Preprints
https://doi.org/10.5194/acp-2021-936
https://doi.org/10.5194/acp-2021-936

  15 Dec 2021

15 Dec 2021

Review status: this preprint is currently under review for the journal ACP.

Volcanic SO2 Layer Height by TROPOMI/S5P; validation against IASI/MetOp and CALIOP/CALIPSO observations

Maria-Elissavet Koukouli1, Konstantinos Michailidis1, Pascal Hedelt2, Isabelle A. Taylor3, Antje Inness4, Lieven Clarisse5, Dimitris Balis1, Dmitry Efremenko2, Diego Loyola2, Roy G. Grainger3, and Christian Retscher6 Maria-Elissavet Koukouli et al.
  • 1Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, Greece
  • 2German Aerospace Center (DLR), Remote Sensing Technology Institute, Oberpfaffenhofen, Germany
  • 3COMET, Sub-department of Atmospheric, Oceanic and Planetary Physics, University of Oxford, UK
  • 4European Centre for Medium-Range Weather Forecasts (ECMWF), Reading, UK
  • 5Université Libre de Bruxelles (ULB), Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing (SQUARES), Brussels, Belgium
  • 6European Space Agency, ESRIN, Frascati, Rome

Abstract. Volcanic eruptions eject large amounts of ash and trace gases such as sulphur dioxide (SO2) into the atmosphere. A significant difficulty in mitigating the impact of volcanic SO2 clouds on air traffic safety is that these gas emissions can be rapidly transported over long distances. The use of space-borne instruments enables the global monitoring of volcanic SO2 emissions in an economical and risk-free manner. Within the European Space Agency (ESA) Sentinel-5p+ Innovation project, the S5P SO2 Layer Height (S5P+I: SO2 LH) activities led to the improvements on the retrieval algorithm and generation of the corresponding near-real-time S5P SO2 LH products. These are currently operationally provided, in near-real-time, by the German Aerospace Center (DLR) in the framework of the Innovative Products for Analyses of Atmospheric Composition, INPULS, project. The main aim of this paper is to present its extensive verification, accomplished within the S5P+I: SO2 LH project, over major recent volcanic eruptions, against collocated space-born measurements from the IASI/Metop and CALIOP/CALIPSO instruments, as well as assess its impact on the forecasts provided by the Copernicus Atmospheric Monitoring Service, CAMS. The mean difference between S5P and IASI observations for the Raikoke 2019, the Nishinoshima 2020 and the La Soufrière-St Vincent, 2021 eruptive periods is ~0.5 ± 3 km, while for the Taal 2020 eruption, a larger difference was found, between 3 and 4 ± 3 km. The comparison of the daily mean SO2 layer heights further demonstrates the capabilities of this near-real-time product, with slopes between 0.8 and 1 and correlations ranging between 0.6 and 0.8. Comparisons between the S5P+I: SO2 LH and the CALIOP/CALIPSO ash plume height are also satisfactory at −2.5 ± 2 km, considering that the injected SO2 and ash plumes’ locations do not always coincide over an eruption. Furthermore, the CAMS assimilation of the S5P+I: SO2 LH product led to much improved model output against the non-assimilated IASI layer heights, with a mean difference of 1.5 ± 2 km compared to the original CAMS analysis, and improved the geographical spread of the Raikoke volcanic plume following the eruptive days.

Maria-Elissavet Koukouli et al.

Status: open (until 26 Jan 2022)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on acp-2021-936', Anonymous Referee #2, 03 Jan 2022 reply
  • RC2: 'Comment on acp-2021-936', Anonymous Referee #1, 08 Jan 2022 reply

Maria-Elissavet Koukouli et al.

Maria-Elissavet Koukouli et al.

Viewed

Total article views: 338 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
275 56 7 338 23 4 2
  • HTML: 275
  • PDF: 56
  • XML: 7
  • Total: 338
  • Supplement: 23
  • BibTeX: 4
  • EndNote: 2
Views and downloads (calculated since 15 Dec 2021)
Cumulative views and downloads (calculated since 15 Dec 2021)

Viewed (geographical distribution)

Total article views: 329 (including HTML, PDF, and XML) Thereof 329 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 18 Jan 2022
Download
Short summary
Volcanic eruptions eject large amounts of ash and trace gases into the atmosphere. The use of space-borne instruments enables the global monitoring of volcanic SO2 emissions in an economical and risk-free manner. The main aim of this paper is to present its extensive verification, accomplished within the ESA S5P+I: SO2LH project, over major recent volcanic eruptions, against collocated space-borne measurements, as well as assess its impact on the forecasts provided by CAMS.
Altmetrics