1	Amplified role of potential HONO sources in O3 formation in North China Plain during
2	autumn haze aggravating processes
3	Jingwei Zhang ^{1**} , Chaofan Lian ^{2,3**} , Weigang Wang ^{2,3*} , Maofa Ge ^{2,3,7} , Yitian Guo ^{1,4} , Haiyan Ran ^{1,4} , Yusheng
4	Zhang ⁵ , Feixue Zheng ⁵ , Xiaolong Fan ⁵ , Chao Yan ⁶ , Kaspar R. Daellenbach ⁶ , Yongchun Liu ⁵ , Markku Kulmala ^{5,6} ,
5	Junling An ^{1,4,7*}
6	1. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of
7	Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China
8	2. State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for
9	Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of
10	Chemistry, Chinese Academy of Sciences, Beijing 100190, China
11	3. School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
12	4. College of Earth and Planetary Sciences, University of the Chinese Academy of Sciences, Beijing 100049,
13	China
14	5. Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing
15	University of Chemical Technology, Beijing, 100029, China
16	6. Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, P.O. Box 64, 00014
17	University of Helsinki, Helsinki, Finland

- 18 7. Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy
- 19 of Sciences, Xiamen 361021, China
- 20 *Corresponding author: Weigang Wang (wangwg@iccas.ac.cn), Junling An (anjl@mail.iap.ac.cn)
- 21 **These authors contributed equally.
- 22

23 **Abstract:**

24	Co-occurrences of high concentrations of $PM_{2.5}$ and ozone (O ₃) have been
25	frequently observed in haze aggravating processes in the North China Plain (NCP)
26	over the past few years. Higher O ₃ concentrations in hazy days were supposed to be
27	related to nitrous acid (HONO), but the key sources of HONO enhancing O3 during
28	haze aggravating processes remain unclear. We added six potential HONO sources,
29	i.e., four ground-based (traffic, soil, and indoor emissions, and the NO ₂ heterogeneous
30	reaction on ground surface (Het $_{ground}$)) sources, and two aerosol-related (the NO ₂
31	heterogeneous reaction on aerosol surfaces ($Het_{aerosol}$) and nitrate photolysis
32	(Phot _{nitrate})) sources into the WRF-Chem model and designed 23 simulation scenarios

33	to explore the unclear key sources. The results indicate that ground-based HONO
34	sources producing HONO enhancements showed a rapid decrease with height, while
35	the NO+OH reaction and aerosol-related HONO sources decreased slowly with height.
36	Phot _{nitrate} contributions to HONO concentrations enhanced with aggravated pollution
37	levels, the enhanced HONO due to $Phot_{nitrate}$ in hazy days was about ten times larger
38	than in clean days and Phot _{nitrate} dominated daytime HONO sources (~30–70% when
39	the ratio of the photolysis frequency of nitrate $(J_{nitrate})$ to gas nitric acid (J_{HNO3}) equals
40	30) at higher layers (>800 m). Compared with that in clean days, the $Phot_{nitrate}$
41	contribution to the enhanced daily maximum 8-h averaged (DMA8) O3 was increased
42	by over one magnitude during the haze aggravating process. Phot _{nitrate} contributed
43	only ~5% of the surface HONO in daytime with a $J_{nitrate}/J_{\rm HNO3}$ ratio of 30 but
44	contributed ~30–50% of the enhanced O_3 near the surface in NCP in hazy days.
45	Surface O3 was dominated by volatile organic compounds-sensitive chemistry, while
46	O_3 at higher altitude (>800m) was dominated by NO_x -sensitive chemistry. Phot _{nitrate}
47	had a limited impact on nitrate concentrations (<15%) even with a $J_{nitrate}/J_{HNO3}$ ratio of
48	120. The above results suggest the potential but significant impact of $Phot_{nitrate}$ on O_3
49	formation, and that more comprehensive studies on $Phot_{nitrate}$ in the atmosphere are
50	still needed.

1. Introduction

53 Nitrous acid (HONO) is an important source of the hydroxyl radical (OH) through

its photolysis (R1), and contributes ~20–80% of the primary OH production (Alicke
et al., 2002; Hendrick et al., 2014; Kim et al., 2014).

56

$$HONO + hv \rightarrow NO + OH$$
 (R1)

Although it has passed forty years since the first detection of HONO in the 57 atmosphere (Perner and Platt, 1979), the sources of HONO (especially daytime) and 58 the dynamic parameters of HONO formation mechanisms are still not well understood 59 (Ge et al., 2021). The current air quality models with the default gas-phase reaction 60 (the reverse reaction of R1) always severely underestimate HONO observations, 61 62 resulting in low atmospheric oxidation capacity and underestimation of secondary pollutants like ozone (O₃) (Li et al., 2010, 2011; Sarwar et al., 2008; Zhang et al., 63 2016, 2019a). 64

65 HONO sources can be generally classified into three categories, i.e., direct emissions, homogeneous and heterogeneous reactions. Direction emissions are mainly 66 from traffic (Kramer et al., 2020; Kurtenbach et al., 2001; Liao et al., 2021), soil 67 68 (Kubota and Asami, 1985; Oswald et al., 2013; Wu et al., 2019; Xue et al., 2021), biomass burning (Cui et al., 2021; Rondon and Sanhueza, 1989; Theys et al., 2020) 69 and indoor combustion processes (Klosterkother et al., 2021; Liu et al., 2019; Pitts et 70 al., 1985). The reaction of nitric oxide (NO) with OH (Pagsberg et al., 1997; Stuhl and 71 72 Niki, 1972) is usually thought as the dominant homogeneous reaction and is important during daytime but could be neglected at night due to low OH concentrations, other 73 minor homogeneous HONO sources including nucleation of NO2, H2O, and NH3 74 (Zhang and Tao, 2010), via the photolysis of ortho-nitrophenols (Bejan et al., 2006; 75

Chen et al., 2021; Lee et al., 2016), via the electronically excited NO₂ and H₂O 76 (Crowley and Carl, 1997; Dillon and Crowley, 2018; Li et al., 2008) and via 77 HO₂·H₂O+NO₂ reaction (Li et al., 2015; Li et al., 2014; Ye et al., 2015). The 78 heterogeneous reactions mainly include nitrogen dioxide (NO₂) hydrolysis and 79 reduction reactions on various humid surfaces (Finlayson-Pitts et al., 2003; Ge et al., 80 2019; Gómez Alvarez et al., 2014; Ma et al., 2013; Marion et al., 2021; Sakamaki et 81 al., 1983; Tang et al., 2017; Yang et al., 2021b) and nitrate photolysis (Phot_{nitrate}) 82 (Romer et al., 2018; Ye et al., 2016a, b; Zhou et al., 2003), and are usually thought as 83 84 the main contributors to HONO concentrations in the atmosphere.

Among those potential HONO sources, the photolysis of nitrate to produce HONO 85 in the atmosphere has received extensive attention over the past several years, and the 86 87 Phot_{nitrate} frequency (J_{nitrate}) is still argued (Gen et al., 2022). In the laboratory studies, some researchers (Bao et al., 2018; Ye et al., 2016a, 2017) showed that Phot_{nitrate} was 88 an important HONO source, the measured J_{nitrate} was 1-3 orders larger than the gas 89 nitric acid (HNO₃) photolysis frequency (J_{HNO3}) and could reach up to 10^{-4} s⁻¹, and a 90 number of substances including humic acid (Yang et al., 2018), sulfate (Bao et al., 91 92 2020) and TiO₂ (Xu et al., 2021) might enhance the reaction significantly; while Shi et al. (2021) found that the $J_{nitrate}/J_{HNO3}$ ratio was <10 when using suspended submicron 93 particulate sodium and ammonium nitrate rather than PM2.5 samples. In the field 94 studies combining with model simulations, Kasibhatla et al. (2018) compared NO_x 95 observations in Cape Verde Atmospheric Observatory with GEOS-Chem (Goddard 96 Earth Observing System-Chemistry) model simulations and reported a J_{nitrate}/J_{HNO3} 97

98	ratio of 25–50, Romer et al. (2018) reported a $J_{\text{nitrate}}/J_{\text{HNO3}}$ ratio of <30 based on
99	observations of NO_x (= $NO + NO_2$) and HNO_3 over the Yellow Sea and a box model
100	simulation, while larger $J_{nitrate}/J_{HNO3}$ ratios (e.g., 300) were inconsistent with the
101	observed NOx to HNO3 ratios. Adopting a $J_{nitrate}\!/J_{\rm HNO3}$ ratio of $\sim\!\!120$ could greatly
102	improve daytime surface HONO simulations (contributed \sim 30–40% of noontime
103	HONO) by using the Community Multiscale Air Quality model (CMAQ) in the Pearl
104	River Delta (Fu et al., 2019) or a box model in the Yangtze River Delta (Shi et al.,
105	2020), while a $J_{nitrate}/J_{HNO3}$ ratio of 30 produced negligible HONO in clean periods
106	(~2%) and slightly higher HONO in heavy haze periods (~8%) in the North China
107	Plain (NCP) by using a box model (Xue et al., 2020) and $\sim 1\%$ by using CMAQ in
108	urban Beijing (Zhang et al., 2021). Recently, Zheng et al. (2020) evaluated the effect
109	of three $J_{nitrate}/J_{HNO3}$ ratios (1, 10 and 100) on heterogeneous sulfate formation by
110	using CMAQ and large uncertainties of simulated sulfate concentrations were
111	reported. The mostly adopted $J_{nitrate}\!/J_{\rm HNO3}$ ratios were 1–30 or 100–120 with large
112	uncertainties, so more efforts are needed to better understand the Phot _{nitrate} impact on
113	atmospheric oxidation capacity and concentrations of HONO and other secondary
114	pollutants.

A number of potential HONO sources (e.g., direct emissions, NO₂ heterogeneous reactions and Phot_{nitrate}) have been coupled into several air quality models (An et al., 2013; Fu et al., 2019; Guo et al., 2020; Li et al., 2010, 2011; Sarwar et al., 2008; Tang et al., 2015; Xu et al., 2006; Zhang et al., 2019a, 2019b, 2020a, 2021, 2022) to improve HONO simulations. The improved HONO sources can produce more OH,

120	which is favorable for the formation of O ₃ (Fu et al., 2019; Guo et al., 2020; Li et al.,
121	2010; Xing et al., 2019; Zhang et al., 2016, 2019a, 2022). O3 can directly damage
122	plants and threaten human health (Avnery et al., 2011a, b; Feng et al., 2015, 2019,
123	2022; Mills et al., 2007, 2018; Richards et al., 1958; Selin et al., 2009; Wilkinson et
124	al., 2012; Zhao et al., 2021), an increasing trend of O3 concentrations in China has
125	been widely reported in recent years (Chen et al., 2020a; Li et al., 2020; Lu et al.,
126	2020; Ma et al., 2016; Maji and Namdeo, 2021), and made O ₃ pollution be a severe
127	concern. A co-occurrence of high $PM_{2.5}$ and O_3 concentrations has been frequently
128	found in China over the past few years, researchers speculated the significant role of
129	HONO in producing O ₃ enhancements (Feng et al., 2021; Fu et al., 2019; Tie et al.,
130	2019; Yang et al., 2021a). Nevertheless, the current knowledge on the HONO
131	difference in O ₃ formation during clean and hazy days is still unclear, especially the
132	relative contribution of each potential HONO source to O3 enhancements during haze
133	aggravating processes with a co-occurrence of high $PM_{2.5}$ and O_3 concentrations.
134	In this study, time series of pollutants including HONO, O ₃ , and nitrate were
135	collected in NCP in Oct.11–31 of 2018, in which high concentrations of $PM_{2.5}$
136	accompanying by high O ₃ concentrations were found at least twice in haze events.
137	The specific role of each of potential HONO sources in O ₃ formation will be explored

during these haze events by coupling these potential HONO sources into the Weather Research and Forecasting model with Chemistry (WRF-Chem). The relative contribution of each potential HONO source to surface-averaged and vertically-averaged concentrations of HONO and O₃ will be quantified and the uncertainty in key potential HONO sources (e.g., J_{nitrate}) will be discussed, in order to
find the key HONO sources resulting in O₃ enhancements in NCP in different
pollution levels (especially during haze aggravating processes).

145 **2. Data and methods**

146 **2.1 Observed data**

The field observation was carried out during October 11-31, 2018, and the 147 observation site was located in the west campus of Beijing University of Chemical 148 Technology (BUCT, 116°18'37" E, 39°56'56" N) in Beijing. BUCT is an urban site 149 close to the third ring road of Beijing, with large human activities, including vehicle 150 emissions. Instruments were set on the 5th floor of the main teaching building. HONO 151 152 was measured with a home-made water-based long-path absorption photometer (Chen et al., 2020b). A dual-channel absorption system was deployed to subtract the 153 potential interferences, e.g., NO₂ hydrolysis. A set of on-line commercial analyzers 154 (Thermo 48i, 42i, 49i, 43i) was used for measurements of CO, NO_x, O₃, and SO₂. To 155 be specific, the 42i used molybdenum NO₂-to-NO converter, there would be a NO₂ 156 overestimation for the conversion of HONO, HNO₃, or other NO_y. Considering the 157 158 relatively lower concentration compared with NO₂, the impact would be minor. The chemical composition of PM_{2.5} was analyzed with a Time-of-Flight Aerosol Chemical 159 Speciation Monitor (ToF-ACSM, Aerodyne), ToF-ACSM was developed via Fröhlich 160 161 et al. (2013) for Non-refractory PM2.5 measurement. The detailed usage could be found in Liu et al. (2020), where ionization efficiency calibration of nitrate was 162

163	performed using 300 nm dry NH ₄ NO ₃ every month during the observation. An online
164	Single Photon Ionization Time-of-Flight Mass Spectrometer (SPI-ToF-MS, Hexin)
165	was used for the detection of a large variety of volatile organic compounds (VOCs)
166	(Gao et al., 2013). Surface observations of O_3 , NO_2 , $PM_{2.5}$ and PM_{10} at 95 sites in
167	NCP were obtained from https://quotsoft.net/air/, issued by the China Ministry of
168	Ecology and Environment; surface meteorological observations at 284 sites in NCP
169	were taken from the National Climatic Data Center, China Meteorological
170	Administration (Fig.1).
171	The vertical HONO observations were not available during the Oct.11–31 of 2018
172	at the BUCT site, we used the observed vertical HONO concentrations from Meng et

al. (2020) in urban Beijing in December of 2016 to evaluate our simulation of vertical
HONO concentrations, which were also used by Zhang et al. (2021) in their CMAQ
evaluation.

176

177 **2.2 Model description**

The improved WRF-Chem (version 3.7.1), which contained six potential HONO sources, i.e., traffic ($E_{traffic}$), soil (E_{soil}), and indoor (E_{indoor}) emissions, Phot_{nitrate} in the atmosphere, and NO₂ heterogeneous reactions on aerosol (Het_{aerosol}) and ground (Het_{ground}) surfaces (Zhang et al., 2019a), was used in this study. Phot_{nitrate} was newly added in WRF-Chem (R2) following the work of Fu et al. (2019), Ye et al. (2017), and Zhou et al. (2003):

184
$$pNO_3 + hv \to 0.67HONO + 0.33NO_2$$
 (R2)

For Het_{aerosol} and Het_{ground}, laboratory studies suggest that these heterogeneous reactions of NO₂ to HONO are first order in NO₂ (Aumont et al., 2003; Finlayson-Pitts et al., 2003; Saliba et al., 2000):

- 188 $NO_2 \rightarrow HONO \quad k_a \quad (R3)$
- 189 $NO_2 \rightarrow HONO \quad k_q \quad (R4)$

190 The first-order rate constants for aerosol (k_a) and ground (k_g) surface reactions 191 are calculated below:

192 $k_a = \frac{1}{4} \times v_{NO_2} \times \left(\frac{s}{v}\right) \times \gamma \quad \text{(E1)}$

193
$$k_g = \frac{f \times v_d}{H}$$
(E2)

194 where v_{NO_2} is the mean molecular speed of NO₂, $\frac{s}{v}$ is the surface to volume ratio for 195 aerosols, γ is the reactive uptake coefficient of aerosols, f is the proportion of 196 deposited NO₂ reaching the surface in participating HONO formation, v_d is the dry 197 deposition velocity of NO₂, and H is the first model layer height above the ground 198 (~35 m). It should be noted that not 100% (50% is commonly accepted) of the 199 participated NO₂ could be converted to HONO in R3 and R4, so k_a and k_g were 200 multiplied by 0.5 in the final calculation of HONO heterogeneous formation via NO₂.

- 201 The two factors γ and f were improved from previous studies (Li et al., 2010; Liu
- et al., 2014; Zhang et al., 2019a) and calculated by:
- 203 $\gamma = 5 \times 10^{-6} \times \left(1 + \frac{SR}{\alpha}\right) \quad (E3)$

204
$$f = 0.08 \times \left(1 + \frac{SR}{\alpha}\right)$$
(E4)

where SR denotes solar radiation (W m⁻²), α is an adjusted parameter and set as 100 (W m⁻²), thus γ and *f* became continuous functions during the whole day (γ and *f*

enhanced by ten times and reached 5×10^{-5} and 0.8 when SR reached 900 W m⁻² at noontime, respectively).

209 The physical and chemical schemes used in this study are given in Table 1. Two domains were adopted, domain one contains 82×64 grid cells with a horizontal 210 resolution of 81 km, domain two contains 51×51 grid cells with a horizontal 211 resolution of 27 km (Fig.1), both with 17 vertical layers encompassing from the 212 surface to 100 hPa. The observational sites are shown in the right panel of Fig.1, 213 including one HONO observation site (the orange dot in urban Beijing), 95 214 observation sites of PM_{2.5}, NO₂ and O₃ (pink dots) and 284 meteorological monitoring 215 sites (black dots). 216

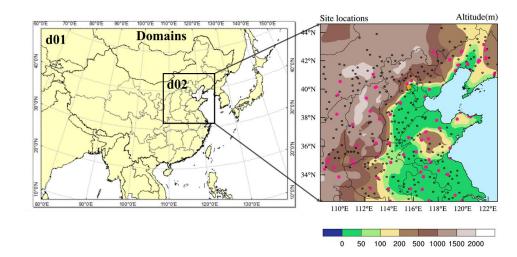


Figure 1 Domains of WRF-Chem used in this study (left panel), and the locations of one HONO observation site (the orange dot in urban Beijing), 95 environmental monitoring (PM_{2.5}, NO₂ and O₃) sites (deep pink dots), and 284 meteorological observation sites (black dots) in domain 2 (right panel).

222

217

223 The anthropogenic emissions in East Asia in 2010 were taken from the MIX

224	emission inventory (Li et al., 2017) (http://www.meicmodel.org/), including both
225	gaseous and aerosol species, i.e., SO ₂ , NO _x , CO, VOCs, NH ₃ , PM ₁₀ , PM _{2.5} , BC, OC
226	and CO ₂ , and were provided monthly by five sectors (power, industry, residential,
227	transportation, and agriculture) at a resolution of $0.25^{\circ} \times 0.25^{\circ}$. VOC emissions were
228	speciated into model-ready inputs according to the MOZART chemical mechanism to
229	build the WRF-Chem emission files. The anthropogenic emissions in China were
230	replaced by employing the MEIC 2016 (the Multi-resolution Emission Inventory for
231	China) developed by Tsinghua University. The NH ₃ emissions in China were from
232	Dong et al. (2010), biomass burning emissions were from Huang et al. (2012) and
233	biogenic emissions were calculated using the Model of Emissions of Gases and
234	Aerosols from Nature (MEGAN) (Guenther et al., 2012). Due to the sharp reduction
235	of anthropogenic emissions in recent years, the default emission inventory was
236	systematically overestimated in autumn of 2018, especially for SO_2 and $PM_{2.5}$
237	concentrations. Based on the comparison of simulations and observations (the urban
238	Beijing site plus other 95 pollutant monitoring sites in NCP), we cut off 80% of SO ₂
239	emissions, 50% of NH_3 emissions, 30% of toluene emissions, and 50% of $PM_{2.5}$ and
240	PM_{10} emissions. The cut-off emissions are largely close to the emission reductions in
241	east China during 2013 to 2017 (Zhang and Geng, 2019). The revised emissions
242	significantly improved regional PM2.5 simulations in NCP (Fig.S1), and the
243	simulations of gases and PM _{2.5} in urban Beijing (Fig.S2).

The National Centers for Environmental Prediction (NCEP) $1^{\circ} \times 1^{\circ}$ final reanalysis data (FNL) (<u>https://rda</u>.ucar.edu/datasets/ds083.2/) were used in this study to obtain the meteorological initial and boundary conditions every 6 h. The global

247 simulations of MOZART-4 (<u>https://www</u>.acom.ucar.edu/wrf-chem/mozart.shtml)

248 were used as the chemical initial and boundary conditions (every 6 h).

249

250

Table1 Physical and chemical options in WRF-Chem used in this study Options WRF-Chem Runge-Kutta 3rd order Advection scheme YSU Boundary layer scheme Cloud microphysics Lin et al. (1983) Cumulus parameterization New Grell scheme Land-surface model Noah Long-wave radiation RRTM Short-wave radiation Goddard Surface layer Revised MM5 Monin-Obukhov scheme Aerosol option MOSAIC (Zaveri et al., 2008) Updated MOZART mechanism (Emmons et al., 2010) Chemistry option Photolysis scheme F-TUV

251

Totally 23 simulation scenarios were performed in this study (Table 2), in which 252 253 the base case only considered the default homogeneous reaction (OH + NO \rightarrow HONO), case 6S contained six potential HONO sources while case A, B, C, D, E and 254 F contained each of the six potential HONO sources, respectively. Other 15 cases 255 (A double, A half, ..., Nit 120, D NO₂ and D HONO) were used to evaluate the 256 257 uncertainties of the six potential HONO sources (Table 2). All of the cases were simulated with a spin-up of 7 days. J_{nitrate} and J_{HNO3} denote the photolysis frequency of 258 nitrate and gas nitric acid in the atmosphere, respectively. The enhancement factor for 259 260 F double was 1.25 rather than 2.0 to avoid the production rate of HONO from NO₂ reaching the surface exceeding 100%. The 0.33NO₂ in D_NO₂ or 0.67HONO in 261 D HONO referred to the assumed Phot_{nitrate} products in R2. 262

Table 2. Simulation scenarios designed in this study.			
Case	HONO sources		
Base	Default (OH + NO \rightarrow HONO)		
6S	$Default + E_{traffic} + E_{soil} + E_{indoor} +$		
	$Phot_{nitrate} (J_{nitrate}/J_{HNO3} = 30) + Het_{aerosol} + Het_{ground}$		
Α	$Default + E_{traffic}$		
В	$Default + E_{soil}$		
С	$Default + E_{indoor}$		
D	$Default + Phot_{nitrate} (J_{nitrate}/J_{HNO3} = 30)$		
E	$Default + Het_{aerosol}$		
F	Default + Het _{ground}		
A_double	$Default + 2 \times E_{traffic}$		
A_half	$Default + 0.5 \times E_{traffic}$		
B_double	$Default + 2 \times E_{soil}$		
B_half	$Default + 0.5 \times E_{soil}$		
C_double	$Default + 2 \times E_{indoor}$		
C_half	$Default + 0.5 \times E_{indoor}$		
E_double	$Default + Het_{aerosol} (2 \times \gamma)$		
E_half	Default + Het _{aerosol} $(0.5 \times \gamma)$		
F_double	Default + Het _{ground} $(1.25 \times f)$		
F_half	Default + Het _{ground} $(0.5 \times f)$		
Nit_1	$Default + Phot_{nitrate} (J_{nitrate}/J_{HNO3} = 1)$		
Nit_7	$Default + Phot_{nitrate} (J_{nitrate}/J_{HNO3} = 7)$		
Nit_120	$Default + Phot_{nitrate} (J_{nitrate}/J_{HNO3} = 120)$		
D_NO_2	Only 0.33NO ₂ produced in Phot _{nitrate} for case D		
D HONO	Only 0.67HONO produced in Photnitrate for case D		

Table 2. Simulation scenarios designed in this study.

265 **3.Results**

266 **3.1 Comparison of simulations and observations**

267 **3.1.1 Meteorological factors**

The statistical metrics of simulated meteorological parameters at 284 sites in NCP including air temperature (T), relative humidity (RH) and wind speed (WS) were comparable with the previous modelling results of other researchers (**Table 3**). The simulated wind direction (WD) bias within 45° accounted for ~56%, and the bias within 90° accounted for ~80%, suggesting that the simulated WD captured the main observed WD.

263

Table 3. Performance metrics (index of agreement (IOA), RMSE (root-mean-square error) and MB (mean bias)) of WRF-Chem simulated air temperature, relative humidity, wind speed and direction at 284 meteorological sites in the North China Plain during Oct. 11–31 of 2018. The definitions of the metrics used in this study are given in **Text S1**.

	IOA	RMSE	MB	Reference
T (°C)	0.97	1.4	-1.1	This work
	0.90	2.5	0.2	(Wang et al., 2014)
	0.90	/	-0.9	(Wang et al., 2010)
	0.88	/	0.5	(Li et al., 2012)
	/	3.1	0.8	(Zhang et al., 2012)
RH (%)	0.90	9.0	-7.1	This work
	0.78	16.3	-5.5	(Wang et al., 2014)
	0.78	/	-1.3	(Wang et al., 2010)
	0.86	/	-1.1	(Li et al., 2012)
	/	17.4	-5.7	(Zhang et al., 2012)
WS (m s ⁻¹)	0.48	1.4	1.3	This work
	0.56	2.5	1.6	(Wang et al., 2014)
	0.65	2.1	0.9	(Wang et al., 2010)
	0.62	1.5	0.6	(Li et al., 2012)
	/	2.2	1.1	(Zhang et al., 2012)
WD Bias	<i>0-45</i> °	45-90°	>90°	
Count	75701	21500	28075	135276(Total)
Percentage	55.96%	23.29%	20.75%	

279 **3.1.2 Pollutant concentrations at the BUCT site**

Time series of the observational data at the BUCT site are shown in **Fig.2**, the gray shaded periods stand for three haze aggravating processes, while the cyan shaded period denotes typical clean days, respectively. The hourly largest observations of O_3 (~50–75 ppb) and PM_{2.5} (~100–200 µg/m³) were both relatively higher in hazy days than in clean days, especially for the first two haze events (the O_3 concentrations in the third haze event was relatively lower due to the higher NO_x concentrations in the urban area).

The observed $PM_{2.5}$ and nitrate trends at the BUCT site were well simulated (Fig.2a&b), and NO₂ simulations generally agreed with the observations (Fig.2c).

The promotion effect of the six potential HONO sources on the formation of 289 secondary aerosols leads to an increase in concentrations of PM2.5 and nitrate for case 290 291 6S, despite nitrate consumption through Phot_{nitrate} (Li et al., 2010; Qu et al., 2019; Fu et al., 2019; Zhang et al., 2019a, 2021), detailed nitrate variation caused by each of 292 293 the six potential HONO sources in case 6S is presented in Fig.S3. Hourly and diurnal HONO simulations at the BUCT site (Fig.2d&3a) were significantly improved in the 294 6S case (mean is 1.47 ppb) compared with the base case (mean is 0.05 ppb). The 295 normalized mean bias (NMB) was remarkably reduced to -14.22% (6S) from -97.11% 296 297 (Base), and the index of agreement (IOA) was improved significantly to 0.80 (6S) from 0.45 (Base) (Fig.2d). The underestimation of the simulated HONO (6S) on 298 Oct.15 and Oct.22 was mainly caused by the earlier scavenging of pollutants at the 299 300 BUCT site in the used model (Fig.2a&d).

As for O₃, noticeable improvements could be found at the BUCT site after 301 considering the six potential HONO sources, especially in hazy days (Fig.2e&f). The 302 303 mean bias (MB) was improved to -3.61 ppb (6S) from -7.09 ppb (Base), and the IOA was improved to 0.86 (6S) from 0.78 (Base) (Fig.2e). Specially, the 6S case 304 significantly enhanced daytime hourly O₃ by 15–35 ppb compared with the base case 305 and the simulated O₃ was very close to the observations in hazy days (Fig.2e). Larger 306 daytime O₃ enhancements were accompanied with higher PM_{2.5} concentrations during 307 haze aggravating processes, while in clean days the daytime enhanced O₃ due to the 308 potential HONO sources was mostly < 5 ppb (Fig.2e&f). The diurnal O₃ pattern 309 during the first two haze aggravating processes is presented in Fig.3b, significant 310

improvements in daily maximum 8-h (10:00–17:59) averaged (DMA8) O₃ (18.8 ppb)
occurred at the BUCT site after considering the six potential HONO sources, and the
NMB of DMA8 O₃ was remarkably improved to -2.38% (6S) from -47.14% (Base).

314

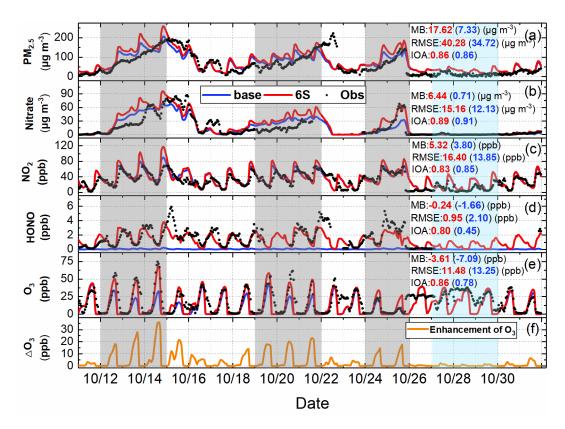


Figure 2 Comparison of simulated (Base and 6S cases) and observed hourly concentrations of $PM_{2.5}$, nitrate, NO₂, HONO and O₃ (a–e), and the hourly enhanced concentrations of O₃ ($\triangle O_3$) (f)

318 caused by the six potential HONO sources (6S minus Base) at the BUCT site during Oct.11–31 of

319 2018.

320

315

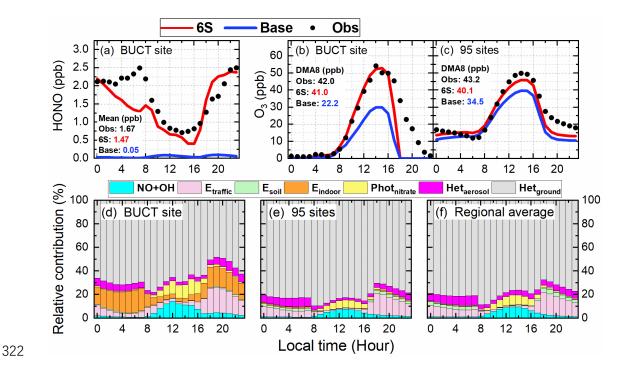


Figure 3 Comparison of diurnal mean simulations (Base and 6S cases) and observations of HONO during the study period (a) and O_3 during the first two haze events at the BUCT site (b), and O_3 averages at the 95 NCP monitoring sites during the study period (c); and the relative contributions of each of the six potential HONO sources and the reaction of OH with NO to surface HONO concentrations for the 6S case at the BUCT site (d), at the 95 monitoring sites (e) and in the whole NCP region (f) (The calculated 24-h mean HONO concentrations and DMA8 O_3 concentrations were given in panels (a) – (c)).

The relative contribution of each HONO source near the surface at the BUCT site for the 6S case is shown in **Fig.3d**. Briefly, Het_{ground} was the largest source during daytime and nighttime (~50–70%), consistent with the results of Zhang et al. (2021). Phot_{nitrate} (J_{nitrate}/J_{HNO3} = 30) and the NO+OH reaction contributed similarly ~1–12% during daytime. E_{traffic} was important during nighttime (~10–20%) but small during daytime (<5%). The contribution of Het_{aerosol} to HONO concentrations was minor $(\sim 2-3\%)$ in daytime and $\sim 6-10\%$ in nighttime. E_{soil} could be neglected while the contribution of E_{indoor} was close to that of E_{traffic} in urban Beijing. The relative contribution of the potential HONO sources in this study was comparable with the result of Fu et al. (2019) by using CMAQ, except for the contribution of Phot_{nitrate} due to the different J_{nitrate}/J_{HNO3} ratios (30 in our study and ~120 in Fu et al. (2019)).

342

343 3.1.3 Pollutant concentrations in NCP

The 95-site-averaged hourly simulations and observations of O₃, NO₂ and PM_{2.5} 344 during the study period are shown in Fig.4. The six potential HONO sources 345 significantly improved hourly O₃ simulations, remarkably enhanced the daily 346 maximum O_3 by ~5–10 ppb during Oct. 11–25, and by ~2–4 ppb during Oct. 26–31 347 (Fig.4a&b). The simulations of NO₂ well agreed with the observations, and the mean 348 concentrations were 22.55 (Base), 21.62 (6S) and 20.74 (Obs) ppb (Fig.4c). The 349 PM_{2.5} simulations generally followed the observed PM_{2.5} trend but were 350 overestimated by $\sim 8 \ \mu g \ m^{-3}$, with averaged concentrations of 49.94 (Base), 53.30 (6S) 351 and 45.31 (Obs) µg m⁻³ (Fig.4d), respectively. 352

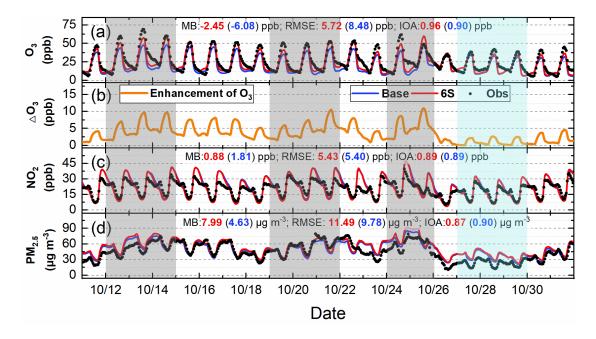


Figure 4 Comparison of 95-site-averaged hourly simulations (Base and 6S cases) and observations of $O_3(a)$, NO_2 (c) and $PM_{2.5}$ (d), and O_3 enhancements due to the six potential HONO sources (6S minus Base case) (b) in the North China Plain during Oct.11–31 of 2018.

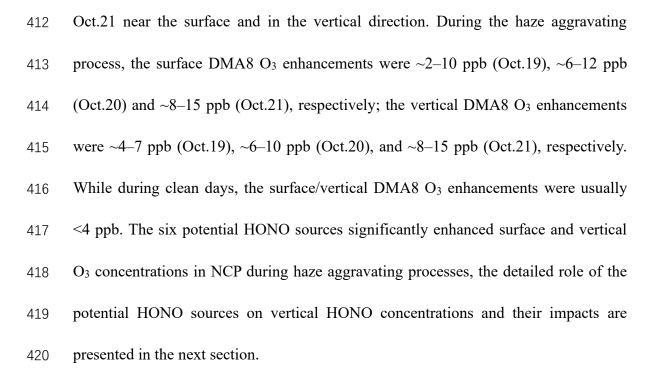
354

The 95-site-averaged diurnal simulations and observations of O₃ are presented in 359 Fig.3c, O₃ simulations showed a remarkable improvement when the six potential 360 HONO sources were considered, the six potential HONO sources produced a mean 361 enhancement of 5.7 ppb in DMA8 O₃ and improved the NMB to -7.16% from -20.32% 362 at the 95 sites in NCP. The 95-site-averaged diurnal simulations and observations of 363 NO₂ and PM_{2.5} during the study period are demonstrated in Fig.S4. NO₂ simulations 364 generally followed the observed trend but were underestimated during 04:00 to 16:00 365 and overestimated after 18:00 (Fig.S4a), PM_{2.5} simulations agreed with the observed 366 diurnal pattern but were overestimated for both cases during the whole day (Fig.S4b). 367 368 The relative contribution of each HONO source near the surface at the 95 NCP sites for the 6S case is shown in Fig.3e. Het_{ground} was the dominant source during 369

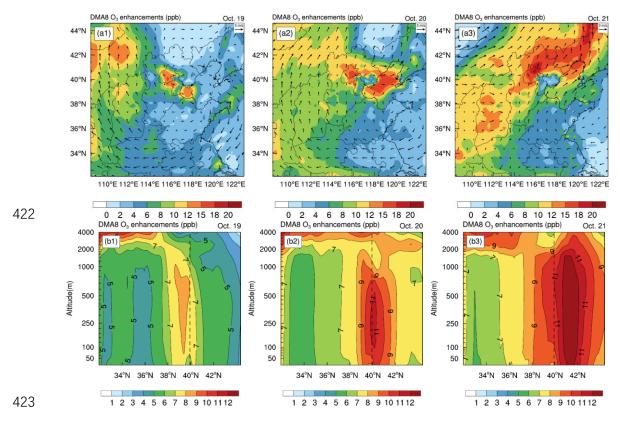
370	daytime and nighttime (~70–80%). Phot _{nitrate} ($J_{nitrate}/J_{HNO3} = 30$) and the NO+OH
371	reaction nearly equaled and contributed $\sim 2-8\%$ during daytime ($\sim 5\%$ on average).
372	$E_{traffic}$ was important during nighttime (~10–15%) but small during daytime (<3%).
373	The contribution of $Het_{aerosol}$ to HONO concentrations was <3% in daytime and <10%
374	in nighttime. E_{soil} contributed ~3% in nighttime but could be neglected in daytime.
375	The contribution of E_{indoor} was too small to be noticed at the 95 NCP sites, implying
376	that this source was noticeable only in megacities. The relative contribution of each
377	HONO source in the whole NCP region (all grid cells in domain two except for the
378	seas) is presented in Fig.3f, the results were quite similar with those at the 95 sites
379	(Fig.3f), which were representative for the whole NCP region. To further understand
380	the role of potential HONO sources in haze aggravating processes in regional O ₃
381	concentrations, the 95 site-averaged surface/vertical HONO concentrations and their
382	impacts during a typical haze event (Oct. 19–21) and a clean period (Oct. 27–29) were
383	analyzed and are shown in the following sections.

385 **3.2 Spatial distribution of enhanced DMA8 O3 by potential HONO sources**

386 3.2.1 General patterns of enhanced DMA8 O₃


Fig.S5 shows surface-averaged and zonal-averaged DMA8 O₃ enhancements due to the six potential HONO sources in NCP during the study period (Oct.11-31) and three haze events (Oct.12–14, Oct.18–21 and Oct.24–25). The overall surface DMA8 O₃ enhancement decreased gradually from south (6–10 ppb) to north (2–6 ppb)

(Fig.S5a) and could reach 10-20 ppb under unfavorable meteorological conditions 391 during haze events (Fig.S5b-d). For the first two haze events, the anti-cyclone in the 392 393 Shandong peninsula carried pollutants being transported from the southeastern NCP to the western (108-112°E) and northern (39-41°N) NCP, and the six potential 394 HONO sources led to a DMA8 O₃ enhancement of 10–20 ppb (Fig.S5b) and 10–15 395 ppb (Fig.S5c) in Beijing, respectively. For the third haze event, two air masses were 396 converged to form a transport channel from south to north, the O₃ enhancement 397 caused by the six potential HONO sources can reach 10-18 ppb in the southern NCP 398 399 and decreased to 6–10 ppb in the northern NCP along the transport channel. Vertically, the DMA8 O₃ enhancements were 2-8 ppb during the whole period (Fig.S5e) and 400 increased to 6–12 ppb in these haze events (Fig.S5f-h). The enhanced O₃ near the 401 402 surface (0–100 m) was slightly smaller than that at higher altitude (Fig.S5f-h), due mainly to the stronger titration of O₃ by NO near the surface. The above results 403 demonstrated that the six potential HONO sources significantly enhanced surface and 404 405 vertical O₃ concentrations in NCP, especially during haze events.


406

407 **3.2.2 During a typical haze aggravating process and a clean period**

408 **Fig.5** demonstrates surface-averaged and zonally-averaged DMA8 O_3 409 enhancements due to the six potential HONO sources in NCP during a typical haze 410 aggravating process (Oct.19–21, 2018) and a clean period (Oct.27–29, 2018). The 411 increasing trend of DMA8 O_3 enhancements can be clearly seen from Oct.19 to

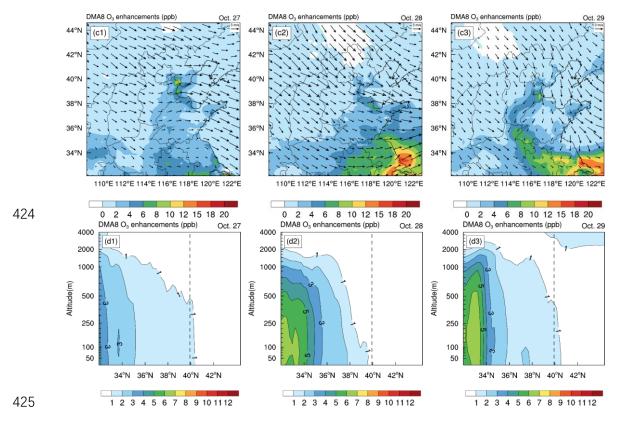
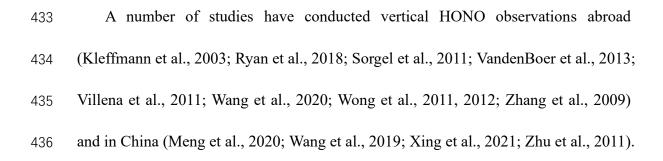
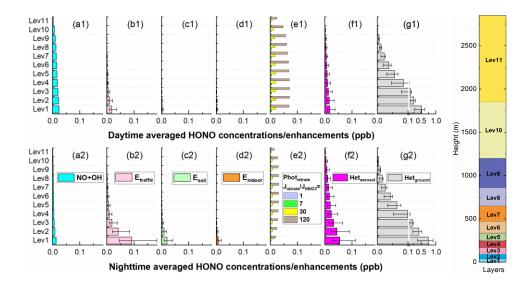



Figure 5 Surface-averaged (a1–a3, c1–c3) and zonal-averaged (b1–b3, d1–d3) DMA8 O₃
enhancements due to the six potential HONO sources in the North China Plain during a typical
haze aggravating process (Oct.19–21, 2018) and a clean period (Oct.27–29, 2018) (The dashed
line denotes the latitude of the BUCT site).


3.3 Vertical variations of the six potential HONO sources and their impacts

3.3.1 Six potential HONO sources and their impacts on HONO concentrations

A decreasing trend of HONO with height was mostly observed among these studies, and our simulations also reproduced this vertical variation and were comparable with another model simulation by Zhang et al. (2021) who used CMAQ (**Fig.S6**). For a deep understanding of the role of each considered HONO source in HONO concentrations at different heights, we assessed the contributions of each potential HONO source to HONO concentrations at different heights (**Fig.6**) during Oct.11–31 of 2018.

Generally, the impacts of ground-based potential HONO sources (Etraffic, Esoil, 444 445 Eindoor and Hetground) on HONO concentrations decreased rapidly with height, while the NO+OH reaction and aerosol related HONO sources (Phot_{nitrate} and Het_{aerosol}) 446 decreased slowly with height (Fig.6). During daytime the NO+OH reaction, Phot_{nitrate} 447 448 and Hetground were the three main HONO sources, while during nighttime Etraffic, Het_{aerosol} and Het_{ground} were the three main contributors to HONO concentrations 449 (Fig.6). The HONO concentrations via the NO+OH reaction and Photnitrate were 450 higher during daytime. The impact of E_{soil} in the NCP was small, nevertheless, Xue et 451 al. (2021) found strong soil HONO emissions in NCP agricultural fields after 452 fertilization, suggesting that this source may have a remarkable enhancement on 453 regional HONO and secondary pollutants in crop growing seasons. 454

456

Figure 6 The 95-site-averaged daytime/nighttime HONO concentrations/enhancements at different heights when the NO+OH reaction (a1&a2) and each of the six potential HONO sources (b1-g1&b2-g2) were considered during Oct.11-31 of 2018 (The error bar denotes the uncertainties of each potential HONO source in HONO concentrations (**Table 2**). The right panel denotes the approximate height of each vertical layer above the ground).

The comparison of HONO concentrations/enhancements during a haze 463 aggravating process and a clean period is shown in Figs.7&8. Generally, daytime 464 HONO concentrations increased in haze aggravating processes and were higher than 465 those in clean days. Hetground was the dominant source of the surface HONO in both 466 hazy and clean days and contributed 80-90% of daytime averaged HONO 467 concentrations (Fig.8), however, this reaction occurred only on the ground surface, 468 thus its relative contribution decreased with height, especially in haze aggravating 469 processes (Fig.8). Although the contribution of the NO+OH reaction to daytime 470 471 HONO was small near the surface, its relative contribution to HONO increased with height, especially in clean days (Fig.8). As for Photnitrate, a much larger enhancement 472

could be found in hazy days compared with clean days. In clean days the daytime 473 enhanced HONO by Photnitrate was only 1-3 ppt in general and its contribution to 474 daytime HONO was usually <10%, while in the haze aggravating process, the 475 enhanced HONO concentration by Phot_{nitrate} was about ten times higher than that in 476 clean days and Phot_{nitrate} became the dominant HONO source (~30-70%) at higher 477 altitude, and both HONO concentrations and contributions by Phot_{nitrate} increased with 478 the air pollution aggravation (Fig.7a-c, Fig.8a-c). The contributions of direct 479 emission sources were small and decreased when PM2.5 increased, compared with 480 those heterogeneous reactions. Higher concentrations of NO₂, nitrate, and PM_{2.5} 481 favored heterogeneous formation of HONO, while direct emission sources were 482 relatively invariable under different pollution levels. 483

Based on our results, nitrate concentrations increased with the haze aggravating processes (**Fig.2b**), as a positive feedback effect, the elevated nitrate could in turn enhance HONO formation and further enhance the atmospheric oxidation capacity during daytime. Considering $J_{nitrate}$ was still unclear, sensitivity tests were conducted and are presented in the discussion section.

489

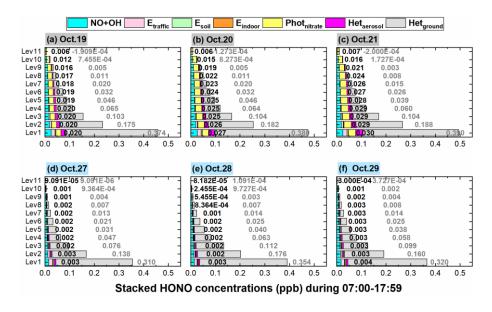


Figure 7 The 95-NCP-site-averaged daytime HONO concentrations at different heights when the NO+OH reaction and the six potential HONO sources were included during a typical haze aggravating process of Oct.19–21 (a–c) and a clean period of Oct.27–29 (d–f) of 2018 (The first column numbers in black in each graph are for Phot_{nitrate}, and the second column numbers in gray are for Het_{ground}).

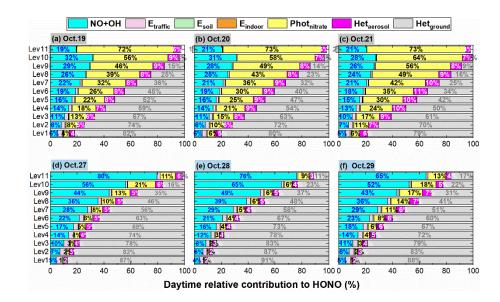


Figure 8 The 95-NCP-site-averaged relative contributions of the NO+OH reaction and each of the
 six potential HONO sources to daytime HONO concentrations at different heights during a typical

haze aggravating process of Oct.19–21 (a–c) and a clean period of Oct.27–29 (d–f) of 2018 (The first column numbers in blue in each graph are for the NO+OH reaction, the second column numbers in black are for $Phot_{nitrate}$, the third column numbers in white are for $Het_{aerosol}$, and the fourth column numbers in gray are for Het_{ground}).

504

505 **3.3.2 Enhanced OH and its production rate**

Fig.9 demonstrates daytime variations of OH production (P(OH)) and loss (L(OH)) rates near the surface and in the vertically-averaged layer (from ground to the height of 2.5km) at the 95 NCP sites for the Base and 6S cases during Oct.11–31, 2018. A significant enhancement of P/L(OH) can be found near the surface and vertically, the six potential HONO sources accelerated OH production and loss rates remarkably near the surface and noticeably in the considered vertical layers.

512 Near the surface, daytime P(OH) and L(OH) were significantly enhanced by~320% for the 6S case (mean was 5.27 ppb h⁻¹) compared with the base case (mean was 1.26 513 ppb h^{-1}). For the base case, the daytime P(OH) via the photolysis of HONO and O₃ 514 was 0.09 ppb h⁻¹ and 0.09 ppb h⁻¹, respectively, while the daytime L(OH) via the 515 NO+OH reaction was 0.11 ppb h⁻¹ and the net contribution of HONO photolysis to 516 P(OH) was -0.02 ppb h⁻¹. After adding the six potential HONO sources in case 6S, the 517 daytime P(OH) via the photolysis of HONO and O₃ was 1.81 ppb h⁻¹ and 0.10 ppb h⁻¹, 518 respectively, the daytime L(OH) via the NO+OH reaction was 0.48 ppb h⁻¹ and the net 519 contribution of HONO photolysis to P(OH) reached 1.33 ppb h⁻¹. HONO photolysis 520

was the main source of the primary formation of OH, while the secondary formed OH via the reaction of HO₂+NO (3.14 ppb h⁻¹) was the dominant source of the total OH formation.

Vertically, daytime P(OH) or L(OH) was enhanced by ~105% for the 6S case 524 (mean was 2.21 ppb h⁻¹) compared with the base case (mean was 1.08 ppb h⁻¹). For 525 the base case, the daytime P(OH) via the photolysis of HONO and O_3 was 0.06 ppb 526 h⁻¹ and 0.10 ppb h⁻¹, respectively, while the daytime L(OH) via the NO+OH reaction 527 was 0.07 ppb h⁻¹ and the net contribution of HONO photolysis to P(OH) was -0.01 528 ppb h⁻¹. After coupling the six potential HONO sources in case 6S, the daytime P(OH) 529 via the photolysis of HONO and O₃ and via the HO₂+NO reaction was 0.48 ppb h^{-1} , 530 0.12 ppb h⁻¹ and 1.52 ppb h⁻¹, respectively, the daytime L(OH) via the NO+OH 531 reaction was 0.15 ppb h⁻¹ and the net contribution of HONO photolysis to P(OH) was 532 0.33 ppb h⁻¹. 533

534

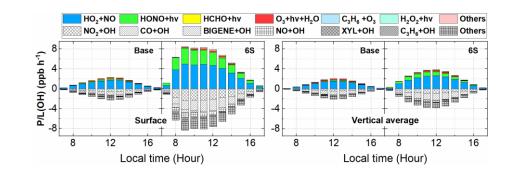


Figure 9 Diurnal mean variations of OH production (P(OH)) and loss (L(OH)) rates including major production and loss reactions near the surface and in the vertically-averaged layer (from ground to the height of 2.5km) at the 95 NCP sites for the Base and 6S cases during Oct.11–31, 2018.

541	Fig.10 shows the linear relationships between daytime-averaged P(OH) and
542	$PM_{2.5}$ concentrations and between daytime-averaged OH and $PM_{2.5}$ concentrations
543	from ground to the height of 2.5km at the 95 NCP sites during Oct. 11-31 of 2018.
544	Both P(OH) for the two cases (Base and 6S) and the enhanced P(OH) due to the six
545	potential HONO sources showed a strong positive correlation (r >0.8) with PM _{2.5}
546	concentrations at the 95 NCP sites, because Het _{aerosol} , Het _{ground} and Phot _{nitrate} were
547	significantly increased with the elevated $PM_{2.5}$. The enhanced $P(OH)$ for the 6S case
548	reached 0.043 ppb h^{-1} per 1µg m ⁻³ of a PM _{2.5} enhancement. Similarly, high positive
549	correlation (r >0.6) could be found between OH and PM _{2.5} concentrations, the OH
550	concentrations and enhancements due to the six potential HONO sources were both
551	higher in hazy days than those in clean days, and the enhancement of OH reached
552	3.62×10^4 molec cm ⁻³ per µg m ⁻³ of PM _{2.5} for case 6S. These results were consistent
553	with a recent field study reported by Slater et al. (2020), who found that the OH
554	observed in haze events was elevated in central Beijing in November-December of
555	2016. Furthermore, two observations confirmed the key role of HONO in producing
556	primary OH despite the relatively lower photolysis frequency in haze aggravating
557	processes (Slater et al., 2020; Tan et al., 2018), consistent with our simulations
558	(Fig.S7 shows the relationship between surface $PM_{2.5}$ and photolysis frequencies of
559	NO ₂ , HONO and HNO ₃ in this study,).

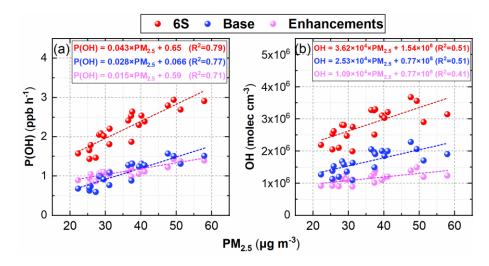
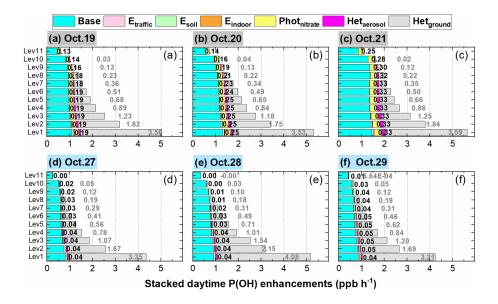
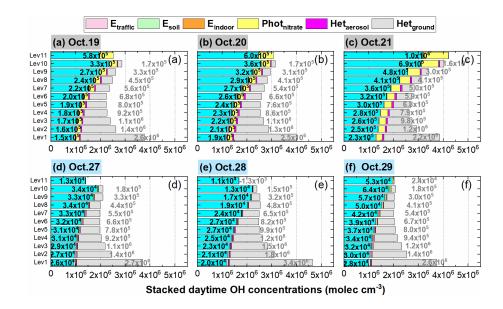



Figure 10 The linear relationships between daytime-averaged P(OH) and PM_{2.5} concentrations (a)
and between daytime-averaged OH and PM_{2.5} concentrations (b) from ground to the height of
2.5km at the 95 NCP sites during Oct. 11–31 of 2018.

560

Figs.11&12 show the detailed comparisons of P(OH) and OH enhancements 565 566 during a haze aggravating process and a clean period. It can be seen that both P(OH) and OH were enhanced in hazy days compared with clean days, and P(OH) and OH 567 increased with the aggravated haze pollution. Among the six potential HONO sources, 568 569 Het_{ground} was the largest contributor to the enhanced P(OH) and OH near the surface, but its contribution was relatively stable under different pollution levels and was 570 attenuated rapidly with height in both hazy and clean days; the contribution induced 571 by Phot_{nitrate} was remarkably increased in haze aggravating processes and was about 572 ten times higher than that in clean days; Het_{aerosol} also increased with the pollution 573 levels but with relatively small values, while the impact of other three direct emission 574 575 sources of HONO was quite small.


577

578 Figure 11 The 95-NCP-site-averaged daytime P(OH) for the base case and the enhancements due

579 to the six potential HONO sources during a typical haze aggravating process of Oct.19–21 (a–c)

and a clean period of Oct.27–29 (d–f) of 2018 (The first column number in black in each graph is

- 581 for Phot_{nitrate}, and the second column number in gray is for Het_{ground}).
- 582

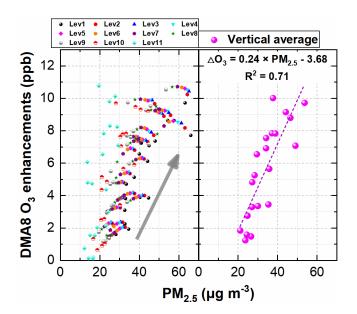
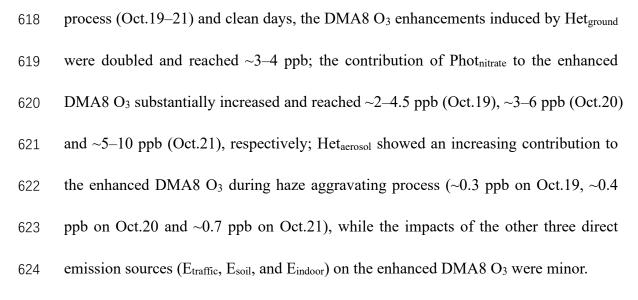

583

Figure 12 The 95-NCP-site-averaged daytime OH concentrations for the base case and the enhancements due to the six potential HONO sources during a typical haze aggravating process of Oct.19–21 (a–c) and a clean period of Oct.27–29 (d–f) of 2018 (The first column number in black

587 in each graph is for $Phot_{nitrate}$, and the second column number in gray is for Het_{ground}).

3.3.3 Enhanced DMA8 O₃

590	Fig.13 demonstrates the linear relationship between DMA8 O3 enhancements and
591	daytime PM _{2.5} concentrations in each vertical layer and the averaged vertical layer for
592	the considered eleven layers at the 95 NCP sites during Oct. 11-31 of 2018. A good
593	correlation (r>0.8) between DMA8 O3 enhancements and daytime PM2.5
594	concentrations in the vertical averaged layer (similar reasons for the strong positive
595	correlation between the enhanced P(OH) and $PM_{2.5}$ concentrations shown above)
596	suggests that the enhanced O3 due to the six potential HONO sources was larger in
597	polluted days and increased during the haze aggravating processes. The enhanced
598	DMA8 O3 was < 2ppb when PM_{2.5} was < 20 μg m $^{-3}$ and was >10 ppb when PM_{2.5} was >
599	$60\mu g\ m^{\text{-3}}$ on average, with a mean DMA8 O_3 enhancement of 0.24 ppb per $\mu g\ m^{\text{-3}}$ of
600	PM _{2.5} .



602

603 **Figure 13** The linear relationship between DMA8 O_3 enhancements and daytime $PM_{2.5}$ 604 concentrations in each vertical layer (a) and the averaged vertical layer for the considered eleven 605 layers (b) at the 95 NCP sites during Oct. 11–31 of 2018.

Fig.14 shows the 95-NCP-site-averaged DMA8 O_3 enhancements due to the six potential HONO sources during a typical haze aggravating process of Oct.19–21 and a clean period of Oct.27–29 of 2018. A significant enhancement of DMA8 O_3 can be found during the haze aggravating process compared with during clean days. The enhanced DMA8 O_3 was ~5.5 ppb (Oct.19), ~ 7 ppb (Oct.20) and ~ 10 ppb (Oct.21), respectively, during the haze aggravating process, while that was usually ~2 ppb in clean days.

In clean days, Het_{ground} was the dominant contributor (\sim 1.5–2 ppb) to the enhanced DMA8 O₃ among the six potential HONO sources, the contribution of Phot_{nitrate} to the enhanced DMA8 O₃ was \sim 0.1–0.4 ppb, while that of the other four sources was minor. When it comes to the comparison between the haze aggravating

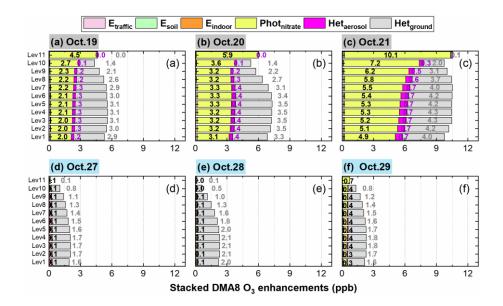


Figure 14 The 95-NCP-site-averaged DMA8 O₃ enhancements due to the six potential HONO sources during a typical haze aggravating process of Oct.19–21 (a–c) and a clean period of Oct.27–29 (d–f) of 2018 (The column in black numbers in each graph is for Phot_{nitrate}, the column in purple numbers in each graph is for Het_{aerosol}, and the column in gray numbers is for Het_{ground}).


632 **3.4 Vertical variations of O₃-NO_x-VOCs sensitivity**

Based on the results above, Photnitrate could significantly enhance the DMA8 O₃ 633 by ten times in the considered vertical layers (especially at elevated heights) in 634 polluted events, but previous studies have not fully discussed. To better understand its 635 role in vertical O₃ formation, the O₃-NO_x-VOCs sensitivity was analyzed by using the 636 $P(H_2O_2)/P(HNO_3)$ ratio proposed by Sillman (1995), which is more suitable than the 637 concentration ratio of H₂O₂/HNO₃ because of the large dry deposition velocity of the 638 two gases in the troposphere (Sillman, 1995). A transition point of $P(H_2O_2)/P(HNO_3)$ 639 = 0.35 was suggested by Sillman (1995), when $P(H_2O_2)/P(HNO_3)$ was <0.35, O₃ 640 shows VOCs-sensitive chemistry (increasing VOC concentrations can significantly 641 elevate O₃ levels) and when P(H₂O₂)/P(HNO₃) was >0.35, O₃ tends to NO_x-sensitive 642 chemistry (increasing NO_x concentrations can significantly elevate O₃ levels). 643 Fig.15 demonstrates the 95-NCP-site-averaged P(H₂O₂)/P(HNO₃) ratio at each 644 vertical layer for the 6S case during a typical haze aggravating process of Oct.19-21 645 and a clean period of Oct.27–29 of 2018. Obviously opposite O₃ sensitivity appeared 646

between the lower layers (VOCs sensitive) and the higher layers (NO_x sensitive) in both clean and hazy days, and the transition point usually appeared at the eighth layer $(\sim 600-800 \text{ m}).$

The Phot_{nitrate} reaction is assumed to produce HONO and NO_x (Zhou et al., 2003; Romer et al., 2018; Gen et al., 2022), this reaction not only enhances OH concentrations via HONO photolysis, but also directly releases NO_x back into the troposphere. Considering the NO_x-sensitive O₃ chemistry at higher layers (>800m), elevating OH and NO_x concentrations are both favorable for O_3 formation, especially in haze aggravating processes with abundant nitrate (detailed vertically enhanced O_3 production/loss rates induced by Phot_{nitrate} are shown in **Fig.S8**).

657

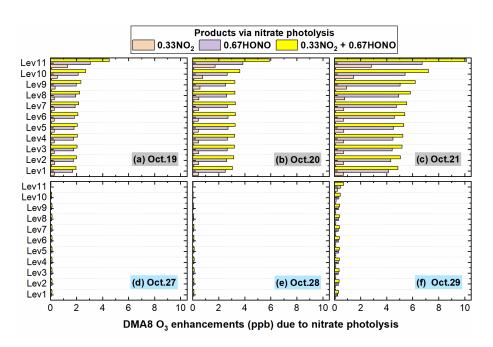

658

Figure 15 The 95-NCP-site-averaged P(H₂O₂)/P(HNO₃) ratio at each vertical layer for the 6S case
during a typical haze aggravating process of Oct.19–21 (a–c) and a clean period of Oct.27–29 (d–f)
of 2018.

662

663 The specific role of the produced HONO or NO₂ via the Phot_{nitrate} reaction (R2) in DMA8 O3 enhancements was further analyzed and is shown in Fig. 16, the produced 664 NO₂ and HONO jointly promoted O₃ formation and increased DMA8 O₃ 665 concentrations. From the surface to ~1200m (Level 9), the DMA8 O₃ enhancements 666 for case D HONO was ~5 times those for case D NO₂, while at ~2000 m (Level 11) 667 the DMA8 O₃ enhancements for case D HONO was ~2 times those for case D NO₂. 668 669 A balance exists between the propagation of the free radical interconversion cycle and the rate of termination of the cycle for the O₃ formation chemistry (Gligorovski et al., 670

2015), considering the 0.67 and 0.33 yields (ratio is 2) for the two products, we could conclude that the impact of produced HONO on O₃ enhancements was larger than that of produced NO₂ near the surface, while at higher altitude (>2000 m) the impacts of the two products were similar.

676

677 **Figure 16** The 95-NCP-site-averaged DMA8 O₃ enhancements due to nitrate photolysis with three

678 product scenarios (cases D_NO₂, D_HONO and D) during a typical haze aggravating process of

679 Oct.19–21 (a–c) and a clean period of Oct.27–29 (d–f) in 2018.

680

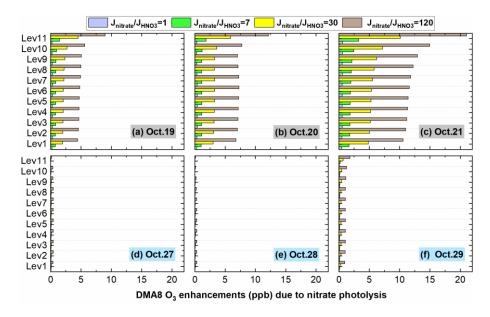
681 4. Discussion

682 4.1 Vertical variations of potential HONO sources

683 The relative contribution of potential HONO sources near the surface, 684 corresponding to the first model layer (0 to \sim 35 m) in our simulation, was quantified

in previous modelling studies (Fu et al., 2019; Xue et al., 2020; Zhang et al., 2021), 685 however, for those potential HONO sources, their relative contributions to HONO 686 concentrations near and above the surface should be different. Based on our results 687 (Figs.7&8), the effects of aerosol related HONO sources would be severely 688 underestimated in hazy days when only focused surface HONO, especially for 689 Phot_{nitrate}. Near the surface in NCP, the daytime contribution of Phot_{nitrate} to HONO 690 concentrations in hazy days was only ~4-6%, but this source contributed ~35-50% of 691 the enhanced DMA8 O₃ (Fig.14a-c); above the eighth layer (~800 m), this source 692 contributed ~50-70% of HONO concentrations and ~50-95% of the enhanced DMA8 693 O₃ (Fig.14a–c). 694

A recent observation in urban Beijing reported vertical HONO concentrations 695 696 from three heights above the ground and found that extremely high HONO concentrations occurred at 120 m (~5 ppb) and 240 m (~3 ppb) rather than near the 697 surface (~1.2 ppb) during 12:00 in a typical hazy day (Zhang et al., 2020b). The 698 699 observation was unusual at noontime under strong convection conditions, inconsistent with those most previous observations indicating a HONO decrease trend with height, 700 especially with the observational results of Zhu et al. (2011) and Meng et al. (2020) 701 and simulated results of Zhang et al. (2021) and ours in Fig.S6 at the same 702 observational site. The contributions of different HONO sources at each layer were 703 analyzed by using a box model, but ~80–90% of the noontime HONO at higher layers 704 could not be explained by the known HONO formation mechanisms (Zhang et al., 705 2019c). The box model neglected the vertical convection, so the ground related 706


HONO sources had no contribution to HONO concentrations at the higher layers, thus
their HONO simulations were actually underestimated compared with our results and
the previous studies of Wong et al. (2011) and Zhang et al. (2021).

710

711 4.2 Uncertainties of Jnitrate/JHNO3 ratios and their impacts

712 4.2.1 Uncertainties of Jnitrate/JHNO3 ratios in DMA8 O3 enhancements

Based on our results, Hetground and Photnitrate were the two major contributors to 713 the enhanced DMA8 O₃, especially for Phot_{nitrate} in hazy days with higher PM_{2.5} 714 715 concentrations. The uncertainties of Photnitrate (four Jnitrate/JHNO3 ratios) in O3 enhancements were analyzed and are shown in Fig.17 (The uncertainties of Hetground 716 are presented in text S2). During the haze aggravating process, the enhanced DMA8 717 718 O_3 near the surface increased from ~0.3 to ~0.5 ppb, from ~0.9 to ~2 ppb, from ~2 to ~6 ppb, and from ~5 to ~12 ppb, with the $J_{nitrate}/J_{HNO3}$ ratio being 1, 7, 30, 120, 719 respectively, and the enhanced O₃ increased with altitude. In clean days, the impact of 720 721 Phot_{nitrate} on O₃ enhancements was small (<1 ppb) even with a J_{nitrate}/J_{HNO3} ratio of 120. 722

724

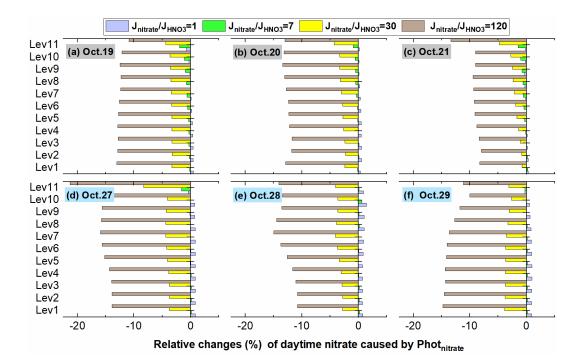
725 Figure 17 The 95-NCP-site-averaged DMA8 O₃ enhancement induced by nitrate photolysis with

four J_{nitrate}/J_{HNO3} ratios (1, 7, 30 and 120) during a typical haze aggravating process of Oct.19–21

727 (a-c) and a clean period of Oct.27–29 (d-f) of 2018.

728

729 4.2.2 Uncertainties of Jnitrate/JHNO3 ratios in nitrate concentrations


We found considerable enhancements in O₃ concentrations induced by Phot_{nitrate}, 730 yet it is still unclear that to what extent Photnitrate could influence nitrate 731 concentrations. The overall nitrate concentrations for the base case and the nitrate 732 enhancements induced by the potential HONO sources decreased with rising altitude 733 except for Phot_{nitrate} (Fig.S9a). Het_{ground} enhanced nitrate concentrations by ~1.5 µg 734 m^{-3} near the surface and the enhancements decreased to $< 0.5 \mu g m^{-3}$ above the eighth 735 736 model layer (~800m); the nitrate enhancements due to Hetaerosol and Etraffic near the surface were ~0.2 and ~0.1 μ g m⁻³, respectively, and were < 0.1 and < 0.04 μ g m⁻³ 737 above the sixth model layer (~500m). For Photnitrate, the overall impact of four 738

J_{nitrate}/J_{HNO3} ratios on nitrate concentrations is shown in **Fig.S9b**, a smaller J_{nitrate}/J_{HNO3} 739 ratio of 1 or 7 had a limited impact on nitrate concentrations of $\sim 0-0.05 \ \mu g \ m^{-3}$, a 740 $J_{\text{nitrate}}/J_{\text{HNO3}}$ ratio of 30 slightly decreased nitrate concentrations by ~0.2 µg m⁻³, while 741 the $J_{\text{nitrate}}/J_{\text{HNO3}}$ ratio of 120 decreased vertical nitrate concentrations by ~0.3–0.8 µg 742 m⁻³. The relative nitrate changes caused by Phot_{nitrate} were calculated by the 743 differences between four cases added Phot_{nitrate} (cases Nit 1, Nit 7, D and Nit 120) 744 and the base case (Fig.S9c). The vertical nitrate concentrations were reduced by ~0-745 0.4% (J_{nitrate}/J_{HNO3}=1), ~0-2% (7), ~2-5% (30) and ~10-14% (120) at the 95 NCP 746 747 sites, meaning that the Phot_{nitrate} impact on vertical nitrate concentrations is limited (<5%) when adopting a relatively small $J_{\text{nitrate}}/J_{\text{HNO3}}$ ratio (< 30) (Fig.S9c). 748

Romer et al. (2018) found a J_{nitrate}/J_{HNO3} ratio of 10 or 30 had a much larger effect 749 750 on HONO than on HNO₃, and Phot_{nitrate} accounted for an average of 40% of the total production of HONO, and only 10% of HNO3 loss with a Jnitrate/JHNO3 ratio of 10 751 (Fig.5 in Romer et al. (2018)), consistent with our study. From the production rate of 752 753 gas HNO₃ (P_{HNO3}) in Fig.S10, we can find that an increase in the J_{nitrate}/J_{HNO3} ratio for Phot_{nitrate} simultaneously enhances the HNO₃ production rate, and is favorable for 754 nitrate formation via the reaction between HNO₃ and NH₃. Nitrate consumption is 755 mitigated by the faster nitrate formation, this is the main reason for less perturbation 756 757 of the nitrate budget influenced by Photnitrate.

Fig.18 shows the detailed relative changes of nitrate caused by Phot_{nitrate} during a typical haze aggravating process and a clean period (corresponding concentrations are shown in **Fig.S11**). The percentage nitrate reduction was usually smaller in hazy days than in clean days, mainly due to the slightly weaker photolysis frequency in pollution events (**Fig.S7**). The nitrate reduction was <5% when adopting a $J_{nitrate}/J_{HNO3}$ ratio of 30 in both clean and hazy days and was <15% in most cases even when the $J_{nitrate}/J_{HNO3}$ ratio reached 120.

765

766

Figure 18 The 95-NCP-site-averaged relative changes of nitrate with four $J_{nitrate}/J_{HNO3}$ ratios (1, 7,

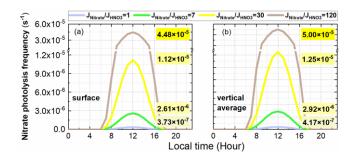
30 and 120) compared with the base case during a typical haze aggravating process of Oct.19–21

769 (a–c) and a clean period of Oct.27–29 (d–f) of 2018.

770

771 **4.2.3 Possible ranges of the J**nitrate/JHNO3 ratio

From the above discussion, we can find that the enhanced OH and O_3 due to Phot_{nitrate} are remarkable during haze aggravating processes, and the exact value of the J_{nitrate}/J_{HNO3} ratio requires more studies.


775	Fig. 19 shows diurnal patterns of surface-averaged and vertically-averaged
776	simulations of the Phot _{nitrate} frequency with four different $J_{nitrate}/J_{HNO3}$ ratios at the 95
777	NCP sites during the study period. The Phot _{nitrate} frequency at 12:00 was 3.7×10^{-7} ,
778	2.6×10 ⁻⁶ , 1.1×10 ⁻⁵ and 4.5×10 ⁻⁵ s ⁻¹ , when adopting a $J_{nitrate}/J_{HNO3}$ ratio of 1, 7, 30 and
779	120, respectively. The corresponding vertically-averaged Photnitrate frequency was
780	slightly larger (~10%) and was 4.2×10^{-7} , 2.9×10^{-6} , 1.3×10^{-5} and 5.0×10^{-5} s ⁻¹ ,
781	respectively. Adopting a $J_{nitrate}/J_{HNO3}$ ratio of 30 in the 6S case, with the corresponding
782	$J_{nitrate}$ of 1.1–1.3×10 ⁻⁵ s ⁻¹ , produced ~30–50% of the enhanced O_3 near the surface in
783	hazy days (Fig.13), and ~70–90% of the enhanced O_3 at higher layers (>800 m).
784	The reported values of J _{nitrate} from previous studies are summarized in Table 4.
785	The experimental J _{nitrate} values have been controversial over the past two decades and
786	are still arguable currently. In our simulations for the 6S case, Phot _{nitrate} contributed
787	from ~1% (clean days) to ~5% (hazy days) to surface HONO during daytime when
788	using the $J_{nitrate}/J_{HNO3}$ ratio of 30 in NCP, consistent with <8% at a rural site in NCP
789	reported by Xue et al. (2020) and ~1% at urban Beijing reported by Zhang et al. (2021)
790	using the same ratio; however, the increasing contribution of Phot _{nitrate} to HONO
791	concentrations with rising altitude based on our simulations (Fig.7), has not been
792	discussed in previous research. Furthermore, we found that the overall $Phot_{nitrate}$
793	impact to OH and O3 would be severely underestimated when the Photnitrate
794	contribution to vertical HONO was excluded.
795	A larger $J_{nitrate}/J_{HNO3}$ ratio of 120 for Phot _{nitrate} (4.5–5.0×10 ⁻⁵ s ⁻¹ at 12:00) produced

 $\sim 25-30\%$ of noontime HONO in NCP in our study (**Fig.S12**), comparable with 30-40%

797	in previous modelling studies (Fu et al., 2019; Shi et al., 2020) when using the
798	$J_{nitrate}/J_{HNO3}$ ratio of 118.57 (8.3 $\times 10^{-5}/$ $7 \times 10^{-7}).$ In haze aggravating processes, the
799	contribution of Phot _{nitrate} ($J_{nitrate}/J_{HNO3} = 120$) to the DMA8 O ₃ enhancements reached
800	\sim 5–10 ppb near the surface and \sim 8–20 ppb above the tenth model layer (Fig.17), these
801	enhancements were extremely large. In a previous modelling study by Fu et al. (2020),
802	the daytime surface O_3 simulations were systematically overestimated by ~ 5 ppb in
803	NCP in winter (Fig.S4 in Fu et al. (2020)), the inclusion of Phot _{nitrate} ($J_{nitrate}/J_{HNO3} =$
804	118.57) in their study might cause the overestimation. From the above, a $J_{nitrate}/J_{HNO3}$
805	ratio of 120, or a $J_{nitrate}$ value of ${\sim}4{-}5{\times}10^{-5}~{\rm s}^{-1}$ is possibly overestimated. When
806	adopting the maximum $J_{nitrate}$ value of 10^{-4} s ⁻¹ reported by Ye et al. (2016a) and Bao et
807	al. (2018), we reasonably speculate that O_3 simulations will be significantly
808	overestimated, especially at higher altitude with NO_x -sensitive O_3 chemistry (Fig.15).
809	Romer et al. (2018) and Kasibhatla et al. (2018) suggested that a $J_{nitrate}/J_{HNO3}$ ratio
810	of 30 or smaller would be more suitable, being about the minimum value reported by
811	Ye et al. (2016a) and Bao et al. (2018), this ratio has shown significant influence on
812	the O ₃ simulations in haze aggravating processes in this study. The lack of
813	photo-catalyzer in suspended submicron particulate sodium and ammonium nitrate
814	may cause a lower $J_{nitrate}/J_{HNO3}$ ratio (<10) reported by Shi et al. (2021), so more
815	chamber experiments need to be conducted by using the particles collected in the real
816	atmosphere. Choosing a larger $J_{nitrate}$ value might cover up other ground-based
817	unknown HONO sources, creating an illusion of good model simulations of daytime
818	HONO, but resulting in overestimation of O3 concentrations. Considering the

819 uncertainties of NO_x or VOCs emissions, which also significantly impact O_3 820 simulations, more studies are needed to find the exact value of $J_{nitrate}$ in the real 821 atmosphere.

822

823

Figure 19 Diurnal patterns of surface-averaged (a) and vertically-averaged (b) simulations of the

825 nitrate photolysis frequency with four different $J_{nitrate}/J_{HNO3}$ ratios (1, 7, 30, 120) at the 95 NCP

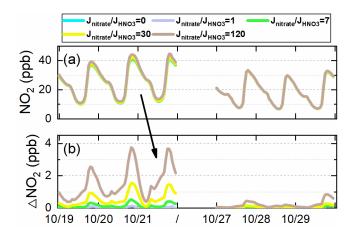
- sites during the study period (The nitrate photolysis frequencies at 12:00 are shown in each graph).
- 827

829

Experimental conditions	Main conclusion	Reference
HNO ₃ absorbed on Pyrex surface	$J_{\text{nitrate}}(1.2 \times 10^{-5} \text{ s}^{-1})$ is 1–2 orders of magnitude faster than in the gas and aqueous phases.	(Zhou et al., 2003)
Atmosphere simulation chamber	$J_{nitrate}$ on snow, ground, and glass surfaces, can be excluded in the chamber.	(Rohrer et al 2005)
HNO3 absorbed on glass surface	Photolysis frequency of surfaces adsorbed HNO ₃ is > 2 orders of magnitude larger than J _{HNO3} .	(Zhu et al., 2008)
Urban grime-coated surface	$J_{nitrate}$ (1.2×10 ⁻³ s ⁻¹) is 4 orders of magnitude faster than in water (10 ⁻⁷ s ⁻¹).	(Baergen an Donaldson, 2013)
Various natural/artificial surfaces	$J_{nitrate}$ ranges from 6.0×10 ⁻⁶ s ⁻¹ to 3.7×10 ⁻⁴ s ⁻¹ , 1–3 orders of magnitude higher than $J_{\rm HNO3}$	(Ye et al., 2016a)
Adsorbed HNO ₃ on glass surfaces	Photolysis frequency of surfaces adsorbed HNO ₃ $(2.4 \times 10^{-7} \text{ s}^{-1})$ is very low.	(Laufs and Kleffmann, 2016)

Table 4. Summary of studies on the nitrate photolysis frequency (J_{nitrate}) (J_{HNO3} denotes the photolysis
 frequency of gas HNO₃)

Aerosol filter samples	$J_{nitrate}$ ranges from 6.2×10 ⁻⁶ s ⁻¹ to 5.0×10 ⁻⁴ s ⁻¹ with a mean of 1.3×10 ⁻⁴ s ⁻¹ .	(Ye et al., 2017)
Nitrate aerosol in the MBL	$J_{nitrate}$ is ~10 times higher than J_{HNO3} .	(Reed et al., 2017)
PM _{2.5} in Beijing	$J_{\text{nitrate}} (1.22 \times 10^{-5} \text{ s}^{-1} \text{ to } 4.84 \times 10^{-4} \text{ s}^{-1}) \text{ is } 1-3 \text{ orders of}$	(Bao et al.,
	magnitude higher than J _{HNO3} .	2018)
Sea-salt particulate nitrate	$J_{nitrate}$ is 25–50 times higher than J_{HNO3} .	(Kasibhatla et al., 2018)
Particles collected on filters	$J_{nitrate} \text{ is } \leq 30 \text{ times } J_{HNO3}.$	(Romer et al., 2018)
CMAQ	Nitrate photolysis contributed ~30% of noontime HONO	(Fu et al.,
simulation	with a $J_{\text{nitrate}}/J_{\text{HNO3}}$ ratio of ~120.	2019)
CMAQ	A J _{nitrate} /J _{HNO3} ratio of 100 better improved sulfate	(Zheng et al.,
simulation	simulations than a $J_{nitrate}/J_{HNO3}$ ratio of 10.	2020)
MCM Box model	Nitrate photolysis contribution to HONO was < 8% with a	(Xue et al.,
WICWI BOX IIIOdel	$J_{\text{nitrate}}/J_{\text{HNO3}}$ ratio of 30.	2020)
MCM Box model	Nitrate photolysis contributed ~40% of noontime HONO	(Shi et al.,
MCM Box model	with a $J_{nitrate}/J_{HNO3}$ ratio of ~120.	2020)
Smog chamber	The $J_{nitrate}/J_{\rm HNO3}$ ratio was ${<}10$ for suspended submicron	(Shi et al.,
Shing chamber	NaNO ₃ and NH ₄ NO ₃ .	2021)
CMAQ	Nitrate photolysis contribution to surface HONO was ~1.0%	(Zhang et al.,
simulation	with a $J_{nitrate}/J_{HNO3}$ ratio of 30.	2021)
	The relative contribution of nitrate photolysis to HONO	
	increased with rising altitude and nitrate photolysis	
WRF-Chem	contributed much larger in the ABL than near the surfaceto	
simulation	the enhanced O ₃ . On average, nitrate photolysis contributed	This study
	~5% of surface daytime HONO with a $J_{nitrate}/J_{HNO3}$ ratio of	
	30 (\sim 1×10 ⁻⁵ s ⁻¹) but contributed \sim 30–50% of the enhanced	
MDL	O ₃ near the surface in NCP in hazy days.	
MBL: marine	boundary layer; ABL: atmospheric boundary layer.	


834

835

4.3 Interactions between heterogeneous HONO sources

Form the comparison of nitrate budget induced by the six potential HONO sources in **Fig.S3&S9**, we can find that Het_{ground} led to an significant increase in nitrate concentrations. In the real atmosphere, the NO₂ heterogeneous reactions and the Phot_{nitrate} reaction occur simultaneously, while the sensitivity tests only considered
one specific HONO source for each case and neglected their interactions, leading to
the underestimation of the Phot_{nitrate} impact to some extent. Take it into consideration,
the Phot_{nitrate} impact on atmospheric oxidants and secondary pollutants would be even
larger, especially during the haze aggravating process.

Phot_{nitrate} would in turn change NO_x concentrations to some extent. From the 845 846 95-site-averaged NO₂ concentrations shown in Fig. 20, we can find that Phot_{nitrate} slightly increased NO₂ concentrations in hazy days. The elevated NO₂ concentration 847 could enhance HONO formation via the NO₂ heterogeneous reactions, nevertheless, 848 due to the high background NO₂ concentrations in NCP (up to ~ 40 ppb at nighttime), 849 the increment of NO2 and the enhanced HONO formation from NO2 caused by 850 Phot_{nitrate} were small (<10%), but might have a larger impact on NO_x budgets in clean 851 regions. From the above, a positive feedback relationship between the NO₂ 852 heterogeneous reactions and the Photnitrate reaction could be found, these 853 multi-processes worse the air quality during the haze aggravating processes. 854

855

- 856 Figure 20 Comparison of 95-site-averaged simulations of NO₂ concentrations for the base case and
- 857 four cases with different J_{nitrate}/J_{HNO3} ratios (1, 7, 30 and 120) (a), and the corresponding NO₂ variations
- (b) compared with the base case in the North China Plain during Oct.11–31 of 2018.

In this study, three direct emission sources, the improved NO₂ heterogeneous 861 reactions on aerosol and ground surfaces, and particulate nitrate photolysis in the 862 atmosphere were included into the WRF-Chem model to explore the key HONO 863 sources producing O₃ enhancements during typical autumn haze aggravating 864 processes with co-occurrence of high PM_{2.5} and O₃ in NCP. The six potential HONO 865 sources produced a significant enhancement in surface HONO simulations and 866 867 improved the mean HONO concentration at the BUCT site to 1.47 ppb from 0.05 ppb (improved the NMB to -14.22% from -97.11% and the IOA to 0.80 from 0.45). The 868 improved HONO significantly enhanced the atmospheric oxidation capacity near the 869 surface and at elevated heights, especially in hazy days, resulting in fast formation of 870 and significant improvements of O₃ during haze aggravating processes in NCP. 871 Although the photolysis frequency is usually lower during hazy days, higher 872 873 concentrations of NO₂, PM_{2.5} and nitrate favored HONO formation via heterogeneous reactions, leading to stronger atmospheric oxidation capacity. The major results 874 include: 875

(1) For the surface HONO in NCP, $\text{Het}_{\text{ground}}$ was the largest source during daytime and nighttime (~50–80%); the contribution of Phot_{nitrate} (J_{nitrate}/J_{HNO3} = 30) to surface HONO concentrations was close to that of the NO+OH reaction during daytime (~1–12%) and was ~5% for daytime average; $\text{E}_{\text{traffic}}$ was important during nighttime (~10–20%) but small during daytime (<5%); the contribution of $\text{Het}_{\text{aerosol}}$ was minor (~2–3%) in daytime and <10% in nighttime; the contribution of E_{soil} was

<3%, and Eindoor could be neglected. Vertically, the HONO enhancements due to 882 ground-based potential HONO sources (Etraffic, Esoil, Eindoor and Hetground) decreased 883 rapidly with height, while the NO+OH reaction and aerosol-related HONO sources 884 (Phot_{nitrate} and Het_{aerosol}) decreased with height much slower. The enhanced HONO 885 due to Photnitrate in hazy days was about ten times larger than in clean days and 886 became the dominant HONO source ($\sim 30-70\%$ when $J_{nitrate}/J_{HNO3} = 30$) at higher 887 layers, and both HONO concentrations and Photnitrate contributions increased with the 888 aggravated pollution levels. 889

890 (2) Near the surface, daytime OH production/loss rates were significantly enhanced by~320% for the 6S case (mean was 5.27 ppb h⁻¹) compared with the base 891 case (mean was 1.26 ppb h⁻¹); vertically, daytime OH production/loss rates were 892 893 enhanced by ~105% for the 6S case (mean was 2.21 ppb h^{-1}) compared with the base case (mean was 1.08 ppb h⁻¹). The enhanced OH production rate and OH due to the 894 six potential HONO sources both showed a strong positive correlation with PM_{2.5} 895 concentrations at the 95 NCP sites, with a slope of 0.043 ppb $h^{-1}/\mu g m^{-3}$ of PM_{2.5} and 896 3.62×10^4 molec cm⁻³/µg m⁻³ of PM_{2.5} from the surface to the height of 2.5 km for case 897 6S, respectively. The atmospheric oxidation capacity (e.g., OH) was enhanced in the 898 haze aggravating process. 899

900 (3) A strong positive correlation (r>0.8) between enhanced O₃ by the six potential 901 HONO sources and PM_{2.5} concentrations was found in NCP, and nitrate photolysis 902 was the largest contributor to the enhanced DMA8 O₃ in hazy days. Vertically, the 903 enhanced DMA8 O₃ was < 2ppb when PM_{2.5} was < 20µg m⁻³, and that was >10 ppb

when $PM_{2.5}$ was > 60µg m⁻³ on average, with a slope of 0.24 ppb DMA8 O₃ 904 enhancement /µg m⁻³ of PM_{2.5}. The surface enhanced DMA8 O₃ was ~5.5 ppb 905 (Oct.19), ~7 ppb (Oct.20) and ~10 ppb (Oct.21), respectively, during a typical haze 906 aggravating process, while that was usually ~2 ppb in clean days. The contribution of 907 Phot_{nitrate} to the enhanced DMA8 O₃ was increased by over one magnitude during the 908 haze aggravating process (up to 5-10 ppb) compared with that in clean days (~0.1-0.5 909 ppb), reached ~2-4.5 ppb (Oct.19), ~3-6 ppb (Oct.20) and ~5-10 ppb (Oct.21), 910 respectively, during a typical haze aggravating process vertically. 911

912 (4) Surface O_3 was controlled by VOCs-sensitive chemistry, while O_3 at higher 913 altitude (>800m) was controlled by NO_x -sensitive chemistry in NCP during autumn. 914 The nitrate photolysis reaction enhanced OH and NO_x concentrations, both favored O_3 915 formation at high altitude, especially in haze aggravating processes with abundant 916 nitrate. The produced HONO rather than the produced NO_2 through nitrate photolysis 917 had a stronger promotion for O_3 formation near the surface, but the impacts of the two 918 products on O_3 enhancements were similar at higher altitude (~2000 m).

919 (5) Nitrate photolysis only contributed ~5% of the surface HONO in daytime 920 with a $J_{nitrate}/J_{HNO3}$ ratio of 30 (~1×10⁻⁵ s⁻¹) but contributed ~30–50% of the enhanced 921 O₃ near the surface in NCP in hazy days. The photolysis of nitrate had a limited 922 impact on nitrate concentrations (reduced by <5% with $J_{nitrate}/J_{HNO3}$ =30, and <15% 923 even with a $J_{nitrate}/J_{HNO3}$ ratio of 120), due mainly to the simultaneously enhanced 924 atmospheric oxidants favoring the formation of HNO₃ and nitrate. Choosing a larger 925 $J_{nitrate}$ value might cover up other ground-based unknown HONO sources, but

926	overestimate vertical sources of HONO, and NO_{x} and O_{3} concentrations, so more
927	studies are still needed to find the exact value of J _{nitrate} in the real atmosphere.
928	
929	Data availability
930	Data are available upon reasonable request to the corresponding authors.
931	
932	Author contribution:

J.Z., C.L., J.A., M.G., and W.W. conceived and designed the research. J.Z. performed
WRF-Chem simulations and wrote the paper. J.Z., C.L., Y.G., and H.R. performed
data analyses and produced the figures. C.L., Y.Z., F.Z., X.F., C.Y., K.D., Y.L., and
M.K. conducted the field observations. W.W., J.A., M.G., Y.L., and M.K. reviewed the

937 article.

938 Competing interests

939 The authors declare that they have no conflict of interest.

940

941 Acknowledgements

942 This research was partially supported by the National Natural Science Foundation of

943 China (Grant No. 92044302, 42075108, 42107124, 42075110, 41822703, 91544221,

944 91844301), Beijing National Laboratory for Molecular Sciences

- 945 (BNLMS-CXXM-202011) and the China Postdoctoral Science Foundation (grant NO.
- 946 2019M660764).

948 **References**

- Alicke, B., Platt, U., Stutz, J., 2002. Impact of nitrous acid photolysis on the total hydroxyl radical
 budget during the Limitation of Oxidant Production/Pianura Padana Produzione di Ozono study in
 Milan. J Geophys Res-Atmos 107. doi:10.1029/2000JD000075.
- An, J.L., Li, Y., Chen, Y., Li, J., Qu, Y., Tang, Y.J., 2013. Enhancements of major aerosol components
 due to additional HONO sources in the North China Plain and implications for visibility and haze.
 Advances in Atmospheric Sciences 30, 57-66.
- Aumont, B., Chervier, F., Laval, S., 2003. Contribution of HONO sources to the NO_x/HO_x/O₃
 chemistry in the polluted boundary layer. Atmospheric Environment 37, 487-498.
- Avnery, S., Mauzerall, D.L., Liu, J., Horowitz, L.W., 2011a. Global crop yield reductions due to surface
 ozone exposure: 1. Year 2000 crop production losses and economic damage. Atmospheric
 Environment 45, 2284-2296.
- Avnery, S., Mauzerall, D.L., Liu, J., Horowitz, L.W., 2011b. Global crop yield reductions due to
 surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage
 under two scenarios of O₃ pollution. Atmospheric Environment 45, 2297-2309.
- Baergen, A.M., Donaldson, D.J., 2013. Photochemical renoxification of nitric acid on real urban grime.
 Environmental Science & Technology 47, 815-820.
- Bao, F., Li, M., Zhang, Y., Chen, C., Zhao, J., 2018. Photochemical Aging of Beijing Urban PM_{2.5}:
 HONO Production. Environmental Science & Technology 52, 6309-6316.
- Bao, F.X., Jiang, H.Y., Zhang, Y., Li, M., Ye, C.X., Wang, W.G., Ge, M.F., Chen, C.C., Zhao, J.C., 2020.
 The Key Role of Sulfate in the Photochemical Renoxification on Real PM_{2.5}. Environmental
 Science & Technology 54, 3121-3128.
- Bejan, I., Abd-el-Aal, Y., Barnes, I., Benter, T., Bohn, B., Wiesen, P., Kleffmann, J., 2006. The
 photolysis of ortho-nitrophenols: a new gas phase source of HONO. Physical chemistry chemical
 physics : PCCP 8, 2028-2035.
- 973 Chen, S., Wang, H., Lu, K., Zeng, L., Hu, M., Zhang, Y., 2020a. The trend of surface ozone in Beijing
 974 from 2013 to 2019: Indications of the persisting strong atmospheric oxidation capacity.
 975 Atmospheric Environment 242, 117801.
- Chen, Y., Wang, W.G., Lian, C.F., Peng, C., Zhang, W.Y., Li, J.L., Liu, M.Y., Shi, B., Wang, X.F., Ge,
 M.F., 2020b. Evaluation and impact factors of indoor and outdoor gas-phase nitrous acid under
 different environmental conditions. Journal of Environmental Sciences 95, 165-171.
- Chen, Y., Zheng, P., Wang, Z., Pu, W., Tan, Y., Yu, C., Xia, M., Wang, W., Guo, J., Huang, D., Yan, C.,
 Nie, W., Ling, Z., Chen, Q., Lee, S., Wang, T., 2021. Secondary Formation and Impacts of
 Gaseous Nitro-Phenolic Compounds in the Continental Outflow Observed at a Background Site in
 South China. Environmental Science & Technology. DOI: 10.1021/acs.est.1c04596.
- Crowley, J.N., Carl, S.A., 1997. OH formation in the photoexcitation of NO2 beyond the dissociation
 threshold in the presence of water vapor. Journal of Physical Chemistry A 101, 4178-4184.
- Cui, L., Li, R., Fu, H., Meng, Y., Zhao, Y., Li, Q., Chen, J., 2021. Nitrous acid emission from open
 burning of major crop residues in mainland China. Atmospheric Environment 244, 117950.
- Dillon, T.J., Crowley, J.N., 2018. Reactive quenching of electronically excited NO₂^{*} and NO₃^{*} by H₂O
 as potential sources of atmospheric HO_x radicals. Atmospheric Chemistry and Physics 18, 14005-14015.

- Dong, W., Xing, J., Wang, S., 2010. Temporal and spatial distribution of anthropogenic ammonia
 emissions in China: 1994-2006. Environmental Sciences (in Chinese) 31, 1457-1463.
- Emmons, L.K., Walters, S., Hess, P.G., Lamarque, J.F., Pfister, G.G., Fillmore, D., Granier, C.,
 Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C.,
 Baughcum, S.L., Kloster, S., 2010. Description and evaluation of the Model for Ozone and
 Related chemical Tracers, version 4 (MOZART-4). Geoscientific Model Development 3, 43-67.
- Feng, T., Zhao, S., Bei, N., Liu, S., Li, G., 2021. Increasing atmospheric oxidizing capacity weakens
 emission mitigation effort in Beijing during autumn haze events. Chemosphere 281, 130855.
- Feng, Z., De Marco, A., Anav, A., Gualtieri, M., Sicard, P., Tian, H., Fornasier, F., Tao, F., Guo, A.,
 Paoletti, E., 2019. Economic losses due to ozone impacts on human health, forest productivity and
 crop yield across China. Environ Int 131, 104966.
- Feng, Z., Hu, E., Wang, X., Jiang, L., Liu, X., 2015. Ground-level O₃ pollution and its impacts on food
 crops in China: a review. Environ Pollut 199, 42-48.
- Feng, Z., Xu, Y., Kobayashi, K., Dai, L., Zhang, T., Agathokleous, E., Calatayud, V., Paoletti, E.,
 Mukherjee, A., Agrawal, M., Park, R.J., Oak, Y.J., Yue, X., 2022. Ozone pollution threatens the
 production of major staple crops in East Asia. Nature Food 3, 47-56.
- Finlayson-Pitts, B.J., Wingen, L.M., Sumner, A.L., Syomin, D., Ramazan, K.A., 2003. The
 heterogeneous hydrolysis of NO₂ in laboratory systems and in outdoor and indoor atmospheres:
 An integrated mechanism. Physical Chemistry Chemical Physics 5, 223-242.
- Fröhlich, R., Cubison, M.J., Slowik, J.G., Bukowiecki, N., Prévôt, A.S.H., Baltensperger, U., Schneider,
 J., Kimmel, J.R., Gonin, M., Rohner, U., Worsnop, D.R., Jayne, J.T., 2013. The ToF-ACSM: a
 portable aerosol chemical speciation monitor with TOFMS detection. Atmospheric Measurement
 Techniques 6, 3225-3241.
- Fu, X., Wang, T., Gao, J., Wang, P., Liu, Y.M., Wang, S.X., Zhao, B., Xue, L.K., 2020. Persistent Heavy
 Winter Nitrate Pollution Driven by Increased Photochemical Oxidants in Northern China.
 Environmental Science & Technology 54, 3881-3889.
- Fu, X., Wang, T., Zhang, L., Li, Q.Y., Wang, Z., Xia, M., Yun, H., Wang, W.H., Yu, C., Yue, D.L., Zhou,
 Y., Zheng, J.Y., Han, R., 2019. The significant contribution of HONO to secondary pollutants
 during a severe winter pollution event in southern China. Atmospheric Chemistry and Physics 19,
 1-14.
- Gao, W., Tan, G., Hong, Y., Li, M., Nian, H., Guo, C., Huang, Z., Fu, Z., Dong, J., Xu, X., 2013.
 Development of portable single photon ionization time-of-flight mass spectrometer combined with
 membrane inlet. International Journal of Mass Spectrometry 334, 8-12.
- Ge, M., Tong, S., Wang, W., Zhang, W., Chen, M., Peng, C., Li, J., Zhou, L., Chen, Y., Liu, M., 2021.
 Important Oxidants and Their Impact on the Environmental Effects of Aerosols. The journal of physical chemistry. A.125, 3813-3825.
- Ge, S., Wang, G., Zhang, S., Li, D., Xie, Y., Wu, C., Yuan, Q., Chen, J., Zhang, H., 2019. Abundant
 NH₃ in China Enhances Atmospheric HONO Production by Promoting the Heterogeneous
 Reaction of SO₂ with NO₂. Environmental Science & Technology 53, 14339-14347.
- Gen, M., Liang, Z., Zhang, R., Go Mabato, B.R., Chan, C.K., 2022. Particulate nitrate photolysis in the
 atmosphere. Environmental Science: Atmospheres. DOI: 10.1039/D1EA00087J.
- Gligorovski, S., Strekowski, R., Barbati, S., Vione, D., 2015. Environmental Implications of Hydroxyl
 Radicals (*OH). Chem Rev 115, 13051-13092.
- 1033 Gómez Alvarez, E., Sörgel, M., Gligorovski, S., Bassil, S., Bartolomei, V., Coulomb, B., Zetzsch, C.,

- Wortham, H., 2014. Light-induced nitrous acid (HONO) production from NO₂ heterogeneous
 reactions on household chemicals. Atmospheric Environment 95, 391-399.
- Guenther, A.B., Jiang, X., Heald, C.L., Sakulyanontvittaya, T., Duhl, T., Emmons, L.K., Wang, X.,
 2012. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an
 extended and updated framework for modeling biogenic emissions. Geoscientific Model
 Development 5, 1471-1492.
- Guo, Y., Zhang, J., An, J., Qu, Y., Liu, X., Sun, Y., Chen, Y., 2020. Effect of vertical parameterization of
 a missing daytime source of HONO on concentrations of HONO, O₃ and secondary organic
 aerosols in eastern China. Atmospheric Environment 226, 117208.
- Hendrick, F., Muller, J.F., Clemer, K., Wang, P., De Maziere, M., Fayt, C., Gielen, C., Hermans, C., Ma,
 J.Z., Pinardi, G., Stavrakou, T., Vlemmix, T., Van Roozendael, M., 2014. Four years of
 ground-based MAX-DOAS observations of HONO and NO₂ in the Beijing area. Atmospheric
 Chemistry and Physics 14, 765-781.
- Huang, X., Li, M.M., Li, J.F., Song, Y., 2012. A high-resolution emission inventory of crop burning in
 fields in China based on MODIS Thermal Anomalies/Fire products. Atmospheric Environment 50,
 9-15.
- 1050 Kasibhatla, P., Sherwen, T., Evans, M.J., Carpenter, L.J., Reed, C., Alexander, B., Chen, Q.J., Sulprizio,
 1051 M.P., Lee, J.D., Read, K.A., Bloss, W., Crilley, L.R., Keene, W.C., Pszenny, A.A.P., Hodzic, A.,
 1052 2018. Global impact of nitrate photolysis in sea-salt aerosol on NO_x, OH, and O₃ in the marine
 1053 boundary layer. Atmospheric Chemistry and Physics 18, 11185-11203.
- Kim, S., VandenBoer, T.C., Young, C.J., Riedel, T.P., Thornton, J.A., Swarthout, B., Sive, B., Lerner, B.,
 Gilman, J.B., Warneke, C., Roberts, J.M., Guenther, A., Wagner, N.L., Dube, W.P., Williams, E.,
 Brown, S.S., 2014. The primary and recycling sources of OH during the NACHTT-2011
 campaign: HONO as an important OH primary source in the wintertime. J Geophys Res-Atmos
 1058 119, 6886-6896.
- 1059 Kleffmann, J., Kurtenbach, R., Lorzer, J., Wiesen, P., Kalthoff, N., Vogel, B., Vogel, H., 2003.
 1060 Measured and simulated vertical profiles of nitrous acid Part I: Field measurements.
 1061 Atmospheric Environment 37, 2949-2955.
- Klosterkother, A., Kurtenbach, R., Wiesen, P., Kleffmann, J., 2021. Determination of the emission
 indices for NO, NO₂, HONO, HCHO, CO, and particles emitted from candles. Indoor Air 31,
 116-127.
- Kramer, L.J., Crilley, L.R., Adams, T.J., Ball, S.M., Pope, F.D., Bloss, W.J., 2020. Nitrous acid (HONO)
 emissions under real-world driving conditions from vehicles in a UK road tunnel. Atmospheric
 Chemistry and Physics 20, 5231-5248.
- Kubota, M., Asami, T., 1985. Volatilization of Nitrous-Acid from Upland Soils. Soil Science and Plant
 Nutrition 31, 27-34.
- 1070 Kurtenbach, R., Becker, K.H., Gomes, J.A.G., Kleffmann, J., Lorzer, J.C., Spittler, M., Wiesen, P.,
 1071 Ackermann, R., Geyer, A., Platt, U., 2001. Investigations of emissions and heterogeneous
 1072 formation of HONO in a road traffic tunnel. Atmospheric Environment 35, 3385-3394.
- Laufs, S., Kleffmann, J., 2016. Investigations on HONO formation from photolysis of adsorbed HNO₃
 on quartz glass surfaces. Physical Chemistry Chemical Physics 18, 9616-9625.
- 1075 Lee, J.D., Whalley, L.K., Heard, D.E., Stone, D., Dunmore, R.E., Hamilton, J.F., Young, D.E., Allan,
 1076 J.D., Laufs, S., Kleffmann, J., 2016. Detailed budget analysis of HONO in central London reveals
 1077 a missing daytime source. Atmospheric Chemistry and Physics 16, 2747-2764.

- Li, G., Lei, W., Zavala, M., Volkamer, R., Dusanter, S., Stevens, P., Molina, L.T., 2010. Impacts of
 HONO sources on the photochemistry in Mexico City during the MCMA-2006/MILAGO
 Campaign. Atmospheric Chemistry and Physics 10, 6551-6567.
- Li, K., Jacob, D.J., Shen, L., Lu, X., De Smedt, I., Liao, H., 2020. Increases in surface ozone pollution
 in China from 2013 to 2019: anthropogenic and meteorological influences. Atmospheric
 Chemistry and Physics 20, 11423-11433.
- Li, L., Chen, C.H., Huang, C., Huang, H.Y., Zhang, G.F., Wang, Y.J., Wang, H.L., Lou, S.R., Qiao, L.P.,
 Zhou, M., Chen, M.H., Chen, Y.R., Streets, D.G., Fu, J.S., Jang, C.J., 2012. Process analysis of
 regional ozone formation over the Yangtze River Delta, China using the Community Multi-scale
 Air Quality modeling system. Atmospheric Chemistry and Physics 12, 10971-10987.
- Li, M., Zhang, Q., Kurokawa, J., Woo, J.H., He, K.B., Lu, Z.F., Ohara, T., Song, Y., Streets, D.G.,
 Carmichael, G.R., Cheng, Y.F., Hong, C.P., Huo, H., Jiang, X.J., Kang, S.C., Liu, F., Su, H., Zheng,
 B., 2017. MIX: a mosaic Asian anthropogenic emission inventory under the international
 collaboration framework of the MICS-Asia and HTAP. Atmospheric Chemistry and Physics 17,
 935-963.
- Li, S., Matthews, J., Sinha, A., 2008. Atmospheric hydroxyl radical production from electronically
 excited NO₂ and H₂O. Science 319, 1657-1660.
- Li, X., Rohrer, F., Hofzumahaus, A., Brauers, T., Häseler, R., Bohn, B., Broch, S., Fuchs, H., Gomm, S.,
 Holland, F., 2015. Response to Comment on "Missing gas-phase source of HONO inferred from
 Zeppelin measurements in the troposphere". Science 348, 1326-1326.
- Li, X., Rohrer, F., Hofzumahaus, A., Brauers, T., Haseler, R., Bohn, B., Broch, S., Fuchs, H., Gomm, S.,
 Holland, F., Jager, J., Kaiser, J., Keutsch, F.N., Lohse, I., Lu, K., Tillmann, R., Wegener, R., Wolfe,
 G.M., Mentel, T.F., Kiendler-Scharr, A., Wahner, A., 2014. Missing gas-phase source of HONO
 inferred from Zeppelin measurements in the troposphere. Science 344, 292-296.
- Li, Y., An, J.L., Min, M., Zhang, W., Wang, F., Xie, P.H., 2011. Impacts of HONO sources on the air
 quality in Beijing, Tianjin and Hebei Province of China. Atmospheric Environment 45,
 4735-4744.
- Liao, S., Zhang, J., Yu, F., Zhu, M., Liu, J., Ou, J., Dong, H., Sha, Q., Zhong, Z., Xie, Y., Luo, H.,
 Zhang, L., Zheng, J., 2021. High Gaseous Nitrous Acid (HONO) Emissions from Light-Duty
 Diesel Vehicles. Environmental science & technology 55, 200-208.
- Lin, Y.L., Farley, R.D., Orville, H.D., 1983. Bulk Parameterization of the Snow Field in a Cloud Model.
 J Clim Appl Meteorol 22, 1065-1092.
- Liu, J., Li, S., Zeng, J., Mekic, M., Yu, Z., Zhou, W., Loisel, G., Gandolfo, A., Song, W., Wang, X.,
 Zhou, Z., Herrmann, H., Li, X., Gligorovski, S., 2019. Assessing indoor gas phase oxidation
 capacity through real-time measurements of HONO and NO_x in Guangzhou, China. Environ Sci
 Process Impacts 21, 1393-1402.
- Liu, Y., Zhang, Y., Lian, C., Yan, C., Feng, Z., Zheng, F., Fan, X., Chen, Y., Wang, W., Chu, B., Wang,
 Y., Cai, J., Du, W., Daellenbach, K.R., Kangasluoma, J., Bianchi, F., Kujansuu, J., Petäjä, T., Wang,
 X., Hu, B., Wang, Y., Ge, M., He, H., Kulmala, M., 2020. The promotion effect of nitrous acid on
 aerosol formation in wintertime in Beijing: the possible contribution of traffic-related emissions.
 Atmospheric Chemistry and Physics 20, 13023-13040.
- Liu, Z., Wang, Y., Costabile, F., Amoroso, A., Zhao, C., Huey, L.G., Stickel, R., Liao, J., Zhu, T., 2014.
 Evidence of aerosols as a media for rapid daytime HONO production over China. Environmental
 Science & Technology 48, 14386-14391.

- Lu, X., Zhang, L., Wang, X.L., Gao, M., Li, K., Zhang, Y.Z., Yue, X., Zhang, Y.H., 2020. Rapid
 Increases in Warm-Season Surface Ozone and Resulting Health Impact in China Since 2013.
 Environmental Science & Technology Letters 7, 240-247.
- Ma, J., Liu, Y., Han, C., Ma, Q., Liu, C., He, H., 2013. Review of heterogeneous photochemical
 reactions of NO_y on aerosol A possible daytime source of nitrous acid (HONO) in the
 atmosphere. Journal of Environmental Sciences 25, 326-334.
- Ma, Z.Q., Xu, J., Quan, W.J., Zhang, Z.Y., Lin, W.L., Xu, X.B., 2016. Significant increase of surface
 ozone at a rural site, north of eastern China. Atmospheric Chemistry and Physics 16, 3969-3977.
- Maji, K.J., Namdeo, A., 2021. Continuous increases of surface ozone and associated premature
 mortality growth in China during 2015-2019. Environ Pollut 269, 116183.
- Marion, A., Morin, J., Gandolfo, A., Ormeno, E., D'Anna, B., Wortham, H., 2021. Nitrous acid
 formation on Zea mays leaves by heterogeneous reaction of nitrogen dioxide in the laboratory.
 Environ Res 193, 110543.
- Meng, F.H., Qin, M., Tang, K., Duan, J., Fang, W., Liang, S.X., Ye, K.D., Xie, P.H., Sun, Y.L., Xie,
 C.H., Ye, C.X., Fu, P.Q., Liu, J.G., Liu, W.Q., 2020. High-resolution vertical distribution and
 sources of HONO and NO₂ in the nocturnal boundary layer in urban Beijing, China. Atmospheric
 Chemistry and Physics 20, 5071-5092.
- Mills, G., Buse, A., Gimeno, B., Bermejo, V., Holland, M., Emberson, L., Pleijel, H., 2007. A synthesis
 of AOT40-based response functions and critical levels of ozone for agricultural and horticultural
 crops. Atmospheric Environment 41, 2630-2643.
- Mills, G., Sharps, K., Simpson, D., Pleijel, H., Broberg, M., Uddling, J., Jaramillo, F., Davies, W.J.,
 Dentener, F., Van den Berg, M., Agrawal, M., Agrawal, S.B., Ainsworth, E.A., Buker, P.,
 Emberson, L., Feng, Z., Harmens, H., Hayes, F., Kobayashi, K., Paoletti, E., Van Dingenen, R.,
 2018. Ozone pollution will compromise efforts to increase global wheat production. Glob Chang
 Biol 24, 3560-3574.
- Oswald, R., Behrendt, T., Ermel, M., Wu, D., Su, H., Cheng, Y., Breuninger, C., Moravek, A., Mougin,
 E., Delon, C., Loubet, B., Pommerening-Roser, A., Sorgel, M., Poschl, U., Hoffmann, T., Andreae,
 M.O., Meixner, F.X., Trebs, I., 2013. HONO emissions from soil bacteria as a major source of
 atmospheric reactive nitrogen. Science 341, 1233-1235.
- Pagsberg, P., Bjergbakke, E., Ratajczak, E., Sillesen, A., 1997. Kinetics of the gas phase reaction
 OH+NO (+M)->HONO (+M) and the determination of the UV absorption cross sections of
 HONO. Chemical Physics Letters 272, 383-390.
- Perner, D., Platt, U., 1979. Detection of nitrous acid in the atmospeere by differential optical absorption.
 Geophysical Research Letters 6, 917-920.
- Pitts, J.N., Wallington, T.J., Biermann, H.W., Winer, A.M., 1985. Identification and Measurement of
 Nitrous-Acid in an Indoor Environment. Atmospheric Environment 19, 763-767.
- Qu, Y., Chen, Y., Liu, X., Zhang, J., Guo, Y., An, J., 2019. Seasonal effects of additional HONO sources
 and the heterogeneous reactions of N₂O₅ on nitrate in the North China Plain. The Science of the
 total environment 690, 97-107.
- 1161 Reed, C., Evans, M.J., Crilley, L.R., Bloss, W.J., Sherwen, T., Read, K.A., Lee, J.D., Carpenter, L.J.,
 2017. Evidence for renoxification in the tropical marine boundary layer. Atmospheric Chemistry
 and Physics 17, 4081-4092.
- Richards, B.L., Middleton, J.T., Hewitt, W.B., 1958. Air Pollution With Relation to Agronomic Crops:
 V. Oxidant Stipple of Grape. Agronomy Journal 50, 559-561.

- Rohrer, F., Bohn, B., Brauers, T., Bruning, D., Johnen, F.J., Wahner, A., Kleffmann, J., 2005.
 Characterisation of the photolytic HONO-source in the atmosphere simulation chamber SAPHIR.
 Atmospheric Chemistry and Physics 5, 2189-2201.
- Romer, P.S., Wooldridge, P.J., Crounse, J.D., Kim, M.J., Wennberg, P.O., Dibb, J.E., Scheuer, E., Blake,
 D.R., Meinardi, S., Brosius, A.L., Thames, A.B., Miller, D.O., Brune, W.H., Hall, S.R., Ryerson,
 T.B., Cohen, R.C., 2018. Constraints on Aerosol Nitrate Photolysis as a Potential Source of
 HONO and NO_x. Environmental Science & Technology 52, 13738-13746.
- 1173 Rondon, A., Sanhueza, E., 1989. High HONO atmospheric concentrations during vegetation burning in
 1174 the tropical savannah. Tellus Ser. B-Chem. Phys. Meteorol. 41, 474-477.
- 1175 Ryan, R.G., Rhodes, S., Tully, M., Wilson, S., Jones, N., Friess, U., Schofield, R., 2018. Daytime
 1176 HONO, NO₂ and aerosol distributions from MAX-DOAS observations in Melbourne.
 1177 Atmospheric Chemistry and Physics 18, 13969-13985.
- Saliba, N.A., Mochida, M., Finlayson-Pitts, B.J., 2000. Laboratory studies of sources of HONO in
 polluted urban atmospheres. Geophysical Research Letters 27, 3229-3232.
- Sakamaki, F., Hatakeyama, S., Akimoto, H., 1983. Formation of Nitrous-Acid and Nitric-Oxide in the
 Heterogeneous Dark Reaction of Nitrogen-Dioxide and Water-Vapor in a Smog Chamber.
 International Journal of Chemical Kinetics 15, 1013-1029.
- Sarwar, G., Roselle, S.J., Mathur, R., Appel, W., Dennis, R.L., Vogel, B., 2008. A comparison of
 CMAQ HONO predictions with observations from the northeast oxidant and particle study.
 Atmospheric Environment 42, 5760-5770.
- Selin, N.E., Wu, S., Nam, K.M., Reilly, J.M., Paltsev, S., Prinn, R.G., Webster, M.D., 2009. Global
 health and economic impacts of future ozone pollution. Environmental Research Letters 4,
 044014.
- Shi, Q., Tao, Y., Krechmer, J.E., Heald, C.L., Murphy, J.G., Kroll, J.H., Ye, Q., 2021. Laboratory
 Investigation of Renoxification from the Photolysis of Inorganic Particulate Nitrate.
 Environmental science & technology, 55, 854–861.
- Shi, X., Ge, Y., Zheng, J., Ma, Y., Ren, X., Zhang, Y., 2020. Budget of nitrous acid and its impacts on atmospheric oxidative capacity at an urban site in the central Yangtze River Delta region of China.
 Atmospheric Environment 238, 117725.
- Sillman, S., 1995. The use of NO_y, H₂O₂, and HNO₃ as indicators for ozone-NO_x-hydrocarbon
 sensitivity in urban locations. Journal of Geophysical Research: Atmospheres 100, 14175-14188.
- Slater, E.J., Whalley, L.K., Woodward-Massey, R., Ye, C.X., Lee, J.D., Squires, F., Hopkins, J.R.,
 Dunmore, R.E., Shaw, M., Hamilton, J.F., Lewis, A.C., Crilley, L.R., Kramer, L., Bloss, W., Vu, T.,
 Sun, Y.L., Xu, W.Q., Yue, S.Y., Ren, L.J., Acton, W.J.F., Hewitt, C.N., Wang, X.M., Fu, P.Q.,
 Heard, D.E., 2020. Elevated levels of OH observed in haze events during wintertime in central
 Beijing. Atmospheric Chemistry and Physics 20, 14847-14871.
- Sorgel, M., Trebs, I., Serafimovich, A., Moravek, A., Held, A., Zetzsch, C., 2011. Simultaneous HONO
 measurements in and above a forest canopy: influence of turbulent exchange on mixing ratio
 differences. Atmospheric Chemistry and Physics 11, 841-855.
- Stuhl, F., Niki, H., 1972. Flash Photochemical Study of the Reaction OH+NO+M Using Resonance
 Fluorescent Detection of OH. The Journal of Chemical Physics 57, 3677-3679.
- Tan, Z.F., Rohrer, F., Lu, K.D., Ma, X.F., Bohn, B., Broch, S., Dong, H.B., Fuchs, H., Gkatzelis, G.I.,
 Hofzumahaus, A., Holland, F., Li, X., Liu, Y., Liu, Y.H., Novelli, A., Shao, M., Wang, H.C., Wu,
 Y.S., Zeng, L.M., Hu, M., Kiendler-Scharr, A., Wahner, A., Zhang, Y.H., 2018. Wintertime

- photochemistry in Beijing: observations of RO_x radical concentrations in the North China Plain
 during the BEST-ONE campaign. Atmospheric Chemistry and Physics 18, 12391-12411.
- Tang, M.J., Huang, X., Lu, K.D., Ge, M.F., Li, Y.J., Cheng, P., Zhu, T., Ding, A.J., Zhang, Y.H.,
 Gligorovski, S., Song, W., Ding, X., Bi, X.H., Wang, X.M., 2017. Heterogeneous reactions of
 mineral dust aerosol: implications for tropospheric oxidation capacity. Atmospheric Chemistry and
 Physics 17, 11727-11777.
- Tang, Y., An, J., Wang, F., Li, Y., Qu, Y., Chen, Y., Lin, J., 2015. Impacts of an unknown daytime
 HONO source on the mixing ratio and budget of HONO, and hydroxyl, hydroperoxyl, and organic
 peroxy radicals, in the coastal regions of China. Atmospheric Chemistry and Physics 15,
 9381-9398.
- Theys, N., Volkamer, R., Mueller, J.F., Zarzana, K.J., Kille, N., Clarisse, L., De Smedt, I., Lerot, C.,
 Finkenzeller, H., Hendrick, F., Koenig, T.K., Lee, C.F., Knote, C., Yu, H., Van Roozendael, M.,
 2020. Global nitrous acid emissions and levels of regional oxidants enhanced by wildfires. Nature
 Geoscience 13, 681-686.
- Tie, X., Long, X., Li, G., Zhao, S., Cao, J., Xu, J., 2019. Ozone enhancement due to the
 photodissociation of nitrous acid in eastern China. Atmospheric Chemistry and Physics 19,
 11267-11278.
- VandenBoer, T.C., Brown, S.S., Murphy, J.G., Keene, W.C., Young, C.J., Pszenny, A.A.P., Kim, S.,
 Warneke, C., de Gouw, J.A., Maben, J.R., Wagner, N.L., Riedel, T.P., Thornton, J.A., Wolfe, D.E.,
 Dube, W.P., Ozturk, F., Brock, C.A., Grossberg, N., Lefer, B., Lerner, B., Middlebrook, A.M.,
 Roberts, J.M., 2013. Understanding the role of the ground surface in HONO vertical structure:
 High resolution vertical profiles during NACHTT-11. J Geophys Res-Atmos 118, 10155-10171.
- Villena, G., Kleffmann, J., Kurtenbach, R., Wiesen, P., Lissi, E., Rubio, M.A., Croxatto, G.,
 Rappenglück, B., 2011. Vertical gradients of HONO, NO_x and O₃ in Santiago de Chile.
 Atmospheric Environment 45, 3867-3873.
- Wang, F., An, J.L., Li, Y., Tang, Y.J., Lin, J., Qu, Y., Chen, Y., Zhang, B., Zhai, J., 2014. Impacts of
 uncertainty in AVOC emissions on the summer RO_x budget and ozone production rate in the three
 most rapidly-developing economic growth regions of China. Advances in Atmospheric Sciences
 31, 1331-1342.
- Wang, X., Zhang, Y., Hu, Y., Zhou, W., Lu, K., Zhong, L., Zeng, L., Shao, M., Hu, M., Russell, A.G.,
 2010. Process analysis and sensitivity study of regional ozone formation over the Pearl River
 Delta, China, during the PRIDE-PRD2004 campaign using the Community Multiscale Air Quality
 modeling system. Atmospheric Chemistry and Physics 10, 4423-4437.
- 1243 Wang, Y., Apituley, A., Bais, A., Beirle, S., Benavent, N., Borovski, A., Bruchkouski, I., Chan, K.L., Donner, S., Drosoglou, T., Finkenzeller, H., Friedrich, M.M., Friess, U., Garcia-Nieto, D., 1244 1245 Gomez-Martin, L., Hendrick, F., Hilboll, A., Jin, J.L., Johnston, P., Koenig, T.K., Kreher, K., 1246 Kumar, V., Kyuberis, A., Lampel, J., Liu, C., Liu, H.R., Ma, J.Z., Polyansky, O.L., Postylyakov, 1247 O., Querel, R., Saiz-Lopez, A., Schmitt, S., Tian, X., Tirpitz, J.L., Van Roozendael, M., Volkamer, R., Wang, Z.R., Xie, P.H., Xing, C.Z., Xu, J., Yela, M., Zhang, C.X., Wagner, T., 2020. 1248 1249 Inter-comparison of MAX-DOAS measurements of tropospheric HONO slant column densities 1250 and vertical profiles during the CINDI-2 campaign. Atmospheric Measurement Techniques 13, 1251 5087-5116.
- Wang, Y., Dörner, S., Donner, S., Böhnke, S., De Smedt, I., Dickerson, R.R., Dong, Z., He, H., Li, Z.,
 Li, Z., Li, D., Liu, D., Ren, X., Theys, N., Wang, Y., Wang, Y., Wang, Z., Xu, H., Xu, J., Wagner,

- T., 2019. Vertical profiles of NO₂, SO₂, HONO, HCHO, CHOCHO and aerosols derived from
 MAX-DOAS measurements at a rural site in the central western North China Plain and their
 relation to emission sources and effects of regional transport. Atmospheric Chemistry and Physics
 19, 5417-5449.
- Wilkinson, S., Mills, G., Illidge, R., Davies, W.J., 2012. How is ozone pollution reducing our food
 supply? J Exp Bot 63, 527-536.
- Wong, K.W., Oh, H.J., Lefer, B.L., Rappengluck, B., Stutz, J., 2011. Vertical profiles of nitrous acid in
 the nocturnal urban atmosphere of Houston, TX. Atmospheric Chemistry and Physics 11,
 3595-3609.
- Wong, K.W., Tsai, C., Lefer, B., Haman, C., Grossberg, N., Brune, W.H., Ren, X., Luke, W., Stutz, J.,
 2012. Daytime HONO vertical gradients during SHARP 2009 in Houston, TX. Atmospheric
 Chemistry and Physics 12, 635-652.
- Wu, D., Horn, M.A., Behrendt, T., Muller, S., Li, J., Cole, J.A., Xie, B., Ju, X., Li, G., Ermel, M.,
 Oswald, R., Frohlich-Nowoisky, J., Hoor, P., Hu, C., Liu, M., Andreae, M.O., Poschl, U., Cheng,
 Y., Su, H., Trebs, I., Weber, B., Sorgel, M., 2019. Soil HONO emissions at high moisture content
 are driven by microbial nitrate reduction to nitrite: tackling the HONO puzzle. ISME J 13,
 1688-1699.
- 1271 Xing, C., Liu, C., Hu, Q., Fu, Q., Wang, S., Lin, H., Zhu, Y., Wang, S., Wang, W., Javed, Z., 2021.
 1272 Vertical distributions of wintertime atmospheric nitrogenous compounds and the corresponding
 1273 OH radicals production in Leshan, southwest China. Journal of Environmental Sciences 105,
 1274 44-55.
- Xing, L., Wu, J.R., Elser, M., Tong, S.R., Liu, S.X., Li, X., Liu, L., Cao, J.J., Zhou, J.M., El-Haddad, I.,
 Huang, R.J., Ge, M.F., Tie, X.X., Prevot, A.S.H., Li, G.H., 2019. Wintertime secondary organic
 aerosol formation in Beijing-Tianjin-Hebei (BTH): contributions of HONO sources and
 heterogeneous reactions. Atmospheric Chemistry and Physics 19, 2343-2359.
- Xu, J., Zhang, Y.H., Wang, W., 2006. Numerical study on the impacts of heterogeneous reactions on
 ozone formation in the Beijing urban area. Advances in Atmospheric Sciences 23, 605-614.
- Xu, W., Yang, W., Han, C., Yang, H., Xue, X., 2021. Significant influences of TiO₂ crystal structures on
 NO₂ and HONO emissions from the nitrates photolysis. Journal of Environmental Sciences 102,
 198-206.
- Xue, C., Zhang, C., Ye, C., Liu, P., Catoire, V., Krysztofiak, G., Chen, H., Ren, Y., Zhao, X., Wang, J.,
 Zhang, F., Zhang, C., Zhang, J., An, J., Wang, T., Chen, J., Kleffmann, J., Mellouki, A., Mu, Y.,
 HONO Budget and Its Role in Nitrate Formation in the Rural North China Plain.
 Environmental Science & Technology 54, 11048-11057.
- Xue, C.Y., Ye, C., Zhang, C.L., Catoire, V., Liu, P.F., Gu, R.R., Zhang, J.W., Ma, Z.B., Zhao, X.X.,
 Zhang, W.Q., Ren, Y.G., Krysztofiak, G., Tong, S.R., Xue, L.K., An, J.L., Ge, M.F., Mellouki, A.,
 Mu, Y.J., 2021. Evidence for Strong HONO Emission from Fertilized Agricultural Fields and its
 Remarkable Impact on Regional O₃ Pollution in the Summer North China Plain. ACS Earth Space
 Chem. 5, 340-347.
- Yang, K., Kong, L., Tong, S., Shen, J., Chen, L., Jin, S., Wang, C., Sha, F., Wang, L., 2021a. Double
 High-Level Ozone and PM_{2.5} Co-Pollution Episodes in Shanghai, China: Pollution Characteristics
 and Significant Role of Daytime HONO. Atmosphere 12, 557.
- Yang, W., Han, C., Yang, H., Xue, X., 2018. Significant HONO formation by the photolysis of nitrates
 in the presence of humic acids. Environ Pollut 243, 679-686.

- Yang, W., Han, C., Zhang, T., Tang, N., Yang, H., Xue, X., 2021b. Heterogeneous photochemical
 uptake of NO₂ on the soil surface as an important ground-level HONO source. Environ. Pollut.
 271, 116289.
- Ye, C., Gao, H., Zhang, N., Zhou, X., 2016a. Photolysis of Nitric Acid and Nitrate on Natural and
 Artificial Surfaces. Environmental Science & Technology 50, 3530-3536.
- Ye, C., Zhang, N., Gao, H., Zhou, X., 2017. Photolysis of Particulate Nitrate as a Source of HONO and
 NO_x. Environmental Science & Technology 51, 6849-6856.
- Ye, C., Zhou, X., Pu, D., Stutz, J., Festa, J., Spolaor, M., Cantrell, C., Mauldin, R.L., Weinheimer, A.,
 Haggerty, J., 2015. Comment on "Missing gas-phase source of HONO inferred from Zeppelin
 measurements in the troposphere". Science 348, 1326-d.
- Ye, C., Zhou, X., Pu, D., Stutz, J., Festa, J., Spolaor, M., Tsai, C., Cantrell, C., Mauldin, R.L., 3rd,
 Campos, T., Weinheimer, A., Hornbrook, R.S., Apel, E.C., Guenther, A., Kaser, L., Yuan, B., Karl,
 T., Haggerty, J., Hall, S., Ullmann, K., Smith, J.N., Ortega, J., Knote, C., 2016b. Rapid cycling of
 reactive nitrogen in the marine boundary layer. Nature 532, 489-491.
- Zaveri, R.A., Easter, R.C., Fast, J.D., Peters, L.K., 2008. Model for Simulating Aerosol Interactions
 and Chemistry (MOSAIC). J Geophys Res-Atmos 113. doi:10.1029/2007JD008782.
- 1314 Zhang, H.L., Li, J.Y., Ying, Q., Yu, J.Z., Wu, D., Cheng, Y., He, K.B., Jiang, J.K., 2012. Source
 1315 apportionment of PM_{2.5} nitrate and sulfate in China using a source-oriented chemical transport
 1316 model. Atmospheric Environment 62, 228-242.
- 1317 Zhang, J., An, J., Qu, Y., Liu, X., Chen, Y., 2019a. Impacts of potential HONO sources on the
 1318 concentrations of oxidants and secondary organic aerosols in the Beijing-Tianjin-Hebei region of
 1319 China. The Science of the total environment 647, 836-852.
- Zhang, J., Chen, J., Xue, C., Chen, H., Zhang, Q., Liu, X., Mu, Y., Guo, Y., Wang, D., Chen, Y., Li, J.,
 Qu, Y., An, J., 2019b. Impacts of six potential HONO sources on HO_x budgets and SOA formation
 during a wintertime heavy haze period in the North China Plain. The Science of the total
 environment 681, 110-123.
- Zhang, J., Guo, Y., Qu, Y., Chen, Y., Yu, R., Xue, C., Yang, R., Zhang, Q., Liu, X., Mu, Y., Wang, J., Ye,
 C., Zhao, H., Sun, Q., Wang, Z., An, J., 2020a. Effect of potential HONO sources on peroxyacetyl
 nitrate (PAN) formation in eastern China in winter. Journal of Environmental Sciences 94, 81-87.
- 1327 Zhang, J., Ran, H., Guo, Y., Xue, C., Liu, X., Qu, Y., Sun, Y., Zhang, Q., Mu, Y., Chen, Y., Wang, J., An,
 1328 J., 2022. High crop yield losses induced by potential HONO sources A modelling study in the
 1329 North China Plain. Science of The Total Environment 803, 149929.
- 1330 Zhang, L., Wang, T., Zhang, Q., Zheng, J.Y., Xu, Z., Lv, M.Y., 2016. Potential sources of nitrous acid
 1331 (HONO) and their impacts on ozone: A WRF-Chem study in a polluted subtropical region. J
 1332 Geophys Res-Atmos 121, 3645-3662.
- 1333 Zhang, N., Zhou, X.L., Shepson, P.B., Gao, H.L., Alaghmand, M., Stirm, B., 2009. Aircraft
 1334 measurement of HONO vertical profiles over a forested region. Geophysical Research Letters 36.
 1335 doi:10.1029/2009GL038999.
- Zhang, Q., Geng, G., 2019. Impact of clean air action on PM_{2.5} pollution in China. Science China Earth
 Sciences 62, 1845-1846.
- 1338 Zhang, S., Sarwar, G., Xing, J., Chu, B., Xue, C., Sarav, A., Ding, D., Zheng, H., Mu, Y., Duan, F., Ma,
 1339 T., He, H., 2021. Improving the representation of HONO chemistry in CMAQ and examining its
 1340 impact on haze over China. Atmospheric Chemistry and Physics 21, 15809-15826.
- 1341 Zhang, W., Tong, S., Ge, M., An, J., Shi, Z., Hou, S., Xia, K., Qu, Y., Zhang, H., Chu, B., Sun, Y., He,

- H., 2019c. Variations and sources of nitrous acid (HONO) during a severe pollution episode in
 Beijing in winter 2016. The Science of the total environment 648, 253-262.
- Zhang, W.Q., Tong, S.R., Jia, C.H., Wang, L.L., Liu, B.X., Tang, G.Q., Ji, D.S., Hu, B., Liu, Z.R., Li,
 W.R., Wang, Z., Liu, Y., Wang, Y.S., Ge, M.F., 2020b. Different HONO Sources for Three Layers
 at the Urban Area of Beijing. Environmental science & technology 54, 12870-12880.
- Zhao, H., Zhang, Y., Qi, Q., Zhang, H., 2021. Evaluating the Impacts of Ground-Level O₃ on Crops in
 China. Current Pollution Reports 7, 565-578.
- Zheng, H., Song, S., Sarwar, G., Gen, M., Wang, S., Ding, D., Chang, X., Zhang, S., Xing, J., Sun, Y.,
 Ji, D., Chan, C.K., Gao, J., McElroy, M.B., 2020. Contribution of Particulate Nitrate Photolysis to
 Heterogeneous Sulfate Formation for Winter Haze in China. Environmental Science &
 Technology Letters 7, 632-638.
- Zhou, X., Gao, H., He, Y., Huang, G., Bertman, S.B., Civerolo, K., Schwab, J., 2003. Nitric acid
 photolysis on surfaces in low-NO_x environments: Significant atmospheric implications.
 Geophysical Research Letters 30. doi:10.1029/2003GL018620.
- 1356 Zhu, C., Xiang, B., Zhu, L., Cole, R., 2008. Determination of absorption cross sections of
 1357 surface-adsorbed HNO₃ in the 290–330 nm region by Brewster angle cavity ring-down
 1358 spectroscopy. Chemical Physics Letters 458, 373-377.
- Zhu, Y.W., Liu, W.Q., Fang, J., Xie, P.H., Dou, K., Qin, M., Si, F.Q., 2011. Monitoring and Analysis of
 Vertical Profile of Atmospheric HONO, NO₂ in Boundary Layer of Beijing. Spectroscopy and
 Spectral Analysis 31, 1078-1082.