relative humidity, and aerosol composition (Guo et al., 2016, 2017). 

𝜀𝑁𝑂& =
345!

645!'345!
                                  (2) 

Accurate simulation of εNO3 is critical to regulating the deposition of TNO3 as HNO3 deposits more rapidly than pNO3 (Nenes 

et al., 2021). Figure 5 shows ɛNO3 as a function of RH for the observations and the model for the same domain as Fig. 3 below 315 

1.5 km. While the model represents the increase of ɛNO3 with RH, model ɛNO3 is generally underestimated, particularly at 

lower RH (<50%). This low bias in ɛNO3 could be due to overestimated HNO3, as a result of underestimated ammonia, not 

measured during the lower RH and associated higher temperatures generally prevent excess HNO3 (denominator of Eq. 2) 

from partitioning tocampaign, the aerosol-phase. We discuss the possibility of overestimated model HNO3 below.or errors in 

model temperature and RH. A As ɛNO3 is underestimated in the model, excess partitioning to the aerosol-phase is not a cause 320 
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of the model nitrate overestimate shown in Fig. 2. The successful performance of ISORROPIAv2.2 during KORUS-AQ is 

also evident from the comparison against the E-AIM model in Kim et al. (2022).  

 

Figure 6a shows vertical profiles of observed and modeled HNO3 for the Olympic Park descents. The model overestimates 

HNO3 in the lowest bin (0.5 km) by +1600 ppt or +100%. This high bias persists across most of the study domain except over 325 

the ocean south of 34oN (Fig. 7) where local emissions have a small impact and loss to deposition is slow. During average 

daytime conditions (~50% RH, 295K), model ɛNO3 is ~0.3, indicating that while the aerosol is HNO3-limited, higher 

temperatures and low RH also prevent the excess model HNO3 from partitioning to aerosol. A simulation turning off South 

Korean emissions shows that local sources contribute ~50% to model HNO3 concentrations below 0.5 km (Fig. 6a). Thus, 

while model errors in emissions or chemistry could be a cause of the bias, an overestimated lifetime of HNO3 against dry or 330 

wet deposition could also play a role. We evaluate these possibilities further in Section 5.2. 

5.2 Causes of overestimated daytime HNO3  

KORUS-AQ provides aircraft and surface observations that provide additional constraints on the model HNO3 bias of +100% 

described in Section 5.1. We use observations of NO2 and OH from aircraft to evaluate whether NOx emissions or production 

from R1 (NO2 + OH) are overestimated. Figure 6b shows that model NO2 is underestimated by -40% below 0.5 km. This is 335 

partially due to the expected model inability to resolve the highest observed levels of NO2 in an urban region, illustrated by 

the larger standard deviation in the observations compared to the model. However, given the same emissions inventory used 

here (KORUSv5), a set of eight models varied in their biases for NOx against KORUS-AQ aircraft observations from a minimal 

underestimate (-7%) to a large overestimate (+56%) depending on model configuration (Park et al., 2021). Thus, model biases 

could be due to a range of factors including underestimated emissions, inaccuracies in the emission diurnal cycle, or 340 

overestimated mixed layer heights. Errors in any of these factors that could increase model NO2, such as decreased mixed layer 

heights or(i.e., increased emissions), would be expected to increase the model overestimate of HNO3. Figureg. 6c shows that 

the model bias in OH is small (+20%) and well within measurement uncertainty (+32%) and therefore it is unlikely that model 

errors in R1 (Fig. 6d) could cause the model HNO3 bias of +100%.  

The fastest removal pathways for HNO3 are wet and dry deposition. The model implementation of these processes is described 345 

in Section 23. The recently revised model wet scavenging scheme has improved annual average model simulations of HNO3, 

but the effect on HNO3 during KORUS-AQ is limited as precipitation was infrequent after the beginning of the campaign as 

discussed above. Section S2 S3 further discusses the impact of this scheme on KORUS-AQ nitrate and HNO3 but errors in wet 

deposition are unlikely to be the cause of overestimated model HNO3. Section S2 S3 also describes other possible loss 

pathways to dust, seasalt, or production of ClNO2 from N2O5 hydrolysis (e.g. Jeong et al., 2019) that have negligible effects 350 

on the model HNO3 and nitrate. 
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Previous attempts to improve model nitrate overestimates invoked an unknown sink of HNO3 in the model (Heald et al., 2012; 

Weagle et al., 2018), as uncertainties in precursor emissions, the rate of N2O5 hydrolysis (R2/R3) or gas-phase production 

(R1), OH concentrations, and HNO3 dry deposition velocity (VdHNO3) could not explain model nitrate biases. We similarly 355 

conclude that an unknown loss process must be a main cause of the daytime model overestimate in HNO3 and associated 

evening nitrate bias during KORUS-AQ that occurs as conditions become more favorable for partitioning HNO3 to pNO3. This 

unknown loss process could be a larger underestimate in dry deposition than has been previously considered, as constraints 

from KORUS-AQ show that uncertainties in emissions, nighttime production (R1-R5), and wet deposition are not the cause. 

Heald et al. (2012) ruled out dry deposition after assuming an uncertainty of a factor of two. Here, the increase in VdHNO3 360 

required to reproduce observed HNO3 (Fig. 6a) is a factor of five. A similar increase in VdHNO3 was invoked by Itahashi et al. 

(2017) in their model study of wintertime nitrate in East Asia based on the finding from Shimadera et al. (2014) that VdHNO3 

(as well as NH3 emissions and dry deposition) were the main factors driving model nitrate performance. 

 

The increase in VdHNO3 suggested above would result in an average value of 7.5 cm s-1 compared to the standard model value 365 

of 1.5 cm s-1. This corresponds to a maximum midday rate of 15.4 cm s-1 cm s-1 compared to the original value of 3.1 cm s-1 

(Fig S8). Deposition of HNO3 is limited only by aerodynamic resistance (and available surface area), as it readily adheres to 

surfaces. While the increase to VdHNO3 we suggest here is large, this could arise from factors such as increased surface area in 

urban or heavily forested regions and increased vertical mixing over cities due to turbulence induced by the urban heat island 

effect. These factors are not accounted for in the limited existing deposition velocity measurements that have been compared 370 

against models (Nguyen et al., 2015). Increased turbulence over forested regions results in higher deposition velocities 

(Sievering et al., 2001; Yazbeck et al., 2021), which would also be expected in an urban environment (i.e.i.e., Keuken et al., 

1990). The model does not account for increased available surface area for deposition contributed by urban buildings, or the 

elevated vertical mixing over cities due to the urban heat island effect (Hong and Hong, 2016; Halios and Barlow, 2018). Dry 

deposition rates thus may be much higher than in model parameterizations that do not include a specific treatment of the urban 375 

canopy (Cherin et al., 2015) and this is the case in GEOS-Chem. The model surface roughness, an important parameter 

governing turbulence, is onlyjust 0.1 m in Seoul, compared to values measured between 1 and 3 for forested or urban parts of 

the city (Hong and Hong, 2016).(Hong and Hong, 2016). 

 

Neuman et al. (2004) derived VdHNO3 from aircraft observations of power plant plumes in eastern Texas, obtaining values 380 

between 8 and 26 cm s-1, values at least four times faster than reported previously. We take a similar approach to Neuman et 

al. (2004) to calculate VdHNO3 from KORUS-AQ observations in the SMA using the rate equation for TNO3 as a function of 

photochemical age (Fig. 8, Eq. 3).  

𝑇𝑁𝑂&(𝑡) = 	
45"(8)
#
$%:

H𝑒%/; − 𝑒%<;J                        (3) 
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NOx(0) is the initial NOx mixing ratio normalized to CO (Fig. 8, 0.24 ppbv / ppbv CO), ꞵ is the first order loss rate for TNO3, 385 

c is the first order production rate for TNO3 (pTNO3 = pHNO3 = kR1[OH]), and TNO3(t) is observed TNO3 as a function of 

photochemical age (t). As the production of TNO3 was constrained by observed OH, and assuming the main loss of TNO3 (ꞵ) 

is from deposition of HNO3, the unknown for TNO3 evolution is the deposition rate. The full details of this calculation are is 

provided in Section S3S4.  

 390 

Figure 8 shows NOx, TNO3, and the other NOx oxidation products of total peroxy nitrates (ΣPNs) and the sum of alkyl- and 

multi-functional nitrates (ΣANs) as a function of photochemical age. All species are normalized by background subtracted 

CO. NOx is continuously depleted at a rate of 0.31 hr-1, implying continued production of TNO3, ΣPNs, and ΣANs. This loss 

rate corresponds to a lifetime of 3.2 hrs that is similar to the lifetime of 4.8 hrs for NO2 against conversion to HNO3 (R1) using 

the SMA average OH of 5.2×10-6 molec cm-3. From Eq. 3, we derive a loss rate (ꞵ) of 13.9 cm s-1 that best fits the observed 395 

change in TNO3 with aging. As deposition of pNO3 is slow, we assume that VdHNO3=VdTNO3. All three NOx oxidation products 

(TNO3, ΣPNs, ΣANs) exhibit similar behavior with production outpacing loss until approximately three hours of aging, where 

loss appears to balance production and concentrations remain relatively constant. There is likely large uncertainty in the derived 

photochemical ages shown in Fig 8, as the aircraft did not follow plumes as in Neuman et al. (2004). However, our derived 

NOx lifetime is consistent with average SMA conditions and is not affected by our choice of observed altitude range, suggesting 400 

that the aging represents true chemical processing. 

 

Figure 8 shows that the slower value for midday VdHNO3 in the original model (3.1 cm s-1) poorly represents observations 

compared to the faster value obtained in Fig. 6 (15.4 cm s-1). We calculate that the original deposition rate would correspond 

to a first order loss rate for TNO3 of only 0.07 hr-1 (assuming a 1.5 km boundary layer height) and thus observed TNO3 should 405 

increase with photochemical age, which is not supported by the observed relationship in Fig. 8. The factor of five increase in 

VdHNO3, constrained only using observed HNO3, implies a similar loss rate of TNO3 as derived in Fig. 8 and leads to the 

observed behavior where after initial production, the normalized mixing ratio remains constant. This analysis supports the 

hypothesis given above, that existing observations supporting lower values for VdHNO3 (Nguyen et al., 2015) may 

underrepresent deposition in regions with greater turbulence and available surface area such as in cities like Seoul. Deposition 410 

of atmospheric pollutants such as nitric acid on buildings generates ‘urban grime’ that may photolyze and produce NOx and 

HONO (Baergen and Donaldson, 2013, 2016). This urban grime could be a source of HONO (; Zhang et al., 2016). This source 

and may be larger than previously thought if models underestimate nitric acid deposition.  

 

Figure 4a shows the impact to the diurnal cycle of model nitrate from increasing model VdHNO3 by a factor of five. The rapid 415 

late afternoon /early evening increase in model nitrate (Fig. 4a) is largely resolved and the model simulation of HNO3 is now 

in bettergood agreement with aircraft observations (Fig. 6) due to a significant dampening of the HNO3 diurnal cycle (Fig. 4b). 

This reduction in the HNO3 diurnal cycle is better supported by observations of TNO3 as discussed above. We conclude that a 
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key reason for the overestimated high bias in daily average model nitrate shown in( Fig. 2) is overestimated daytime HNO3 

that results inproduces excess nighttime nitrate at night when conditions become favorable (cool and, humid) for gas to aerosol 420 

partitioning. The model overestimate is due to insufficient loss, likely underestimated dry deposition. This finding does not 

address possible errors in in model nighttime nitrate production pathways (NO2 vs. N2O5), ). and KORUS-AQ provides detailed 

ground observations that can be used to constrain the model representation of nighttime chemistry.  

5.3 Errors in model nighttime production of HNO3 

Figure 4c shows that model nighttime production of HNO3 by aerosol uptake of NO2 (R4) is approximately twice as large as 425 

R2 (N2O5 hydrolysis). This contradicts the calculation from Jordan et al. (2020) that R2 is the driver of nitrate production 

during KORUS-AQ, particularly during the Transport/Haze period due to sufficient nighttime ozone concentrations that allow 

for production of the nitrate radical and N2O5 through R8 and R9.  

O& +𝑁𝑂 → NO!                               (R7) 

𝑁𝑂! + O& → 	𝑁𝑂& + 𝑂!	                 (R8) 430 

𝑁𝑂! +𝑁𝑂&
(
→	𝑁!𝑂#	                 (R9) 

Production of nitrate by N2O5 hydrolysis is supported by observations of ClNO2, thought to be produced primarily by this 

reaction (Thornton et al., 2010). As discussed above in Section 5.2, observations of ClNO2 at Olympic Park are elevated at 

night (Fig. S7). Despite recent large reductions of the uptake coefficient (𝛾) for NO2 in the model (Holmes et al., 2019), NO2 

uptake still is the dominant nighttime pathway for HNO3 production in the model. We use observations of ozone, NO, and 435 

NO2 at Olympic Park to determine whether errors in R7-R9 are impacting model ability to produce N2O5. 

 

Figure 9 shows the mean modeled and observed diurnal cycles of ozone and NO2 for the AirKorea sites in the model grid box 

(Fig. 1b) and for ozone, NO, NO2, and NOx at Olympic Park. Ozone might be expected to be titrated in an urban area by R7 

as the mixed layer collapses in the evening, resulting in elevated NO and shutting down production of the nitrate radical (R8). 440 

This is the case in the model where nighttime ozone is <2 ppb approximately 20% of the time but this never occurs in the 

observations only twice (Fig. S9). As a result, average observed nighttime ozone is 24 23 ppb but only 13 ppb in the model 

(Fig. 9). The time series of observed and modeled ozone in Fig. S9 shows while the model does succeed in simulating high 

nighttime ozone concentrations during the Dynamic Period, characterized by higher windspeeds, ozone is incorrectly titrated 

at other times particularly during the buildup of the haze pollution following a frontal passage on May 24th. The implications 445 

of this excess ozone titration for the simulation of PM2.5 specifically during haze conditions will be further discussed in Section 

6.  

 

As shown in Fig. 9b+c, model ozone titration corresponds to excess model NO and NO2 at night and explains the dominance 

of NO2 uptake in the model over N2O5 hydrolysis for nighttime HNO3 production. The model bias for NOx is minimal during 450 



 

15 
 

the day, providing additional support for the level of emissions in the model, but is overestimated by a factor of two50% at 

night. The excess model ozone titration and overestimated nighttime NOx implies an error in nocturnal mixing. Figure 10a 

shows the mixed layer height (MLH) diurnal cycle measured by ceilometers at Olympic Park and Seoul National University. 

The aerosol gradients detected by the ceilometer to estimate MLH are less reliable at night due to the possible presence of 

aerosols in the residual layer (Jordan et al., 2020). We support these measurements with additional calculations of nighttime 455 

MLH from radiosonde observations of temperature and RH four times a day (Section S4S5, Fig. S10), showing that the average 

MLH at 3 KST could be ~300m compared to 220m in the model). As previously discussed in Section 5.2, in urban regions 

such as Seoul, the anthropogenic heat island effect and the heterogeneity of the urban land cover increase sensible heat fluxes 

and turbulence over non-urban areas (Halios and Barlow, 2018) and create an unstable mixed layer even at night. Min et al. 

(2020) showed that the nighttime mixed layer in Seoul is elevated in all seasons, and that nighttime conditions are generally 460 

unstable due to urban heat storage and anthropogenic heat release and this could explain the observed elevated nighttime MLH 

(Fig. 10a, Fig. S11). This effect is not captured in many meteorological models including the one used here (GEOS-CF, Section 

3). ), instead Nighttime nighttime model sensible heat flux in the model is always negative (stable conditions) (Fig. 10b).   

 

Starting at 17 KST, the model mixed layer collapses early, causing a more rapid decline in ozone than in the observations (Fig. 465 

9a, Fig. 10a). The transition from convective daytime mixed-layer to stable nocturnal boundary layer is poorly understood 

(Lothon et al., 2014). The early collapse of the mixed layer has been observed in other models including the widely-used 

Weather Research and Forecasting (WRF) model over the Baltimore-Washington, D.C. region during the NASA DISCOVER-

AQ mission (Hegarty et al., 2018). One possibility for the delay in this collapse is continued mixing from the last eddy of the 

day formed just before the sensible heat flux changes sign during the evening transition (Blay-Carreras et al., 2014). This has 470 

been hypothesized as reasons for errors in the model diurnal cycle of ozone in the Southeast United States (Travis and Jacob, 

2019). Here, this early collapse drives excess production of nitrate from NO2 (R4).  

 

While addressing the shortcomings of the model mixing scheme is beyond the scope of this study, we test the sensitivity of 

model nitrate production to the main two problems identified above, 1) the overly rapid collapse of the afternoon mixed layer, 475 

and 2) insufficient nocturnal mixing. While model meteorology is calculated offline, mixing in the boundary layer is calculated 

online (Section 23), allowing us to perturb mixing parameters. We increase the nighttime MLH to 500 m (Table 4) to examine 

the impact on model ozone, NO, and NO2. The effect of this change on these species is minimal (Fig. 9), similar to the findings 

of other model sensitivity studies that performed this same test (Oak et al., 2019; Miao et al., 2020). While the strength of 

model vertical mixing is sensitive to MLH, the model sensible heat flux and friction velocity have a larger impact (Holtslag 480 

and Boville, 1993), and the nighttime mixed layer will remain stable while the sensible heat flux is negative regardless of 

MLH. We illustrate in Section S6 that reducing the collapse of the evening MLH without a change to the drivers of mixing 

(i.e., heat fluxes, friction velocity) also has negligible impact on decreasing model ozone titration (Fig. S12). 
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 485 

 

The increase in nighttime mixing in urban vs. rural regions has been addressed in the CMAQ model (Li and Rappenglueck, 

2018) by using a higher value for the minimum mixing strength (eddy diffusivity) over urban areas. However, we find that 

this approach is insufficient to address model ozone titration without increasing the sensible heat flux to a positive value to 

produce an unstable mixed layer. This is illustrated in Fig. S12, where we scale the model MLH to match the profile at Olympic 490 

Park (Fig. 10a) and raise the model minimum eddy diffusivity from 0.01 m2 s-1 to 1 m2 s-1 over the SMA. Reducing the collapse 

of the evening MLH without a change to the drivers of mixing (i.e., heat fluxes, friction velocity) has negligible impact on 

decreasing model ozone titration (Fig. S12). In addition, the MLH at Olympic Park in the early morning hours appears 

inconsistent with observed ozone, likely due to the uncertainties in the measurement technique discussed above and supported 

by the lower values obtained from radiosonde profiles (Fig. S11). Errors in model nighttime mixing are difficult to remedy 495 

without significant revisions to the model mixing parameterizations, including implementing continued mixing from daytime 

eddies into the evening hours (Blay-Carreras et al., 2014) and increased parameterizing the urban heat fluxes excess sensible 

heat flux in urban areas (Halios and Barlow, 2018). We address the implications of these errors in for the simulation of haze 

pollution events in Section 6. 

6 Model simulation of haze buildup  500 

The failure of models to simulate sulfate production in haze in East Asia is a current topic of intensive research and is 

attributable to missing sulfate production in aerosol water (Wang et al., 2014; Zheng et al., 2015a; Chen et al., 2016; Shao et 

al., 2019; Miao et al., 2020). There2020). There has been less attention paid to theassessment of the ability of models to 

simulate nitrate in haze, but  as nnitrate-dominated haze is a morebecoming more common recent phenomenon due to the 

reductions in SO2 in East Asia (Wang et al., 2020). Figure 2 and Table 3 show that the model can reproduce the increase in the 505 

nitrate component of PM2.5 during the Transport/Haze period but overestimates absolute concentrations by ~2015%. This 

contributes to an 80% overestimate in ALWC. Efforts to explicitly simulate SO2 oxidation in ALWC may be hindered by this 

model bias, which also impacts the rates of all other heterogeneous reactions through the increase in aerosol surface 

area/volume.   

 510 

Figure 11a shows the hourly time series of observed and modeled nitrate at Olympic Park during the Transport/Haze period. 

During the haze buildup, the model initially overestimates nitrate during the day (5/24) followed by large nighttime 

underestimates (5/24-5/25). This is opposite to the nighttime overestimate/ but daytime agreement shown in the campaign 

average (Fig. 4a). During the haze buildup, daytime RH remained elevated (>50%, Fig. S13) and the daytime mixed layer was 

suppressed (Fig. S14 and Jordan et al. 2020). The model reproduces both conditions, which are favorable for SNA production. 515 

Model nitrate biases here are likely due to the errors identified in Section 5.2 (overestimated daytime HNO3) and Section 5.3 
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(incorrect representation of nighttime conditions), but here the excess daytime HNO3 in the model results in higher daytime 

nitrate than in the campaign average. Insufficient model sulfate during the haze event results in overestimated model pH and 

excess partitioning of HNO3 to the particle phase (Guo et al., 2016). Fig. S15 shows that ɛNO3 (the calculated fraction of TNO3 

in the aerosol phase) decreases as sulfate increases and the model sulfate bias corresponds to a difference in ɛNO3 of ~0.3.  520 

 

The model underestimate of nighttime nitrate concentrations during the haze buildup must be because the rate of observed 

N2O5 hydrolysis (R2) exceeds even the erroneously high model rate of NO2 aerosol uptake (R4). The haze buildup was 

characterized by a lower daytime MLH and a deeper nocturnal MLH (inferred from the lack of ozone titration) that resulted 

in higher nitrate production from N2O5 hydrolysis (Jordan et al., 2020). The model overly titrates ozone (Fig. 11c) due to 525 

insufficient nighttime mixing. We drive additional nocturnal mixing by increasing the sensible heat flux at night from slightly 

negative (-4 W m-2) to weakly positive (+10 W m-2), representative of anthropogenic heat fluxes in this region (Hong and 

Hong, 2016; Varquez et al., 2021). To reduce the rate of R4 from overestimated NO2 and allow for a high rate of R2, we 

increase the nighttime MLH over land to 300 m as suggested by the observations. 

 530 

 This sensitivity test (Table 4) largely resolves the incorrect model ozone titration and the severe model overestimate of 

nighttime NO2 on 5/23-5/24 and on 5/24-5/25 but does not remedy the early model collapse of the evening mixed layer (Fig. 

11). Extending this sensitivity test past the haze buildup results in excess nighttime ozone. This may be due to the increased 

cloud cover during the haze buildup (Fig. S16), that could cause additional nighttime mixing over average conditions through 

enhancement of the urban heat island effect (Theeuwes et al., 2019). As the meteorology in GEOS-Chem is calculated offline 535 

(Section 3), increasing surface sensible heat flux only impacts the boundary layer mixing parameterization but not the 

simulation of other meteorological fields. Future work should use a coupled system to investigate other effects of the urban 

heat island effect on air quality. 

 

Figure 11b shows that increased nighttime mixing allows for N2O5 hydrolysis (R2) to become the main nighttime pathway for 540 

HNO3, with a rate three times greater than NO2 uptake (R4) in the base model. The raised mixed layer height of 300 m prevents 

this high rate from resulting in overestimated model nitrate. Increased model nighttime nitrate corresponds to an increase in 

nighttime ALWC of 40~50%. We use the simulations shown in in Fig. 11 to illustrate that model errors in simulating mixed 

layer dynamics (overly rapid collapse of the evening mixed layer and insufficient nighttime mixing) result in errors in model 

chemistry. Nighttime measurements of the vertical structure of key species such as ozone, NO2, N2O5, and HNO3, 545 

complemented by sensible heat flux observations, are needed to further constrain model simulations of nighttime nitrate 

production. 

 

As discussed in Section 4, in addition to the above difficulties in simulating nitrate, the model fails to reproduce observed 
sulfate during the Transport/Haze period and this corresponds to a 15 µg m-3 underestimate in PM2.5 (Table 3). Studies have 550 



 

18 
 

shown a strong relationship between increasing RH and conversion of gas-phase precursors to SNA in haze, indicating the 
occurrence of heterogeneous chemistry in ALWC (Sun et al., 2013; Liu et al., 2015; Quan et al., 2015; 2015a; Chen et al., 

2016; Wu et al., 2018a). Figure 12 shows the sulfate oxidation ratio, SOR ≡ M =5%&'

=5&'=5%&'
N as a function of RH at Olympic Park 

and from aircraft observations. In the observations, SOR increases with RH, but this is missing from the model. We take the 
approach of Wang et al. (2014) and implement heterogeneous uptake of SO2 on aerosol (not present in the standard model) as 555 
a function of RH according to Eq. 4, 

𝑘> = P )
?(
+ $

@A
Q
%:

  ,                   (4) 

where the mass transfer rate (kT) at which a species is lost from the gas-phase is a function of the particle radius (a), the 
molecular diffusion coefficient (Dg), the mean molecular speed (v), and the reactive uptake coefficient (γ), or the probability 
of irreversible reaction. The value for γ depends on RH (Wang et al., 2014) according to Eq. 5.  560 
𝛾 = 	𝛾B6)*% + H𝛾B6,**% − 𝛾B6)*%J (100%− 50%) × (𝑅𝐻 − 50%)⁄                                                                                            (5) 

The values 𝛾B6,**%  = 3 × 10%$ and 𝛾B6)*%= 3 × 10%#	best fit the observations using the base model ( without the 

aforementioned adjustments for nitrate simulation, Table 4). These values are two orders of magnitude slower than in the 
original formulation of Wang et al. (2014) but similar to more recent studies (Zheng et al., 2015a; Chen et al., 2016). During 
the Transport/Haze period, this improves model agreement with sulfate observations at the surface (~15 µg m-3 vs. Table 3: 15 565 
µg m-3) and aloft (Fig. S17). average surface (Table 3, 15.4 µg m-3 vs. 14.7 µg m-3) and daytime aircraft (Fig. S17) sulfate 
observations. Model agreement with daytime aircraft SO2 observations is degraded, implying that model emissions during the 
Transport/Haze period are insufficient to produce both the amount of observed SO2 and sulfate. 
 
During the Transport/Haze period, Choi et al. (2019) estimated a contribution from transported pollution of 68%. However, 570 
the inclusion of heterogeneous uptake of SO2 on aerosol would increase the amount of both locally produced and transported 
pollution, as the model attributes ~60% of SO2 to foreign sources and ~40% to local emissions (Fig. S17). We simulate PM2.5 
with heterogeneous conversion of SO2 as described above, and then remove South Korean emissions in order to investigate 
changes to the fraction of transported pollution. Figure 13 shows the model PM2.5 composition for each case during the 
Transport/Haze period (, with an additional 15 µg m-3 of PM2.5 in the model sensitivity with heterogeneous uptake of SO2). In 575 
the original model, foreign transport accounts for 66% of PM2.5 (25 µg m-3vs 38 µg m-3), but this fraction is reduced to 54% 
(29 µg m-3 vs 53 µg m-3) in the revised model as the local contribution (13 vs. 24 µg m-3) makes up a greater fraction of the 
increase. Locally produced sulfate increases from only 1% (<1 µg m-3) to 25% (6 µg m-3) of local PM2.5, implying that local 
SO2 controls could have a greatern effect on PM2.5 levels than previously thought. Locally produced nitrate increases from 6 
µg m-3 to 8 µg m-3. The total amount of model nitrate (local + foreign) decreases slightly at the surface and aloft (Fig. S17) 580 
which we attribute to the impact of sulfate on reducing ɛNO3 described above and shown in Fig. S15 but this does not resolve 
the model nitrate biases described in Section 5. 
 
The previous calculations only account for the missing model sulfate during the Transport/Haze period, and do not account 
for the incorrect model representation of nighttime nitrate production or overestimated model HNO3. This accounts for the 585 
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dramatic increase in ALWC in Fig. 13, which is already overestimated in the original model formulation as shown in Fig 2. 
Given the uncertainties in revising the model nitrate simulation, we did not assess the policy implications for improving model 
nitrate on local vs. transported pollution. However, A a simple test however of the haze buildup with the heterogeneous SO2 
uptake described above with the and includinginclusion of a factor of five increase to VdHNO3 and, increased nighttime mixing, 
and the addition of heterogeneous SO2 uptake described above, results in ~40% less nitrate and ALWC, and 30% less sulfate, 590 
than in the simulation with heterogeneous SO2 uptake alone. As a result, sulfate concentrations are 30% less than in the 
simulation with heterogeneous SO2 uptake alone. Therefore, studies attempting to determineestimating γ to improve sulfate 
simulations of haze must also consider the impact of model nitrate biases on their parameterization. Follow-up work will 
include consideration of improvements to the model sulfate and nitrate simulation with a coupled model system such as WRF-
GC (Lin et al., 2020) that is able to better simulate the urban scale as well as long-range transport. 595 

7 Conclusions 

We used aircraft and surface observations from the NIER-NASA KORUS-AQ field campaign in May and June 2016 to 

evaluate GEOS-Chem simulations of PM2.5 composition in the Seoul Metropolitan Area, including during a haze pollution 

event characterized by high levels of secondary inorganic aerosol. Models generally underestimate sulfate during haze and 

generally overestimate overestimate nitric acid and the gas-particle partitioning of nitric acid to aerosol and underestimate 600 

sulfate during haze events across in East Asia (An et al., 2019). This is of concern for using models to determine the fraction 

of PM2.5 pollution that can be controlled using local policy measures in South Korea, and the level to which exceedances of 

PM2.5 standards are caused by long-range transport. 

 

The model underestimated PM2.5 in Seoul during the campaign (NMB = -15%) with larger errors in composition. On average, 605 

the model underestimated sulfate (-64%) and SOA (-43%) but overestimated nitrate (+36%). Models typically underestimate 

secondary organic aerosol (SOA, Zhao et al., 2016), and this could be due to missing sources from anthropogenic precursors 

(Nault et al., 20202021a). This SOA bias will be investigated in future studies. Aircraft observations, only available during 

daytime hours, showed model underestimates in sulfate comparable to the bias at the surface. However, modeled nitrate was 

underestimated aloft, contradicting the model overestimate in the campaign average (which includes nighttime observations). 610 

Hourly surface observations showed that this was due to a model overestimate at night. During the campaign, nitrate formation 

was limited by the supply of nitric acid, which was overestimated against daytime aircraft observations by +100% and 

contributed to the model nighttime bias. Recent developments to the model wet deposition scheme have significantly improved 

the simulation of nitrate and nitric acid, but further improvements are unlikely to resolve the model bias. 

 615 

The model overestimate in nitric acid was not due to overestimated production, insufficient loss to wet deposition, or uptake 

to dust or seasalt. Increasing the loss of nitric acid, implemented here as an increase in the nitric acid dry deposition velocity 

by a factor of five, was required to reconcile the model with observations. Aircraft observations of total nitrate (TNO3 = HNO3 
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and pNO3) as a function of photochemical age support this increase. The model underestimate in deposition could be explained 

by missing treatment of turbulence driven by the urban heat island effect and the heterogeneity of the urban landscape, which 620 

would also increase the surface area available for deposition. Here, we only consider the effect on HNO3, but these factors 

would also impact other species that readily deposit to surfaces such as NH3, which was not measured during the campaign.  

 

Observations of ozone, NO2, and ClNO2 showed that N2O5 hydrolysis should be the main driver of nighttime nitrate production 

while the model primarily produced nitrate through aerosol uptake of NO2. The model overly titrated ozone, with an average 625 

nighttime concentration of 13 ppb compared to 24 23 ppb in the observations. This resulted in excess model NO2 and prevented 

the production of N2O5. Observations of ozone and of the nighttime mixed layer height implied insufficient nighttime mixing 

and an overly rapid collapse of the afternoon mixed layer in the model. We attributed these errors to the premature shutdown 

of afternoon eddies and missing treatment of the urban heat island effect that typically generates a positive nighttime heat flux 

that is not present in the model. Nighttime measurements of the vertical structure of key species such as ozone, NO2, N2O5, 630 

and HNO3, ideally complemented by surface heat flux observations, are needed to further constrain model nighttime nitrate 

production, and determine the extent to which the model underestimates nighttime heating and mixing depth.  

 

The model errors in simulating nitrate and nitric acid, mainly arising from overestimated daytime nitric acid and excess 

nighttime ozone titration, are exacerbated in the simulation of haze pollution. Overestimated nitric acid results in larger values 635 

of daytime nitrate during the haze buildup. This could be due to the model underestimate in sulfate as overestimated model pH 

would allow for increased partitioning of nitric acid to the particle phase. Nighttime nitrate in the model is underestimated 

during the haze buildup likely due to missing rapid N2O5 hydrolysis. Sensitivity simulations showed that raising the nighttime 

mixed layer and providing a positive nighttime sensible heat flux of +10 W m-2 improved the model simulation of nitrate, 

ozone, and the allowed for nighttime production of nitrate via N2O5 pathway for nitrate production during haze. Previous 640 

studies have simply raised the nighttime mixed layer and found little effect on simulated pollution (Oak et al., 2019; Miao et 

al., 2020) but this may be due to missing nocturnal heating from anthropogenic heat release.  

 

The underestimate in model sulfate during the KORUS-AQ haze event is typical of models that often do not include 
heterogeneous aerosol uptake of SO2 (Wang et al., 2014; Zheng et al., 2015a, 2015b; Shao et al., 2019). Observations of the 645 
sulfate oxidation ratio (SOR) as a function of RH supported the need for this pathway as the strong increase in SOR with RH 
was not present in the model. A simple parameterization of this process increased model sulfate levels from 4 to 15 µg m-3 
during the haze, in better agreement with observations. However, the success of this parameterization was complicated by 
model nitrate biases. A simulation of the haze with both improved model nitrate and heterogeneous uptake of SO2 resulted in 
a 30% reduction in model sulfate over the simulation with heterogeneous uptake of SO2, illustrating the need to consider model 650 
biases in sulfate and nitrate simultaneously. GEOS-Chem parameterizations of the urban environment are lacking and cannot 
be currently adjusted to robustly simulate nitrate during the campaign. However, fFuture studies attempting to simulate sulfate 
in haze should consider the impact of model nitrate biases on their parameterizations. These studies require models that are 
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able to simulate a large domain to calculate long-range transport but include the detailed parameterizations of the urban 
environment (urban heat island effect etc.) required to successfully simulate nitrate.  655 
 

Determining the contribution of local vs. transported PM2.5 is essential to the development of successful policy measures to 

reduce unhealthy pollution levels. Significant effort has gone into this evaluation in South Korea, but with models that have 

errors in PM2.5 composition (Choi et al., 2019; Kumar et al., 2021). The local PM2.5 contribution may be underestimated 

without including heterogeneous uptake of SO2 on aerosol to produce sulfate during haze. Locally-produced PM2.5 increased 660 

from 13 to 24 µg m-3, decreasing the fraction of foreign pollution from 66% to 54%. Locally-produced sulfate increased from 

<1 µg m-3 to 6 µg m-3, implying that controls on SO2 could have a larger impact than in model formulations without this 

chemistry. As a consequence of the 2013 Clean Air Action plan implemented in China, emissions of inorganic aerosol 

precursors have been decreasing (Zheng et al., 2018) and resulting in declines in concentrations of PM2.5 in China have declined 

by approximately -5 µg m-3 per year from 2013-2018 (Zhai et al., 2019). Emission reductions in South Korea may be less rapid 665 

(Bae et al., 2021), and thus the impact of long-range transport on future PM2.5 pollution events could decline in the future. It 

is critical for models to improve representations of the interactions between physical processes and chemical production of 

PM2.5 production to support continued local air quality improvements. Follow-up studies to this work will evaluate model 

performance during other seasons (i.e., winter) using a model system with online meteorology to determine whether factors 

driving model errors in this work are occurring throughout the year.-, 670 
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Table 1. Description of the ground site and aircraft observations used in this work1 

Instrument PI Species Reference2 
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Ground Observations 
Korea Institute of Science and Technology (KIST)3 

Aerodyne High-Resolution Time-of-Flight 
Aerosol Mass Spectrometer (HR-ToF-AMS)  

Hwajin Kim OA, pNH4, pNO3, 
pSO4 

Kim et al., 2018 

Multi-angle absorption spectrometer 
(MAAP) 

Hwajin Kim BC Kim et al., 2018 

Olympic Park4 
Monitor for AeRosols and Gases in ambient 
Air (MARGA) 

Seogju Cho SO2, SO42- N/A 

Chemical Ionization Mass Spectrometry 
(CIMS) 

Saewung Kim ClNO2 Slusher et al., 2004 

Vaisala CL51 James Szykman  MLH N/A 
2B Tech 211, Teledyne T200U, Teledyne 
T500U CAPS, Aerodyne QCL 

James Szykman 
and Andrew 
Whitehill 

O3, NO, NO2 N/A 

Dasibi Model 2108 Oxides of Nitrogen 
Analyzer 

NIER O3, NO2 N/A 

BAM-1020 instruments (Met One 
Instruments, Inc., Grants Pass, OR, USA) 

NIER PM2.5 N/A 

DC8 Aircraft 
High-Resolution Time-of-Flight Aerosol 
Mass Spectrometer (HRToF-AMS) 5 

Jose Jimenez pNO3, pSO4 Nault et al., 2018  
Guo et al., 2021 

Soluble Acidic Gases and Aerosol (SAGA) Jack Dibb Na+, Cl- Dibb et al., 2003 
Caltech CIMS (CIT-CIMS) Paul Wennberg HNO3, propene 

hydroxynitrate  
St. Clair et al., 2010; 
Crounse et al., 2006 

Airborne Tropospheric Hydrogen Oxides 
Sensor (ATHOS) 

William Brune OH Faloona et al., 2004; 
Brune et al., 2020 

NCAR 4-Channel chemiluminescence 
instrument 

Andrew 
Weinheimer 

NO, NO2 Weinheimer et al., 1993, 
1994 

Georgia Tech–Chemical Ionization Mass 
Spectrometer (GT-CIMS)  

L. Greg Huey SO2 Kim et al., 2007 

Diode laser spectrometer (Differential 
Absorption Carbon monOxide Measurement, 
DACOM) 

Glenn Diskin CO Sachse et al., 1987 
 

Diode Laser Hygrometer measurements of 
H2O(v) (DLH) 

Glenn Diskin RH% Diskin et al., 2002 

Thermal Dissociation–Laser-Induced 
Fluorescence (TD-LIF) 

Ron Cohen 
 

ΣANs, ΣPNs 
 

Wooldridge et al., 2010; 
Day et al., 2002 

Whole Air Sampler (WAS) Donald Blake propene Simpson et al., 2020 
1For a full description of all KORUS-AQ observations, see Crawford et al., 2021. 
2For specific measurement descriptions including uncertainty information, see the KORUS-AQ data archive (doi: 
10.5067/Suborbital/KORUSAQ/DATA01) 1180 
3Korea Institute of Standards and Technology (KIST), 37.602°N, 127.126°E  

4Olympic Park site in Seoul, 37.522°N,127.124°E 
5AMS data is written without the charge, see http://cires1.colorado.edu/jimenez-
group/wiki/index.php/FAQ_for_AMS_Data_Users#Why_do_you_write_SO4_.26_NO3_and_not_SO42-_.26_NO3-.3F. 
 1185 
Table 2. KORUS-AQ emissions over the domain 70o to 140oE, 15oS to 55oN 
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May 2016 (Gg) NOx CO SO2 NH3 
Natural 7631 NA 1433 155 
Biomass burning 92 7122 53 137 
Fossil fuel combustion2 1921

1920 
16163 2133 17054 

Total 2776
2775 

23285 2329 1997 

1Lightning, soil and fertilizer emissions 
2Point, area, mobile sources, ships, aircraft from the KORUSv5 inventory 
3Volcanic eruptions + degassing 
4Includes agricultural emissions 1190 
 

 
Figure 1. a) Model simulation of PM2.5 during KORUS-AQ compared against the mean observations at the 15 AirKorea sites 
in the b) GEOS-Chem model grid-box containing Olympic Park and KIST. The gray shading shows the observed standard 
deviation. The correlation coefficient (R) and normalized mean bias (NMB) are inset. Map tiles by Stamen Design, under CC 1195 
BY 3.0. Data by © OpenStreetMap contributors, under ODbL. 
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Figure 2. Model simulation of PM2.5 compared against observations where the fractional source contributions are calculated 
from KIST and applied to the mean AirKorea PM2.5 observations from Figure 1 during the four meteorological periods. Figure 1200 
values are shown in Table 3. The radius of each pie chart is scaled to the maximum value of modeled or observed PM2.5 (53 
μg m-3). The blue circles show the aerosol liquid water content (ALWC) associated with PM2.5. The sulfate-nitrate-ammonium 
components are bordered in black to guide the reader. 
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Table 3. Modeled vs. observed PM2.5 composition  

 Observations (µg m-3)  Model (µg m-3)  
Species Dynamic Stagnant Transport/ 

Haze 
Blocking Avg Dynamic Stagnant Transport/ 

Haze 
Blocking Avg 

Sulfate 3.9 3.6 14.7 5.5 6.1 1.7 1.4 4.1 2.1 2.2 
Nitrate 2.4 3.4 11.2 3.1 4.5 4.2 4.0 12.9 6.2 6.1 

Ammonium 1.9 2.2 8.2 2.7 3.3 1.8 1.7 5.3 2.6 2.6 
SOA 6.0 14.2 11.5 8.6 9.5 3.9 4.8 10.0 5.1 5.4 
POA 3.3 4.3 4.8 2.8 3.7 2.8 2.8 3.3 3.3 3.0 
BC 1.2 1.7 2.2 1.3 1.5 1.0 1.2 2.1 1.5 1.3 

PM2.5 18.7 29.4 52.6 24.0 28.6 15.4 15.9 37.7 20.8 20.6 
ALWC1 12.0 4.1 26.9 6.2 12.6 11.9 17.6 48.7 29.5 22.9 

PM2.5 + H2O 30.7 33.5 79.5 30.2 41.2 27.3 33.5 86.4 50.3 43.5 
1Aerosol liquid water content (ALWC) is calculated using E-AIM from temperature at KIST, the 50th percentile of RH across 
the AirKorea sites in Figure 1b, and the speciated PM2.5 components from Figure 2. 1215 
 
Table 4. Description of model experiments 

Name Resolution Simulation Length Description of changes 
Base model 0.25o × 0.3125o over East Asia. 

Boundary conditions (BCs) 
from a global 2o × 2.25o 
simulation1. 

1 month initialization 
+ KORUS-AQ period 
(May 1-June 9). 

N/A 

No nighttime production 0.25o × 0.3125o over East Asia. KORUS-AQ period Remove reactions R2-R5. 
Old wet scavenging scheme 0.25o × 0.3125o over East Asia.  KORUS-AQ period Remove recently implemented wet 

scavenging scheme (Luo et al., 2019). 
5x dry deposition 0.25o × 0.3125o over East Asia.  KORUS-AQ period Increase the deposition velocity of 

HNO3 by a factor of 5. 
No local emissions 0.25o × 0.3125o over East Asia.  KORUS-AQ period Turn off anthropogenic emissions over 

South Korea. 
Raise nighttime PBL 0.25o × 0.3125o over East Asia.  KORUS-AQ period Increase the nighttime MLH to 500m. 
Increased nighttime mixing 0.25o × 0.3125o over East Asia.  May 23 to May 31 Increase the nighttime MLH to 300m 

and set nighttime sensible heat flux to 
10 W m-2. 

Het SO2 0.25o × 0.3125o over East Asia.  KORUS-AQ period Uptake of SO2 on aerosol with 𝛾B6,**%  

= 3 × 10%$ and 𝛾B6)*%= 3 × 10%#. 
1Boundary conditions from the base simulation are applied to all sensitivity simulations. 
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Figure 3. Mean vertical profiles of a) observed sulfate, b) observed nitrate, c) model sulfate, and d) model nitrate for the 
descents intoover Olympic Park for each meteorological period. The observations (solid lines) and model (dashed lines) are 1225 
binned to the nearest 0.5 km below 2 km.  
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Figure 4. a) Mean hourly modeled vs. observed nitrate derived from PM2.5 observations in the GEOS-Chem gridbox and KIST 1230 
speciated composition as described in Section 4 for May 1 to June 7, 2016. The gray shading indicates the observed 25th to 
75th percentile across the grid box. The model sensitivity studies are described in Section 5. b) Mean model nitric acid diurnal 
cycle. c) Mean model reactions that produce HNO3 as described in Section 3. 
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Figure 5. Modeled and observed ɛNO3 as a function of RH below 1.5 km for the domain of Fig. 3. Median ɛNO3 as a function 
of equally size-binned RH is overlaid (squares). The haze buildup (5/24-5/26) is shown in gray for the observations and dark 
red for the model. 
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Figure 6. Mean vertical profiles of a) HNO3, b) NO2, c) OH, and d) production of HNO3 (pHNO3) for the same domain as Fig. 
3 but accounting for the availability of OH, NO2, and HNO3 observations. The horizontal bars show the observed and modeled 
standard deviations. The number of points in each altitude bin are shown in panel a). Model sensitivity simulations that are not 
significantly different than the base model run are plotted underneath the base model line.  1245 
 

 
Figure 7. Gridded HNO3 from the observations a), model b), and the percent difference c) along the flight tracks at the model 
resolution and below 2 km. Map tiles by Stamen Design, under CC BY 3.0. Data by © OpenStreetMap contributors under 
ODbL. 1250 
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Figure 8. Plot of binned observations of NOx (right axis), total nitrate (TNO3 = HNO3 + pNO3), sum of peroxy nitrates (ΣPNs), 
and sum of alkyl- and multi-functional nitrates (ΣANs) (left axis for TNO3, ΣPNs, and ΣANs), normalized to background 
subtracted CO. The background CO from Nault et al. (2018) of 200 ppbv was used. The photochemical age was calculated 
using propene and one of its photochemical products, propene hydroxynitrate (Section S3S4). Data are binned between 0 and 1255 
5 equivalent hr between 11am to 4pm KST below 1km for the SMA (127 to 127.7oN, 37.2 to 37.7oN). The fit for NOx (dotted 
gray curve) is an exponential decay, leading to a first order rate of 0.31 hr-1, which represents the loss of NOx via the production 
of oxidized compounds, such as TNO3. The best fit for TNO3(t) from Eq. 3 (dotted blue curve) includes this production and 
solves for first order loss, which is assumed to be equivalent to the TNO3 deposition rate (Section S3S4). Red curves represent 
solutions for TNO3(t) from Eq. 3, assuming different deposition velocities (Vd) discussed in Section 5.2. 1260 
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Figure 9. Mean diurnal cycle from May 1 to June 7, 2016 for a) ozone and b) NO2 for the AirKorea sites within the GEOS-
Chem gridbox (Fig. 1b) and for c) NO and d) NOx at Olympic Park. The gray shading represents the standard deviation across 1265 
the AirKorea sites. The solid gray line is the AirKorea site closest to Olympic Park, and the dashed line is the measurement 
from the EPA (Table 2) at Olympic Park. The sensitivity study (blue line) is described in Section 5.3.  
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Figure 10. a) Mean diurnal cycle for the mixed layer height (MLH) from the model and observations from May 1 to June 7, 
2016, and b) sensible heat flux (HFLUX) from the model. The MLH is given for the ceilometers (CLH) at Olympic Park 
(black) and at Seoul National University (gray). 
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Figure 11. a) Transport/Haze period timeseries of modeled and observed hourly nitrate fraction of PM2.5, b) modeled 
production of HNO3 from N2O5 (R2) and NO2 (R4), c) ozone, d) and NO2. The sensitivity studies are described in Section 6. 
The gray shaded regions represent 8pm 6pm to 8am6am. 1280 
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Figure 12. Sulfate oxidation ratio (SOR = =5%&'

=5%&''=C&
) as a function of RH at Olympic Park and from aircraft below 1km for the 

same domain as Fig. 3.descents over Olympic Park. The squares highlight the data during the Transport/Haze period. 1285 
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Figure 13. Composition of model PM2.5 during the Transport/Haze period. The foreign and local contributions and model 
sensitivity test including heterogeneous uptake of SO2 to aerosol (Het SO2) are calculated as discussed in Section 6. The total 
PM2.5 excluding aerosol liquid water content (ALWC) is given for each simulation. 1290 
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