

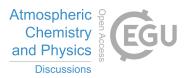
1	Influences of Entrainment-Mixing Parameterization on
2	Numerical Simulations of Cumulus and Stratocumulus Clouds
3	Xiaoqi Xu ^{1,2,4} , Chunsong Lu ^{1*} , Yangang Liu ^{3*} , Shi Luo ^{1,5} , Xin Zhou ³ , Satoshi Endo ³ ,
4	Lei Zhu ¹ , Yuan Wang ¹
5	1. Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological
6	Administration/Collaborative Innovation Center on Forecast and Evaluation of
7	Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science &
8	Technology, Nanjing, China
9	2. Nanjing Joint Institute for Atmospheric Sciences, Nanjing, China
10	3. Environmental and Climate Sciences Department, Brookhaven National Laboratory,
11	Upton, US
12	4. Key Laboratory of Transportation Meteorology, CMA, Nanjing, China
13	5. College of Aviation Meteorology, Civil Aviation Flight University of China,
14	Guanghan, China
15	* Correspondence: <u>luchunsong110@gmail.com; lyg@bnl.gov</u>
16	
17	Abstract
18	Different entrainment-mixing processes can occur in clouds; however, a
19	homogeneous mixing mechanism is often implicitly assumed in most commonly used
20	microphysics schemes. Here, we first present a new entrainment-mixing
21	parameterization that uses the grid-mean relative humidity without requiring the

22	relative humidity of the entrained air. Second, the parameterization is implemented in
23	a microphysics scheme in a large eddy simulation model. Third, sensitivity experiments
24	are conducted to compare the new parameterization with the default homogeneous
25	entrainment-mixing parameterization. The results indicate that the new entrainment-
26	mixing parameterization has a larger impact on the number concentration, volume-
27	mean radius, and cloud optical depth in the stratocumulus case than in the cumulus case.
28	This is because inhomogeneous and homogeneous mixing mechanisms dominate in the
29	stratocumulus and cumulus cases, respectively, which is mainly due to the larger
30	turbulence dissipation rate in the cumulus case. Because stratocumulus clouds break up
31	during the dissipation stage to form cumulus clouds, the effects of this new entrainment-
32	mixing parameterization during the stratocumulus dissipation stage are between those
33	during the stratocumulus mature stage and the cumulus case. A large aerosol
34	concentration can enhance the effects of this new entrainment-mixing parameterization
35	by decreasing the cloud droplet size and evaporation time scale. This study sheds new
36	light on the improvement of entrainment-mixing parameterizations in models.

37

38 **1. Introduction**

39 The process of entrainment and subsequent mixing between clouds and their 40 environment is one of the most uncertain processes in cloud physics, which is thought 41 to be crucial to many outstanding issues, including warm-rain initiation and subsequent 42 precipitation characteristics, cloud-climate feedback, and evaluating the indirect effects



43	of aerosol (Paluch and Baumgardner, 1989; Yum, 1998; Ackerman et al., 2004; Kim et
44	al., 2008; Huang et al., 2008; Del Genio and Wu, 2010; Lu et al., 2011; Lu et al., 2014;
45	Kumar et al., 2013; Zheng and Rosenfeld, 2015; Fan et al., 2016; Gao et al., 2020; Gao
46	et al., 2021; Zhu et al., 2021; Xu et al., 2021; Kumar et al., 2013; Yang et al., 2016;
47	Yang et al., 2021). The most well-studied concepts are homogeneous/inhomogeneous
48	entrainment-mixing mechanisms. During homogeneous mixing, all droplets experience
49	evaporation, and no droplet is evaporated completely. During extremely
50	inhomogeneous mixing, some droplets near the entrained air evaporate completely,
51	while the remaining droplets maintain their original sizes. If the situation is somewhere
52	between these two extreme scenarios, an inhomogeneous mixing process occurs. Some
53	studies suggest that homogeneous mixing is likely to be typical (Jensen et al., 1985;
54	Burnet and Brenguier, 2007; Lehmann et al., 2009), whereas others have claimed that
55	extremely inhomogeneous scenario is dominant (Pawlowska et al., 2000; Burnet and
56	Brenguier, 2007; Haman et al., 2007; Freud et al., 2008; Freud et al., 2011). Different
57	mechanisms can be undistinguishable when the relative humidity in the entrained air is
58	high (Gerber et al., 2008).
59	Some sensitivity studies assuming homogeneous or extremely inhomogeneous

60 mixing have found that different mixing mechanisms can significantly influence the 61 microphysics and radiative properties of clouds (Lasher-Trapp et al., 2005; Grabowski, 2006; Chosson et al., 2007; Slawinska et al., 2008). For example, Grabowski (2006) 62 used a cloud-resolving model and found that the amount of solar energy reaching the 63

64	surface in the pristine case, assuming the homogeneous mixing scenario, is the same as
65	in the polluted case with extremely inhomogeneous mixing. This result was verified by
66	Slawinska et al. (2008) using a large-eddy simulation (LES) model. Although the
67	influence of different mixing mechanisms in simulations is lower when two-moment
68	microphysics schemes are used (Hill et al., 2009; Grabowski and Morrison, 2011;
69	Slawinska et al., 2012; Xu et al., 2020), Hill et al. (2009) also claimed that there are
70	still many uncertainties in the entrainment-mixing process, and the effect of different
71	mixing mechanisms can be more important over the entire cloud life-cycle.

72 In recent years, methods have been developed to describe general entrainment-73 mixing processes, with homogeneous and extremely inhomogeneous scenarios as 74 special cases (Andrejczuk et al., 2006; Andrejczuk et al., 2009; Lehmann et al., 2009; 75 Lu et al., 2011). Hoffmann et al. (2019) and Hoffmann and Feingold (2019) conducted LES at the subgrid-scale with turbulent mixing, using a linear eddy model. Andrejczuk 76 et al. (2009) used the results of direct numerical simulation (DNS) to establish a 77 78 relationship between instantaneous microphysical properties and Damköhler number 79 (Da, Burnet and Brenguier, 2007), and developed a parameterization of the entrainment-80 mixing process. Lu et al. (2013) developed a parameterization of the entrainment-81 mixing process based on the relationship between the homogeneous mixing degree (ψ) 82 and transition scale number (N_L) in the explicit mixing parcel model (EMPM), as well 83 as aircraft observation data. Gao et al. (2018) investigated how ψ is related to D_a and 84 $N_{\rm L}$ in a DNS, to improve the parameterization of the entrainment-mixing process. Luo

103

85	et al. (2020) simulated more than 12,000 cases with EMPM by changing a variety of
86	parameters affecting entrainment-mixing processes and developed a parameterization
87	that improved the one proposed by Lu et al. (2013).
88	Although several entrainment-mixing parametrizations have been proposed, to the
89	best of our knowledge, only one study (Jarecka et al., 2013) has coupled an entrainment-
90	mixing parameterization with cloud microphysics to consider the change in cloud
91	droplet concentration during the entrainment-mixing process. Jarecka et al. (2013)
92	applied an entrainment-mixing parameterization, in terms of the Damköhler number, to
93	a two-moment microphysics scheme and found small impacts of entrainment-mixing
94	parameterization in shallow cumulus clouds. To further explore the influences of
95	entrainment-mixing processes, this study first modifies the entrainment-mixing
96	parameterization in terms of the transition scale number proposed by Luo et al. (2020)
97	to couple it more easily with microphysics schemes. The parameterization is then
98	implemented in the two-moment Thompson aerosol-aware scheme (Thompson and
99	Eidhammer, 2014). Finally, the effects of parameterization on the physical properties
100	of clouds are examined in both cumulus and stratocumulus clouds.
101	The rest of this paper is organized as follows: Section 2 describes the new
102	entrainment-mixing parameterization, simulated cases, and modelling setup. The major

104 mixing parameterization on cloud physics and the underlying mechanisms are 105 examined, and the effects of turbulence dissipation rate (ε) and aerosol concentration

results are presented and discussed in Section 3. The influences of the new entrainment-

106 are also discussed. Some concluding remarks are presented in Section 4.

107

108 2. Parameterization, simulated cases, and modeling setup

109 2.1 The new entrainment-mixing parameterization

110 According to Morrison and Grabowski (2008), the effect of the entrainment-

111 mixing process on cloud microphysical properties can be expressed as follows:

112
$$N_{\rm c} = N_{\rm c0} \left(\frac{q_{\rm c}}{q_{\rm c0}}\right)^{\alpha}$$
, (1)

113 where N_c and N_{c0} are the cloud droplet number concentrations after and before the 114 evaporation process, respectively, and q_c and q_{c0} represent the corresponding cloud 115 water mixing ratios. It is noteworthy that when a new saturation is achieved after 116 evaporation, q_c is determined by q_{c0} , relative humidity, air pressure, and temperature. 117 The parameter α can be pre-set to any value between 0 (homogeneous mixing) and 1 118 (extremely inhomogeneous mixing) to represent a different degree of subgrid-scale 119 mixing homogeneity. In this study, instead of specifying α as a predetermined constant, 120 here it is determined through expressions (Lu et al., 2013; Luo et al., 2020)

121
$$\alpha = 1 - \psi$$
, (2a)

122
$$\psi = c \exp(aN_{\rm p}^{\rm p}). \tag{2b}$$

where *a*, *b* and *c* are the three fitting parameters (Luo et al., 2020). The dimensionless number N_L is a dynamical measure of the degree of subgrid-scale mixing homogeneity (Lu et al., 2011) defined by

126
$$N_{\rm L} = \frac{L^*}{\eta},$$
 (3a)

127
$$\eta = (v^3 / \varepsilon)^{1/4},$$
 (3b)

128
$$L^* = \varepsilon^{1/2} \tau^{3/2}_{evap},$$
 (3c)

129 where L^* is the transition length (Lehmann et al., 2009), η is the Kolmogorov microscale, 130 fv is the kinematic viscosity; ε is estimated following the method of Andrejczuk et al.

131 (2009):

132
$$\varepsilon = \left\langle \frac{1}{3} \left(u^2 + v^2 + w^2 \right) \right\rangle^{3/2} / L,$$
 (4)

133 where u, v, and w are the characteristic velocities in the horizontal and vertical 134 directions, respectively, and L is the model grid size. The evaporation time scale (τ_{evap}) 135 is defined as the time taken for droplets to evaporate completely in an unsaturated 136 environment, and is calculated as

137
$$\tau_{\rm evap} = -\frac{r^2}{2AS_{\rm e}},$$
 (5a)

138
$$A = \frac{1}{\left[\left(\frac{L_{\rm h}}{R_{\rm v}T} - 1\right)\frac{L_{\rm h}\rho_{\rm L}}{KT} + \frac{\rho_{\rm L}R_{\rm v}T}{De_{\rm s}(T)}\right]},\tag{5b}$$

where *r* is the volume-mean radius of cloud droplets, *A* is a function of pressure and
temperature, *S*_e is the sub-saturation (relative humidity RH-1) of entrained air, *L*_h is the
latent heat,
$$R_v$$
 is the specific gas constant for water vapour, *T* is air temperature, ρ_L is
the density of liquid water, *K* is the coefficient of thermal conductivity of air, *D* is the
diffusion coefficient of water vapour in the air, and $e_s(T)$ is the saturation vapour
pressure over a plane water surface at temperature *T*.

145	Unfortunately, S_e in Equation (5a) is generally unavailable in atmospheric models,
146	including LES models. Thus, the entrainment-mixing parameterization developed by
147	Luo et al. (2020) based on the properties of entrained air cannot be used directly. To
148	solve this problem, we modify the entrainment-mixing parameterization of Luo et al.
149	(2020) by replacing S_e with the domain-averaged relative humidity in the EMPM, after
150	entrainment but before evaporation, based on 12,218 cases:
151	$\psi = 107.19 \exp(-1.99 N_{\rm L}^{-0.29}).$ (6)
152	Figure 1 shows the fitting results of the modified new entrainment-mixing
153	parameterization. Compared to the parametrization proposed by Luo et al. (2020), the
154	modified parameterization has similar ψ -N _L distributions, but with a larger N _L for the
155	same ψ , because the EMPM domain-averaged RH is larger than the entrained-air RH.
156	With this modification, $N_{\rm L}$, ψ , and thus the effect of the entrainment-mixing processes
157	on droplet concentration can be directly calculated using the LES grid RH. It is
158	important to note that we do not assume that the RH of entrained air is equal to that of
159	the LES grid. Such a modification is only for the convenience of parameterization
160	applications in microphysics schemes. The details of the EMPM simulations and related
161	calculations are provided by Luo et al. (2020).
1.60	

162

163 2.2 LES model, simulation cases, and modelling setup

164 The LES model is built by applying the large-scale forcing module presented in 165 Endo et al., 2015) to the Weather Research and Forecasting (WRF) model tailored for

166	solar irradiance forecasting (WRF-Solar, Hacker et al., 2016; Haupt et al., 2016). The
167	large-scale forcing data (VARANAL) used in this process is derived from the
168	constrained variational analysis (CVA) approach developed by Zhang et al. (2001) and
169	provided by the U.S. Department of Energy's Atmospheric Radiation Measurement
170	Program (www.arm.gov). The modified entrainment-mixing parameterization is
171	implemented in the two-moment Thompson aerosol-aware scheme (Thompson and
172	Eidhammer, 2014).
173	To investigate the behaviours of the new entrainment-mixing parameterization in
174	different cloud types, cumulus and stratocumulus cases are simulated. For both the
175	cumulus and stratocumulus cases, the horizontal resolution of the model is 100 m \times 100
176	m with a domain area of 14.4 km \times 14.4 km. The vertical direction is divided into 225
177	layers with a resolution of 30 m.
178	For each cloud case, ψ is first set to 1 for the <i>default</i> experiment because most LES
179	models assume a homogeneous entrainment-mixing mechanism. The simulation with
180	the new entrainment-mixing parameterization (Equations (1-6)) is hereafter referred to
181	as <i>new</i> . First, N_L is diagnosed for each grid, and ψ is then calculated using Equation (6).
182	Finally, the variation in N_c during entrainment-mixing is obtained using Equations (1)
183	and (2a).
18/	Considering the significant impacts of c and initial droplet number concentration

Considering the significant impacts of *e* and initial droplet number concentration
on the entrainment-mixing process (Luo et al., 2020; Lu et al., 2013; Grabowski, 2006;
Hoffmann and Feingold, 2019), an alternative method that calculates *e* from the subgrid

- 187 turbulent kinetic energy (Deardorff, 1980) is also investigated and is referred to as
- 188 *new_tke*:
- $\varepsilon = CE^{3/2} / L, \tag{7}$
- 190 where C = 0.70 is an empirical constant and *E* is the subgrid turbulent kinetic energy. 191 To examine the influence of the aerosol number concentration on the entrainment-192 mixing process, we conduct the numerical experiments *default_10* and *new_10* by 193 multiplying the initial aerosol number concentrations, for the *default* and *new* models, 194 respectively, by a factor of 10. Thus, five sets of numerical experiments are conducted 195 for both the cumulus and stratocumulus cases; the names of the experiments and 196 corresponding descriptions are summarized in Table 1.
- 197
- 198 **3. Results**
- 199 3.1 Cumulus case

200 For the cumulus case, the simulation starts at 9:00 UTC on 11 June 2016 and ends 201 at 03:00 UTC on 12 June 2016 with an output interval of 10 min and spin-times of 3 h. 202 Figure 2 shows the temporal evolution of the cloud fraction from the five numerical 203 experiments. Grid points with q_c larger than 0.01 g/kg are defined as "cloudy areas". 204 Also shown for comparison is observational data with a one-hour temporal resolution, 205 which is provided by the LES Atmospheric Radiation Measurement Symbiotic 206 Simulation and Observation (LASSO) campaign (Gustafson et al., 2020). The 207 observations show that the cloud forms at 12:00 UTC on 11 June and dissipates

- completely by 01:00 UTC on 12 June with a maximum cloud fraction of 0.47 at 16:00
- 209 UTC on 11 June. All simulations capture the evolution of the cloud fraction and exhibit
- 210 similar values to the observational data.
- Figure 3 shows the evolution of the microphysical and optical properties of clouds in the cloudy areas of all simulation experiments, including q_c , N_c , droplet volumemean radius (r_v), cloud water path (CWP), and cloud optical depth (τ). To visually and simultaneously compare the change in cloud droplet concentration under different aerosol concentrations, the maximum cloud droplet concentration (N_{cmax}) from *default* is used to normalize N_c in *default*, *new*, and *new_tke*, while N_{cmax} from *new_10* is used
- 217 to normalize N_c in *default_10* and *new_10*. The CWP is calculated as:

218
$$CWP = \int_0^H \rho_a q_c(z) dz, \qquad (8)$$

219 where ρ_a is the air density, $q_c(z)$ is the cloud water mixing ratio at each height (z), and

220 H is the cloud thickness. The optical depth τ is estimated with

221
$$\tau = \frac{3}{2} \frac{1}{\rho_{\rm w}} \int_0^H \frac{\rho_{\rm a} q_{\rm c}(z)}{r_{\rm e}(z)} dz, \tag{9}$$

where ρ_w is the water density and $r_e(z)$ is the effective radius of the cloud droplets at each height (z). The time-averaged values of these physical properties of the clouds are listed in Table 2 for convenience.

For the low aerosol number concentration, the simulations with the new entrainment-mixing parameterization have smaller N_c (34.91 cm⁻³ and 35.53 cm⁻³ for *new* and *new_tke*, respectively) and larger r_v (13.34 µm and 13.29 µm for *new* and *new_tke*, respectively) than the default homogeneous simulation (35.78 cm⁻³ for N_c and


229	13.27 µm for r_v in <i>default</i>). However, comparing <i>new</i> to <i>default</i> , the relative changes in
230	$N_{\rm c}$ (-2.43%), $r_{\rm v}$ (+0.53%), and τ (-0.99%) are small. The relative changes in <i>new_tke</i>
231	are even smaller. When the aerosol concentration increases ten-fold (default_10 and
232	<i>new_10</i>), q_c , CWP, and τ increase according to the aerosol indirect effect (Peng et al.,
233	2002; Wang et al., 2019; Li et al., 2011; Wang et al., 2011). Meanwhile, r_v decreases
234	significantly owing to the larger cloud number concentration. The effects of the new
235	entrainment-mixing parameterization also increase, for example, the change in $N_{\rm c}$
236	increases from -2.43% (new compared to default) to -4.45% (new_10 compared to
237	<i>default_10</i>), r_v increases from +0.53% to +0.85%, and τ from -0.99% to -1.18%; the
238	reasons for these changes are discussed later. These small changes are similar to those
239	identified in previous cumulus studies (Jarecka et al., 2013; Hoffmann et al., 2019).

240

241 **3.2 Stratocumulus case**

The stratocumulus case is simulated from 9:00 UTC on 19 April 2009 to 03:00 242 243 UTC on 20 April 2009; the first three hours are set to be spin-up times. We examine the 244 stratocumulus region of the cloud base at ~2.1 km and the cloud top at ~2.3 km (cloud 245 thickness of ~200 m). The time series of the cloud fraction in the observed values and five simulated datasets from 12:00 UTC to 24:00 UTC are shown in Figure 4. The 246 247 observed data show that the cloud fraction increases with time and peaks at 16:00 UTC. 248 All the simulations capture the main features of the cloud fraction. The simulated cloud 249 fraction has a value of 1 before 16:00 UTC, fluctuates from 16:00 UTC to 21:00 UTC,

- and decreases sharply after 21:00 UTC. This period can be divided into three stages,
- 251 namely the mature stage, pre-dissipation stage, and dissipation stage.

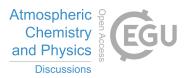
As with the cumulus case, the temporal evolutions of the physical properties (q_c , N_c , r_v , CWP, and τ) of the clouds are shown in Figure 5. In contrast to the oscillating changes exhibited by the physical quantities in the cumulus case (Figure 3), the physical properties in the stratocumulus case exhibit a mostly smooth temporal evolution. Furthermore, *default* and *new* exhibit clear distinctions during the early periods, but these differences decrease during the dissipation stage. This is also the case with *default 10* and *new 10*.

259 To compare the different behaviours of the simulation experiments at different 260 stages, the results at the mature and dissipation stages are analysed in detail. The mean 261 values of the main microphysical and optical properties of the clouds are summarised 262 in Table 3. As expected, the cloud microphysical and optical properties at the mature 263 stage are all larger than those at the dissipation stage. The effects of the new 264 entrainment-mixing parametrization are also more significant at the mature stage. Compared to *default*, the *new* model results in a 7.27% smaller N_c , 2.42% larger r_v , and 265 5.77% smaller τ during the mature stage. During the dissipation stage, the changes in 266 267 N_c , r_v , and τ are -4.35%, +0.80%, and -2.56%, respectively. In contrast to the cumulus 268 case, new tke is close to new and even has a slightly larger influence on cloud properties than new, when compared to default, during both stages. The largest influence of the 269 270 new entrainment-mixing parametrization occurs during the mature stage when the

271	aerosol concentration is ten times greater. The differences in $N_{\rm c}, r_{\rm v}$, and τ between
272	new_10 and default_10 are -9.67%, +2.91%, and -5.39%, respectively, averaged over
273	the mature stage. The maximum differences in $N_{\rm c}$, $r_{\rm v}$, and τ are -10.71% , $+6.37\%$, and
274	-7.72%, respectively. These differences are much larger than those reported by Hill et
275	al. (2009) who found that assuming extremely inhomogeneous mixing has a negligible
276	effect on stratocumulus simulations. Our results also prove the speculation of Hill et al.
277	(2009) that the mixing process might play an important role when the stratocumulus is
278	thin (~200 m in this study). Furthermore, implementing the new entrainment-mixing
279	parameterization has similar effects on cloud properties to those described by Hoffmann
280	and Feingold (2019) who used the linear eddy model to represent subgrid-scale
281	turbulent mixing. Note that stratocumulus clouds occur in most regions around the
282	world and are important contributors to the surface radiation budget (Wood, 2012;
283	Zheng et al., 2016; Wang et al., 2021; Wang and Feingold, 2009). Stratocumulus clouds
284	dominate in some regions and occur over 60% of the time as vast long-lived sheets,
285	such as the semi-permanent subtropical marine stratocumulus sheets (Wood, 2012). In
286	these regions, a 5.39%–5.77% decrease in τ , caused by the new entrainment-mixing
287	parameterization is expected to have significant effects on the simulation of regional
288	radiative properties and climate change.
289	The averaged influences of the new entrainment-mixing parametrization over all

290 the simulation periods are also examined (Table 4). Quantitatively, the effect of the new

291 entrainment-mixing parameterization is much greater on stratocumulus clouds than on



292	cumulus clouds. Compared to default, new has an average change of -5.90% in N _c ,
293	+1.49% in r_v , and -3.98% in τ . When the aerosol concentration increases ten-fold, the
294	differences in N_c , r_v , and τ between <i>default_10</i> and <i>new_10</i> are -8.97%, +2.77%, and
295	-3.56%, respectively. These differences are larger than the largest changes in the
296	cumulus case.
297	
298	3.3 Mechanisms of the effects of the new entrainment-mixing parameterization
299	The different effects of the new entrainment-mixing parameterization on different
300	types of clouds and even on different stages of stratocumulus clouds are likely be related
301	to variations in the dominant mixing mechanism. To confirm this, we calculate the
302	average ψ at all grid points experiencing evaporation, the proportion of inhomogeneous
303	mixing grid points to all grid points experiencing evaporation, and the average ψ at the
304	inhomogeneous mixing grid points in new, new_tke, and new_10 (Table 5) for the
305	cumulus case, and mature and dissipation stages in the stratocumulus case.
306	For the cumulus case, all three simulations exhibit large ψ and a small proportion
307	of inhomogeneous mixing, indicating that homogeneous mixing is the dominant
308	entrainment-mixing mechanism in all three simulations (Luo et al., 2020; Lu et al.,
309	2013), especially in <i>new_tke</i> . Correspondingly, the influences of the new entrainment-
310	mixing parameterization on the cloud physical properties are not significant, as shown
311	in Figure 3 and Table 2. The new_10 model exhibit a smaller average ψ and a larger

312 proportion of inhomogeneous mixing than new and new_tke, which results in larger

313 changes in cloud physics, as mentioned in Section 3.1.

314	For the stratocumulus case, Table 5 shows the average ψ at all grid points
315	experiencing evaporation, the proportion of inhomogeneous mixing grid points to all
316	grid points experiencing evaporation, and the average ψ at the inhomogeneous mixing
317	grid points during the two stages. The mature stage always has a smaller ψ but a larger
318	proportion of inhomogeneous mixing than the dissipation stage. The inhomogeneous
319	mixing process dominates the mature stage in <i>new</i> and <i>new_tke</i> , because more than 60%
320	of the grid points experience inhomogeneous mixing. The inhomogeneous mixing
321	process is more dominant in <i>new_10</i> , because less than 3% of the cloudy grid points
322	experience a homogeneous mixing process during the mature stage, which explains
323	why <i>new_10</i> has the largest influence when implementing the new entrainment-mixing
324	parametrization. Meanwhile, the average ψ in both stages is smaller than that in the
325	cumulus case for the same simulation configuration. Thus, the effects of the new
326	entrainment-mixing parameterization are more significant for stratocumulus than for
327	cumulus clouds, especially at the mature stage. It is noted that the average ψ and the
328	proportion of inhomogeneous mixing at the dissipation stage of <i>new</i> and <i>new_tke</i> in the
329	stratocumulus case are very close to the results of <i>new_10</i> in the cumulus case. This is
330	because the cloud fraction decreases sharply during the dissipation stage; the
331	stratocumulus clouds break up and produces cumulus clouds with small cloud droplet
332	radius.

334 **3.4** The effects of dissipation rate and aerosol concentration on the entrainment-

335 mixing process

336 Previous studies have shown the notable effects of the dissipation rate and aerosol 337 concentration on the entrainment-mixing process. For example, Luo et al. (2020) 338 changed ε from 10⁻⁵ m² s⁻³ to 10⁻² m² s⁻³ and noted huge differences in the corresponding 339 ψ . Small et al. (2013) compared aircraft observations with different background concentrations and found that higher pollution flights tended to slightly more 340 341 inhomogeneous mixing; Jarecka et al. (2013) also showed various homogeneities of 342 subgrid mixing when aerosol concentration increases ten-fold. To explain the different 343 behaviours of different simulations with the new entrainment-mixing parameterization, 344 the influences of ε and aerosol concentration are examined. Figure 6 shows the probability distribution functions (PDFs) of ε , r_v , τ_{evap} , and N_L for cloud grids 345 346 experiencing entrainment-mixing processes in new, new tke, and new 10 for the 347 cumulus and stratocumulus cases, respectively. The PDFs from the mature and 348 dissipation stages of the stratocumulus case are shown in Figure 7.

349

350 3.4.1 Dissipation rate

According to Equation (3), N_L is a function of $\varepsilon^{3/4}$; hence, the PDF of ε directly affects N_L and further results in different ψ . For the cumulus case, the mean ε (0.0032 m² s⁻³) in *new* is close to the value of 0.0043 m² s⁻³ in *new_tke*; these values are similar to those obtained for cumulus clouds in previous studies (e.g. Lu et al., 2016; Hoffmann

355	et al., 2019). The different ε distributions cause a significant difference in the proportion
356	of inhomogeneous mixing (Table 5). As shown in Figure 1, cloud grids experience a
357	homogeneous mixing process if N_L is larger than ~10 ⁵ , the limited distribution of N_L
358	values less than 10^5 in <i>new_tke</i> results in a very small number of cloud grid points
359	undergoing inhomogeneous mixing process. Even at the cloud grid points that undergo
360	inhomogeneous mixing, the average ψ is large (98.62%), because most of the N _L values
361	are larger than 10^3 . Therefore, the cloud properties in <i>new_tke</i> are close to those in
362	default. The new model contains more frequent occurrences of small ε and $N_{\rm L}$ values,
363	resulting in more cloud grid points undergoing a more inhomogeneous mixing process
364	and exhibiting a smaller ψ , compared to those in the <i>new_tke</i> model (Table 5); however,
365	the results of <i>new</i> are still close to those of <i>default</i> , because of the dominance of $N_{\rm L}$
366	values larger than 10^5 .

For the stratocumulus case, the mean values of ε (2.7×10⁻⁴ m² s⁻³ in *new* and 367 2.9×10^{-4} m² s⁻³ in *new tke*) are an order of magnitude less than those in the cumulus 368 case. Therefore, compared with the cumulus case, the distribution of $N_{\rm L}$ is reduced in 369 the stratocumulus case, while the peak values of new and new_tke are similar and almost 370 371 reach the criterion of inhomogeneous mixing ($\sim 10^5$). For the two stages of 372 stratocumulus clouds, ε is an order of magnitude smaller, but r_v was larger (Figure 7) 373 during the mature stage than during the dissipation stage. According to Equation (5a), droplets with smaller r_v are more prone to complete evaporation and have a smaller τ_{evap} . 374 375 The combination of smaller ε and larger r_v results in a smaller N_L (Equation (3)). This

376	is the reason for the new entrainment-mixing parametrization having more significant
377	effects during the mature stage than during the dissipation stage. In addition, the
378	similarity of the ε and r_v values during the dissipation stage of the stratocumulus case
379	in new, compared to the cumulus case in new_10 (Figures 6a and 6b), explains the
380	similar average ψ values of these scenarios and the proportion of inhomogeneous
381	mixing (Table 5).
382	Therefore, the distribution of ε has a vital impact on the influence of the new
383	entrainment-mixing parameterization. Smaller values of ε result in the new
384	entrainment-mixing parameterization having a more significant influence. Moreover,
385	the r_v in the stratocumulus case is smaller than that in the cumulus case, which is also

386 conducive to a more inhomogeneous mixing process. These are the reasons why the 387 implementation of the new entrainment-mixing parameterization has a larger influence 388 in the stratocumulus case than in the cumulus case, when compared to a homogeneous 389 mixing mechanism.

390

391 3.4.2 Aerosol concentration

The aerosol concentration affects the entrainment-mixing process by decreasing the cloud droplet radius. As r_v decreases, the distributions of τ_{evap} in *new_10* moves to a smaller overall value, while the mean value is an order of magnitude smaller than that in *new*, which causes a much smaller N_L because N_L is proportional to $\tau_{evap}^{3/2}$ (Equations (3a) and (3b)). The larger percentage of smaller N_L values indicates that in *new 10*,

397	more grid points undergo an inhomogeneous mixing process, and the proportion of such
398	grid points is much larger than in the new model (Table 5). Therefore, compared to new,
399	new_10 exhibit a smaller ψ and the effects of the new entrainment-mixing
400	parameterization on cloud properties are more obvious, for both the cumulus and
401	stratocumulus cases.

402

403 4. Concluding remarks

The entrainment-mixing process near cloud edges has important effects on cloud 404 405 microphysics, but the most commonly used microphysics schemes simply assume one 406 extreme mechanism, that is, homogeneous entrainment-mixing. This study first 407 improves the entrainment-mixing parameterization proposed by Luo et al. (2020), 408 which connects the homogeneous mixing degree and transition scale number to 409 estimate the homogeneity of the subgrid mixing process and its impact on the droplet 410 number concentration. The improved parameterization uses grid-mean relative 411 humidity and can be implemented directly into microphysics schemes; there is no need 412 to know the relative humidity of the entrained air. Second, the modified entrainment-413 mixing parameterization is implemented in the two-moment Thompson aerosol-aware 414 scheme of the LES version of WRF-Solar, to examine its effects on the microphysical 415 and optical properties of cumulus and stratocumulus clouds. Third, several sensitivity 416 experiments are conducted to investigate the effects of the new entrainment-mixing 417 parameterization under different conditions of turbulence dissipation rate and aerosol

418 number concentration.

419	Unlike the commonly assumed homogeneous mixing scenario, the new
420	entrainment-mixing parameterization produces a smaller cloud droplet number
421	concentration and larger cloud droplet radius, with the degree of difference depending
422	on cloud types and stages. Sensitivity tests show that in the cumulus case, the largest
423	average influence of the new entrainment-mixing parameterization occurs under a high
424	aerosol background, but results in only a 4.45% decrease in cloud droplet number
425	concentration and a 0.85% increase in cloud droplet volume-mean radius. The changes
426	become even smaller with a low aerosol background because of the larger cloud droplet
427	radius. In contrast, the new entrainment-mixing parameterization has a larger influence
428	on the microphysical and optical properties of stratocumulus clouds, especially under a
429	high aerosol background and during the mature stage, with a cloud fraction equal to 1.
430	The largest changes resulting from the new entrainment-mixing parameterization are
431	-9.67%, $+2.91%$, and $-5.39%$, for cloud number concentration, cloud droplet volume-
432	mean radius, and cloud optical depth, respectively. The new entrainment-mixing
433	parameterization has less of an influence on the dissipation stage than on the mature
434	stage of the stratocumulus case, but affects this case more than the cumulus case.
435	The varying effects of the new entrainment-mixing parameterization are caused
436	by variations in the dominant entrainment-mixing mechanism between different cloud
437	types and stages. Compared to the cumulus case, the stratocumulus case has a much

438 smaller homogeneous mixing degree and a larger proportion of inhomogeneous mixing

439	grid points, especially during the mature stage, which indicates that the inhomogeneous
440	mixing mechanism dominates in the stratocumulus case, while the homogeneous
441	mixing mechanism dominates in the cumulus case. As mentioned above, the changes
442	in physical properties of stratocumulus clouds in the dissipation stage are between those
443	in the mature stage and those of the cumulus case; this is because stratocumulus clouds
444	dissipate sharply to form small cumulus clouds, and the degree of homogeneous mixing
445	during the dissipation stage is therefore between that which occurs during the mature
446	stage and the cumulus case.

447 Sensitivity studies show that how turbulence dissipation rate and aerosol 448 concentration are treated in a simulation can have notable effects on the subgrid 449 homogeneity of the mixing process. A larger dissipation rate can accelerate the mixing 450 process, which results in a larger transition scale number and homogeneous mixing degree; and therefore a mostly homogenous mixing mechanism. This is why the 451 cumulus case exhibit smaller changes than the stratocumulus case after the new 452 453 entrainment-mixing parameterization is implemented. Larger aerosol number 454 concentrations cause a smaller cloud droplet radius. Smaller droplets evaporate more 455 easily, which leads to a smaller transition scale number and a smaller homogeneous 456 mixing degree. Thus, the entrainment-mixing mechanism tends to be inhomogeneous. 457 Therefore, a larger aerosol number concentration increases the influence of the new 458 entrainment-mixing parameterization in both the cumulus and stratocumulus cases.

459 Note that the new entrainment-mixing parameterization could be more important

460

461	because numerical diffusion may humidify the entrained air (Hoffmann and Feingold,
462	2019). The artificially increased relative humidity limits the influences of the new
463	entrainment-mixing parameterization, because homogeneous and inhomogeneous
464	entrainment-mixing processes are close to each other under conditions of high relative
465	humidity.
466	
467	Author contributions. XX, CL and YL designed the experiments. XX carried out the
468	experiments and conducted the data analysis with contributions from all coauthors. XX,
469	CL, XZ, and SE developed the model code. XX prepared the paper with help from CL,

in the LES model if the relative humidity near the cloud is more accurately simulated,

471

YL, YW, SL, and LZ.

470

472 **Competing interests.** The authors declare that they have no conflict of interest.

473

Acknowledgements. This research is supported by the National Key Research and
Development Program of China (2017YFA0604001), the National Natural Science
Foundation of China (41822504, 42175099, 42027804, 41975181, 42075073). Liu is
supported by the U.S. Department of Energy Office of Science Biological and
Environmental Research as part of the Atmospheric Systems Research (ASR) Program.
Brookhaven National Laboratory is operated by Battelle for the U.S. Department of
Energy under Contract DE-SC00112704. The large-scale forcing data used in this paper

- 481 can be downloaded from the U.S. Department of Energy's Atmospheric Radiation
- 482 Measurement Program with https://adc.arm.gov/discovery/#/results. The LASSO data
- 483 can be downloaded from https://archive.arm.gov/lassobrowser.

484

485 Reference

- 486 Ackerman, A. S., Kirkpatrick, M. P., Stevens, D. E., and Toon, O. B.: The impact of 487 humidity above stratiform clouds on indirect aerosol climate forcing, Nature, 432, 488 1014-1017, 2004.
- 489 Andrejczuk, M., Grabowski, W. W., Malinowski, S. P., and Smolarkiewicz, P. K .: 490 Numerical simulation of cloud-clear air interfacial mixing: Effects on cloud microphysics, J. Atmos. Sci., 63, 3204-3225, doi:10.1175/JAS3813.1, 2006.
- 491
- Andrejczuk, M., Grabowski, W. W., Malinowski, S. P., and Smolarkiewicz, P. K.: 492 493 Numerical simulation of cloud-clear air interfacial mixing: Homogeneous versus 494 inhomogeneous mixing, J. Atmos. Sci., 66, 2493-2500, doi:10.1175/2009JAS2956.1, 495 2009.
- 496 Burnet, F. and Brenguier, J. L.: Observational study of the entrainment-mixing process in warm convective clouds, J. Atmos. Sci., 64, 1995-2011, doi:10.1175/JAS3928.1, 497 498 2007.
- 499 Chosson, F., Brenguier, J.-L., and Schüller, L.: Entrainment-mixing and radiative 500 transfer simulation in boundary layer clouds, J. Atmos. Sci., 64, 2670-2682, 501 doi:10.1175/JAS3975.1, 2007.
- 502 Deardorff, J.: Stratocumulus-capped mixed layers derived from a three-dimensional
- model, Boundary-Layer Meteorol, 18, 495-527, 10.1007/BF00119502, 1980. 503
- 504 Del Genio, A. D. and Wu, J.: The role of entrainment in the diurnal cycle of continental 505 convection, J. Climate, 23, 2722-2738, doi: 10.1175/2009JCLI3340.1, 2010.
- Endo, S., Fridlind, A. M., Lin, W., Vogelmann, A. M., Toto, T., Ackerman, A. S., 506
- 507 McFarquhar, G. M., Jackson, R. C., Jonsson, H. H., and Liu, Y.: RACORO continental
- 508 boundary layer cloud investigations: 2. Large-eddy simulations of cumulus clouds and
- 509 evaluation with in situ and ground-based observations, Journal of Geophysical
- 510 Research: Atmospheres, 120, 5993-6014, 2015.
- Fan, J., Wang, Y., Rosenfeld, D., and Liu, X.: Review of Aerosol-Cloud Interactions: 511
- 512 Mechanisms, Significance, and Challenges, Journal of the Atmospheric Sciences, 73,
- 513 4221-4252, 10.1175/jas-d-16-0037.1, 2016.
- 514 Freud, E., Rosenfeld, D., and Kulkarni, J. R.: Resolving both entrainment-mixing and
- 515 number of activated CCN in deep convective clouds, Atmos. Chem. Phys., 11, 12887-
- 516 12900, 2011.
- Freud, E., Rosenfeld, D., Andreae, M. O., Costa, A. A., and Artaxo, P.: Robust relations 517

- 518 between CCN and the vertical evolution of cloud drop size distribution in deep
- 519 convective clouds, Atmos. Chem. Phys., 8, 1661-1675, 2008.
- 520 Gao, S., Lu, C., Liu, Y., Mei, F., Wang, J., Zhu, L., and Yan, S.: Contrasting Scale 521 Dependence of Entrainment-Mixing Mechanisms in Stratocumulus Clouds,
- 522 Comparison Descende Letters 47, 10, 1020/2020-108(070, 2020
- 522 Geophysical Research Letters, 47, 10.1029/2020gl086970, 2020.
- 523 Gao, S., Lu, C., Liu, Y., Yum, S. S., Zhu, J., Zhu, L., Desai, N., Ma, Y., and Wu, S.:
- 524 Comprehensive quantification of height dependence of entrainment mixing between 525 stratiform cloud top and environment, Atmospheric Chemistry and Physics, 21, 11225-
- 526 11241, 2021.

527 Gao, Z., Liu, Y., Li, X., and Lu, C.: Investigation of Turbulent Entrainment-Mixing 528 Processes with a New Particle-Resolved Direct Numerical Simulation Model, J.

- 529 Geophys. Res., 123, 2194-2214, 2018.
- 530 Gerber, H. E., Frick, G. M., Jensen, J. B., and Hudson, J. G.: Entrainment, mixing, and
- 531 microphysics in trade-wind cumulus, J. Meteorol. Soc. Japan, 86A, 87-106, 2008.
- Grabowski, W. W.: Indirect impact of atmospheric aerosols in idealized simulations of
 convective-radiative quasi equilibrium, J. Climate, 19, 4664-4682,
 doi:10.1175/JCLI3857.1, 2006.
- 535 Grabowski, W. W. and Morrison, H.: Indirect Impact of Atmospheric Aerosols in
- 536 Idealized Simulations of Convective-Radiative Quasi Equilibrium. Part II: Double-
- 537 Moment Microphysics, Journal of Climate, 24, 1897-1912, 10.1175/2010jcli3647.1,538 2011.
- 539 Gustafson, W. I., Vogelmann, A. M., Li, Z., Cheng, X., Dumas, K. K., Endo, S., Johnson,
- 540 K. L., Krishna, B., Fairless, T., and Xiao, H.: The Large-Eddy Simulation (LES)
- 541 Atmospheric Radiation Measurement (ARM) Symbiotic Simulation and Observation
- 542 (LASSO) Activity for Continental Shallow Convection, Bulletin of the American
- 543 Meteorological Society, 101, E462-E479, 10.1175/bams-d-19-0065.1, 2020.
- Hacker, J. P., Jimenez, P. A., Dudhia, J., Haupt, S. E., Ruiz-Arias, J. A., Gueymard, C.
- 545 A., Thompson, G., Eidhammer, T., and Deng, A.: WRF-Solar: Description and Clear-
- 546 Sky Assessment of an Augmented NWP Model for Solar Power Prediction, Bulletin of
- the American Meteorological Society, 97, 1249-1264, 10.1175/bams-d-14-00279.1,
 2016.
- 549 Haman, K. E., Malinowski, S. P., Kurowski, M. J., Gerber, H., and Brenguier, J.-L.:
- Small scale mixing processes at the top of a marine stratocumulus a case study, Q. J.
 Roy. Meteor. Soc., 133, 213-226, doi:10.1002/qj.5, 2007.
- 552 Haupt, S. E., Kosovic, B., Jensen, T., Lee, J., Jimenez, P., Lazo, J., Cowie, J.,
- 553 McCandless, T., Pearson, J., and Weiner, G.: The SunCast solar-power forecasting
- 554 system: the results of the public-private-academic partnership to advance solar power
- 555 forecasting, National Center for Atmospheric Research (NCAR), Boulder (CO):
- Research Applications Laboratory, Weather Systems and Assessment Program (US),2016.
- Hill, A. A., Feingold, G., and Jiang, H.: The influence of entrainment and mixing
 assumption on aerosol-cloud interactions in marine stratocumulus, J. Atmos. Sci., 66,

- 560 1450-1464, 2009.
- 561 Hoffmann, F. and Feingold, G.: Entrainment and mixing in stratocumulus: Effects of a
- 562 new explicit subgrid-scale scheme for large-eddy simulations with particle-based
- 563 microphysics, J. Atmos. SCi., 76, 1955-1973, 10.1175/jas-d-18-0318.1, 2019.
- 564 Hoffmann, F., Yamaguchi, T., and Feingold, G.: Inhomogeneous mixing in Lagrangian
- 565 cloud models: Effects on the production of precipitation embryos, Journal of the566 Atmospheric Sciences, 76, 113-133, 2019.
- 567 Huang, J., Lee, X., and Patton, E. G.: A modelling study of flux imbalance and the
- influence of entrainment in the convective boundary layer, Boundary-layer meteorology,127, 273-292, 2008.
- 570 Jarecka, D., Grabowski, W. W., Morrison, H., and Pawlowska, H.: Homogeneity of the
- subgrid-scale turbulent mixing in large-eddy simulation of shallow convection, J.
 Atmos. Sci., 70, 2751-2767, 2013.
- 573 Jensen, J. B., Austin, P. H., Baker, M. B., and Blyth, A. M.: Turbulent mixing, spectral 574 evolution and dynamics in a warm cumulus cloud, J. Atmos. Sci., 42, 173-192,

575 doi:10.1175/1520-0469(1985)042<0173:TMSEAD>2.0.CO;2, 1985.

- 576 Kim, B.-G., Miller, M. A., Schwartz, S. E., Liu, Y., and Min, Q.: The role of adiabaticity
- 577 in the aerosol first indirect effect, J. Geophys. Res., 113, D05210, doi: 578 10.1029/2007jd008961, 2008.
- Kumar, B., Schumacher, J., and Shaw, R.: Cloud microphysical effects of turbulent
 mixing and entrainment, Theor. Comp. Fluid Dyn., 27, 361-376, 2013.
- Lasher-Trapp, S. G., Cooper, W. A., and Blyth, A. M.: Broadening of droplet size
 distributions from entrainment and mixing in a cumulus cloud, Q. J. Roy. Meteor. Soc.,
 131, 195-220, doi:10.1256/qj.03.199, 2005.
- Lehmann, K., Siebert, H., and Shaw, R. A.: Homogeneous and inhomogeneous mixing
 in cumulus clouds: dependence on local turbulence structure, J. Atmos. Sci., 66, 36413659, doi:10.1175/2009JAS3012.1, 2009.
- Li, Z., Li, C., Chen, H., Tsay, S. C., Holben, B., Huang, J., Li, B., Maring, H., Qian, Y.,
 and Shi, G.: East Asian studies of tropospheric aerosols and their impact on regional
 climate (EAST-AIRC): An overview, Journal of Geophysical Research: Atmospheres,
 116, 2011.
- Lu, C., Liu, Y., and Niu, S.: Examination of turbulent entrainment-mixing mechanisms
 using a combined approach, J. Geophys. Res., 116, D20207,
 doi:10.1029/2011JD015944, 2011.
- Lu, C., Liu, Y., Niu, S., and Endo, S.: Scale dependence of entrainment-mixing
 mechanisms in cumulus clouds, Journal of Geophysical Research: Atmospheres, 119,
 13,877-813,890, 2014.
- 597 Lu, C., Liu, Y., Niu, S., Krueger, S., and Wagner, T.: Exploring parameterization for
- turbulent entrainment-mixing processes in clouds, Journal of Geophysical Research:
 Atmospheres, 118, 185-194, 10.1029/2012jd018464, 2013.
- 600 Lu, C., Liu, Y., Zhang, G. J., Wu, X., Endo, S., Cao, L., Li, Y., and Guo, X.: Improving
- 601 parameterization of entrainment rate for shallow convection with aircraft measurements

and large eddy simulation, J. Atmos. Sci., 73, 761-773, 10.1175/JAS-D-15-0050.1,
2016.

- 604 Luo, S., Lu, C., Liu, Y., Bian, J., Gao, W., Li, J., Xu, X., Gao, S., Yang, S., and Guo, X.:
- 605 Parameterizations of Entrainment-Mixing Mechanisms and Their Effects on Cloud

Droplet Spectral Width Based on Numerical Simulations, Journal of Geophysical
 Research: Atmospheres, 125, e2020JD032972, 2020.

- Morrison, H. and Grabowski, W. W.: Modeling supersaturation and subgrid-scale mixing with two-moment bulk warm microphysics, J. Atmos. Sci., 65, 792-812,
- 609 mixing with two-moment burk warm incrophysics, J. Autos. Sci. 610 doi:10.1175/2007JAS2374.1, 2008.
- 611 Paluch, I. R. and Baumgardner, D. G.: Entrainment and fine-scale mixing in a
- 612 continental convective cloud, J. Atmos. Sci., 46, 261-278, doi:10.1175/1520613 0469(1989)046<0261:EAFSMI>2.0.CO;2, 1989.
- 614 Pawlowska, H., Brenguier, J. L., and Burnet, F.: Microphysical properties of 615 stratocumulus clouds, Atmos. Res., 55, 15-33, 2000.
- 616 Peng, Y., Lohmann, U., Leaitch, R., Banic, C., and Couture, M.: The cloud albedo-cloud
- 617 droplet effective radius relationship for clean and polluted clouds from RACE and
- 618 FIRE.ACE, J. Geophys. Res., 107, AAC 1-1-AAC 1-6, 10.1029/2000JD000281, 2002.
- 619 Slawinska, J., Grabowski, W. W., Pawlowska, H., and Morrison, H.: Droplet activation
- and mixing in large-eddy simulation of a shallow cumulus field, J. Atmos. Sci., 69, 444-462, 2012.
- Slawinska, J., Grabowski, W. W., Pawlowska, H., and Wyszogrodzki, A. A.: Optical
 properties of shallow convective clouds diagnosed from a bulk-microphysics large-
- 624 eddy simulation, J. Climate, 21, 1639-1647, 2008.
- Small, J. D., Chuang, P., and Jonsson, H.: Microphysical imprint of entrainment inwarm cumulus, Tellus B, 65, 6647-6662, 2013.
- Thompson, G. and Eidhammer, T.: A study of aerosol impacts on clouds and
 precipitation development in a large winter cyclone, Journal of the atmospheric
 sciences, 71, 3636-3658, 2014.
- 630 Wang, H. and Feingold, G.: Modeling mesoscale cellular structures and drizzle in
- marine stratocumulus. Part I: Impact of drizzle on the formation and evolution of open
- cells, Journal of the Atmospheric Sciences, 66, 3237-3256, 2009.
- 633 Wang, M., Ghan, S., Ovchinnikov, M., Liu, X., Easter, R., Kassianov, E., Qian, Y., and
- 634 Morrison, H.: Aerosol indirect effects in a multi-scale aerosol-climate model PNNL-
- 635 MMF, Atmospheric Chemistry and Physics, 11, 5431-5455, 2011.
- 636 Wang, Y., Zhao, C., McFarquhar, G. M., Wu, W., Reeves, M., and Li, J.: Dispersion of
- 637 Droplet Size Distributions in Supercooled Non-precipitating Stratocumulus from
- 638 Aircraft Observations Obtained during the Southern Ocean Cloud Radiation Aerosol
- Transport Experimental Study, Journal of Geophysical Research: Atmospheres, 126,
 e2020JD033720, 2021.
- 641 Wang, Y., Niu, S., Lv, J., Lu, C., Xu, X., Wang, Y., Ding, J., Zhang, H., Wang, T., and
- 642 Kang, B.: A new method for distinguishing unactivated particles in cloud condensation
- 643 nuclei measurements: Implications for aerosol indirect effect evaluation, Geophysical

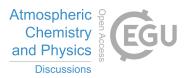
- 644 Research Letters, 46, 14185-14194, 2019.
- 645 Wood, R.: Review: Stratocumulus Clouds, Monthly Weather Review, 140, 2373-2423,
- 646 2012.
- 647 Xu, X., Sun, C., Lu, C., Liu, Y., Zhang, G. J., and Chen, Q.: Factors affecting
- entrainment rate in deep convective clouds and parameterizations, Journal ofGeophysical Research: Atmospheres, 126, e2021JD034881, 2021.
- 650 Xu, X., Lu, C., Liu, Y., Gao, W., Wang, Y., Cheng, Y., Luo, S., and Van Weverberg, K.:
- 651 Effects of cloud liquid-phase microphysical processes in mixed-phase cumuli over the
- Tibetan Plateau, Journal of Geophysical Research: Atmospheres, 125, e2020JD033371,2020.
- 4654 Yang, B., Wang, M., Zhang, G. J., Guo, Z., Huang, A., Zhang, Y., and Qian, Y.: Linking
- 655 Deep and Shallow Convective Mass Fluxes via an Assumed Entrainment Distribution
- 656 in CAM5-CLUBB: Parameterization and Simulated Precipitation Variability, Journal
- of Advances in Modeling Earth Systems, 13, e2020MS002357, 2021.
- 658 Yang, F., Shaw, R., and Xue, H.: Conditions for super-adiabatic droplet growth after
- 659 entrainment mixing, Atmos. Chem. Phys., 16, 9421-9433, 10.5194/acp-2016-94, 2016.
- 660 Yum, S.: Cloud droplet spectral broadening in warm clouds: An observational and
- model study, Dissertation for the Doctoral Degree, University of Nevada, Reno, Nevada,
 USA, 191 pp., 1998.
- Zhang, M. H., Lin, J. L., Cederwall, R. T., Yio, J. J., and Xie, S. C.: Objective analysis
 of ARM IOP data: Method and sensitivity, Mon. Weather Rev., 129, 295-311,
 10.1175/1520-0493(2001)129<0295:OAOAID>2.0.CO;2, 2001.
- Zheng, Y. and Rosenfeld, D.: Linear relation between convective cloud base height and
 updrafts and application to satellite retrievals, Geophysical Research Letters, 42, 64856491, 10.1002/2015gl064809, 2015.
- 669 Zheng, Y., Rosenfeld, D., and Li, Z.: Quantifying cloud base updraft speeds of marine
- stratocumulus from cloud top radiative cooling, Geophysical Research Letters, 43,
 11,407-411,413, 2016.
- 672 Zhu, L., Lu, C., Yan, S., Liu, Y., Zhang, G. J., Mei, F., Zhu, B., Fast, J. D., Matthews,
- 673 A., and Pekour, M. S.: A New Approach for Simultaneous Estimation of Entrainment
- 674 and Detrainment Rates in Non-Precipitating Shallow Cumulus, Geophysical Research
- 675 Letters, 48, 10.1029/2021gl093817, 2021.

676

- Table 1. Summary of names and corresponding descriptions of the five experiments for
- 679 each case of cumulus and stratocumulus. The meaning of each symbol for each
- 680 experiment can be found in the text.

	Entrainment-mixing	Dissinction note	Aerosol numbe
	parameterization	Dissipation rate	concentration
default	$\alpha = 0$	-	default
new	$\alpha = 1 - \psi,$ $\psi = 107.19 \exp(-1.99 N_{\rm L}^{-0.29}).$	$\varepsilon = \left\langle \frac{1}{3} \left(u^2 + v^2 + w^2 \right) \right\rangle^{3/2} / L.$	default
new_tke	$\alpha = 1 - \psi,$ $\psi = 107.19 \exp(-1.99 N_{\rm L}^{-0.29}).$	$\varepsilon = CE^{3/2} / L.$	default
default_10	$\alpha = 0$	-	default×10
new_10	$\alpha = 1 - \psi,$ $\psi = 107.19 \exp(-1.99 N_{\rm L}^{-0.29}).$	$\varepsilon = \left\langle \frac{1}{3} \left(u^2 + v^2 + w^2 \right) \right\rangle^{3/2} / L.$	default×10

682	Table 2. Summary of the case mean values of the key quantities in all the simulations


- 683 of the cumulus case, containing cloud water mixing ratio (q_c) , cloud droplet number
- 684 concentration (N_c), cloud droplet volume-mean radius (r_v), cloud water path (CWP),

	default	new	new_tke	default_10	new_10
qc(g/kg)	0.44	0.44	0.44	0.56	0.57
$N_{\rm c}({\rm cm}^{-3})$	35.78	34.91	35.53	278.80	266.37
$r_{\rm v}(\mu{ m m})$	13.27	13.34	13.29	7.05	7.11
CWP(g/m ²)	142.30	143.15	144.25	186.52	187.82
τ	13.07	12.94	13.02	31.29	30.92

and cloud optical depth (τ). The experiments are detailed in Table 1.

686

688	Table 3. Summary of the case mean values of the key quantities in all the simulations
689	of the stratocumulus case, including cloud water mixing ratio (q_c), cloud droplet number
690	concentration (N_c), cloud droplet volume-mean radius (r_v), cloud water path (CWP),
691	and cloud optical depth (τ). The numbers in and out of the parentheses are the results at
692	the mature and dissipation stages, respectively. The experiments are detailed in Table 1.

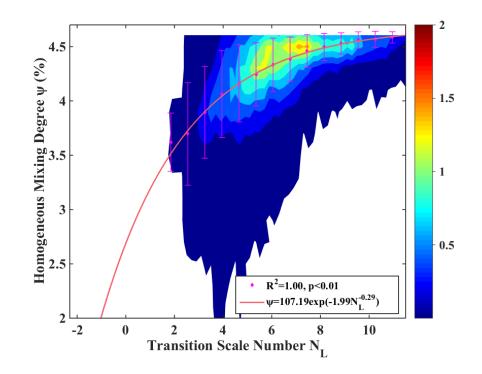
	default	new	new_tke	default_10	new_10
r. (- /l)	0.13	0.13	0.13	0.16	0.16
$q_{\rm c}({ m g/kg})$	(0.039)	(0.039)	(0.039)	(0.041)	(0.041)
N/ (-3)	35.74	33.14	33.11	256.82	231.98
$N_{\rm c}({\rm cm}^{-3})$	(19.76)	(18.90)	(18.82)	(138.74)	(126.99)
	10.32	10.57	10.65	5.15	5.30
$r_{\rm v}(\mu{\rm m})$	(7.53)	(7.59)	(7.69)	(4.02)	(4.11)
CWP(1/2)	41.39	41.33	41.78	56.21	57.12
CWP(g/m ²)	(2.57)	(2.45)	(2.43)	(2.71)	(2.77)
	4.68	4.41	4.40	13.17	12.46
τ	(0.39)	(0.38)	(0.38)	(0.78)	(0.78)

694	Table 4. Cloud water mixing ratio (q_c) , cloud droplet number concentration (N_c) , cloud	oud
-----	--	-----

- droplet volume-mean radius (r_v), cloud water path (CWP), cloud optical depth (τ) in all
- 696 simulations for the entire lifetime of the stratocumulus case. The experiments are
- 697 detailed in Table 1.

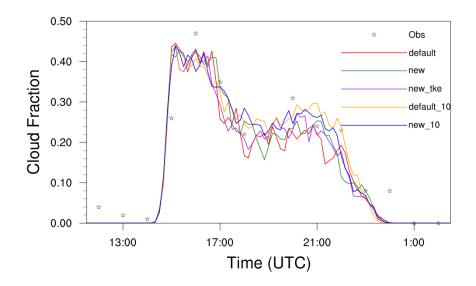
	default	new	new_tke	default_10	new_10
$q_{\rm c}({\rm g/kg})$	0.11	0.11	0.11	0.13	0.13
$N_{\rm c}({\rm cm}^{-3})$	29.98	28.21	28.12	223.65	203.59
$r_{\rm v}(\mu{\rm m})$	9.38	9.52	9.57	5.06	5.20
CWP(g/m ²)	30.78	30.34	29.92	42.22	43.19
τ	4.02	3.86	3.89	10.39	10.02

698



700	Table 5. Homogeneous mixing degree (ψ) at all grid points experiencing evaporation,
701	the proportion of inhomogeneous mixing grid points to all grid points experiencing
702	evaporation, and ψ at the inhomogeneous mixing grid points in the experiments <i>new</i> ,
703	new_tke and new_10 (Table 1) for the cumulus (Cu) and stratocumulus (St) case. The
704	numbers in and out of the parentheses are the results at the mature and dissipation stages
705	in the stratocumulus (St) case, respectively. The experiments are detailed in Table 1.

		Proportion of	ψ at the
	ψ at all grids (%)	inhomogeneous	inhomogeneous
		mixing grids (%)	mixing grids (%)
new (Cu)	98.80	13.78	91.21
new_tke (Cu)	99.93	4.52	98.62
<i>new_10</i> (Cu)	94.41	49.32	86.01
	79.38	60.22	71.33
new (St)	(94.12)	(42.36)	(90.66)
	78.56	63.07	71.56
new_tke (St)	(94.68)	(40.61)	(89.33)
10 (7.)	68.23	97.11	65.18
<i>new_10</i> (St)	(88.22)	(73.19)	(85.12)



708 Figure 1. Parameterization of cloud entrainment-mixing mechanisms by relating 709 homogeneous mixing degree (ψ) to transition scale number (N_L) from EMPM. The 710 contours represent the joint probability distribution function (PDF) of ψ vs N_L. The 711 magenta dots and error bars are mean values and standard deviations of ψ in each N_L 712 bin, respectively. The mean values are fitted using a weighted least squares method with 713 the number of data points in each N_L bin as the weight. The fitting equation, coefficient 714 of determination (R^2) , and p-value are also given. N_L is calculated by with the domain-715 averaged relative humidity after entrainment but before evaporation in the EMPM.

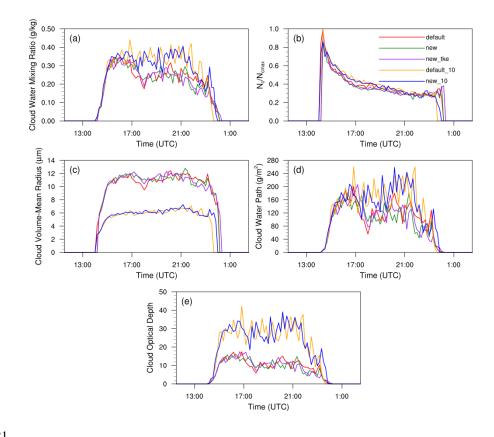
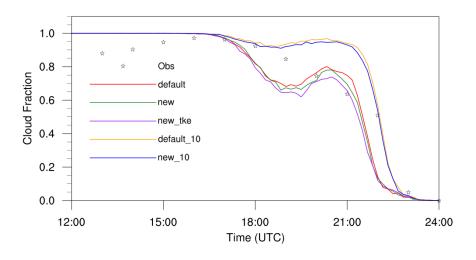
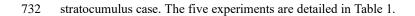

716

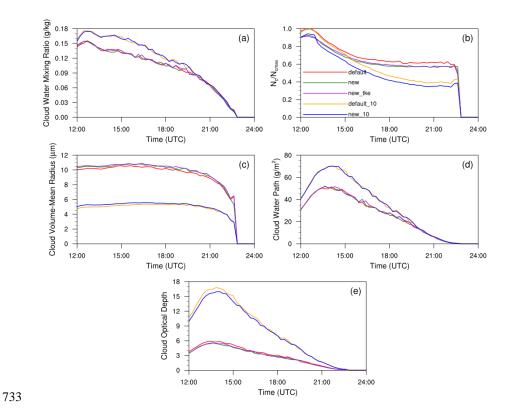
Figure 2. Time series of cloud fraction from 12:00 UTC on June 11, 2016, to 03:00
UTC on June 12, 2016, from the observation in LASSO and five simulation

repriments in the cumulus case. The five experiments are detailed in Table 1.



722 Figure 3. The temporal evolutions of main cloud microphysical and optical properties in all simulation experiments for the cumulus case, including (a) cloud water mixing 723 ratio (q_c) (g/kg), (b) cloud droplet number concentration (N_c) (/cm³), (c) cloud droplet 724 725 volume-mean radius (r_v) (µm), (d) cloud water path (CWP) (g/m²), and (e) cloud optical 726 depth (τ). In (b), N_c in the experiments *default*, new, and new tke are normalized by the 727 maximum cloud droplet concentration (N_{cmax}) from *default*, respectively; N_c in the 728 experiments default_10 and new_10 are normalized by N_{cmax} from default_10, 729 respectively. The five experiments are detailed in Table 1.





731 Figure 4. Time series of cloud fraction from the observation and five simulations in the

734 Figure 5. The temporal evolutions of main cloud microphysical and optical properties 735 in all simulation experiments for the stratocumulus case, including (a) cloud water 736 mixing ratio (q_c) (g/kg), (b) cloud droplet number concentration (N_c) (/cm³), (c) cloud 737 droplet volume-mean radius (r_v) (µm), (d) cloud water path (CWP) (g/m²), and (e) cloud 738 optical depth (τ). In (b), N_c in the experiments *default*, *new*, and *new* tke are normalized 739 by the maximum cloud droplet number concentration (N_{cmax}) from *default*, respectively; 740 N_c in the experiments *default* 10 and *new* 10 are normalized by N_{cmax} from *default* 10, 741 respectively. The five experiments are detailed in Table 1.

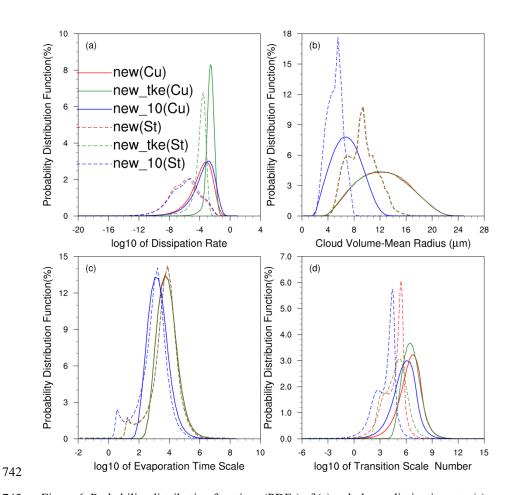


Figure 6. Probability distribution functions (PDFs) of (a) turbulence dissipation rate (ε), (b) cloud droplet volume-mean radius (r_v), (c) evaporation time scale (τ_{evap}), and (d) transition scale number (N_L) of cloud grids experiencing the entrainment-mixing process in the simulations with the new entrainment-mixing parameterization for the cumulus case (Cu, the solid lines) and the stratocumulus case (St, the dash lines), respectively. The experiments are detailed in Table 1.

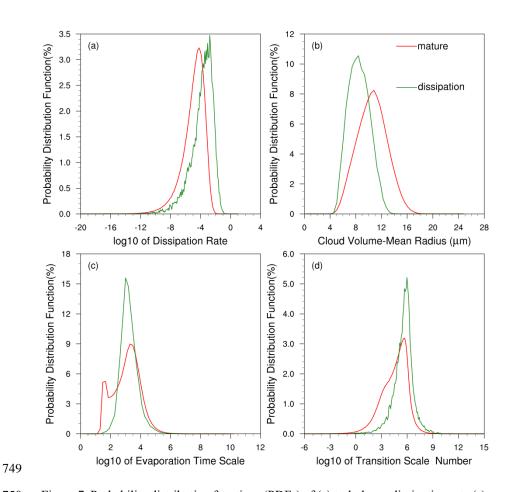


Figure 7. Probability distribution functions (PDFs) of (a) turbulence dissipation rate (ε) , (b) cloud droplet volume-mean radius (r_v) , (c) evaporation time scale (τ_{evap}) , and (d) transition scale number (N_L) of cloud grids experiencing the entrainment-mixing process at the mature stage from 12:00 UTC to 16:00 UTC (the red lines) and the dissipation stage from 21:00 UTC to 24:00 UTC (the green lines) in *new* for the stratocumulus case. The experiment is detailed in Table 1.