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Abstract. Atmospheric brown carbon (BrC) makes a substantial contribution to aerosol light-absorbing and thus the global 

radiative forcing. Although BrC may change the lifetime of the cloud and ultimately affect precipitation, little is known 15 

regarding the optical properties and formation of BrC in the cloud. In the present study, the light-absorption properties of cloud 

droplet residual (cloud RES) were measured by coupled a ground-based counterflow virtual impactor (GCVI) and an 

Aethalometer (AE-33), in addition to the cloud interstitial (cloud INT) and ambient (cloud-free) particles by PM2.5 inlet-AE-

33, at Mt. Tianjing (1690 m a.s.l.), a remote mountain site in southern China, from November to December 2020. Meanwhile, 

the light-absorption and fluorescence properties of water-soluble organic carbon (WSOC) in the collected cloud water and 20 

PM2.5 samples were also obtained, associated with the concentration of water-soluble ions. The mean light-absorption 

coefficient (Abs370) of the cloud RES, cloud INT, and cloud-free particles were 0.25 ± 0.15, 1.16 ± 1.14, and 1.47 ± 1.23 Mm-

1, respectively. The Abs365 of WSOC was 0.11 ± 0.08 Mm-1 in cloud water and 0.40 ± 0.31 Mm-1 in PM2.5, and the 

corresponding mass absorption efficiency (MAE365) was 0.17 ± 0.07 and 0.31 ± 0.21 m2·g-1, respectively. A comparison of the 

light-absorption coefficient between BrC in the cloud RES/cloud INT and WSOC in cloud water/PM2.5 indicates a considerable 25 

contribution (48-75%) of water-insoluble BrC to total BrC light-absorption. Secondary BrC estimated by minimum R squared 

(MRS) method dominated the total BrC in cloud RES (67-85%), rather than in the cloud-free (11-16%) and cloud INT (9-23%) 

particles. It may indicate the formation of secondary BrC during cloud processing. Supporting evidence includes the enhanced 

WSOC and dominant contribution of secondary formation/biomass burning factor (> 80%) to Abs365 in cloud water provided 

by Positive Matrix Factorization (PMF) analysis. In addition, we showed that the light-absorption of BrC in cloud water was 30 

closely related to humic-like substances and tyrosine/proteins-like substances (r > 0.63, p < 0.01), whereas only humic-like 

substances for PM2.5, as identified by excitation-emission matrix fluorescence spectroscopy. 



 

2 

 

Keywords: brown carbon, light-absorption, cloud water, in-cloud process, cloud residuals 



 

3 

 

Key points  

 The optical properties of BrC in both cloud-processed and cloud-free particles were simultaneously obtained. 35 
 In-cloud process may facilitate the formation of BrC, with secondary BrC as the dominant fraction (67-85%). 

 light-absorption of BrC in cloud water is closely related to humic-like and tyrosine/proteins-like substances. 
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1 Introduction 

Brown carbon (BrC) makes a significant contribution to global radiative forcing, equivalent to 27-70% of that from black 40 

carbon (BC) (Lin et al., 2014a). The addition of BrC in climate models may change the direct radiation effect of organic 

aerosols from cooling (-0.08 W·m-2) to warming (+0.025 W·m-2), which may affect the lifetime and distribution of clouds, and 

thus precipitation and surface temperature (Zhuang et al., 2010). BrC may also contribute to uncertainties in global radiative 

forcing, as estimated to cause positive radiative forcing (-2.0 ~ +2.5 W·m-2, with an average of 0.01 ± 0.04 W·m-2) in aerosol-

cloud interaction (Brown et al., 2018). However, such models rarely considered the secondary BrC, although increasing 45 

evidence shows that secondary BrC may represent the dominant fraction of total BrC (19-91%) (Wang et al., 2019a, 2019b). 

Aqueous-phase reactions in the cloud have been shown to significantly affect global secondary organic aerosol (SOA) 

production (Ervens, 2015; Liu et al., 2012; Spracklen et al., 2011), and thus may potentially contribute to secondary BrC. 

Production of BrC from aqueous-phase reactions have been extensively investigated in the laboratory, revealing that BrC can 

also be secondarily formed through a variety of mechanisms, e.g., photochemical oxidation, nitration, and Maillard reactions 50 

(Lin et al., 2014b; Pósfai et al., 2004; Shapiro et al., 2009). For instance, secondary BrC is observed from the photo-oxidation 

of aromatics (Pang et al., 2019; Yang et al., 2021a), the nitration of phenol (Heal et al., 2007; Vione et al., 2001), and the 

reaction of carbonyls and ammonium/amines (De Haan et al., 2011; Nguyen et al., 2012; Heal et al., 2007). The secondary 

BrC such as nitrophenols, aromatic carbonyls, imidazole, and organosulfates have also been detected in cloud/fog water 

(Desyaterik et al., 2013; Kim et al., 2019; Pratt et al., 2013; Bianco et al., 2016a; Lebedev et al., 2018; Lüttke and Levsen, 55 

1997). However, to what extent do in-cloud processes contribute to the formation of BrC is still unclear. 

Given that the currently applied imaginary refractive index of BrC based on the empirical formula of BC/OA ratio (Saleh et 

al., 2014) in the model simulation (Brown et al., 2018) may induce potential bias (Bikkina and Sarin, 2019), more field studies 

should be conducted to constrain the optical properties of BrC. Although various light-absorbing species have been identified 

in cloud, only few studies focused on the optical properties of BrC in fog/cloud. Nitrophenols and aromatic carbonyls were the 60 

major fraction contributing to the light-absorption (~50%) of cloud water at wavelengths from 300 to 400 nm in Mt. Tai 

(Desyaterik et al., 2013). The mass absorption efficiency (MAE365) of water-soluble organic carbon (WSOC) in fog water in 

California was 0.1-0.6 m2·g-1 (Kaur and Anastasio, 2017). Many field studies focused on the optical properties of BrC in 

particulate matter. The light-absorption of BrC in PM2.5 was well correlated with nitrophenols, polycyclic aromatic 

hydrocarbons, and oxygenated polycyclic aromatic (Wu et al., 2020). Nitrophenols and carbonyl oxygenated polycyclic 65 

aromatic hydrocarbons accounting 10-14% to the light-absorption at 365 nm in urban PM2.5 (Huang et al., 2020). The 

contribution of nitrophenols and nitrated salicylic acids to the aqueous extract light-absorption of PM10 was 0.10-3.71% and 5 

times higher than their mass contribution to WSOC (Teich et al., 2017). The fluorescent chromophores of fog/cloud water, as 

identified by excitation-emission matrix fluorescence spectroscopy (EEMs) in Louisiana and Mt. Tai, were mainly composed 

of humic-like and protein-like substances (Birdwell and Valsaraj, 2010; Zhao et al., 2019), which might also be related to the 70 
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presence of BrC (Chen et al., 2016; Wang et al., 2020a). However, such studies were generally limited to PM2.5, rather than in 

the cloud. 

Our previous studies have shown that the in-cloud aqueous-phase reactions could significantly promote the formation of SOA 

such as nitrogen-containing organic matters and affect the physicochemical properties of particles (Fu et al., 2020; Lian et al., 

2021; Lin et al., 2017; Zhang et al., 2017a). In the present study, we took a further step to perform simultaneous on-line 75 

measurements of the light-absorption coefficients for the cloud droplet residual (cloud RES), cloud interstitial (cloud INT), 

and ambient (cloud-free) particles, coupled with the light-absorption and concentration measurements of WSOC in cloud water 

and PM2.5. We aim to explore: 1) the optical properties of BrC in cloud-processed, cloud-free particles and WSOC in PM2.5 

and cloud water; 2) the possible contribution of in-cloud production to BrC light-absorption, and 3) the characteristics of 

fluorescent chromophores in cloud water and PM2.5 and their relationship with light-absorption properties of BrC. 80 

2 Methods 

2.1 Sampling setup 

Measurements of the cloud-free, cloud RES, and cloud INT particles were performed at Mt. Tianjing (24°41′56″N, 

112°53′56″E, 1690 m a.s.l.) in Guangdong province, China during 18 November to 5 December 2020. This site is located at a 

national forest reserve and is less affected by anthropogenic sources. The cloud event determination threshold was set as 85 

visibility less than 3 km and relative humidity (RH) larger than 95%. During the cloud events, the cloud RES and cloud INT 

particles were alternately introduced into the instruments through ground-based counterflow virtual impactor (GCVI, model 

1205, Brechtel Mfg., Inc., USA) and PM2.5 cutoff, respectively, at a frequency of one hour. The GCVI cut size was set to 7.5 

μm, where the transmission efficiency of cloud droplets is 50% (Shingler et al., 2012). It should be noted that the PM2.5 inlet 

may introduce possible uncertainty for the collection of cloud INT particles due to the interference of cloud droplets, although 90 

the size distribution of cloud droplets were mainly concentrated on 6-9 μm at mountain sites (Li et al., 2017). However, it 

would not be the case when cloud residual particles were mainly focused in the present study. The collected cloud droplets 

passed through an evaporation chamber (40℃), resulting in the cloud RES particles for downstream analysis. An Aethalometer 

(model AE-33, Magee Scientific., USA) was used to measure the light-absorption coefficients of particles at wavelengths of 

370, 470, 520, 590, 660, 880, and 950 nm. AE-33 uses two parallel spot measurement technology to compensate for the light 95 

attenuation due to the filter loading effect (Drinovec et al., 2015). The BC concentration was calculated by the light-absorption 

coefficient at 880 nm. The detection limit of BC is less than 10 ng·m-3 (equal to 0.077 Mm-1 at 880 nm) and the uncertainty is 

~ 2 ng·m-3 (equal to 0.015 Mm-1 at 880 nm), with a time resolution of 1 minute. 

Cloud water samples were collected by a Caltech Active Strand Cloud water Collector, Version 2 (CASCC2) (Demoz et al., 

1996; Yang et al., 2021b) when the visibility was less than 200 m (during 14 November to 4 December 2020). The collection 100 

efficiency was 50% at a cut size of 3.5 μm, the flow rate was 5.8 m3·min-1, and the collection efficiency was 86%. During the 

sampling period, 53 cloud water samples were collected. The 0.22 μm quartz fiber filter was used immediately to remove 
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insoluble components after collection of cloud water and then frozen at -20℃ until analysis. Meanwhile, PM2.5 samples were 

collected by a mid-volume (300 L·min-1) aerosol sampler (PM-PUF-300, Mingye, China). Daily samples (during 14 November 

to 8 December 2020) were collected on the quartz fiber filters, which were prebaked at 450℃ for 4 h in a muffle furnace to 105 

remove residual organics before use. After collection, all samples were frozen at -20℃ until analysis. In this study, PM2.5 

samples collected at the same time with cloud water samples were regarded as INT-PM2.5 (n = 13), and the others as FREE-

PM2.5 (n = 19). It should be noted that some FREE-PM2.5 samples also experienced short cloud events during collection. Blank 

samples of the cloud water and PM2.5 were collected and processed following the same procedure as the samples. 

2.2 Calculation of secondary BrC light-absorption 110 

The light-absorption coefficient (AbsBrC(λ), Mm-1) of BrC in different wavelengths can be obtained by AE-33, assuming that 

the absorption Ångstrӧm exponent (AAE) of BC is 1 and the light-absorption at 880 nm only due to BC (Drinovec et al., 2015). 

The cloud RES, cloud INT, and cloud-free particles were generally located in submicron size (Fig. S1), and thus unlikely 

originated from non-combustion sources are mostly biogenic and mainly exist in the coarse mode (Perrino and Marcovecchio, 

2016). The AbsBrC(λ) contributed by the combustion sources can be estimated through a BC-tracer method (Wu et al., 2018): 115 

𝐴𝑏𝑠𝑝𝑟𝑖,𝑐𝑜𝑚𝑏(𝜆) = (
𝐴𝑏𝑠(𝜆)

𝐵𝐶
)𝑝𝑟𝑖 × [𝐵𝐶] 

Where Abs(λ) is the total light-absorption coefficient of carbonaceous aerosol that measured by AE-33, (
𝐴𝑏𝑠(𝜆)

𝐵𝐶
)𝑝𝑟𝑖 can be 

determined by the minimum R squared (MRS) method to further evaluate the relative contribution of primary BrC and 

secondary formation BrC to the overall AbsBrC(λ). Firstly, 𝐴𝑏𝑠𝑝𝑟𝑖,𝑐𝑜𝑚𝑏(𝜆) is calculated based on (
𝐴𝑏𝑠(𝜆)

𝐵𝐶
)𝑝𝑟𝑖, which is assumed 

to be step increasing from 0 to 120 with a rate of 0.1. The target (
𝐴𝑏𝑠(𝜆)

𝐵𝐶
)𝑝𝑟𝑖 value can be retrieved when the correlation 120 

coefficient (R2) between AbsBrC,sec(λ) with BC concentration reaches the minimum (see Fig. S2). Previous studies showed that 

the bias of MRS method is less than 23%, when the measurement uncertainty is less than 20% (Wu and Yu, 2016). It should 

be noted that when the measured ratio of 
𝐴𝑏𝑠(𝜆)

𝐵𝐶
 is lower than the retrieved (

𝐴𝑏𝑠(𝜆)

𝐵𝐶
)𝑝𝑟𝑖, the AbsBrC,sec(λ) could be negative. In 

these cases, AbsBrC,sec(λ) is set to zero for subsequent analysis (Kaskaoutis et al., 2021; Wang et al., 2019a). These cases account 

for less than 5% in the cloud RES and 28-70% in the cloud INT and cloud-free particles 125 

2.3 Measurements of PM2.5 and cloud water 

PM2.5 samples were ultra-sonically extracted with ultrapure water (resistivity: 18.2 MΩ cm) for 30 min, then filtered by the 

0.22 μm polytetrafluoroethylene (PTFE) filters to obtain the PM2.5 aqueous extract. The concentrations of water-soluble ions, 

water-soluble heavy metals, WSOC in PM2.5 aqueous extract and cloud water samples were analyzed by ion chromatography 

(Metrohm 883 IC plus, Switzerland), inductively coupled plasma mass spectrometry (ICP-MS, Thermo Fisher, USA), and 130 
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total organic carbon analyzer (TOC-V, Shimadzu, Japan), respectively. Parallel analyses showed that the relative standard 

deviation of each analysis was generally less than 15%. The reported concentration data herein was after blank subtraction. 

The light-absorption coefficient (AbsWSOC,λ) of WSOC can be obtained (Hecobian et al., 2010) by the measurement of cloud 

water and PM2.5 aqueous extract, with UV-Vis (UV1901, Kejie, China): 

𝐴𝑏𝑠𝑊𝑆𝑂𝐶,𝜆 = (𝐴𝜆 − 𝐴700) ×
𝑉𝑙

𝑉𝑎 × 𝐿
× ln(10) 135 

Where 𝐴𝜆 is the absorbance of the sample, A700 is used to account for any drift; Vl is the volume of ultrapure water used to 

extract the sample (for cloud water it is the total sample volume), Va is the volume of sampled air through the PTFE filter (for 

cloud water it is the total volume of sampled air), and L is the cuvette path length (0.01 m). 

The AAE values describing the spectral dependence of WSOC light-absorption can be further deduced by exponential fitting 

AbsWSOC,λ between 300-500 nm. The MAEWSOC,λ can be calculated by divided AbsWSOC,λ by the mass concentration of WSOC 140 

(μg·m-3). The E250/E365 (the ratio of absorbance at 250 nm to that at 365 nm) is used to describe the humification of organic 

matter, which is inversely related to aromaticity and molecular weight of WSOC (Kristensen et al., 2015). Specific UV 

absorbance (SUVA, m2·g-1) at 254 and 280 nm had been proved to be qualitatively related to the structural characteristics 

(aromaticity and molecular weight) of WSOC to a certain extent (Weishaar et al., 2003), which can be calculated using the 

following equation: 145 

𝑆𝑈𝑉𝐴254 𝑜𝑟 280 =
𝐴

𝐿 × 𝐶WSOC
 

Where 𝐴 is the absorbance of sample at 254 or 280 nm, 𝐶WSOC is the concentration of WSOC (mg·L-1). 

The excitation-emission matrix fluorescence spectroscopy (EEMs) of PM2.5 extract and cloud water were measured by a 

fluorescence spectrophotometer (F97pro, Lengguang, China). The sample blank was deducted before analysis, and the EEMs 

were normalized to the Raman units (R.U.) by using the Ramen peak (Ex = 350 nm, Em = 365-430 nm) of ultrapure water 150 

measured simultaneously with the sample (Lawaetz and Stedmon, 2009). Parallel factor (PARAFAC) analysis was performed 

on the acquired spectra with drEEM toolbox (version 0.3.0) based on MATLAB (Murphy et al., 2013), according to the outlier 

tests of PARAFAC, 6 samples with high leverage and high residual signals were removed in the modeling of PM2.5 aqueous 

extract. The details for obtaining maximum fluorescence intensity (Fmax), fluorescence index (FI), recent autochthonous 

contribution (BIX), and humification index (HIX) were described in the supporting information (SI) text S1. 155 

3 Results and Discussion 

3.1 The optical properties of BrC during cloud events 

The presence of BrC could be indicated by the AAE values derived from AE-33 data, which are 1.30 ± 0.12 for cloud-free, 

1.36 ± 0.22 for cloud INT, and 1.32 ± 0.15 for cloud RES particles. The light-absorption coefficient of BrC at 370 nm (Abs370) 

of cloud-free, cloud INT and cloud RES particles are 1.47 ± 1.23, 1.16 ± 1.14, and 0.25 ± 0.15 Mm-1, respectively (Fig. 1), 160 
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with the AAE values of BrC at 2.71 ± 0.69, 3.13 ± 0.97, and 2.76 ± 0.89, respectively. The contribution of BrC light-absorption 

to the total particle light-absorption in the cloud-free, cloud INT, and cloud RES particles shows no significant difference, on 

average decreasing from ~23% at 370 nm to ~7% at 660 nm, as shown in Fig. 2. 

For the cloud water and PM2.5 aqueous extracts, light-absorption properties of WSOC at 365 nm are taken as the representative 

to those of water-soluble BrC (WS-BrC) in the present study. As expected, there is a positive correlation between Abs365 and 165 

WSOC concentration in both cloud water and PM2.5 aqueous extracts (r > 0.61, p < 0.01). As shown in Fig. 1, there is great 

difference in Abs365 of WSOC in FREE-PM2.5, INT-PM2.5, cloud water-Day, and cloud water-Night, which are 0.49 ± 0.34, 

0.27 ± 0.18, 0.09 ± 0.04, and 0.13 ± 0.10 Mm-1, respectively. The Abs365 of WSOC in PM2.5 in this study is at the same 

magnitude to that of PM10 in Tibet Plateau (Kirillova et al., 2016), and much lower than those in urban areas (3.4-33.9 Mm-1, 

as summarized in Table S1) (Chen et al., 2018, 2020; Huang et al., 2020; Kim et al., 2016). The AAE of WSOC has no 170 

significant difference among FREE-PM2.5, INT-PM2.5, cloud water-Day, and cloud water-Night, which are 6.01 ± 0.81, 5.37 

± 1.08, 5.81 ± 1.47, and 6.31 ± 1.51, respectively, within the reported range. 

The MAE365 of WSOC in FREE-PM2.5, INT-PM2.5, cloud water-Day, and cloud water-Night are 0.31 ± 0.17, 0.31 ± 0.26, 0.17 

± 0.07, and 0.17 ± 0.07 m2·g-1, respectively. The MAE365 of WSOC in cloud water and PM2.5 are much lower than those in 

urban/alpine areas and various source emission samples (Table S1) (Chen et al., 2018, 2020; Fan et al., 2016; Huang et al., 175 

2020; Kim et al., 2016; Kirillova et al., 2016; Li et al., 2019; Park and Yu, 2016; Soleimanian et al., 2020; Wu et al., 2019). 

The MAE365 of WSOC shows no significant difference between the FREE-PM2.5 and INT-PM2.5, which is similar to the result 

observed in the Indo-Gangetic plain (Choudhary et al., 2018), but their values are quite higher, i.e., 1.6 m2·g-1 and 1.8 m2·g-1 

for the INT-PM1.0 and FREE-PM1.0, respectively. The MAE365 of WSOC in cloud water (0.06-0.32 m2·g-1) is slightly lower 

than the previously reported values in fog water (0.1-0.6 m2·g-1) in California (Kaur and Anastasio, 2017). Both the MAE365 180 

of WSOC in cloud water and PM2.5 show a positive correlation (r > 0.84, p < 0.01) with SUVA254/280, and a medium negative 

correlation (r > 0.43, p < 0.05) with E250/E365, which may indicate that higher MAE365 of WSOC has higher aromatic and 

molecule weight, the aromaticity and molecular weight of WSOC may influence the light-absorption capacity of cloud water 

and PM2.5 (Fig. S3). 

Although there are tight correlations between the Abs370 for cloud water and the cloud RES particles, and for the INT-PM2.5 185 

and the cloud INT particles (Fig. 3, r > 0.60, p < 0.01), the Abs370 of WSOC in cloud water (0.12 Mm-1) and INT-PM2.5 (0.27 

Mm-1) is considerably lower than those in the cloud RES (0.24 Mm-1) and cloud INT particles (1.08 Mm-1) that collected 

simultaneously. Such difference may be attributed to the contribution of water-insoluble organic carbon (WIOC). The different 

optical properties for the whole BrC and WS-BrC may also be reflected by the AAE values. They are generally in a range of 

4-8 at 300-500 nm in cloud water and PM2.5, much higher than those for BrC (2-4) calculated from AE-33 data at 370-660 nm. 190 

The contribution of water-insoluble BrC to the light-absorption is estimated to be ~75% for the cloud INT particles and ~48% 

for the cloud RES particles on average, based on these differences (Fig. 3). It is also noted that the light-absorption of WIOC 

might still be underestimated by ~16% when sampling size is considered for the GCVI and cloud sampler (as discussed in SI 
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text S1). High contributions of WIOC to BrC light-absorption have also been observed in the Indo-Gangetic plain (77%) 

(Satish et al., 2020), Beijing (62%), and Xi'an (51%) (Huang et al., 2020). 195 

3.2 The secondary contribution of BrC during cloud events  

Fig. 2 shows the contribution of secondary BrC to the total BrC in cloud-free, cloud INT, and cloud RES particles estimated 

by the MRS method. 11-16% and 9-23% of the total absorption of BrC come from the secondary BrC for the cloud-free and 

cloud INT particles, respectively. Only a slight difference observed for the cloud-free and cloud INT particles, indicating that 

cloud processing may have limited influence on the cloud INT particles. It is noted that even during the cloud-free periods, 200 

RH was generally higher than 70% (Fig. S1). The contribution of secondary BrC in cloud INT and cloud-free particles are in 

the low range of reported values (as summarized in Table S2) (Gao et al., 2022; Kaskaoutis et al., 2021; Lin et al., 2021; Wang 

et al., 2019a, 2019b, 2020b, 2021; Zhang et al., 2020, 2021; Zhu et al., 2021). 

Differently, the contribution of secondary formed BrC to the total BrC light-absorption is 67-85% in the cloud RES particles, 

surprisingly higher than those in the cloud-free and cloud INT particles. Such a high contribution may suggest the critical role 205 

of cloud processing in the formation of BrC. Compared with the relative contributions for the cloud-free and cloud INT 

particles, the importance of such a process in cloud droplets remarkably overrides that in cloud-free and cloud INT particles. 

The significance of secondary water-soluble BrC formation in cloud droplets may also be reflected by the significant 

correlation between the Abs365 of cloud water and PM2.5 aqueous extract with SNA (sulfate, nitrate, and ammonium) (r > 0.77, 

p < 0.01), and NOx (r > 0.58, p < 0.01), as shown in Fig. S4. The SNA and NOx concentrations are higher at night than the 210 

daytime (Fig. S5), consistent with higher Abs365 of cloud water at night. NO2
- resulted from the dissolved NOx can react with 

benzene and finally formed nitrophenol in the presence of UV-A (Harrison et al., 2005; Vione et al., 2004), Various of reactive 

oxygen/nitrogen species generated from the photolysis of inorganic nitrate in aqueous-phase could also facilitate the 

photooxidation of organic compounds to form BrC (Seinfeld and Pandis, 2016; Yang et al., 2021a), and potentially contributing 

to the light-absorption of cloud water (Desyaterik et al., 2013). In-cloud aqueous processes leading to more CHON compounds 215 

in cloud water than below-cloud atmospheric particles has also been observed (Boone et al., 2015). In addition, a comparison 

between the WSOM (WSOM = WSOC*1.8) normalized by K+ (as a primary source tracer) in cloud water than INT-PM2.5 

(Fig. S6) also clearly indicates the enhanced formation of WSOM in cloud water. It is consistent with that the light-absorption 

of WSOC contributed more to the cloud RES (~52%) than the cloud INT (25%) particles, as estimated in Fig. 3. 

The source apportionment of BrC in cloud water (i.e., Abs365) evaluated by the PMF model (see SI for data analysis and 220 

evaluation methods) also supports the critical role of aqueous process on the formation of BrC, as shown in Fig. 4. Factor 1 is 

associated with relatively higher K+, NH4
+, NO3

-, SO4
2-, and C2O4

2-, contributing 64.3% to WSOC and 86.9% to Abs365. It may 

be appropriately recognized as secondary products with contribution from biomass burning, as K+ represents a tracer for 

biomass burning, and NH4
+, NO3

-, C2O4
2-, and SO4

2- are regarded as secondary species (Cheng et al., 2015; Wang et al., 2012). 

Note that C2O4
2- is generally considered as a tracer of aqueous-phase processes (Zhang et al., 2017b). As previously observed, 225 

the aqueous SOA formed from biomass burning might contributed to the BrC budget in fog water (Gilardoni et al., 2016). 
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Factor 2 is characterized by high levels of crustal trace elements such as Mg2+, Ca2+, Mn, and Zn, and thus identified as crustal 

materials, contributing 21.9% to WSOC and 8.7% to Abs365. Factor 3 shows extremely high loading with Na+ and relatively 

high Mg2+, Cl-, and Ni, which may originate from marine, contributing 13.8% to WSOC and 4.4% to Abs365. 

3.3 Fluorescence properties of BrC in PM2.5 and cloud water 230 

The results from the EEMs measurements further indicate the different characteristics of WSOC/WS-BrC in PM2.5 and cloud 

water. Based on the PARAFAC model calculation (Fig. 5), two independent fluorescence components (P1-P2) assigned as 

humic-like substances are found in PM2.5, whereas four independent fluorescence components (C1-C4) assigned as humic-like 

substances (C1-C3) and tyrosine/protein-like substances (C4) are found in cloud water (Catalá et al., 2015; Coble, 2007). The 

fluorescence components of cloud water are similar to those in Mt. Tai (Zhao et al., 2019) and France (Bianco et al., 2016b), 235 

where humic-like and protein-like substances are the main chromophores in cloud water. Compared with PM2.5, 

tyrosine/protein-like substances are unique to cloud water in the present study, which may be partly due to their relative 

enrichment in cloud water (Kristensson et al., 2010; Zhang and Anastasio, 2003). 

In addition, the relative contribution of individual chromophores indicated by Fmax in PM2.5 and cloud water also exhibits 

different characteristics, although humic-like substances are the dominant fluorescent fraction in both PM2.5 and cloud water. 240 

The relative contribution shows no obvious difference between P1 and P2 components in PM2.5 (FREE-PM2.5 and INT-PM2.5), 

whereas the C3 component contributes the largest (40.0%) to the fluorescent intensity in cloud water. Further analysis of the 

relationship between the fluorescent components (Fmax) and the light-absorption of WSOC (Abs365) in PM2.5 and cloud water 

shows significant positive correlations between Fmax of all fluorescent components with Abs365 (r > 0.63，p < 0.01, see Fig. 

5). It suggests that these fluorescent components are tightly linked to the light-absorption of WSOC. The FI, BIX, and HIX of 245 

cloud water are 1.58 ± 0.22, 0.57 ± 0.09, and 4.99 ± 3.83 respectively, which indicates limited humified WSOC in cloud water, 

and also less affected by microorganisms and local sources (Huguet et al., 2009; McKnight et al., 2001; Zsolnay et al., 1999). 

Therefore, it is most likely that the organic components in cloud water may be significantly affected by in-cloud aqueous 

formation, consistent with the PMF results. With respect to the secondary processes, humic-like substances may be formed 

through Maillard reaction involving carbonyls and ammonium/amines (Bones et al., 2010; Hawkins et al., 2016), and also the 250 

photo-transformation of tyrosine (Berto et al., 2016).  

 

4 Conclusions and implications 

In the present study, the light-absorption properties of the cloud RES, cloud INT, and cloud-free particles were simultaneously 

investigated at a remote mountain site in southern China. Coupled with the measurements of light-absorption and fluorescence 255 

properties of WSOC in the collected cloud water and PM2.5, it is evident that in-cloud aqueous processing facilitates the 

formation of BrC (i.e., 67-85% secondary BrC in cloud RES particles by MSR method). As potential contributors to light-

absorption of BrC, only two fluorescence fractions of humic-like substances are found in PM2.5, whereas four fluorescence 

fractions (three types of humic-like substances and one type of tyrosine/protein-like substances) are identified in cloud water, 
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most likely attributed to secondary production. While extensive laboratory evidence indicated the possible formation of BrC 260 

in aqueous phase (Hems et al., 2021), our study represents the first attempt to show the possibility under real cloud condition. 

The results could support a previous hydrolysis that in-cloud formation of BrC might contribute to the enhanced BrC/BC in 

the attitude between 5-12 km (Zhang et al., 2017c). Such process might also have potential implication for the lifecycle of BrC 

(Liu et al., 2020).  

In order to evaluate the influence of BrC formation in the light-absorption properties of cloud water, the imaginary part of the 265 

refractive index for cloud water was calculated according to Gelencsér et al. (2003), as detailed in the SI text S1. The average 

imaginary part of cloud water was 5.5×10-8 at 365 nm (Fig. S7), ~10 times that of pure water. The imaginary part (3.4×10-8 at 

475 nm) is a magnitude higher than previous laboratory simulation results (5.2×10-9 at 475 nm), involving 3,5-dihydroxy-

benzoic acid reaction with FeCl3 (Gelencsér et al., 2003). It should also be noted that it is the lowest estimation since only 

WSOC is included in the calculation. As previously indicated, the overall light-absorption of WIOC cannot be negligible. 270 

According to the average MAE550 and AAE of WSOC in cloud water and INT-PM2.5, the optical properties of BrC during 

cloud events could be classified as weakly absorptive BrC (Saleh, 2020). The measured optical properties and suggested in-

cloud formation of BrC would help better understand the atmospheric evolution and the radiation forcing of BrC. 
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Fig. 1. (a) The Abs370 of cloud-free, cloud INT, and cloud RES particles, and (b) the MAE365 and (c) Abs365 of FREE-PM2.5, INT-

PM2.5, cloud water-Day, and cloud water-Night. 530 



 

 

 
Fig. 2. The light-absorption of (a) BrC and BC; (b) primary BrC and secondary BrC at different wavelengths, and the percentage 

represent the contribution of (a) BrC light-absorption to the total particle light-absorption; (b) secondary BrC light-absorption to 

the total BrC light-absorption in the cloud-free, cloud INT, and cloud RES particles, respectively.  



 

 

 535 
Fig. 3. (a) The correlations of WSOC light-absorption to total BrC light-absorption in 370 nm, and (b) the contribution of water-

soluble BrC and water-insoluble BrC to total BrC light-absorption.   



 

 

 
Fig. 4. (a) The composition profiles (% of each species) for the three factors simulated of cloud water by PMF, and (b) the correlation 

of measured, and predicated Abs365, and (c) the source apportionment for Abs365 in cloud water.540 



 

 

 
Fig. 5. The EEMs components in PM2.5 (P1-P2) and cloud water (C1-C4) that were identified by PARAFAC model, and the 

correlation between each chromophore Fmax and Abs365 in (a) PM2.5, and (b) cloud water. 


