	1	Amplified role of potential HONO sources in O ₃ formation in North China Plain during	-1
	2	autumn haze aggravating processes	
	3	Jingwei Zhang ^{1**} , Chaofan Lian ^{2,3**} , Weigang Wang ^{2,3*} , Maofa Ge ^{2,3} , Yitian Guo ^{1,4} , Haiyan Ran ^{1,4} , Yusheng	
	4	Zhang Feixue Zheng, Xiaolong Fan, Chao Yan, Kaspar R. Daellenbach, Yongchun Liu, Markku Kulmala,	
	5	Junling An ^{1,4,7} *	ΝĽ
	6	1. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of	\sum
	7	Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China	
	8	2. State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for	
	9	Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of	()\L
	10	Chemistry, Chinese Academy of Sciences, Beijing 100190, China	//// i
	11	3. School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China	
	12	4. College of Earth and Planetary Sciences, University of the Chinese Academy of Sciences, Beijing 100049,	
	13	China	
	14	5. Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing	
	15	University of Chemical Technology, Beijing, 100029, China	
	16	6 Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, P.O. Box 64, 00014	
	17	University of Helsinki, Helsinki, Finland	NU
	18	7, Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy	
	19	of Sciences, Xiamen 361021, China	
	20	*Corresponding author: Weigang Wang (<u>wangwg@iccas.ac.cn</u>), Junling An (<u>anjl@mail.iap.ac.cn</u>)	
	21	**These authors contributed equally.	
	22		11
			$\langle \rangle$
	22	Abstracts	
	23	Abstract:	
			U
	0.4	Communes of high communications of DM and some (O) have been	
	24	Co-occurrences of high concentrations of $Piv_{2,5}$ and ozone (O_3) have been	
	25	frequently observed in haze aggravating processes in the North China Plain (NCP)	
I			
ļ	26	over the past few years, Higher O3 concentrations in hazy days were supposed to be	
ļ			\leq
			N I

27 related to nitrous acid (HONO), but the key sources of HONO enhancing O3 during

haze aggravating processes remain unclear, We added six potential HONO sources, 28

i.e., four ground-based (traffic, soil, and indoor emissions, and the NO2 heterogeneous 29

30 reaction on ground surface (Het_{ground})) sources, and two aerosol-related (the NO₂

- heterogeneous reaction on aerosol surfaces (Hetaerosol) and nitrate photolysis 31
- 32 (Photnitrate)), sources into the WRF-Chem model and designed 23, simulation scenarios

1

Formatted: Font: 11 pt
Deleted: ⁶
Deleted: ³
Deleted: ³
Deleted: 4
Deleted: 4
Deleted: 4
Deleted: 5
Deleted: 5
Deleted: 4
Deleted: 4
Deleted: 5
Deleted: ³
Deleted: ⁶
Formatted: Font: 小五
Deleted: 4
Deleted: 5
Deleted: 6
Formatted: Font: 小五

-	Deleted: ,
_	Deleted: and h
	Deleted: during
-	Deleted: , which was explored by us in this study, ,
-	Deleted: and will be explored in tThis studyresearch by using the WRF-Chem model,
	Deleted: into the WRF-Chem model, which is improved to included

Deleted: potential HONO Deleted: 5

59	to explore the unclear key sources. The results indicate that ground-based HONO
60	sources producing HONO enhancements showed a rapid decrease with height, while
61	the NO+OH reaction and aerosol-related HONO sources decreased slowly with height.
62	Phot _{nitrate} contributions to HONO concentrations enhanced with aggravated pollution
63	levels, the enhanced HONO due to Photnitrate in hazy days was about ten times larger
64	than in clean days and Phot _{nitrate} dominated <u>daytime</u> HONO sources (\sim 30–70% when
65	the ratio of the photolysis frequency of nitrate $(J_{nitrate})$ to gas nitric acid (J_{HNO3}) equals
66	30) at higher layers (>800 m). Compared with that in clean days, the Phot _{nitrate}
67	contribution to the enhanced daily maximum 8-h averaged (DMA8) O3 was increased
68	by over one magnitude during the haze aggravating process. Phot _{nitrate} contributed
69	only ~5% of the surface HONO in daytime with a $J_{\text{nitrate}}/J_{\text{HNO3}}$ ratio of 30 but
70	contributed ${\sim}30{-}50\%$ of the enhanced O_3 near the surface in NCP in hazy days.
71	Surface O3 was dominated by volatile organic compounds-sensitive chemistry, while
72	O3 at higher altitude (>800m) was dominated by NOx-sensitive chemistry. Phot _{nitrate}
73	had a limited impact on nitrate concentrations (<15%) even with a $J_{nitrate}/J_{HNO3}$ ratio of
74	120. The above results suggest the potential but significant impact of Phot _{nitrate} on O ₃
75	formation, and that more comprehensive studies on Phot _{nitrate} in the atmosphere are
76	still needed.
77	

Deleted: one order of magnitude

-{	Formatted: Subscript
-(Formatted: Subscript
-{	Deleted: field
	Deleted: of $J_{nitrate}$
$\langle $	Deleted: nitrate photolysis
X	Formatted: Subscript

1. Introduction

79 Nitrous acid (HONO) is an important source of the hydroxyl radical (OH) through

84 its photolysis (R1), and contributes ~20-80% of the primary OH production (Alicke

85 et al., 2002; Hendrick et al., 2014; Kim et al., 2014).

86
$$HONO + hv \rightarrow NO + OH$$
 (R1)

Although it has passed forty years since the first detection of HONO in the 87 atmosphere (Perner and Platt, 1979), the sources of HONO (especially daytime) and 88 the dynamic parameters of HONO formation mechanisms are still not well understood 89 90 (Ge et al., 2021), The current air quality models with the default gas-phase reaction (the reverse reaction of R1) always severely underestimate HONO observations, 91 resulting in low atmospheric oxidation capacity and underestimation of secondary 92 pollutants like ozone (O₃) (Li et al., 2010, 2011; Sarwar et al., 2008; Zhang et al., 93 2016, 2019a). 94

95 HONO sources can be generally classified into three categories, i.e., direct 96 emissions, homogeneous and heterogeneous reactions. Direction emissions are mainly from traffic (Kramer et al., 2020; Kurtenbach et al., 2001; Liao et al., 2021), soil 97 (Kubota and Asami, 1985; Oswald et al., 2013; Wu et al., 2019; Xue et al., 2021), 98 biomass burning (Cui et al., 2021; Rondon and Sanhueza, 1989; Theys et al., 2020) 99 and indoor combustion processes (Klosterkother et al., 2021; Liu et al., 2019; Pitts et 100 101 al., 1985). The reaction of nitric oxide (NO) with OH (Pagsberg et al., 1997; Stuhl and 102 Niki, 1972) is usually thought as the dominant homogeneous reaction and is important 103 during daytime but could be neglected at night due to low OH concentrations, other 104 minor homogeneous HONO sources including nucleation of NO2, H2O, and NH3 105 (Zhang and Tao, 2010), via the photolysis of ortho-nitrophenols (Bejan et al., 2006;

Deleted: , Deleted: t

-	Formatted: Subscript
\neg	Formatted: Subscript
Y	Formatted: Subscript

108	Chen et al., 2021; Lee et al., 2016), via the electronically excited NO ₂ and H ₂ O	
109	(Crowley and Carl, 1997; Dillon and Crowley, 2018; Li et al., 2008) and via	
110	HO ₂ ·H ₂ O+NO ₂ reaction (Li et al., 2015; Li et al., 2014; Ye et al., 2015). The	\leq
111	heterogeneous reactions mainly include nitrogen dioxide (NO2) hydrolysis and	
112	reduction reactions on various humid surfaces (Finlayson-Pitts et al., 2003; Ge et al.,	
113	2019; Gómez Alvarez et al., 2014; Ma et al., 2013; Marion et al., 2021; Sakamaki et	
114	al., 1983; Tang et al., 2017; Yang et al., 2021b) and nitrate photolysis (Photnitrate)	
115	(Romer et al., 2018; Ye et al., 2016a, b; Zhou et al., 2003), and are usually thought as	
116	the main contributors to HONO concentrations in the atmosphere.	
117	Among those potential HONO sources, the photolysis of nitrate to produce HONO	
118	in the atmosphere has received extensive attention over the past several years, and the	
119	Phot _{nitrate} frequency (J _{nitrate}) is still argued (Gen et al., 2022), In the laboratory studies,	
120	some researchers (Bao et al., 2018; Ye et al., 2016 <u>a</u> , 2017) showed that <u>Phot_{pitrate} was</u>	
121	an important HONO source, the measured $J_{nitrate}$ was 1–3 orders larger than the <u>gas</u>	\mathbb{Z}
122	nitric acid (HNO3) photolysis frequency (J_{HNO3}) and could reach up to $10^{-4}\ s^{\text{-1}},$ and a	
123	number of substances including humic acid (Yang et al., 2018), sulfate (Bao et al.,	
124	2020) and TiO ₂ (Xu et al., 2021) might enhance the reaction significantly; while Shi et	
125	al. (2021) found that the $J_{nitrate}\!/J_{HNO3}$ ratio was ${<}10$ when using suspended submicron	
125 126	al. (2021) found that the $J_{nitrate}/J_{HNO3}$ ratio was <10 when using suspended submicron particulate sodium and ammonium nitrate rather than $PM_{2.5}$ samples. In the field	
125 126 127	al. (2021) found that the J _{nitrate} /J _{HNO3} ratio was <10 when using suspended submicron particulate sodium and ammonium nitrate rather than $PM_{2.5}$ samples. In the field studies combining with model simulations, Kasibhatla et al. (2018) compared NO_x	
125 126 127 128	al. (2021) found that the J _{nitrate} /J _{HNO3} ratio was <10 when using suspended submicron particulate sodium and ammonium nitrate rather than $PM_{2.5}$ samples. In the field studies combining with model simulations, Kasibhatla et al. (2018) compared NO _x observations in Cape Verde Atmospheric Observatory with GEOS-Chem (Goddard	
 125 126 127 128 129 	al. (2021) found that the J _{nitrate} /J _{HNO3} ratio was <10 when using suspended submicron particulate sodium and ammonium nitrate rather than PM _{2.5} samples. In the field studies combining with model simulations, Kasibhatla et al. (2018) compared NO _x observations in Cape Verde Atmospheric Observatory with GEOS-Chem (Goddard Earth Observing System-Chemistry) model simulations and reported a J _{nitrate} /J _{HNO3}	

Formatted: Font: 小四, Not Italic, Font color: Text 1	
Formatted: Subscript	
Formatted: Subscript	

-1	Formatted: Subscript
\neg	Formatted: Subscript
Y	Formatted: Subscript

Deleted: nitrate photolysis
Formatted: Subscript
Deleted: (Gen et al., 2022)
Deleted: nitrate photolysis
Formatted: Subscript
Deleted: gaseous

134	ratio of 25–50, Romer et al. (2018) reported a $J_{\text{nitrate}}/J_{\text{HNO3}}$ ratio of <30 based on	
135	observations of NO_x (= $NO + NO_2$) and HNO_3 over the Yellow Sea and a box model	
136	simulation, while larger J _{nitrate} /J _{HNO3} ratios (e.g., 300) were inconsistent with the	$\langle ($
137	observed NO _x to HNO ₃ ratios. Adopting a J _{nitrate} /J _{HNO3} ratio of ~120 could greatly	
138	improve daytime surface HONO simulations (contributed \sim 30-40% of noontime	
139	HONO) by using the Community Multiscale Air Quality model (CMAQ) in the Pearl	
140	River Delta (Fu et al., 2019) or a box model in the Yangtze River Delta (Shi et al.,	
141	2020), while a $J_{nitrate}/J_{\rm HNO3}$ ratio of 30 produced negligible HONO in clean periods	
142	(~2%) and slightly higher HONO in heavy haze periods (~8%) in the North China	
143	Plain (NCP) by using a box model (Xue et al., 2020) and $\sim 1\%$ by using CMAQ in	(
144	urban Beijing (Zhang et al., 2021). Recently, Zheng et al. (2020) evaluated the effect	
145	of three $J_{\text{nitrate}}/J_{\text{HNO3}}$ ratios (1, 10 and 100) on heterogeneous sulfate formation by	
146	using CMAQ and large uncertainties of simulated sulfate concentrations were	
147	reported, The mostly adopted J _{nitrate} /J _{HNO3} ratios were 1-30 or 100-120 with large	(
148	uncertainties, so more efforts are needed to better understand the Phot _{nitrate_} impact on	$\langle $
149	atmospheric oxidation capacity and concentrations of HONO and other secondary	
150	pollutant _s	(
151	A number of potential HONO sources (e.g., direct emissions, NO ₂ heterogeneous	
152	reactions and <u>Phot_{aitrate}</u>) have been coupled into several air quality models (An et al.,	$\langle \langle$
153	2013; Fu et al., 2019; Guo et al., 2020; Li et al., 2010, 2011; Sarwar et al., 2008; Tang	1
154	et al., 2015; Xu et al., 2006; Zhang et al., 2019a, 2019b, 2020a, 2021, 2022) to	
155	improve HONO simulations. The improved HONO sources can produce more OH,	

1	Deleted: was
	Deleted:
+	Formatted: Subscript
4	Formatted: Subscript

Deleted: model

Deleted: ,		
Deleted: of nitrate photolysis		
Formatted: Subscript		
Deleted: HONO concentrations,		
Deleted: concentrations		

Deleted:	nitrate photolysis
Formatte	d: Subscript

164	which is favorable for the formation of O_3 (Fu et al., 2019; Guo et al., 2020; Li et al.,	
165	2010; Xing et al., 2019; Zhang et al., 2016, 2019a, 2022). O3 can directly damage	
166	plants and threaten human health (Avnery et al., 2011a, b; Feng et al., 2015, 2019,	
167	2022; Mills et al., 2007, 2018; Richards et al., 1958; Selin et al., 2009; Wilkinson et	
168	al., 2012 <u>; Zhao et al., 2021</u>), an increasing trend of O ₃ concentrations in China has	
169	been widely reported in recent years (Chen et al., 2020a; Li et al., 2020; Lu et al.,	
170	2020; Ma et al., 2016; Maji and Namdeo, 2021), and made O ₃ pollution be a severe	
171	concern. A co-occurrence of high $\text{PM}_{2.5}$ and O_3 concentrations has been frequently	
172	found in China over the past few years, researchers speculated the significant role of	
173	HONO in producing O ₃ enhancements (Feng et al., 2021; Fu et al., 2019; Tie et al.,	
174	2019; Yang et al., 2021a). Nevertheless, the current knowledge on the HONO	<
175	difference in O ₃ formation during clean and hazy days is still unclear, <u>especially</u> the	
176	relative contribution of each potential HONO source to O3 enhancements during haze	
177	aggravating processes with a co-occurrence of high PM _{2.5} and O ₃ concentrations,	
178	In this study, time series of pollutants including HONO, O ₃ , and nitrate were	
179	collected in NCP in Oct.11–31 of 2018, in which high concentrations of $PM_{2.5}$	
180	accompanying by high O3 concentrations were found at least twice in haze events	
181	<u>The specific role of each of potential HONO sources in O_3 formation will be explored</u>	<
182	during these haze events by coupling these potential HONO sources into the Weather	
183	Research and Forecasting model with Chemistry (WRF-Chem). The relative	
184	contribution of each potential HONO source to surface-averaged and	
185	vertically-averaged concentrations of HONO and O3 will be quantified and the	

Deleted: and

Deleted:),	
Deleted: but	
Deleted: and	

 $\label{eq:Deleted:De$

Deleted: ,

Deleted: thus t

Deleted: coupled into the Weather Research and Forecasting model with Chemistry (WRF-Chem) ...

uncertainty in key potential HONO sources (e.g., $J_{nitrate}$) will be discussed, in order to find the key HONO sources resulting in O₃ enhancements in NCP in different pollution levels (especially during haze aggravating processes).

198 2. Data and methods

199 2.1 Observed data

200 The field observation was carried out during October 11-31, 2018, and the observation site was located in the west campus of Beijing University of Chemical 201 Technology (BUCT, 116°18'37" E, 39°56'56" N) in Beijing. BUCT is an urban site 202 203 close to the third ring road of Beijing, with large human activities, including vehicle emissions. Instruments were set on the 5_{4}^{th} floor of the main teaching building. HONO 204 205 was measured with a home-made water-based long-path absorption photometer (Chen 206 et al., 2020b). A dual-channel absorption system was deployed to subtract the 207 potential interferences, e.g., NO2 hydrolysis. A set of on-line commercial analyzers (Thermo 48i, 42i, 49i, 43i) was used for measurements of CO, NO_x, O₃, and SO_{2. To} 208 209 be specific, the 42i used molybdenum NO2-to-NO converter, there would be a NO2 210 overestimation for the conversion of HONO, HNO₃, or other NO_v. Considering the relatively lower concentration compared with NO2, the impact would be minor, The 211 212 chemical composition of PM2.5 was analyzed with a Time-of-Flight Aerosol Chemical 213 Speciation Monitor (ToF-ACSM, Aerodyne), ToF-ACSM was developed via Fröhlich et al. (2013) for Non-refractory PM2.5 measurement. The detailed usage could be 214 found in Liu et al. (2020), where ionization efficiency calibration of nitrate was 215

7

Formatted: Superscript

Formatted: Subscript

-	Formatted: Subscript
\neg	Formatted: Subscript
-	Formatted: Subscript
\neg	Formatted: Subscript
-	Deleted:
$ \land$	Formatted: Subscript

217	performed using 300 nm dry NH ₄ NO ₃ every month during the observation. An online		Formatted: Subscript
			Formatted: Subscript
218	Single Photon Ionization Time-of-Flight Mass Spectrometer (SPI-ToF-MS, Hexin)		
219	was used for the detection of a large variety of volatile organic compounds (VOCs)		
220	(Gao et al., 2013). Surface observations of $\mathrm{O}_3,\mathrm{NO}_2,\mathrm{PM}_{2.5}$ and PM_{10} at 95 sites in		
221	NCP were obtained from https://quotsoft.net/air/, issued by the China Ministry of		
222	Ecology and Environment; surface meteorological observations at 284 sites in NCP		
223	were taken from the National Climatic Data Center, China Meteorological		
224	Administration (Fig.1).		
225	The vertical HONO observations were not available during the Oct.11-31 of 2018		Deleted: was
226	at the BUCT site, we used the observed vertical HONO concentrations from Meng et		
227	al. (2020) <u>in urban Beijing in December of 2016 to evaluate</u> our simulation of vertical	<	Deleted: at
228	HONO concentrations, which were also used by Zhang et al. (2021) in their CMAQ		Deleted: validate
229	evaluation.	_	Deleted: model validation
230			
231	2.2 Model description		Formatted: Font: (Default) Times New Roman, 小四, Bold, Font color: Text 1
232	The improved WRF-Chem (version 3.7.1), which contained six potential HONO		
233	sources, i.e., traffic (Etraffic), soil (Esoil), and indoor (Eindoor) emissions, Photoitrate in the		Deleted: nitrate photolysis
224	streambare and NO betargamany reactions on spread (Hat) and ground		Formatted: Subscript
234	atmosphere, and 1902 neterogeneous reactions on aerosol (netaerosol) and ground		Deleted: (Phot _{nitrate})
235	(Hetground) surfaces (Zhang et al., 2019a), was used in this study. Phot _{nitrate} was newly		
236	added in WRF-Chem (R2) following the work of Fu et al. (2019), Ye et al. (2017),		
237	and Zhou et al. (2003):		
238	$pNO_3 + hv \rightarrow 0.67HONO + 0.33NO_2$ (R2)		

245	For Het _{aerosol} and Het _{ground} , laboratory studies suggest that these heterogeneous	\leq	Formatted: Not Superscript/ Subscript
		\searrow	Formatted: Indent: First line: 0.63 cm
246	reactions of NO ₂ to HONO are first order in NO ₂ (Aumont et al., 2003;		Deleted: ed
0.47	Einlauten Bitte et al. 2002: Salike et al. 2000):	\square	Formatted: Subscript
247	<u>r iniayson-Pius et al., 2005, Sanoa et al., 2000):</u>		Deleted: is
240	$NO \rightarrow HONO k$ (B3)	Y	Formatted: Subscript
240	k_{02} , now k_{a} (ky)		
249	$NO_2 \rightarrow HONO k_a$ (R4)		
	2 9		
250	The first-order rate constants for aerosol (k_a) and ground (k_g) surface reactions		Deleted: t
		\searrow	Formatted: Indent: First line: 0.63 cm
251	are calculated below:		
	1 (\$		Formattank Contained
252	$k_a = \frac{1}{4} \times v_{NO_2} \times \left(\frac{3}{v}\right) \times \gamma_{\underline{(E1)}} \qquad $		Formatted: Centered
	fXVd	1	
253	$k_g = \frac{f - k_a}{H}$ (E2)		romatted. rom. italic
254	where v_{NO_2} is the mean molecular speed of NO ₂ , $\frac{s}{n}$ is the surface to volume ratio for		Deleted: in which
			Deleted: W
255	aerosols, γ is the reactive uptake coefficient of aerosols, f is the proportion of	\backslash	Formatted: Subscript
			Deleted: the
256	deposited NO ₂ reaching the surface in participating HONO formation, v_d is the dry		
		1	Formatted: Subscript
257	deposition velocity of NO ₂ , and <u><i>H</i></u> is the first model layer height above the ground	\leq	Formatted: Subscript
050			Deleted: is the
258	$(\sim 35 \text{ m})$. It should be noted that not 100% (50% is commonly accepted) of the		
250	participated NO ₂ could be converted to HONO in R3 and R4 so k and k were		
239	participated $\frac{1}{102}$ could be converted to $\frac{1}{10100}$ in R5 and $\frac{1}{104}$, $\frac{30}{30}$, $\frac{1}{a}$ and $\frac{1}{30}$, \frac		Deleted: a production rate of 50% is commonly accepted,
260	multiplied by 0.5 in the final calculation of HONO beterogeneous formation via NO2		
200	multipled by 0.5 in the initial calculation of FIOTO neterogeneous formation via (vog.		Deleted: y
261	The two factors γ and f were improved from previous studies (Li et al., 2010; Liu	\backslash	Deleted: for
			Formatted: Subscript
262	et al., 2014; Zhang et al., 2019a) and calculated by:		Deleted: The uptake coefficient (γ) of NO ₂ on aerosol
1	- ,		surfaces, and the yield (f) of HONO from NO ₂ reaching the
263	$\gamma = 5 \times 10^{-6} \times \left(1 + \frac{SR}{\alpha}\right) (\underline{E3})$		ground surfaceThe
	(u) (c)		Deleted: R3
264	$f = 0.08 \times \left(1 + \frac{5R}{\alpha}\right)$ (E4)		
			Deleted: R4
265	where SR denotes solar radiation (W m ⁻²), α is an adjusted parameter and set as 100		
266	(W m ²), thus γ and f became continuous functions during the whole day (γ and f	_	Formatted: Superscript

enhanced by <u>ten times</u> and reached 5×10^{-5} and 0.8 when SR reached 900 W m⁻² at 283 284 noontime, respectively).__ 285 The physical and chemical schemes used in this study are given in Table 1. Two 286 domains were adopted, domain one contains 82×64 grid cells with a horizontal resolution of 81 km, domain two contains 51×51 grid cells with a horizontal 287 resolution of 27 km (Fig.1), both with 17 vertical layers encompassing from the 288 289 surface to 100 hPa. The observational sites are shown in the right panel of Fig.1, including one HONO observation site (the orange dot in urban Beijing), 95 290 observation sites of PM2.5, NO2 and O3 (pink dots) and 284 meteorological monitoring 291 sites (black dots). 292

Figure 1 Domains of WRF-Chem used in this study (left panel), and the locations of one HONO observation site (the orange dot in urban Beijing), 95 environmental monitoring (PM_{2.5}, NO₂ and O₃) sites (deep pink dots), and 284 meteorological observation sites (black dots) in domain 2 (right panel).

298

293

299 The anthropogenic emissions in East Asia in 2010 were taken from the MIX

Deleted: one order of magnitude

Deleted:

302	emission inventory (Li et al., 2017) (<u>http://www.meicmodel.org/</u>), including both
303	gaseous and aerosol species, i.e., SO ₂ , NO _x , CO, VOCs, NH ₃ , PM ₁₀ , PM _{2.5} , BC, OC
304	and CO ₂ , and were provided monthly by five sectors (power, industry, residential,
305	transportation, and agriculture) at a resolution of $0.25^{\circ} \times 0.25^{\circ}$. VOC emissions were
306	speciated into model-ready inputs according to the MOZART chemical mechanism to
307	build the WRF-Chem emission files. The anthropogenic emissions in China were
308	replaced by employing the MEIC 2016 (the Multi-resolution Emission Inventory for
309	China) developed by Tsinghua University. The NH ₃ emissions in China were from
310	Dong et al. (2010), biomass burning emissions were from Huang et al. (2012) and
311	biogenic emissions were calculated using the Model of Emissions of Gases and
312	Aerosols from Nature (MEGAN) (Guenther et al., 2012). Due to the sharp reduction
313	of anthropogenic emissions in recent years, the default emission inventory was
314	systematically overestimated in autumn of 2018, especially for SO_2 and $PM_{2.5}$
315	concentrations. Based on the comparison of simulations and observations (the urban
316	Beijing site plus other 95 pollutant monitoring sites in NCP), we cut off 80% of SO ₂
317	emissions, 50% of $\rm NH_3$ emissions, 30% of toluene emissions, and 50% of $\rm PM_{2.5}$ and
318	PM_{10} emissions. The cut-off emissions are largely close to the emission reductions in
319	east China during 2013 to 2017 (Zhang and Geng, 2019). The revised emissions
320	significantly improved regional PM2.5 simulations in NCP (Fig.S1), and the
321	simulations of gases and PM _{2.5} in urban Beijing (Fig.S2).

322 The National Centers for Environmental Prediction (NCEP) $1^{\circ} \times 1^{\circ}$ final 323 reanalysis data (FNL) (<u>https://rda</u>.ucar.edu/datasets/ds083.2/) were used in this study

327				
328	Table1 Physical and chemical	options in WRF-Chem used in this study		
	Options	WRF-Chem		
	Advection scheme	Runge-Kutta 3 rd order		Formatted: Superscript
•	Boundary layer scheme	YSU		
	Cloud microphysics	Lin et al. (1983)		
	Cumulus parameterization	New Grell scheme		
	Land-surface model	Noah		
	Long-wave radiation	RRTM		
	Short-wave radiation	Goddard		
	Surface layer	Revised MM5 Monin-Obukhov scheme		
	Aerosol option	MOSAIC (Zaveri et al., 2008)		
	Chemistry option	Updated MOZART mechanism (Emmons et al., 2010)		
	Photolysis scheme	F-TUV		
329				
 330 331 332 333 334 335 336 	the base case only considered HONO), case 6S contained size F contained each of the six p (A_double, A_half,, Nit_1 uncertainties of the six poter simulated with a spin-up of 7 d	and study (Table 2), in which ed the default homogeneous reaction (OH + NO \rightarrow a potential HONO sources while case A, B, C, D, E and potential HONO sources, respectively. Other 15 cases 20, D_NO ₂ and D_HONO) were used to evaluate the attial HONO sources (Table 2). All of the cases were days. J _{nitrate} and J _{HNO3} denote the photolysis frequency of		
			/	Deleted: ;
337	nitrate and gas nitric acid in th	e atmosphere, respectively <u>The</u> enhancement factor for		Deleted: the
338	F_double was 1.25 rather than	n 2.0 to avoid the production rate of HONO from NO_2	/	Deleted: %,
339	reaching the surface exceeding	ng 100%. The 0.33NO ₂ in D NO ₂ or 0.67HONO in		Deleted: while
	6		/	Formatted: Subscript
340	D_HONO referred to the assur	med Phot _{nitrate} products in R2,	\angle	Deleted: of the nitrate photolysis
I				Deleted: The c

to obtain the meteorological initial and boundary conditions every 6 h. The global

simulations of MOZART-4 (https://www.acom.ucar.edu/wrf-chem/mozart.shtml)

were used as the chemical initial and boundary conditions (every 6 h).

324

325

ble 2. Simulation sce	narios designed in this study.
Case	HONO sources
Base	Default (OH + NO \rightarrow HONO)
6S	$Default + E_{traffic} + E_{soil} + E_{indoor} +$
	$Phot_{nitrate} (J_{nitrate}/J_{HNO3} = 30) + Het_{aerosol} + Het_{ground}$
А	$Default + E_{traffic}$
В	$Default + E_{soil}$
С	$Default + E_{indoor}$
D	$Default + Phot_{nitrate} (J_{nitrate}/J_{HNO3} = 30)$
Е	$Default + Het_{aerosol}$
F	$Default + Het_{ground}$
A double	$Default + 2 \times E_{traffic}$
A half	$Default + 0.5 \times E_{traffic}$
B double	$Default + 2 \times E_{soil}$
B half	$Default + 0.5 \times E_{soil}$
C double	$Default + 2 \times E_{indoor}$
\overline{C} half	$Default + 0.5 \times E_{indoor}$
E double	Default + Het _{aerosol} ($2 \times \gamma$)
Ē half	Default + Het _{aerosol} $(0.5 \times \gamma)$
F double	Default + Het _{ground} $(1.25 \times f)$
F half	Default + Het _{ground} $(0.5 \times f)$
Nit 1	$Default + Phot_{nitrate} (J_{nitrate}/J_{HNO3} = 1)$
Nit 7	$Default + Phot_{nitrate} (J_{nitrate}/J_{HNO3} = 7)$
Nit $\overline{120}$	$Default + Phot_{nitrate} (J_{nitrate}/J_{HNO3} = 120)$
$\overline{D}NO_2$	Only 0.33NO ₂ produced in Phot _{nitrate} for case D
D HONO	Only 0.67HONO produced in Photnitrate for case D

349 **3.Results**

350 **3.1 Comparison of simulations and observations**

351 3.1.1 Meteorological factors

observed WD.

357

352 The statistical metrics of simulated meteorological parameters at 284 sites in NCP

353 including air temperature (T), relative humidity (RH) and wind speed (WS) were

comparable with the previous modelling results of other researchers (Table 3), <u>The</u>

simulated wind direction (WD) bias within 45° accounted for ~56%, and the bias

356 within 90° accounted for ~80%, suggesting that the simulated WD captured the main

Deleted: , Deleted: the

361	Table 3 Performance metrics (index of agreement (IOA) RMSE (root-mean-square error)	
001	ruble of i chomanee metrics (mach of agreement (1011), futible (1001 mean square error)	

362 and MB (mean bias)) of WRF-Chem simulated air temperature, relative humidity, wind speed and

363 direction at 284 meteorological sites in the North China Plain during Oct. 11-31 of 2018. The

364	definitions of the metrics used in this study are given in Text S1.
1	

	IOA	RMSE	MB	Reference
T (°C)	0.97	1.4	-1.1	This work
	0.90	2.5	0.2	(Wang et al., 2014)
	0.90	/	-0.9	(Wang et al., 2010)
	0.88	/	0.5	(Li et al., 2012)
	/	3.1	0.8	(Zhang et al., 2012)
RH (%)	0.90	9.0	-7.1	This work
	0.78	16.3	-5.5	(Wang et al., 2014)
	0.78	/	-1.3	(Wang et al., 2010)
	0.86	/	-1.1	(Li et al., 2012)
	/	17.4	-5.7	(Zhang et al., 2012)
WS (m s ⁻¹)	0.48	1.4	1.3	This work
	0.56	2.5	1.6	(Wang et al., 2014)
	0.65	2.1	0.9	(Wang et al., 2010)
	0.62	1.5	0.6	(Li et al., 2012)
	/	2.2	1.1	(Zhang et al., 2012)
WD Bias	0-45°	45-90°	>90°	
Count	75701	21500	28075	135276(Total)
Percentage	55.96%	23.29%	20.75%	

Deleted: is

365 **3.1.2 Pollutant concentrations at the BUCT site**

Time series of the observational data at the BUCT site are shown in **Fig.2**, the gray shaded periods stand for three haze aggravating processes, while the cyan shaded period denotes typical clean days, respectively. The hourly largest observations of O_3 (~50–75 ppb) and PM_{2.5} (~100–200 µg/m³) were both relatively higher in hazy days than in clean days, especially for the first two haze events (the O₃ concentrations in the third haze event was relatively lower due to the higher NO_x concentrations in <u>the</u> urban area).

373 The observed PM_{2.5} and nitrate trends at the BUCT site were well simulated

376	The promotion effect of the six potential HONO sources on the formation of	
377	secondary aerosols Jeads to an increase in concentrations of PM _{2.5} and nitrate for case	
378	6S, despite nitrate consumption through Phot _{nitrate} (Li et al., 2010; Qu et al., 2019; Fu	
379	et al., 2019; Zhang et al., 2019a, 2021), detailed nitrate variation caused by each of	$\left(\right)$
380	the six potential HONO sources in case 6S is presented in Fig.S3. Hourly and diurnal	
381	HONO simulations at the BUCT site (Fig.2d&3a) were significantly improved in the	
382	6S case (mean is 1.47 ppb) compared with the base case (mean is 0.05 ppb). The	\
383	normalized mean bias (NMB) was remarkably reduced to -14.22% (6S) from -97.11%	
384	(Base), and the index of agreement (IOA) was improved significantly to 0.80 (6S)	
385	from 0.45 (Base), (Fig.2d). The underestimation of the simulated HONO (6S) on	
386	Oct.15 and Oct.22 was mainly caused by the earlier scavenging of pollutants at the	
387	BUCT site in the used model (Fig.2a&d),	\langle
388	As for O ₃ , noticeable improvements could be found at the BUCT site after	
389	considering the six potential HONO sources, especially in hazy days (Fig.2e&f). The	
390	mean bias (MB) was improved to -3.61 ppb (6S) from -7.09 ppb (Base), and the IOA	
391	was improved to 0.86 (6S) from 0.78 (Base), (Fig.2e). Specially, the 6S case	
392	significantly enhanced daytime hourly O_3 by 15–35 ppb compared with the base case	
393	and the simulated O3 was very close to the observations in hazy days (Fig.2e). Larger	
394	daytime O3 enhancements were accompanied with higher PM2.5 concentrations during	
395	haze aggravating processes, while in clean days the daytime enhanced O3 due to the	
396	potential HONO sources was mostly < 5 ppb (Fig.2e&f). The diurnal O ₃ pattern	

(Fig.2a&b), and NO₂ simulations generally agreed with the observations (Fig.2c).

375

Deleted: The increased PM _{2.5} and nitrate concentrations for
6S case was because of the
Deleted: additional
Deleted: formation
Formatted: Subscript
Deleted: the
Deleted: of nitrate
Deleted: nitrate photolysis
Formatted: Subscript
Deleted: given
Formatted: Font: Bold

Deleted: 0.86 (6S) from 0.78 (Base)

Formatted: Font: Bold

Deleted: 0.80 (6S) from 0.45 (Base)

during the first two haze aggravating processes is presented in Fig.3b, significant
improvements in daily maximum 8-h (10:00–17:59) averaged (DMA8) O₃ (18.8 ppb)
occurred at the BUCT site after considering the six potential HONO sources, and the
NMB of DMA8 O₃ was remarkably improved to -2.38% (6S) from -47.14% (Base).

412

Commented [j1]: The statistics for O₃ and HONO was opposite in the original figure, which is corrected now. For the orders of panel O₃ and HONO was swapped previously to let O₃ next to Δ O₃, but the statistics was forgotten to change the orders simultaneously.

414 Figure 2 Comparison of simulated (Base and 6S cases) and observed hourly concentrations of

415 $PM_{2.5}$, nitrate, NO₂, HONO and O₃ (a–e), and the hourly enhanced concentrations of O₃ ($\triangle O_3$) (f)

416 caused by the six potential HONO sources (6S minus Base) at the BUCT site during Oct.11-31 of

417 2018.

418

Figure 3 Comparison of diurnal mean simulations (Base and 6S cases) and observations of HONO during the study period (a) and O_3 during the first two haze events at the BUCT site (b), and O_3 averages at the 95 NCP monitoring sites during the study period (c); and the relative contributions of each of the six potential HONO sources and the reaction of OH with NO to surface HONO concentrations for the 6S case at the BUCT site (d), at the 95 monitoring sites (e) and in the whole NCP region (f_{k} (The calculated 24-h mean HONO concentrations and DMA8 O_3 concentrations were given in panels (a) – (c)).

Deleted:

429

The relative contribution of each HONO source near the surface at the BUCT site for the 6S case is shown in **Fig.3d**. Briefly, Het_{ground} was the largest source during daytime and nighttime (~50–70%), consistent with the results of Zhang et al. (2021). Phot_{nitrate} (J_{nitrate}/J_{HNO3} = 30) and the NO+OH reaction contributed similarly ~1–12% during daytime. E_{traffic} was important during nighttime (~10–20%) but small during daytime (<5%). The contribution of Het_{aerosol} to HONO concentrations was minor 17

Formatted: Font: Not Bold

437	(~2–3%) in daytime and ~6–10% in nighttime. E_{soil} could be neglected while the
438	contribution of E_{indoor} was close to that of E_{traffic} in urban Beijing. The relative
439	contribution of the potential HONO sources in this study was comparable with the
440	result of Fu et al. (2019) by using CMAQ, except for the contribution of $Phot_{nitrate}$ due
441	to the different $J_{nitrate}/J_{HNO3}$ ratios (30 in our study and ~120 in Fu et al. (2019)).

443 3.1.3 Pollutant concentrations in NCP

The 95-site-averaged hourly simulations and observations of O₃, NO₂ and PM_{2.5} 444 during the study period are shown in Fig.4. The six potential HONO sources 445 significantly improved hourly O3 simulations, remarkably enhanced the daily 446 447 maximum O3 by ~5-10 ppb during Oct. 11-25, and by ~2-4 ppb during Oct. 26-31 (Fig.4a&b). The simulations of NO₂ well agreed with the observations, and the mean 448 concentrations were 22.55 (Base), 21.62 (6S) and 20.74 (Obs) ppb (Fig.4c). The 449 PM2.5 simulations generally followed the observed PM2.5 trend but were 450 overestimated by ~8 μg m $^{-3},$ with averaged concentrations of 49.94 (Base), 53.30 (6S) 451 and 45.31 (Obs) µg m⁻³ (Fig.4d), respectively. 452

Deleted: mean	
Deleted: simulated	
Deleted: observed hourly	

at the 95 sites in NCP. The 95-site-averaged diurnal simulations and observations of 463 464 NO₂ and PM_{2.5} during the study period are demonstrated in Fig.<u>S4</u>. NO₂ simulations Deleted: S3 465 generally followed the observed trend but were underestimated during 04:00 to 16:00 and overestimated after 18:00 (Fig.S4a), PM2.5 simulations agreed with the observed 466 467 diurnal pattern but were overestimated for both cases during the whole day (Fig.S4b). The relative contribution of each HONO source near the surface at the 95 NCP 468 469 sites for the 6S case is shown in Fig.3e. Hetground was the dominant source during

-	Deleted: (10:00–17:59)
٦	Deleted: from -20.32%

Deleted: S3a	
Deleted: S3b	

478	daytime and nighttime (~70–80%). Phot _{nitrate} ($J_{nitrate}/J_{HNO3} = 30$) and the NO+OH
479	reaction nearly equaled and contributed $\sim 2-8\%$ during daytime ($\sim 5\%$ on average).
480	$E_{traffic}$ was important during nighttime (~10–15%) but small during daytime (<3%).
481	The contribution of Het _{aerosol} to HONO concentrations was $<3\%$ in daytime and $<10\%$
482	in nighttime. $\mathrm{E}_{\mathrm{soil}}$ contributed ~3% in nighttime but could be neglected in daytime.
483	The contribution of E_{indoor} was too small to be noticed at the 95 NCP sites, implying
484	that this source was noticeable only in megacities. The relative contribution of each
485	HONO source in the whole NCP region (all grid cells in domain two except for the
486	seas) is presented in Fig.3f, the results were quite similar with those at the 95 sites
487	(Fig.3f), which were representative for the whole NCP region. To further understand
488	the role of potential HONO sources in haze aggravating processes in regional O ₃
489	concentrations, the 95 site-averaged surface/vertical HONO concentrations and their
490	impacts during a typical haze event (Oct. 19-21) and a clean period (Oct. 27-29) were
491	analyzed and are shown in the following sections.

493 **3.2 Spatial distribution of enhanced DMA8 O3 by potential HONO sources**

494 3.2.1 General patterns of enhanced DMA8 O₃

Fig.<u>S5</u> shows surface-averaged and zonal-averaged DMA8 O₃ enhancements due to the six potential HONO sources in NCP during the study period (Oct.11-31) and three haze events (Oct.12–14, Oct.18–21 and Oct.24–25). The overall surface DMA8 O₃ enhancement decreased gradually from south (6–10 ppb) to north (2–6 ppb) Formatted: Font: 小四

Deleted: thus the results of the 95 sites

Deleted: S4 Deleted: ly

502	(Fig. <u>\$5a</u>) and could reach 10–20 ppb under unfavorable meteorological conditions
503	during haze events (Fig. <u>\$5b</u> -d). For the first two haze events, the anti-cyclone in the
504	Shandong peninsula carried pollutants being transported from the southeastern NCP
505	to the western (108-112°E) and northern (39-41°N) NCP, and the six potential
506	HONO sources led to a DMA8 O ₃ enhancement of 10–20 ppb (Fig. <u>\$5b</u>) and 10–15
507	ppb (Fig. <u>\$5c</u>) in Beijing, respectively. For the third haze event, two air masses were
508	converged to form a transport channel from south to north, the O3 enhancement
509	caused by the six potential HONO sources can reach 10-18 ppb in the southern NCP
510	and decreased to 6–10 ppb in the northern NCP along the transport channel. Vertically,
511	the DMA8 O ₃ enhancements were 2-8 ppb during the whole period (Fig. <u>55e</u>) and
512	increased to 6–12 ppb in these haze events (Fig. <u>S5f</u> -h). The enhanced O ₃ near the
513	surface (0–100 m) was slightly smaller than that at higher altitude (Fig. <u>\$5f-h</u>), due
514	mainly to the stronger titration of O3 by NO near the surface. The above results
515	demonstrated that the six potential HONO sources significantly enhanced surface and
516	vertical O ₃ concentrations in NCP, especially during haze events.

518 **3.2.2 During a typical haze aggravating process and a clean period**

Fig.5 demonstrates surface-averaged and zonally-averaged DMA8 O₃ enhancements due to the six potential HONO sources in NCP during a typical haze aggravating process (Oct.19–21, 2018) and a clean period (Oct.27–29, 2018). The increasing trend of DMA8 O₃ enhancements can be clearly seen from Oct.19 to

Deleted: S4a	
Deleted: S4b	

Deleted: S4b

Deleted: S4c

Deleted: , and
Deleted: ;
Deleted: while

Deleted: were given

A decreasing trend of HONO with height was mostly observed among these studies, and our simulations also reproduced this vertical variation and were comparable with another model simulation by Zhang et al. (2021) who used CMAQ (Fig.S6). For a deep understanding of the role of each considered HONO source in HONO concentrations at different heights, we assessed the contributions of each potential HONO source to HONO concentrations at different heights (Fig.6) during Oct.11–31 of 2018.

Generally, the impacts of ground-based potential HONO sources (Etraffic, Esoil, 570 Eindoor and Hetground) on HONO concentrations decreased rapidly with height, while 571 the NO+OH reaction and aerosol related HONO sources (Photnitrate and Hetaerosol) 572 decreased slowly with height (Fig.6). During daytime the NO+OH reaction, Photnitrate 573 574 and Hetground were the three main HONO sources, while during nighttime Etraffic, 575 Het_{aerosol} and Het_{ground} were the three main contributors to HONO concentrations 576 (Fig.6). The HONO concentrations via the NO+OH reaction and Photnitrate were 577 higher during daytime. The impact of Esoil in the NCP was small, nevertheless, Xue et al. (2021) found strong soil_HONO emissions in NCP agricultural fields after 578 fertilization, suggesting that this source may have a remarkable enhancement on 579 regional HONO and secondary pollutants in crop growing seasons. 580

Deleted: a

-	Deleted: whom using the
1	Deleted: model
	Deleted: S5

Deleted: however

Figure 6 The 95-site-averaged daytime/nighttime HONO concentrations/enhancements at
different heights when the NO+OH reaction (a1&a2) and each of the six potential HONO sources
(b1-g1&b2-g2) were considered during Oct.11-31 of 2018, (The error bar denotes the
uncertainties of each potential HONO source in HONO concentrations (Table 2). The right panel
denotes the approximate height of each vertical layer above the ground).

593

The comparison of HONO concentrations/enhancements during a haze 594 595 aggravating process and a clean period is shown in Figs.7&8. Generally, daytime 596 HONO concentrations increased in haze aggravating processes and were higher than those in clean days. Hetground was the dominant source of the surface HONO in both 597 598 hazy and clean days and contributed 80-90% of daytime averaged HONO 599 concentrations (Fig.8), however, this reaction occurred only on the ground surface, thus its relative contribution decreased with height, especially in haze aggravating 600 601 processes (Fig.8). Although the contribution of the NO+OH reaction to daytime HONO was small near the surface, its relative contribution to HONO increased with 602 603 height, especially in clean days (Fig.8). As for Photnitrate, a much larger enhancement 25

Deleted: ,	
Deleted: the	

Deleted: in the first model layer

608 could be found in hazy days compared with clean days. In clean days the daytime enhanced HONO by Photnitrate was only 1-3 ppt in general and its contribution to 609 daytime HONO was usually <10%, while in the haze aggravating process, the 610 611 enhanced HONO concentration by Photnitrate was about ten times higher than that in clean days and Photnitrate became the dominant HONO source (~30-70%) at higher 612 613 altitude, and both HONO concentrations and contributions by Photnitrate increased with 614 the air pollution aggravation (Fig.7a-c, Fig.8a-c). The contributions of direct 615 emission sources were small and decreased when PM2.5 increased, compared with those heterogeneous reactions. Higher concentrations of NO2, nitrate, and PM2.5 616 favored heterogeneous formation of HONO, while direct emission sources were 617 relatively invariable under different pollution levels. 618

Based on our results, nitrate concentrations increased with the haze aggravating processes (**Fig.2b**), as a positive feedback effect, the elevated nitrate could in turn enhance HONO formation and further enhance the atmospheric oxidation capacity during daytime. Considering $J_{nitrate}$ was still unclear, sensitivity tests were conducted and <u>are</u> presented in the discussion section.

624

Deleted: one order of magnitude

Deleted: Photnitrate

Figure 7 The 95-NCP-site-averaged daytime HONO concentrations at different heights when the NO+OH reaction and the six potential HONO sources were included during a typical haze aggravating process of Oct.19–21 (a–c) and a clean period of Oct.27–29 (d–f) of 2018, (The first column numbers in black in each graph are for Phot_{nitrate}, and the second column numbers in gray are for Het_{ground}).

627

636 six potential HONO sources to daytime HONO concentrations at different heights during a typical

Deleted:

641	fourth column numbers in gray are for Het _{ground}).	
642		
643	3.3.2 Enhanced OH and its production rate	
644	Fig.9 demonstrates daytime variations of OH production (P(OH)) and loss	
645	(L(OH)) rates near the surface and in the vertical <u>ly</u> -averaged layer (from ground to	
646	the height of 2.5km) at the 95 NCP sites for the Base and 6S cases during Oct.11-31,	
647	2018. A significant enhancement of P/L(OH) can be found near the surface and	<
648	vertically, the six potential HONO sources accelerated OH production and loss rates	
649	remarkably near the surface and noticeably in the considered vertical layers.	
650	Near the surface, daytime P(OH) and L(OH) were significantly enhanced by~320%	ó
651	for the 6S case (mean was 5.27 ppb h^{-1}) compared with the base case (mean was 1.26	
652	ppb h^{-1}). For the base case, the daytime P(OH) via the photolysis of HONO and O_3	_
653	was 0.09 ppb h ⁻¹ and 0.09 ppb h ⁻¹ , respectively, while the daytime L(OH) via the	_
654	NO+OH reaction was 0.11 ppb h ⁻¹ and the net contribution of HONO photolysis to	
655	P(OH) was -0.02 ppb h ⁻¹ . After adding the six potential HONO sources in case 6S, the	
656	daytime P(OH) via the photolysis of HONO and O ₃ was 1.81 ppb h^{-1} and 0.10 ppb h^{-1} ,	

haze aggravating process of Oct.19-21 (a-c) and a clean period of Oct.27-29 (d-f) of 2018, (The

first column numbers in blue in each graph are for the NO+OH reaction, the second column

numbers in black are for Phot_{nitrate}, the third column numbers in white are for Het_{aerosol}, and the

638

639

640

- respectively, the daytime L(OH) via the NO+OH reaction was 0.48 ppb h⁻¹ and the net 657
- contribution of HONO photolysis to P(OH) reached 1.33 ppb h⁻¹. HONO photolysis 658

Deleted: S	
Deleted: could	
Moved (insertion) [1]	
Deleted: In short	

-	Deleted: photolysis
-	Deleted: ,
Υ	Formatted: Superscript
	Formatted: Superscript

Deleted: .

Deleted: the

Deleted: photolysis

-8

Local time (Hour)

-8

Local time (Hour)

Fig.10 shows the linear relationships between daytime-averaged P(OH) and 694 PM_{2.5} concentrations and between daytime-averaged OH and PM_{2.5} concentrations 695 from ground to the height of 2.5km at the 95 NCP sites during Oct. 11-31 of 2018. 696 Both P(OH) for the two cases (Base and 6S) and the enhanced P(OH) due to the six 697 698 potential HONO sources showed a strong positive correlation (2>0.8) with PM2.5 699 concentrations at the 95 NCP sites, because Hetaerosol, Hetgeround and Photnitrate were significantly increased with the elevated PM25, The enhanced P(OH) for the 6S case 700 reached 0.043 ppb h⁻¹ per 1µg m⁻³ of a PM_{2.5} enhancement. Similarly, high positive 701 702 correlation (>0.6) could be found between OH and PM2.5 concentrations, the OH concentrations and enhancements due to the six potential HONO sources were both 703 704 higher in hazy days than those in clean days, and the enhancement of OH reached 705 3.62×10^4 molec cm⁻³ per µg m⁻³ of PM_{2.5} for case 6S. These results were consistent with a recent field study reported by Slater et al. (2020), who found that the OH 706 707 observed in haze events was elevated in central Beijing in November-December of 708 2016. Furthermore, two observations confirmed the key role of HONO in producing 709 primary OH despite the relatively lower photolysis frequency in haze aggravating 710 processes (Slater et al., 2020; Tan et al., 2018), consistent with our simulations 711 (Fig_\$7 shows the relationship between surface PM_{2.5} and photolysis frequencies of 712 NO₂, HONO and HNO₃ in this study,).

Del	eted.	R	

Formatted: Subscript

Formatted: Subscript

Deleted:, which are related to PM_{2.5} concentrations and solar radiation, are dominant potential HONO sources...

Deleted: and the

Formatted: Subscript

Deleted: R

Deleted: S6

Figure 10 The linear relationships between daytime-averaged P(OH) and PM_{2.5} concentrations (a)
and between daytime-averaged OH and PM_{2.5} concentrations (b) from ground to the height of
2.5km at the 95 NCP sites during Oct. 11–31 of 2018.

723

724 Figs.11&12 show the detailed comparisons of P(OH) and OH enhancements 725 during a haze aggravating process and a clean period. It can be seen that both P(OH) and OH were enhanced in hazy days compared with clean days, and P(OH) and OH 726 727 increased with the aggravated haze pollution. Among the six potential HONO sources, Hetground was the largest contributor to the enhanced P(OH) and OH near the surface, 728 but its contribution was relatively stable under different pollution levels and was 729 attenuated rapidly with height in both hazy and clean days; the contribution induced 730 731 by Photnitrate was remarkably increased in haze aggravating processes and was about 732 ten times higher than that in clean days; Hetaerosol also increased with the pollution 733 levels but with relatively small values, while the impact of other three direct emission sources of HONO was quite small. 734

Deleted: one order of magnitude

737

738 Figure 11 The 95-NCP-site-averaged daytime P(OH) for the base case and the enhancements due

739 to the six potential HONO sources during a typical haze aggravating process of Oct.19-21 (a-c)

and a clean period of Oct.27–29 (d–f) of 2018 (The first column number in black in each graph is

for Phot_{nitrate}, and the second column number in gray is for Het_{ground}).

Deleted:

746 Oct.19–21 (a–c) and a clean period of Oct.27–29 (d–f) of 2018 (The first column number in black

Deleted:

750			
751	3.3.3 Enhanced DMA8 O3		Deleted: 2
752	Fig.13 demonstrates the linear relationship between DMA8 O3 enhancements and		
753	daytime PM _{2.5} concentrations in each vertical layer and the averaged vertical layer for		Deleted: (a)
754	the considered eleven layers at the 95 NCP sites during Oct. 11-31 of 2018. A good	<	Deleted: (b)
755	correlation ($2>0.8$) between DMA8 O ₃ enhancements and daytime PM _{2.5}		Deleted:
756	concentrations in the vertical averaged layer (similar reasons for the strong positive		Deleted: R
757	correlation between the enhanced P(OH) and PM _{2.5} concentrations shown above)		
758	suggests that the enhanced O_3 due to the six potential HONO sources was larger in		
759	polluted days and increased during the haze aggravating processes. The enhanced		
760	DMA8 O ₃ was < 2ppb when PM _{2.5} was < 20 μ g m ⁻³ and was >10 ppb when PM _{2.5} was >		Deleted: ,
761	$60\mu g\ m^{\text{-3}}$ on average, with a mean DMA8 O_3 enhancement of 0.24 ppb per $\underline{\mu}g\ m^{\text{-3}}$ of		Deleted: u
762	PM _{2.5} .		
763			

in each graph is for $\mathsf{Phot}_{\mathsf{nitrate}},$ and the second column number in gray is for $\mathsf{Het}_{\mathsf{ground}}$.

Figure 13 The linear relationship between DMA8 O₃ enhancements and daytime PM_{2.5}
concentrations in each vertical layer (a) and the averaged vertical layer for the considered eleven
layers (b) at the 95 NCP sites during Oct. 11–31 of 2018.

Fig.14 shows the 95-NCP-site-averaged DMA8 O₃ enhancements due to the six potential HONO sources during a typical haze aggravating process of Oct.19–21 and a clean period of Oct.27–29 of 2018. A significant enhancement of DMA8 O₃ can be found during the haze aggravating process compared with during clean days. The enhanced DMA8 O₃ was ~5.5 ppb (Oct.19), ~ 7 ppb (Oct.20) and ~ 10 ppb (Oct.21), respectively, during the haze aggravating process, while that was usually ~2 ppb in clean days.

In clean days, Het_{ground} was the dominant contributor (~1.5–2 ppb) to the enhanced DMA8 O₃ among the six potential HONO sources, the contribution of Phot_{nitrate} to the enhanced DMA8 O₃ was ~0.1–0.4 ppb, while that of the other four sources was minor. When it comes to the comparison between the haze aggravating

787	process (Oct.19–21) and clean days, the DMA8 O_3 enhancements induced by Het_{ground}
788	were doubled and reached ${\sim}3{-}4$ ppb; the contribution of $Phot_{nitrate}$ to the enhanced
789	DMA8 O ₃ substantially increased and reached ~2-4.5 ppb (Oct.19), ~3-6 ppb (Oct.20)
790	and \sim 5–10 ppb (Oct.21), respectively; Het _{aerosol} showed an increasing contribution to
791	the enhanced DMA8 O ₃ during haze aggravating process (~0.3 ppb on Oct.19, ~0.4
792	ppb on Oct.20 and ~0.7 ppb on Oct.21), while the impacts of the other three direct
793	emission sources ($E_{traffic}$, E_{soil} , and E_{indoor}) on the enhanced DMA8 O_3 were minor.

-	Deleted: in
-	Deleted: in
	Deleted: in

7	a	5
'	J	J

Figure 14 The 95-NCP-site-averaged DMA8 O₃ enhancements due to the six potential HONO
sources during a typical haze aggravating process of Oct.19–21 (a–c) and a clean period of
Oct.27–29 (d–f) of 2018, (The column in black numbers in each graph is for Phot_{nitrate}, the column
in purple numbers in each graph is for Het_{aerosol}, and the column in gray numbers is for Het_{ground}).

Deleted:

805 **3.4 Vertical variations of O3-NOx-VOCs sensitivity**

806 Based on the results above, Photnitrate could significantly enhance the DMA8 O3 807 by ten times in the considered vertical layers (especially at elevated heights) in polluted events, but previous studies have not fully discussed. To better understand its 808 809 role in vertical O₃ formation, the O₃-NO_x-VOCs sensitivity was analyzed by using the P(H₂O₂)/P(HNO₃) ratio proposed by Sillman (1995), which is more suitable than the 810 concentration ratio of H₂O₂/HNO₃ because of the large dry deposition velocity of the 811 two gases in the troposphere (Sillman, 1995). A transition point of P(H₂O₂)/P(HNO₃) 812 = 0.35 was suggested by Sillman (1995), when $P(H_2O_2)/P(HNO_3)$ was <0.35, O₃ 813 814 shows VOCs-sensitive chemistry (increasing VOC concentrations can significantly elevate O₃ levels) and when P(H₂O₂)/P(HNO₃) was >0.35, O₃ tends to NO_x-sensitive 815 chemistry (increasing NO_x concentrations can significantly elevate O₃ levels). 816 817 Fig.15 demonstrates the 95-NCP-site-averaged P(H2O2)/P(HNO3) ratio at each vertical layer for the 6S case during a typical haze aggravating process of Oct.19-21 818

and a clean period of Oct.27–29 of 2018. Obviously opposite O_3 sensitivity appeared between the lower layers (VOCs sensitive) and the higher layers (NO_x sensitive) in both clean and hazy days, and the transition point usually appeared at the eighth layer (~600–800 m).

The <u>Phot_{pitrate} reaction is assumed to produce HONO and NO_x (Zhou et al., 2003; Romer et al., 2018; Gen et al., 2022</u>), this reaction not only enhances OH concentrations via HONO photolysis, but also directly releases NO_x back into the troposphere. Considering the NO_x-sensitive O₃ chemistry at higher layers (>800m), Deleted: one order of magnitude

Deleted: nitrate photolysis

829 elevating OH and NO_x concentrations are both favorable for O₃ formation, especially

830 in haze aggravating processes with abundant nitrate (detailed vertically enhanced O₃

831 production/loss rates induced by Phot_{nitrate} are <u>shown in Fig.S8</u>).

Deleted: given Deleted: 7

Figure 15 The 95-NCP-site-averaged P(H₂O₂)/P(HNO₃) ratio at each vertical layer for the 6S case
during a typical haze aggravating process of Oct.19–21 (a–c) and a clean period of Oct.27–29 (d–f)

837

836

of 2018.

838	The specific role of the produced HONO or NO ₂ via the <u>Phot_{pitrate} reaction (R2) in</u>
839	DMA8 O3 enhancements was further analyzed and is shown in Fig. 16, the produced
840	NO_2 and HONO jointly promoted O_3 formation and increased DMA8 O_3
841	concentrations. From the surface to \sim 1200m (Level 9), the DMA8 O ₃ enhancements
842	for case D_HONO was ~5 times those for case D_NO ₂ , while at ~2000 m (Level 11)
843	the DMA8 O_3 enhancements for case D_HONO was ~2 times those for case D_NO ₂ .
844	A balance exists between the propagation of the free radical interconversion cycle and
845	the rate of termination of the cycle for the O_3 formation chemistry (Gligorovski et al., 37

1	Deleted: nitrate photolysis
1	Formatted: Subscript
-{	Deleted: were

856 Figure 16 The 95-NCP-site-averaged DMA8 O3 enhancements due to nitrate photolysis with three

857 product scenarios (cases D_NO2, D_HONO and D) during a typical haze aggravating process of

858 Oct.19–21 (a–c) and a clean period of Oct.27–29 (d–f) in 2018.

859

860 4. Discussion

861 4.1 Vertical variations of potential HONO sources

862 The relative contribution of potential HONO sources near the surface,

863 corresponding to the first model layer (0 to ~35 m) in our simulation, was quantified

864	in previous modelling studies (Fu et al., 2019; Xue et al., 2020; Zhang et al., 2021),
865	however, for those potential HONO sources, their relative contributions to HONO
866	concentrations near and above the surface should be different. Based on our results
867	(Figs.7&8), the effects of aerosol related HONO sources would be severely
868	underestimated in hazy days when only focused surface HONO, especially for
869	Phot _{nitrate} . Near the surface in NCP, the daytime contribution of Phot _{nitrate} to HONO
870	concentrations in hazy days was only \sim 4–6%, but this source contributed \sim 35–50% of
871	the enhanced DMA8 O ₃ (Fig.14a-c); above the eighth layer (~800 m), this source
872	contributed ~50–70% of HONO concentrations and ~50–95% of the enhanced DMA8 $$
873	O ₃ (Fig.14a–c).

A recent observation in urban Beijing reported vertical HONO concentrations 874 875 from three heights above the ground and found that extremely high HONO concentrations occurred at 120 m (~5 ppb) and 240 m (~3 ppb) rather than near the 876 877 surface (~1.2 ppb) during 12:00 in a typical hazy day (Zhang et al., 2020b). The observation was unusual at noontime under strong convection conditions, inconsistent 878 with those most previous observations indicating a HONO decrease trend with height, 879 especially with the observational results of Zhu et al. (2011) and Meng et al. (2020) 880 881 and simulated results of Zhang et al. (2021) and ours in Fig.S6 at the same observational site. The contributions of different HONO sources at each layer were 882 883 analyzed by using a box model, but ~80-90% of the noontime HONO at higher layers could not be explained by the known HONO formation mechanisms (Zhang et al., 884 885 2019c). The box model neglected the vertical convection, so the ground related Formatted: Font: Bold
Deleted: nitrate photolysis
Formatted: Subscript

Deleted: surface

Formatted: Font: Bold

Deleted: (including our simulations in Fig.S5)

HONO sources had no contribution to HONO concentrations at the higher layers, thus
their HONO simulations were actually underestimated compared with our results and
the previous studies of Wong et al. (2011) and Zhang et al. (2021).

892

893 4.2 Uncertainties of Jnitrate/JHNO3 ratios and their impacts

894 4.2.1 Uncertainties of Jnitrate/JHNO3 ratios in DMA8 O3 enhancements

895 Based on our results, Hetground and Photnitrate were the two major contributors to 896 the enhanced DMA8 O₃, especially for Phot_{nitrate} in hazy days with higher PM_{2.5} concentrations. The uncertainties of Photnitrate (four Jnitrate/JHNO3 ratios) in O3 897 898 enhancements were analyzed and are shown in Fig.17 (The uncertainties of Hetground 899 are presented in text S2). During the haze aggravating process, the enhanced DMA8 O_3 <u>near the surface</u> increased from ~0.3 to ~0.5 ppb, from ~0.9 to ~2 ppb, from ~2 to 900 901 ~6 ppb, and from ~5 to ~12 ppb, with the Jnitrate/JHNO3 ratio being 1, 7, 30, 120, 902 respectively, and the enhanced O3 increased with altitude. In clean days, the impact of 903 Photnitrate on O3 enhancements was small (<1 ppb) even with a Jnitrate/JHNO3 ratio of 120. 904

1	Deleted: the
1	Deleted: for
1	Deleted: given

Figure 17 The 95-NCP-site-averaged DMA8 O₃ enhancement induced by nitrate photolysis with
four J_{nitrate}/J_{HNO3} ratios (1, 7, 30 and 120) during a typical haze aggravating process of Oct.19–21
(a-c) and a clean period of Oct.27–29 (d–f) of 2018.

913

914 4.2.2 Uncertainties of Jnitrate/JHNO3 ratios in nitrate concentrations

915 We found considerable enhancements in O3 concentrations induced by, Phot_{mitrate}, yet it is still unclear that to what extent Photnitrate could influence nitrate 916 917 concentrations. The overall nitrate concentrations for the base case and the nitrate 918 enhancements induced by the potential HONO sources decreased with rising altitude 919 except for Phot_{nitrate} (Fig.<u>\$9a</u>). Het_{ground} enhanced nitrate concentrations by ~1.5 µg m^{-3} near the surface and the enhancements decreased to $< 0.5 \mu g m^{-3}$ above the eighth 920 921 model layer (~800m); the nitrate enhancements due to Hetaerosol and Etraffic near the surface were ~0.2 and ~0.1 μg m $^{-3},$ respectively, and were < 0.1 and < 0.04 μg m $^{-3}$ 922 above the sixth model layer (~500m). For Photnitrate, the overall impact of four 923

-[Deleted: nitrate photolysis				
-{	Formatted: Subscript				
-(Deleted: nitrate photolysis				
1	Formatted: Subscript				

Deleted: S8a

927 $J_{nitrate}/J_{HNO3}$ ratios on nitrate concentrations is928ratio of 1 or 7 had a limited impact on nitr929 $J_{nitrate}/J_{HNO3}$ ratio of 30 slightly decreased nitr930the $J_{nitrate}/J_{HNO3}$ ratio of 120 decreased vertic931m ⁻³ . The relative nitrate changes caused932differences between four cases added Photni933and the base case (Fig.S9c), The vertical nit9340.4% ($J_{nitrate}/J_{HNO3}=1$), ~0–2% (7), ~2–5% (935sites, meaning that the Phot _{nitrate} impact on936(<5%) when adopting a relatively small $J_{nitrate}/J_{HNO3}$ 938on HONO than on HNO3, and Phot _{nitrate} acce	shown in Fig , <u>S9b</u> , a smaller $J_{nitrate}/J_{HNO3}$ ate concentrations of ~0–0.05 µg m ⁻³ , a rate concentrations by ~0.2 µg m ⁻³ , while
928ratio of 1 or 7 had a limited impact on nitr929 $J_{nitrate}/J_{HNO3}$ ratio of 30 slightly decreased nitr930the $J_{nitrate}/J_{HNO3}$ ratio of 120 decreased vertic931 m^{-3} . The relative nitrate changes caused932differences between four cases added Photni933and the base case (Fig.S9c), The vertical nitr934 0.4% ($J_{nitrate}/J_{HNO3}=1$), $\sim 0-2\%$ (7), $\sim 2-5\%$ (935sites, meaning that the Phot _{nitrate} impact on936(<5%) when adopting a relatively small $J_{nitrate}$ 938on HONO than on HNO ₃ , and Phot _{nitrate} accord	ate concentrations of ~0–0.05 μ g m ⁻³ , a rate concentrations by ~0.2 μ g m ⁻³ , while
929 $J_{nitrate}/J_{HNO3}$ ratio of 30 slightly decreased nitrice930the $J_{nitrate}/J_{HNO3}$ ratio of 120 decreased vertice931m ⁻³ . The relative nitrate changes caused932differences between four cases added Photni933and the base case (Fig.S9c), The vertical nitrice9340.4% ($J_{nitrate}/J_{HNO3}=1$), ~0–2% (7), ~2–5% (7)935sites, meaning that the Photnitrate impact on936(<5%) when adopting a relatively small $J_{nitrate}/J_{HNO3}$ 938on HONO than on HNO3, and Photnitrate accord	rate concentrations by ~0.2 μ g m ⁻³ , while
930 the J _{nitrate} /J _{HNO3} ratio of 120 decreased vertice 931 m ⁻³ . The relative nitrate changes caused 932 differences between four cases added Phot _{ni} 933 and the base case (Fig.S9c), The vertical nit 934 0.4% (J _{nitrate} /J _{HNO3} =1), ~0–2% (7), ~2–5% (935 sites, meaning that the Phot _{nitrate} impact on 936 (<5%) when adopting a relatively small J _{nitrate} / 937 <u>Romer et al. (2018) found a J_{nitrate}/J_{HNO3}</u> 938 <u>on HONO than on HNO₃, and Phot_{nitrate} according</u>	
 m⁻³. The relative nitrate changes caused differences between four cases added Phot_{ni} and the base case (Fig.S9c), The vertical nit 0.4% (J_{nitrate}/J_{HNO3}=1), ~0–2% (7), ~2–5% (sites, meaning that the Phot_{nitrate} impact on (<5%) when adopting a relatively small J_{nitrate} <u>Romer et al. (2018) found a J_{nitrate}/J_{HNO3}</u> <u>on HONO than on HNO3, and Phot_{nitrate} according</u> 	al nitrate concentrations by ~0.3–0.8 μ g
 differences between four cases added Phot_{ni} and the base case (Fig.S9c), The vertical nit 0.4% (J_{nitrate}/J_{HNO3}=1), ~0–2% (7), ~2–5% (sites, meaning that the Phot_{nitrate} impact on (<5%) when adopting a relatively small J_{nitrate} <u>Romer et al. (2018) found a J_{nitrate}/J_{HNO3}</u> on HONO than on HNO₃, and Phot_{nitrate} according 	by Phot _{nitrate} were calculated by the
933and the base case (Fig.S9c), The vertical nit934 0.4% ($J_{nitrate}/J_{HNO3}=1$), $\sim0-2\%$ (7), $\sim2-5\%$ (935sites, meaning that the Phot _{nitrate} impact on936(<5%) when adopting a relatively small $J_{nitrate}$ 937Romer et al. (2018) found a $J_{nitrate}/J_{HNO3}$ 938on HONO than on HNO3, and Phot _{nitrate} according	rate (cases Nit_1, Nit_7, D and Nit_120)
 934 0.4% (J_{nitrate}/J_{HNO3}=1), ~0–2% (7), ~2–5% (935 sites, meaning that the Phot_{nitrate} impact on 936 (<5%) when adopting a relatively small J_{nitrate} 937 <u>Romer et al. (2018) found a J_{nitrate}/J_{HNO3}</u> 938 <u>on HONO than on HNO3, and Phot_{nitrate} according</u> 	rate concentrations were reduced by $\sim 0-$
 935 sites, meaning that the Phot_{nitrate} impact on 936 (<5%) when adopting a relatively small J_{nitrate} 937 <u>Romer et al. (2018) found a J_{nitrate}/J_{HNO3}</u> 938 <u>on HONO than on HNO3, and Phot_{nitrate} according</u> 	30) and ~10–14% (120) at the 95 NCP
 936 (<5%) when adopting a relatively small J_{nitrate} 937 <u>Romer et al. (2018) found a J_{nitrate}/J_{HNO3}</u> 938 <u>on HONO than on HNO3, and Phot_{nitrate} according</u> 	vertical nitrate concentrations is limited
 937 <u>Romer et al. (2018) found a J_{nitrate}/J_{HNO3}</u> 938 <u>on HONO than on HNO3, and Phot_{nitrate} according to the second se</u>	/J _{HNO3} ratio (< 30) (Fig. <mark>\$9c</mark>).
938 on HONO than on HNO ₃ , and Phot _{nitrate} acco	ratio of 10 or 30 had a much larger effect
	unted for an average of 40% of the total
939 production of HONO, and only 10% of HI	NO ₃ loss with a J _{nitrate} /J _{HNO3} ratio of 10
940 (Fig.5 in Romer et al. (2018)), consistent wit	h our study. From the production rate of
941 gas HNO ₃ (P _{HNO3}) in Fig.S10, we can find th	at an increase in the J _{nitrate} /J _{HNO3} ratio for
942 <u>Phot_{nitrate} simultaneously enhances the HNC</u>	D ₃ production rate, and is favorable for
943 <u>nitrate formation via the reaction between</u>	HNO ₃ and NH ₃ . Nitrate consumption is
944 <u>mitigated by the faster nitrate formation, this</u>	s is the main reason for less perturbation
945 <u>of the nitrate budget influenced by Phot_{nitrate}.</u>	
946 Fig.18 shows the detailed relative chang	es <u>of nitrate</u> caused by Phot _{nitrate} during a
947 typical haze aggravating process and a clean	period (corresponding concentrations are
948 shown in Fig.<u>S11</u>). <u>The percentage nitrate re</u>	

Deleted: S8b

Dele	eted: ,
Dele	eted: the
Dele	eted: S8c
For	natted: Subscript
Dele	eted: HONO
Dele	eted: but
For	natted: Subscript
For	natted: Subscript
For	natted: Subscript
Dele	eted: which is
Dele	eted: gaseous HNO ₃
Form	natted: Subscript
For	matted: Subscript
For	natted: Font: Bold
Dele	eted: could
Dele	eted: increasing
For	natted: Subscript
For	natted: Subscript
For	natted: Subscript
Dele	eted: cing
For	natted: Subscript
Dele	eted: which
For	matted: Subscript
For	natted: Subscript
Dele	eted: was
Dele	eted: why
For	natted: Subscript
Dele	eted: nitrate
Dele	eted: were
Dele	eted: 89
Dele	eted:),
Dele	eted: the

991	Fig. 19 shows diurnal patterns of surface-averaged and vertically-averaged	
992	simulations of the Phot _{nitrate_} frequency with four different J _{nitrate} /JHNO3 ratios at the 95	Deleted: nitra
993	NCP sites during the study period. The <u>Phot_{pitrate} frequency at 12:00 was 3.7×10⁻⁷</u> ,	Formatted: S
994	2.6×10^{-6} , 1.1×10^{-5} and 4.5×10^{-5} s ⁻¹ , when adopting a J _{nitrate} /J _{HNO3} ratio of 1, 7, 30 and	Formatted: Si
995	120, respectively. The corresponding vertically-averaged Phot _{aitrate} frequency was	Deleted: nitra
996	slightly larger (~10%) and was 4.2×10^{-7} , 2.9×10^{-6} , 1.3×10^{-5} and 5.0×10^{-5} s ⁻¹ .	Formatted: Si
997	respectively. Adopting a $J_{nitrate}/J_{HNO3}$ ratio of 30 in the 6S case, with the corresponding	
998	$J_{nitrate}$ of 1.1–1.3×10 ⁻⁵ s ⁻¹ , produced ~30–50% of the enhanced O_3 near the surface in	
999	hazy days (Fig.13), and ~70–90% of the enhanced O_3 at higher layers (>800 m).	
1000	The reported values of J _{nitrate} from previous studies are summarized in Table 4.	
1001	The experimental J _{nitrate} values have been controversial over the past two decades and	
1002	are still arguable currently. In our simulations for the 6S case, <u>Phot_{nitrate} contributed</u>	Deleted: nitra
1003	from ~1% (clean days) to ~5% (hazy days) to surface HONO during daytime when	Formatted: Si
1004	using the $J_{\text{nitrate}}/J_{\text{HNO3}}$ ratio of 30 in NCP, consistent with <8% at a rural site in NCP	
1005	reported by Xue et al. (2020) and ~1% at urban Beijing reported by Zhang et al. (2021)	
1006	using the same ratio; however, the increasing contribution of <u>Phot_{nitrate} to HONO</u>	Deleted: nitra
1007	concentrations with rising altitude based on our simulations (Fig.7), has not been	Formatted: Si
1008	discussed in previous research. Furthermore, we found that the overall Phot _{pitrate}	Formatted: S
1009	impact to OH and O3 would be severely underestimated when the Photnitrate	Deleted: of ni
1010	contribution to vertical HONO was excluded.	Formatted: S
1011	A larger J _{nitrate} /J _{HNO3} ratio of 120 for <u>Phot_{nitrate} (4.5–5.0×10⁻⁵ s⁻¹ at 12:00</u>) produced	Deleted: nitra
1010	25 20% of noortime HONO in NCD in our study (Fig S12) comparely with 20 40%	Formatted: S
1012	~23–30% of noonume HONO in INCP in our study (Fig. 312), comparable with 30–40%	Deleted: S10

nitrate photolysis d: Subscript nitrate photolysis d: Subscript

Deleted: nitrate photolysis	
Formatted: Subscript	

nitrate photolysis d: Subscript

Deleted: nitrate photolysis
Formatted: Subscript
Formatted: Subscript
Deleted: of nitrate photolysis
Formatted: Subscript
Deleted: of nitrate photolysis
Deleted: nitrate photolysis
Formatted: Subscript

in previous modelling studies (Fu et al., 2019; Shi et al., 2020) when using the 1022 $J_{\text{nitrate}}/J_{\text{HNO3}}$ ratio of 118.57 (8.3×10⁻⁵/ 7×10⁻⁷). In haze aggravating processes, the 1023 contribution of Phot_{nitrate} (J_{nitrate}/J_{HNO3} = 120) to the DMA8 O₃ enhancements reached 1024 \sim 5–10 ppb near the surface and \sim 8–20 ppb above the tenth model layer (Fig.17), these 1025 1026 enhancements were extremely large. In a previous modelling study by Fu et al. (2020), the daytime surface O_3 simulations were systematically overestimated by ~ 5 ppb in 1027 NCP in winter (Fig.S4 in Fu et al. (2020)), the inclusion of Phot_{nitrate} (J_{nitrate}/J_{HNO3} = 1028 1029 118.57) in their study might cause the overestimation. From the above, a Jnitrate/JHNO3 ratio of 120, or a $J_{nitrate}$ value of ~4–5×10⁻⁵ s⁻¹ is possibly overestimated. When 1030 adopting the maximum J_{nitrate} value of 10⁻⁴ s⁻¹ reported by Ye et al. (2016a) and Bao et 1031 1032 al. (2018), we reasonably speculate that O3 simulations will be significantly 1033 overestimated, especially at higher altitude with NO_x-sensitive O₃ chemistry (Fig,15). 1034 Romer et al. (2018) and Kasibhatla et al. (2018) suggested that a Jnitrate/JHNO3 ratio 1035 of 30 or smaller would be more suitable, being about the minimum value reported by 1036 Ye et al. (2016a) and Bao et al. (2018), this ratio has shown significant influence on 1037 the O₃ simulations in haze aggravating processes in this study. The lack of 1038 photo-catalyzer in suspended submicron particulate sodium and ammonium nitrate may cause a lower J_{nitrate}/J_{HNO3} ratio (<10) reported by Shi et al. (2021), so more 1039 chamber experiments need to be conducted by using the particles collected in the real 1040 atmosphere. Choosing a larger Jnitrate value might cover up other ground-based 1041 unknown HONO sources, creating an illusion of good model simulations of daytime 1042 1043 HONO, but resulting in overestimation of O3 concentrations. Considering the

Deleted: s

Deleted: and
Deleted: ly
Deleted: d
Deleted: to

1049 uncertainties of NO_x or VOCs emissions, which also significantly impact O_3 1050 simulations, more studies are needed to find the exact value of $J_{nitrate}$ in the real 1051 atmosphere.

1052

Figure 19 Diurnal patterns of surface-averaged (a) and vertically-averaged (b) simulations of the

nitrate photolysis frequency with four different $J_{nitrate}/J_{HNO3}$ ratios (1, 7, 30, 120) at the 95 NCP

sites during the study period (The nitrate photolysis frequencies at 12:00 are shown in each graph).

1057 1058 1059

1060 Table 4. Summary of studies on the nitrate photolysis frequency (J_{nitrate}) (J_{HNO3} denotes the photolysis
 1061 frequency of gas HNO₃)

Experimental conditions	Main conclusion	Reference
HNO ₃ absorbed on Pyrex surface	$J_{nitrate}$ (1.2×10 ⁻⁵ s ⁻¹) is 1–2 orders of magnitude faster than in the gas and aqueous phases.	(Zhou et al., 2003)
Atmosphere simulation chamber	J_{nitrate} on snow, ground, and glass surfaces, can be excluded in the chamber.	(Rohrer et al., 2005)
HNO3 absorbed on glass surface	Photolysis frequency of surfaces adsorbed HNO ₃ is > 2 orders of magnitude larger than J _{HNO3} .	(Zhu et al., 2008)
Urban grime-coated surface	J_{nitrate} (1.2×10 ⁻³ s ⁻¹) is 4 orders of magnitude faster than in water (10 ⁻⁷ s ⁻¹).	(Baergen and Donaldson, 2013)
Various natural/artificial surfaces	$J_{nitrate}$ ranges from $6.0\times10^{-6}~s^{-1}$ to $3.7\times10^{-4}s^{-1},~1-3$ orders of magnitude higher than $J_{\rm HNO3}$	(Ye et al., 2016 <u>a</u>)
Adsorbed HNO ₃ on glass surfaces	Photolysis frequency of surfaces adsorbed HNO ₃ (2.4×10^{-7} s ⁻¹) is very low.	(Laufs and Kleffmann, 2016)

Deleted: is

	Aerosol filter samples	$J_{nitrate}$ ranges from 6.2×10 ⁻⁶ s ⁻¹ to 5.0×10 ⁻⁴ s ⁻¹ with a mean of 1.3×10 ⁻⁴ s ⁻¹ .	(Ye et al., 2017)	
	Nitrate aerosol in the MBL	$J_{nitrate} \ is \sim \! 10$ times higher than $J_{\rm HNO3}.$	(Reed et al., 2017)	
	PM _{2.5} in Beijing	J_{nitrate} (1.22×10 ⁻⁵ s ⁻¹ to 4.84×10 ⁻⁴ s ⁻¹) is 1–3 orders of magnitude higher than Junce	(Bao et al., 2018)	
	Sea-salt particulate nitrate	J_{nitrate} is 25–50 times higher than J_{HNO3} .	(Kasibhatla et al., 2018)	
	Particles collected on filters	$J_{nitrate} \ is \leq 30 \ times \ J_{HNO3}.$	(Romer et al., 2018)	
	CMAQ	Nitrate photolysis contributed ~30% of noontime HONO	(Fu et al.,	
	simulation	with a $J_{nitrate}/J_{HNO3}$ ratio of ~120.	2019)	
	CMAQ	A J _{nitrate} /J _{HNO3} ratio of 100 better improved sulfate	(Zheng et al.,	
	simulation	simulations than a J _{nitrate} /J _{HNO3} ratio of 10.	2020)	
	MCM Box model	Nitrate photolysis contribution to HONO was $< 8\%$ with a $J_{nitrate}/J_{HNO3}$ ratio of 30.	(Xue et al., 2020)	
	MCM Box model	Nitrate photolysis contributed \sim 40% of noontime HONO with a J _{nitrate} /J _{HNO3} ratio of \sim 120.	(Shi et al., 2020)	
	Smog chamber	The $J_{nitrate}/J_{HNO3}$ ratio was <10 for suspended submicron NaNO ₃ and NH ₄ NO ₃ .	(Shi et al., 2021)	
	CMAQ	Nitrate photolysis contribution to surface HONO was ~1.0%	(Zhang et al.,	
	simulation	with a $J_{\text{nitrate}}/J_{\text{HNO3}}$ ratio of 30.	2021)	
		The relative contribution of nitrate photolysis to HONO	,	
		increased with rising altitude and nitrate photolysis		
	WDF CI	contributed much larger in the ABL than near the surfaceto		Deleted: the enhanced O ₃
	WRF-Chem	the enhanced O ₃ . On average, nitrate photolysis contributed	This study	Dereted, the eminanced of
	simulation	${\sim}5\%$ of surface daytime HONO with a $J_{nitrate}/J_{\rm HNO3}$ ratio of		Deleted: HONO
		30 (~1×10 ⁻⁵ s ⁻¹) but contributed ~30–50% of the enhanced		Formatted: Subscript
		O3 near the surface in NCP in hazy days.		
1063	MBL: marine	boundary layer; ABL: atmospheric boundary layer.		Formatted: Line spacing: Double
1064				Deleted: 4
1065				Deleted: The i
1066				Deleted: the
				Formatted: Font color: Text 1
				Formatted: Line spacing: Double
1067	4.3 Interactions	between heterogeneous HONO sources		Formatted: Font: Bold, Font color: Text 1
			/	Formatted: Font color: Text 1
				Deleted: cloud clearly
1068	Form the co	omparison of nitrate budget induced by the six pote	ential HONO	Deleted: the nitrate concentrations were increased by
1069	sources in Fig.S	3&89, we can find that Hetground led to an significan	<u>nt increase in</u>	Formatted: Font color: Text 1, Subscript
				Formatted: Font color: Text 1
1070	nitrate concentration	tions. In the real atmosphere, the NO ₂ heterogeneous	reactions and	Formatted: Font color: Text 1, Subscript
I		47		Formatted: Font color: Text 1

1				
1078	the Photnitrate reaction occur simultaneously, while the sensitivity tests only considered	_	Deleted: nitrate photolysis	
		\frown	Formatted	
1079	one specific HONO source for each case and neglected their interactions, leading to		Deleted: s were occurredccur simultaneously, while the	
1080	the underestimation of the Phot _{nitrate} impact to some extent. Take it into consideration,	/	Formatted	
				<u> </u>
1081	the Photnitrate impact on atmospheric oxidants and secondary pollutants would be even	-	Deleted: impact of	
1082	larger, especially during the haze aggravating process.			
1083	Phot _{nitrate} would in turn change NO _x concentrations to some extent. From the	_	Deleted: The nitrate photolysis	
		\square	Formatted: Font: Not Italic, Font color: Text 1	\dashv
1084	<u>95-site-averaged NO₂ concentrations shown in Fig. 20, we can find that Phot_{nitrate}</u>		Formatted: Indent: First line: 0.74 cm, Line spacing: Double	
1085	slightly increased NO ₂ concentrations in hazy days. The elevated NO ₂ concentration	XY	Formatted	
			Deleted: s	
1086	could enhance HONO formation via the NO2 heterogeneous reactions, nevertheless,		Deleted: find that nitrate photolysis	
1007			Formatted	<u> </u>
1087	due to the high background NO_2 concentrations in NCP (up to ~ 40 ppb at nighttime),		Deleted: below	
1088	the increment of NO ₂ and the enhanced HONO formation from NO ₂ caused by		Formatted	Ē
			Deleted: could	
1089	Phot _{nitrate} were small (<10%), but might have a larger impact on NO _x budgets in clean		Formatted: Font color: Text 1	
		M	Formatted (
1090	regions. From the above, a positive feedback relationship between the NO ₂	\mathbb{N}	Deleted: e	
1001	beterogeneous respections and the Photo respection could be found these	/!	Formatted (
1091	inclerogeneous reactions and the <u>prior</u> intrate reaction, could be round, these		Deleted: nitrate photolysis	
1092	multi-processes worse the air quality during the haze aggravating processes.	<u> </u>	Formatted	
			Deleted: was	
	J_w/J_w_o=0 J_w_/J_w_o=1J_w_o=7		Formatted	
	-Intrate - HNOS		Deleted: this process	
	ନ୍ତି 40 –(a)		Formatted	
			Deleted: to	
			Formatted	
			Deleted: nitrate photolysis	
			Formatted	<u> </u>
			Deleted: s	
		Ì	Formatted: Font: Not Italic, Font color: Text 1	
1093			Formatted: Font color: Text 1	_
			Formatted: Font color: Text 1	

1131 Figure 20 Comparison of 95-site-averaged simulations of NO₂ concentrations for the base case and

1132 <u>four cases with different $J_{nitrate}/J_{HNO3}$ ratios (1, 7, 30 and 120) (a), and the corresponding NO₂ variations</u>

1133 (b) compared with the base case in the North China Plain during Oct.11–31 of 2018.

-	Deleted: 1
	Deleted: mean
	Deleted: simulated
$\langle \rangle$	Deleted: the
	Deleted: added Phot _{nitrate}
	Deleted: hourly

1141 **5. Conclusions**

In this study, three direct emission sources, the improved NO₂ heterogeneous 1142 1143 reactions on aerosol and ground surfaces, and particulate nitrate photolysis in the atmosphere were included into the WRF-Chem model to explore the key HONO 1144 1145 sources producing O3 enhancements during typical autumn haze aggravating 1146 processes with co-occurrence of high PM2.5 and O3 in NCP. The six potential HONO sources produced a significant enhancement in surface HONO simulations and 1147 improved the mean HONO concentration at the BUCT site to 1.47 ppb from 0.05 ppb 1148 1149 (improved the NMB to -14.22% from -97.11% and the IOA to 0.80 from 0.45). The improved HONO significantly enhanced the atmospheric oxidation capacity near the 1150 1151 surface and at elevated heights, especially in hazy days, resulting in fast formation of 1152 and significant improvements of O3 during haze aggravating processes in NCP. Although the photolysis frequency is usually lower during hazy days, higher 1153 concentrations of NO2, PM2.5 and nitrate favored HONO formation via heterogeneous 1154 1155 reactions, leading to stronger atmospheric oxidation capacity. The major results 1156 include:

1157 (1) For the surface HONO in NCP, $\text{Het}_{\text{ground}}$ was the largest source during 1158 daytime and nighttime (~50–80%); the contribution of $\text{Phot}_{nitrate}$ /J_{HNO3} = 30) to 1159 surface HONO concentrations was close to that of the NO+OH reaction during 1160 daytime (~1–12%) and was ~5% for daytime average; $\text{E}_{\text{traffic}}$ was important during 1161 nighttime (~10–20%) but small during daytime (<5%); the contribution of $\text{Het}_{aerosol}$ 1162 was minor (~2–3%) in daytime and <10% in nighttime; the contribution of E_{soil} was 50 Deleted: of HONO

Deleted: 86

1166 <3%, and Eindoor could be neglected. Vertically, the HONO enhancements due to ground-based potential HONO sources (Etraffic, Esoil, Eindoor and Hetground) decreased 1167 rapidly with height, while the NO+OH reaction and aerosol-related HONO sources 1168 1169 (Photnitrate and Hetaerosol) decreased with height much slower. The enhanced HONO 1170 due to Photnitrate in hazy days was about ten times larger than in clean days and 1171 became the dominant HONO source (\sim 30–70% when J_{nitrate}/J_{HNO3} = 30) at higher layers, and both HONO concentrations and Photnitrate contributions increased with the 1172 1173 aggravated pollution levels.

(2) Near the surface, daytime OH production/loss rates were significantly 1174 enhanced by~320% for the 6S case (mean was 5.27 ppb h⁻¹) compared with the base 1175 case (mean was 1.26 ppb h⁻¹); vertically, daytime OH production/loss rates were 1176 enhanced by ~105% for the 6S case (mean was 2.21 ppb h⁻¹) compared with the base 1177 case (mean was 1.08 ppb h⁻¹). The enhanced OH production rate and OH due to the 1178 1179 six potential HONO sources both showed a strong positive correlation with PM2.5 concentrations at the 95 NCP sites, with a slope of 0.043 ppb h⁻¹/µg m⁻³ of PM_{2.5} and 1180 3.62×10^4 molec cm⁻³/µg m⁻³ of PM_{2.5} from the surface to the height of 2.5 km for case 1181 1182 6S, respectively. The atmospheric oxidation capacity (e.g., OH) was enhanced in the haze aggravating process. 1183

1184 (3) A strong positive correlation (r>0.8) between enhanced O₃ by the six potential 1185 HONO sources and PM_{2.5} concentrations was found in NCP, and nitrate photolysis 1186 was the largest contributor to the enhanced DMA8 O₃ in hazy days. Vertically, the 1187 enhanced DMA8 O₃ was < 2ppb when PM_{2.5} was < 20µg m⁻³, and that was >10 ppb Deleted: one order of magnitude

when $PM_{2.5}$ was > 60µg m⁻³ on average, with a slope of 0.24 ppb DMA8 O₃ 1189 enhancement /µg m⁻³ of PM_{2.5}. The surface enhanced DMA8 O₃ was ~5.5 ppb 1190 (Oct.19), ~7 ppb (Oct.20) and ~10 ppb (Oct.21), respectively, during a typical haze 1191 aggravating process, while that was usually ~2 ppb in clean days. The contribution of 1192 1193 Photnitrate to the enhanced DMA8 O3 was increased by over one magnitude during the 1194 haze aggravating process (up to 5-10 ppb) compared with that in clean days (~0.1-0.5 1195 ppb), reached ~2-4.5 ppb (Oct.19), ~3-6 ppb (Oct.20) and ~5-10 ppb (Oct.21), 1196 respectively, during a typical haze aggravating process vertically.

1197 (4) Surface O_3 was controlled by VOCs-sensitive chemistry, while O_3 at higher 1198 altitude (>800m) was controlled by NO_x-sensitive chemistry in NCP during autumn. 1199 The nitrate photolysis reaction enhanced OH and NO_x concentrations, both favored O_3 1200 formation at high altitude, especially in haze aggravating processes with abundant 1201 nitrate. The produced HONO rather than the produced NO₂ through nitrate photolysis 1202 had a stronger promotion for O_3 formation near the surface, but the impacts of the two 1203 products on O_3 enhancements were similar at higher altitude (~2000 m).

(5) Nitrate photolysis only contributed ~5% of the surface HONO in daytime with a $J_{nitrate}/J_{HNO3}$ ratio of 30 (~1×10⁻⁵ s⁻¹) but contributed ~30–50% of the enhanced O₃ near the surface in NCP in hazy days. The photolysis of nitrate had a limited impact on nitrate concentrations (reduced by <5% with $J_{nitrate}/J_{HNO3}$ =30, and <15% even with a $J_{nitrate}/J_{HNO3}$ ratio of 120), due mainly to the simultaneously enhanced atmospheric <u>oxidants favoring the formation of HNO₃ and nitrate</u>, Choosing a larger J_{nitrate} value might cover up other ground-based unknown HONO sources, but Deleted: and

	Deleted: oxidation
	Deleted:
	Deleted: formation
١	Formatted: Subscript

1215	overestimate vertical sources of HONO, and NO_{x} and O_{3} concentrations, so more	
1216	studies are still needed to find the exact value of J_{nitrate} in the real atmosphere.	
1217		
1218	Data availability	
1219	Data are available upon reasonable request to the corresponding authors.	
1220		
1000		
1221	Author contribution:	
1222	IZ CI IA MG and WW conceived and designed the research IZ performed	
1222	5.2., C.L., 5.7., 14.C., and W.W. concerved and designed the research. 5.2. performed	
1223	WRF-Chem simulations and wrote the paper. J.Z., C.L., Y.G., and H.R. performed	Deleted: and analyzed
1224	data analyses and produced the figures. C.L., Y.Z., F.Z., X.F., C.Y., K.D., Y.L., and	
1225	M.K, conducted the field observations. W.W., J.A., M.G., Y.L., and M.K. reviewed the	Deleted: ,
1226	article.	
1227	Competing interests	
1228	The authors declare that they have no conflict of interest.	
1000	,	
1229		
1230	Acknowledgements	
1231	This research was partially supported by the National Natural Science Foundation of	
1232	China (Grant No. 92044302, 42075108, 42107124, <u>42075110,</u> 41822703, 91544221,	
1233	91844301), Beijing National Laboratory for Molecular Sciences	
	53	

1236 (BNLMS-CXXM-202011) and the China Postdoctoral Science Foundation (grant NO.

1237 2019M660764).

1239 References

- Alicke, B., Platt, U., Stutz, J., 2002. Impact of nitrous acid photolysis on the total hydroxyl radical
 budget during the Limitation of Oxidant Production/Pianura Padana Produzione di Ozono study in
 Milan. J Geophys Res-Atmos 107. doi:10.1029/2000JD000075.
- An, J.L., Li, Y., Chen, Y., Li, J., Qu, Y., Tang, Y.J., 2013. Enhancements of major aerosol components
 due to additional HONO sources in the North China Plain and implications for visibility and haze.
 Advances in Atmospheric Sciences 30, 57-66.
- Aumont, B., Chervier, F., Laval, S., 2003. Contribution of HONO sources to the NO_x/HO_x/O₃
 chemistry in the polluted boundary layer. Atmospheric Environment 37, 487-498.
- Avnery, S., Mauzerall, D.L., Liu, J., Horowitz, L.W., 2011a. Global crop yield reductions due to surface
 ozone exposure: 1. Year 2000 crop production losses and economic damage. Atmospheric
 Environment 45, 2284-2296.
- Avnery, S., Mauzerall, D.L., Liu, J., Horowitz, L.W., 2011b. Global crop yield reductions due to
 surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage
 under two scenarios of O₃ pollution. Atmospheric Environment 45, 2297-2309.
- Baergen, A.M., Donaldson, D.J., 2013. Photochemical renoxification of nitric acid on real urban grime.
 Environmental Science & Technology 47, 815-820.
- Bao, F., Li, M., Zhang, Y., Chen, C., Zhao, J., 2018. Photochemical Aging of Beijing Urban PM_{2.5}:
 HONO Production. Environmental Science & Technology 52, 6309-6316.
- Bao, F.X., Jiang, H.Y., Zhang, Y., Li, M., Ye, C.X., Wang, W.G., Ge, M.F., Chen, C.C., Zhao, J.C., 2020.
 The Key Role of Sulfate in the Photochemical Renoxification on Real PM_{2.5}. Environmental Science & Technology 54, 3121-3128.
- Bejan, I., Abd-el-Aal, Y., Barnes, I., Benter, T., Bohn, B., Wiesen, P., Kleffmann, J., 2006. The
 photolysis of ortho-nitrophenols: a new gas phase source of HONO. Physical chemistry chemical
 physics : PCCP 8, 2028-2035.
- 1264 Chen, S., Wang, H., Lu, K., Zeng, L., Hu, M., Zhang, Y., 2020a. The trend of surface ozone in Beijing
 1265 from 2013 to 2019: Indications of the persisting strong atmospheric oxidation capacity.
 1266 Atmospheric Environment 242, 117801.
- 1267 Chen, Y., Wang, W.G., Lian, C.F., Peng, C., Zhang, W.Y., Li, J.L., Liu, M.Y., Shi, B., Wang, X.F., Ge,
 1268 M.F., 2020b. Evaluation and impact factors of indoor and outdoor gas-phase nitrous acid under
 1269 different environmental conditions. Journal of Environmental Sciences 95, 165-171.
- Chen, Y., Zheng, P., Wang, Z., Pu, W., Tan, Y., Yu, C., Xia, M., Wang, W., Guo, J., Huang, D., Yan, C.,
 Nie, W., Ling, Z., Chen, Q., Lee, S., Wang, T., 2021. Secondary Formation and Impacts of
 Gaseous Nitro-Phenolic Compounds in the Continental Outflow Observed at a Background Site in
 South China. Environmental Science & Technology. DOI: 10.1021/acs.est.1c04596.
- 1274 Crowley, J.N., Carl, S.A., 1997. OH formation in the photoexcitation of NO2 beyond the dissociation
 1275 threshold in the presence of water vapor. Journal of Physical Chemistry A 101, 4178-4184.
- Cui, L., Li, R., Fu, H., Meng, Y., Zhao, Y., Li, Q., Chen, J., 2021. Nitrous acid emission from open burning of major crop residues in mainland China. Atmospheric Environment 244, 117950.
- 1278
 Dillon, T.J., Crowley, J.N., 2018. Reactive quenching of electronically excited NO₂* and NO₃* by H₂O

 1279
 as potential sources of atmospheric HO_x radicals. Atmospheric Chemistry and Physics 18, 14005-14015.

 1280
 14005-14015.

Formatted: Subscript Formatted: Subscript Formatted: Subscript

ł	Formatted: Subscript
1	Formatted: Superscript
+	Formatted: Subscript
4	Formatted: Superscript
4	Formatted: Subscript
1	Formatted: Subscript

1281	Dong, W., Xing, J., Wang, S., 2010. Temporal and spatial distribution of anthropogenic ammonia
1282	emissions in China: 1994-2006. Environmental Sciences (in Chinese) 31, 1457-1463.

- Emmons, L.K., Walters, S., Hess, P.G., Lamarque, J.F., Pfister, G.G., Fillmore, D., Granier, C.,
 Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C.,
 Baughcum, S.L., Kloster, S., 2010. Description and evaluation of the Model for Ozone and
 Related chemical Tracers, version 4 (MOZART-4). Geoscientific Model Development 3, 43-67.
- Feng, T., Zhao, S., Bei, N., Liu, S., Li, G., 2021. Increasing atmospheric oxidizing capacity weakens
 emission mitigation effort in Beijing during autumn haze events. Chemosphere 281, 130855.
- Feng, Z., De Marco, A., Anav, A., Gualtieri, M., Sicard, P., Tian, H., Fornasier, F., Tao, F., Guo, A.,
 Paoletti, E., 2019. Economic losses due to ozone impacts on human health, forest productivity and
 crop yield across China. Environ Int 131, 104966.
- Feng, Z., Hu, E., Wang, X., Jiang, L., Liu, X., 2015. Ground-level O₃ pollution and its impacts on food
 crops in China: a review. Environ Pollut 199, 42-48.
- Feng, Z., Xu, Y., Kobayashi, K., Dai, L., Zhang, T., Agathokleous, E., Calatayud, V., Paoletti, E.,
 Mukherjee, A., Agrawal, M., Park, R.J., Oak, Y.J., Yue, X., 2022. Ozone pollution threatens the
 production of major staple crops in East Asia. Nature Food 3, 47-56.
- Finlayson-Pitts, B.J., Wingen, L.M., Sumner, A.L., Syomin, D., Ramazan, K.A., 2003. The
 heterogeneous hydrolysis of NO₂ in laboratory systems and in outdoor and indoor atmospheres:
 An integrated mechanism. Physical Chemistry Chemical Physics 5, 223-242.
- Fröhlich, R., Cubison, M.J., Slowik, J.G., Bukowiecki, N., Prévôt, A.S.H., Baltensperger, U., Schneider,
 J., Kimmel, J.R., Gonin, M., Rohner, U., Worsnop, D.R., Jayne, J.T., 2013. The ToF-ACSM: a
 portable aerosol chemical speciation monitor with TOFMS detection. Atmospheric Measurement
 Techniques 6, 3225-3241.
- Fu, X., Wang, T., Gao, J., Wang, P., Liu, Y.M., Wang, S.X., Zhao, B., Xue, L.K., 2020. Persistent Heavy
 Winter Nitrate Pollution Driven by Increased Photochemical Oxidants in Northern China.
 Environmental Science & Technology 54, 3881-3889.
- Fu, X., Wang, T., Zhang, L., Li, Q.Y., Wang, Z., Xia, M., Yun, H., Wang, W.H., Yu, C., Yue, D.L., Zhou,
 Y., Zheng, J.Y., Han, R., 2019. The significant contribution of HONO to secondary pollutants
 during a severe winter pollution event in southern China. Atmospheric Chemistry and Physics 19,
 1-14.
- Gao, W., Tan, G., Hong, Y., Li, M., Nian, H., Guo, C., Huang, Z., Fu, Z., Dong, J., Xu, X., 2013.
 Development of portable single photon ionization time-of-flight mass spectrometer combined with membrane inlet. International Journal of Mass Spectrometry 334, 8-12.
- Ge, M., Tong, S., Wang, W., Zhang, W., Chen, M., Peng, C., Li, J., Zhou, L., Chen, Y., Liu, M., 2021.
 Important Oxidants and Their Impact on the Environmental Effects of Aerosols. The journal of physical chemistry. A.125, 3813-3825.
- Ge, S., Wang, G., Zhang, S., Li, D., Xie, Y., Wu, C., Yuan, Q., Chen, J., Zhang, H., 2019. Abundant
 NH₃ in China Enhances Atmospheric HONO Production by Promoting the Heterogeneous
 Reaction of SO₂ with NO₂. Environmental Science & Technology 53, 14339-14347.
- <u>Gen, M., Liang, Z., Zhang, R., Go Mabato, B.R., Chan, C.K., 2022. Particulate nitrate photolysis in the</u>
 <u>atmosphere. Environmental Science: Atmospheres. DOI: 10.1039/D1EA00087J.</u>
- Gligorovski, S., Strekowski, R., Barbati, S., Vione, D., 2015. Environmental Implications of Hydroxyl
 Radicals (*OH). Chem Rev 115, 13051-13092.
- 1324 Gómez Alvarez, E., Sörgel, M., Gligorovski, S., Bassil, S., Bartolomei, V., Coulomb, B., Zetzsch, C.,

Formatted: Normal, Indent: Left: 0 cm, Hanging: 4.2 ch, First line: 0 ch

Formatted: Normal, Indent: Left: 0 cm, Hanging: 4.2 ch, First line: 0 ch

- Wortham, H., 2014. Light-induced nitrous acid (HONO) production from NO₂ heterogeneous
 reactions on household chemicals. Atmospheric Environment 95, 391-399.
- Guenther, A.B., Jiang, X., Heald, C.L., Sakulyanontvittaya, T., Duhl, T., Emmons, L.K., Wang, X.,
 2012. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an
 extended and updated framework for modeling biogenic emissions. Geoscientific Model
 Development 5, 1471-1492.
- Guo, Y., Zhang, J., An, J., Qu, Y., Liu, X., Sun, Y., Chen, Y., 2020. Effect of vertical parameterization of
 a missing daytime source of HONO on concentrations of HONO, O₃ and secondary organic
 aerosols in eastern China. Atmospheric Environment 226, 117208.
- Hendrick, F., Muller, J.F., Clemer, K., Wang, P., De Maziere, M., Fayt, C., Gielen, C., Hermans, C., Ma,
 J.Z., Pinardi, G., Stavrakou, T., Vlemmix, T., Van Roozendael, M., 2014. Four years of
 ground-based MAX-DOAS observations of HONO and NO₂ in the Beijing area. Atmospheric
 Chemistry and Physics 14, 765-781.
- Huang, X., Li, M.M., Li, J.F., Song, Y., 2012. A high-resolution emission inventory of crop burning in
 fields in China based on MODIS Thermal Anomalies/Fire products. Atmospheric Environment 50,
 9-15.
- Kasibhatla, P., Sherwen, T., Evans, M.J., Carpenter, L.J., Reed, C., Alexander, B., Chen, Q.J., Sulprizio,
 M.P., Lee, J.D., Read, K.A., Bloss, W., Crilley, L.R., Keene, W.C., Pszenny, A.A.P., Hodzic, A.,
 2018. Global impact of nitrate photolysis in sea-salt aerosol on NO_x, OH, and O₃ in the marine
 boundary layer. Atmospheric Chemistry and Physics 18, 11185-11203.
- Kim, S., VandenBoer, T.C., Young, C.J., Riedel, T.P., Thornton, J.A., Swarthout, B., Sive, B., Lerner, B.,
 Gilman, J.B., Warneke, C., Roberts, J.M., Guenther, A., Wagner, N.L., Dube, W.P., Williams, E.,
 Brown, S.S., 2014. The primary and recycling sources of OH during the NACHTT-2011
 campaign: HONO as an important OH primary source in the wintertime. J Geophys Res-Atmos
 1349 119, 6886-6896.
- 1350 Kleffmann, J., Kurtenbach, R., Lorzer, J., Wiesen, P., Kalthoff, N., Vogel, B., Vogel, H., 2003.
 1351 Measured and simulated vertical profiles of nitrous acid Part I: Field measurements.
 1352 Atmospheric Environment 37, 2949-2955.
- Klosterkother, A., Kurtenbach, R., Wiesen, P., Kleffmann, J., 2021. Determination of the emission
 indices for NO, NO₂, HONO, HCHO, CO, and particles emitted from candles. Indoor Air 31,
 116-127.
- 1356 Kramer, L.J., Crilley, L.R., Adams, T.J., Ball, S.M., Pope, F.D., Bloss, W.J., 2020. Nitrous acid (HONO)
 1357 emissions under real-world driving conditions from vehicles in a UK road tunnel. Atmospheric
 1358 Chemistry and Physics 20, 5231-5248.
- 1359 Kubota, M., Asami, T., 1985. Volatilization of Nitrous-Acid from Upland Soils. Soil Science and Plant
 1360 Nutrition 31, 27-34.
- 1361 Kurtenbach, R., Becker, K.H., Gomes, J.A.G., Kleffmann, J., Lorzer, J.C., Spittler, M., Wiesen, P.,
 1362 Ackermann, R., Geyer, A., Platt, U., 2001. Investigations of emissions and heterogeneous
 1363 formation of HONO in a road traffic tunnel. Atmospheric Environment 35, 3385-3394.
- Laufs, S., Kleffmann, J., 2016. Investigations on HONO formation from photolysis of adsorbed HNO₃
 on quartz glass surfaces. Physical Chemistry Chemical Physics 18, 9616-9625.
- Lee, J.D., Whalley, L.K., Heard, D.E., Stone, D., Dunmore, R.E., Hamilton, J.F., Young, D.E., Allan,
 J.D., Laufs, S., Kleffmann, J., 2016. Detailed budget analysis of HONO in central London reveals
 a missing daytime source. Atmospheric Chemistry and Physics 16, 2747-2764.

- Li, G., Lei, W., Zavala, M., Volkamer, R., Dusanter, S., Stevens, P., Molina, L.T., 2010. Impacts of 1369 1370 HONO sources on the photochemistry in Mexico City during the MCMA-2006/MILAGO Campaign. Atmospheric Chemistry and Physics 10, 6551-6567. 1371
- 1372 Li, K., Jacob, D.J., Shen, L., Lu, X., De Smedt, I., Liao, H., 2020. Increases in surface ozone pollution in China from 2013 to 2019: anthropogenic and meteorological influences. Atmospheric 1373 1374 Chemistry and Physics 20, 11423-11433.
- 1375 Li, L., Chen, C.H., Huang, C., Huang, H.Y., Zhang, G.F., Wang, Y.J., Wang, H.L., Lou, S.R., Qiao, L.P., 1376 Zhou, M., Chen, M.H., Chen, Y.R., Streets, D.G., Fu, J.S., Jang, C.J., 2012. Process analysis of 1377 regional ozone formation over the Yangtze River Delta, China using the Community Multi-scale 1378 Air Quality modeling system. Atmospheric Chemistry and Physics 12, 10971-10987.
- Li, M., Zhang, Q., Kurokawa, J., Woo, J.H., He, K.B., Lu, Z.F., Ohara, T., Song, Y., Streets, D.G., 1379 Carmichael, G.R., Cheng, Y.F., Hong, C.P., Huo, H., Jiang, X.J., Kang, S.C., Liu, F., Su, H., Zheng, 1380 1381 B., 2017. MIX: a mosaic Asian anthropogenic emission inventory under the international 1382 collaboration framework of the MICS-Asia and HTAP. Atmospheric Chemistry and Physics 17, 1383 935-963
- 1384 Li, S., Matthews, J., Sinha, A., 2008. Atmospheric hydroxyl radical production from electronically 1385 excited NO₂ and H₂O. Science 319, 1657-1660.
- 1386 Li, X., Rohrer, F., Hofzumahaus, A., Brauers, T., Häseler, R., Bohn, B., Broch, S., Fuchs, H., Gomm, S., 1387 Holland, F., 2015. Response to Comment on "Missing gas-phase source of HONO inferred from 1388 Zeppelin measurements in the troposphere". Science 348, 1326-1326.
- 1389 Li, X., Rohrer, F., Hofzumahaus, A., Brauers, T., Haseler, R., Bohn, B., Broch, S., Fuchs, H., Gomm, S., 1390 Holland, F., Jager, J., Kaiser, J., Keutsch, F.N., Lohse, I., Lu, K., Tillmann, R., Wegener, R., Wolfe, 1391 G.M., Mentel, T.F., Kiendler-Scharr, A., Wahner, A., 2014. Missing gas-phase source of HONO 1392 inferred from Zeppelin measurements in the troposphere. Science 344, 292-296.
- 1393 Li, Y., An, J.L., Min, M., Zhang, W., Wang, F., Xie, P.H., 2011. Impacts of HONO sources on the air quality in Beijing, Tianjin and Hebei Province of China. Atmospheric Environment 45, 1394 1395 4735-4744.
- Liao, S., Zhang, J., Yu, F., Zhu, M., Liu, J., Ou, J., Dong, H., Sha, Q., Zhong, Z., Xie, Y., Luo, H., 1396 1397 Zhang, L., Zheng, J., 2021. High Gaseous Nitrous Acid (HONO) Emissions from Light-Duty Diesel Vehicles. Environmental science & technology 55, 200-208. 1398
- 1399 Lin, Y.L., Farley, R.D., Orville, H.D., 1983. Bulk Parameterization of the Snow Field in a Cloud Model. 1400 J Clim Appl Meteorol 22, 1065-1092.
- 1401 Liu, J., Li, S., Zeng, J., Mekic, M., Yu, Z., Zhou, W., Loisel, G., Gandolfo, A., Song, W., Wang, X., 1402 Zhou, Z., Herrmann, H., Li, X., Gligorovski, S., 2019. Assessing indoor gas phase oxidation 1403 capacity through real-time measurements of HONO and NOx in Guangzhou, China. Environ Sci 1404 Process Impacts 21, 1393-1402.
- 1405 Liu, Y., Zhang, Y., Lian, C., Yan, C., Feng, Z., Zheng, F., Fan, X., Chen, Y., Wang, W., Chu, B., Wang, 1406 Y., Cai, J., Du, W., Daellenbach, K.R., Kangasluoma, J., Bianchi, F., Kujansuu, J., Petäjä, T., Wang, 1407 X., Hu, B., Wang, Y., Ge, M., He, H., Kulmala, M., 2020. The promotion effect of nitrous acid on 1408 aerosol formation in wintertime in Beijing: the possible contribution of traffic-related emissions. 1409 Atmospheric Chemistry and Physics 20, 13023-13040.
- 1410 Liu, Z., Wang, Y., Costabile, F., Amoroso, A., Zhao, C., Huey, L.G., Stickel, R., Liao, J., Zhu, T., 2014. Evidence of aerosols as a media for rapid daytime HONO production over China. Environmental 1411 Science & Technology 48, 14386-14391. 1412

Formatted: Subscript Formatted: Subscript

- Lu, X., Zhang, L., Wang, X.L., Gao, M., Li, K., Zhang, Y.Z., Yue, X., Zhang, Y.H., 2020. Rapid
 Increases in Warm-Season Surface Ozone and Resulting Health Impact in China Since 2013.
 Environmental Science & Technology Letters 7, 240-247.
- 1416Ma, J., Liu, Y., Han, C., Ma, Q., Liu, C., He, H., 2013. Review of heterogeneous photochemical1417reactions of NOx on aerosol A possible daytime source of nitrous acid (HONO) in the1418atmosphere. Journal of Environmental Sciences 25, 326-334.
- Ma, Z.Q., Xu, J., Quan, W.J., Zhang, Z.Y., Lin, W.L., Xu, X.B., 2016. Significant increase of surface
 ozone at a rural site, north of eastern China. Atmospheric Chemistry and Physics 16, 3969-3977.
- Maji, K.J., Namdeo, A., 2021. Continuous increases of surface ozone and associated premature
 mortality growth in China during 2015-2019. Environ Pollut 269, 116183.
- Marion, A., Morin, J., Gandolfo, A., Ormeno, E., D'Anna, B., Wortham, H., 2021. Nitrous acid
 formation on Zea mays leaves by heterogeneous reaction of nitrogen dioxide in the laboratory.
 Environ Res 193, 110543.
- Meng, F.H., Qin, M., Tang, K., Duan, J., Fang, W., Liang, S.X., Ye, K.D., Xie, P.H., Sun, Y.L., Xie,
 C.H., Ye, C.X., Fu, P.Q., Liu, J.G., Liu, W.Q., 2020. High-resolution vertical distribution and
 sources of HONO and NO₂ in the nocturnal boundary layer in urban Beijing, China. Atmospheric
 Chemistry and Physics 20, 5071-5092.
- Mills, G., Buse, A., Gimeno, B., Bermejo, V., Holland, M., Emberson, L., Pleijel, H., 2007. A synthesis
 of AOT40-based response functions and critical levels of ozone for agricultural and horticultural
 crops. Atmospheric Environment 41, 2630-2643.
- Mills, G., Sharps, K., Simpson, D., Pleijel, H., Broberg, M., Uddling, J., Jaramillo, F., Davies, W.J.,
 Dentener, F., Van den Berg, M., Agrawal, M., Agrawal, S.B., Ainsworth, E.A., Buker, P.,
 Emberson, L., Feng, Z., Harmens, H., Hayes, F., Kobayashi, K., Paoletti, E., Van Dingenen, R.,
 2018. Ozone pollution will compromise efforts to increase global wheat production. Glob Chang
 Biol 24, 3560-3574.
- Oswald, R., Behrendt, T., Ermel, M., Wu, D., Su, H., Cheng, Y., Breuninger, C., Moravek, A., Mougin,
 E., Delon, C., Loubet, B., Pommerening-Roser, A., Sorgel, M., Poschl, U., Hoffmann, T., Andreae,
 M.O., Meixner, F.X., Trebs, I., 2013. HONO emissions from soil bacteria as a major source of
 atmospheric reactive nitrogen. Science 341, 1233-1235.
- Pagsberg, P., Bjergbakke, E., Ratajczak, E., Sillesen, A., 1997. Kinetics of the gas phase reaction
 OH+NO (+M)->HONO (+M) and the determination of the UV absorption cross sections of
 HONO. Chemical Physics Letters 272, 383-390.
- Perner, D., Platt, U., 1979. Detection of nitrous acid in the atmospeere by differential optical absorption.
 Geophysical Research Letters 6, 917-920.
- 1447 Pitts, J.N., Wallington, T.J., Biermann, H.W., Winer, A.M., 1985. Identification and Measurement of
 1448 Nitrous-Acid in an Indoor Environment. Atmospheric Environment 19, 763-767.
- Qu, Y., Chen, Y., Liu, X., Zhang, J., Guo, Y., An, J., 2019. Seasonal effects of additional HONO sources
 and the heterogeneous reactions of N₂O₅ on nitrate in the North China Plain. The Science of the total environment 690, 97-107.
- Reed, C., Evans, M.J., Crilley, L.R., Bloss, W.J., Sherwen, T., Read, K.A., Lee, J.D., Carpenter, L.J.,
 2017. Evidence for renoxification in the tropical marine boundary layer. Atmospheric Chemistry
 and Physics 17, 4081-4092.
- 1455 Richards, B.L., Middleton, J.T., Hewitt, W.B., 1958. Air Pollution With Relation to Agronomic Crops:
- 1456 V. Oxidant Stipple of Grape. Agronomy Journal 50, 559-561.

Formatted: Subscript

Formatted: Subscript
Formatted: Subscript

- 1457 Rohrer, F., Bohn, B., Brauers, T., Bruning, D., Johnen, F.J., Wahner, A., Kleffmann, J., 2005.
 1458 Characterisation of the photolytic HONO-source in the atmosphere simulation chamber SAPHIR.
 1459 Atmospheric Chemistry and Physics 5, 2189-2201.
 1460 Romer, P.S., Wooldridge, P.J., Crounse, J.D., Kim, M.J., Wennberg, P.O., Dibb, J.E., Scheuer, E., Blake,
- D.R., Meinardi, S., Brosius, A.L., Thames, A.B., Miller, D.O., Brune, W.H., Hall, S.R., Ryerson,
 T.B., Cohen, R.C., 2018. Constraints on Aerosol Nitrate Photolysis as a Potential Source of
 HONO and NO_&. Environmental Science & Technology 52, 13738-13746.
- Rondon, A., Sanhueza, E., 1989. High HONO atmospheric concentrations during vegetation burning in
 the tropical savannah. Tellus Ser. B-Chem. Phys. Meteorol. 41, 474-477.
- 1466 Ryan, R.G., Rhodes, S., Tully, M., Wilson, S., Jones, N., Friess, U., Schofield, R., 2018. Daytime
 1467 HONO, NO₂ and aerosol distributions from MAX-DOAS observations in Melbourne.
 1468 Atmospheric Chemistry and Physics 18, 13969-13985.
- Saliba, N.A., Mochida, M., Finlayson-Pitts, B.J., 2000. Laboratory studies of sources of HONO in polluted urban atmospheres. Geophysical Research Letters 27, 3229-3232.
- Sakamaki, F., Hatakeyama, S., Akimoto, H., 1983. Formation of Nitrous-Acid and Nitric-Oxide in the
 Heterogeneous Dark Reaction of Nitrogen-Dioxide and Water-Vapor in a Smog Chamber.
 International Journal of Chemical Kinetics 15, 1013-1029.
- Sarwar, G., Roselle, S.J., Mathur, R., Appel, W., Dennis, R.L., Vogel, B., 2008. A comparison of
 CMAQ HONO predictions with observations from the northeast oxidant and particle study.
 Atmospheric Environment 42, 5760-5770.
- Selin, N.E., Wu, S., Nam, K.M., Reilly, J.M., Paltsev, S., Prinn, R.G., Webster, M.D., 2009. Global
 health and economic impacts of future ozone pollution. Environmental Research Letters 4,
 044014.
- Shi, Q., Tao, Y., Krechmer, J.E., Heald, C.L., Murphy, J.G., Kroll, J.H., Ye, Q., 2021. Laboratory
 Investigation of Renoxification from the Photolysis of Inorganic Particulate Nitrate.
 Environmental science & technology, <u>55, 854–861</u>,
- Shi, X., Ge, Y., Zheng, J., Ma, Y., Ren, X., Zhang, Y., 2020. Budget of nitrous acid and its impacts on
 atmospheric oxidative capacity at an urban site in the central Yangtze River Delta region of China.
 Atmospheric Environment 238, 117725.
- Sillman, S., 1995. The use of NO_y, H₂O₂, and HNO₃ as indicators for ozone-NO_x-hydrocarbon
 sensitivity in urban locations. Journal of Geophysical Research: Atmospheres 100, 14175-14188.
- Slater, E.J., Whalley, L.K., Woodward-Massey, R., Ye, C.X., Lee, J.D., Squires, F., Hopkins, J.R.,
 Dunmore, R.E., Shaw, M., Hamilton, J.F., Lewis, A.C., Crilley, L.R., Kramer, L., Bloss, W., Vu, T.,
 Sun, Y.L., Xu, W.Q., Yue, S.Y., Ren, L.J., Acton, W.J.F., Hewitt, C.N., Wang, X.M., Fu, P.Q.,
 Heard, D.E., 2020. Elevated levels of OH observed in haze events during wintertime in central
 Beijing. Atmospheric Chemistry and Physics 20, 14847-14871.
- Sorgel, M., Trebs, I., Serafimovich, A., Moravek, A., Held, A., Zetzsch, C., 2011. Simultaneous HONO
 measurements in and above a forest canopy: influence of turbulent exchange on mixing ratio
 differences. Atmospheric Chemistry and Physics 11, 841-855.
- Stuhl, F., Niki, H., 1972. Flash Photochemical Study of the Reaction OH+NO+M Using Resonance
 Fluorescent Detection of OH. The Journal of Chemical Physics 57, 3677-3679.
- Tan, Z.F., Rohrer, F., Lu, K.D., Ma, X.F., Bohn, B., Broch, S., Dong, H.B., Fuchs, H., Gkatzelis, G.I.,
 Hofzumahaus, A., Holland, F., Li, X., Liu, Y., Liu, Y.H., Novelli, A., Shao, M., Wang, H.C., Wu,
- 1500 Y.S., Zeng, L.M., Hu, M., Kiendler-Scharr, A., Wahner, A., Zhang, Y.H., 2018. Wintertime

Formatted: Subscript

Deleted:

1502photochemistry in Beijing: observations of ROx radical concentrations in the North China Plain1503during the BEST-ONE campaign. Atmospheric Chemistry and Physics 18, 12391-12411.

- Tang, M.J., Huang, X., Lu, K.D., Ge, M.F., Li, Y.J., Cheng, P., Zhu, T., Ding, A.J., Zhang, Y.H.,
 Gligorovski, S., Song, W., Ding, X., Bi, X.H., Wang, X.M., 2017. Heterogeneous reactions of
 mineral dust aerosol: implications for tropospheric oxidation capacity. Atmospheric Chemistry and
 Physics 17, 11727-11777.
- Tang, Y., An, J., Wang, F., Li, Y., Qu, Y., Chen, Y., Lin, J., 2015. Impacts of an unknown daytime
 HONO source on the mixing ratio and budget of HONO, and hydroxyl, hydroperoxyl, and organic
 peroxy radicals, in the coastal regions of China. Atmospheric Chemistry and Physics 15,
 9381-9398.
- Theys, N., Volkamer, R., Mueller, J.F., Zarzana, K.J., Kille, N., Clarisse, L., De Smedt, I., Lerot, C.,
 Finkenzeller, H., Hendrick, F., Koenig, T.K., Lee, C.F., Knote, C., Yu, H., Van Roozendael, M.,
 2020. Global nitrous acid emissions and levels of regional oxidants enhanced by wildfires. Nature
 Geoscience 13, 681-686.
- Tie, X., Long, X., Li, G., Zhao, S., Cao, J., Xu, J., 2019. Ozone enhancement due to the
 photodissociation of nitrous acid in eastern China. Atmospheric Chemistry and Physics 19,
 11267-11278.
- 1519 VandenBoer, T.C., Brown, S.S., Murphy, J.G., Keene, W.C., Young, C.J., Pszenny, A.A.P., Kim, S.,
 1520 Warneke, C., de Gouw, J.A., Maben, J.R., Wagner, N.L., Riedel, T.P., Thornton, J.A., Wolfe, D.E.,
 1521 Dube, W.P., Ozturk, F., Brock, C.A., Grossberg, N., Lefer, B., Lerner, B., Middlebrook, A.M.,
 1522 Roberts, J.M., 2013. Understanding the role of the ground surface in HONO vertical structure:
 1523 High resolution vertical profiles during NACHTT-11. J Geophys Res-Atmos 118, 10155-10171.
- Villena, G., Kleffmann, J., Kurtenbach, R., Wiesen, P., Lissi, E., Rubio, M.A., Croxatto, G.,
 Rappenglück, B., 2011. Vertical gradients of HONO, NO_x and O₃ in Santiago de Chile.
 Atmospheric Environment 45, 3867-3873.
- Wang, F., An, J.L., Li, Y., Tang, Y.J., Lin, J., Qu, Y., Chen, Y., Zhang, B., Zhai, J., 2014. Impacts of
 uncertainty in AVOC emissions on the summer RO_x budget and ozone production rate in the three
 most rapidly-developing economic growth regions of China. Advances in Atmospheric Sciences
 31, 1331-1342.
- Wang, X., Zhang, Y., Hu, Y., Zhou, W., Lu, K., Zhong, L., Zeng, L., Shao, M., Hu, M., Russell, A.G.,
 2010. Process analysis and sensitivity study of regional ozone formation over the Pearl River
 Delta, China, during the PRIDE-PRD2004 campaign using the Community Multiscale Air Quality
 modeling system. Atmospheric Chemistry and Physics 10, 4423-4437.
- Wang, Y., Apituley, A., Bais, A., Beirle, S., Benavent, N., Borovski, A., Bruchkouski, I., Chan, K.L., 1535 Donner, S., Drosoglou, T., Finkenzeller, H., Friedrich, M.M., Friess, U., Garcia-Nieto, D., 1536 1537 Gomez-Martin, L., Hendrick, F., Hilboll, A., Jin, J.L., Johnston, P., Koenig, T.K., Kreher, K., Kumar, V., Kyuberis, A., Lampel, J., Liu, C., Liu, H.R., Ma, J.Z., Polyansky, O.L., Postylyakov, 1538 1539 O., Querel, R., Saiz-Lopez, A., Schmitt, S., Tian, X., Tirpitz, J.L., Van Roozendael, M., Volkamer, 1540 R., Wang, Z.R., Xie, P.H., Xing, C.Z., Xu, J., Yela, M., Zhang, C.X., Wagner, T., 2020. 1541 Inter-comparison of MAX-DOAS measurements of tropospheric HONO slant column densities and vertical profiles during the CINDI-2 campaign. Atmospheric Measurement Techniques 13, 1542 1543 5087-5116.
- 1544 Wang, Y., Dörner, S., Donner, S., Böhnke, S., De Smedt, I., Dickerson, R.R., Dong, Z., He, H., Li, Z.,
 1545 Li, Z., Li, D., Liu, D., Ren, X., Theys, N., Wang, Y., Wang, Y., Wang, Z., Xu, H., Xu, J., Wagner,

- 1546T., 2019. Vertical profiles of NO2, SO2, HONO, HCHO, CHOCHO and aerosols derived from1547MAX-DOAS measurements at a rural site in the central western North China Plain and their1548relation to emission sources and effects of regional transport. Atmospheric Chemistry and Physics
- Wilkinson, S., Mills, G., Illidge, R., Davies, W.J., 2012. How is ozone pollution reducing our food
 supply? J Exp Bot 63, 527-536.

19. 5417-5449.

- Wong, K.W., Oh, H.J., Lefer, B.L., Rappengluck, B., Stutz, J., 2011. Vertical profiles of nitrous acid in
 the nocturnal urban atmosphere of Houston, TX. Atmospheric Chemistry and Physics 11,
 3595-3609.
- Wong, K.W., Tsai, C., Lefer, B., Haman, C., Grossberg, N., Brune, W.H., Ren, X., Luke, W., Stutz, J.,
 2012. Daytime HONO vertical gradients during SHARP 2009 in Houston, TX. Atmospheric
 Chemistry and Physics 12, 635-652.
- Wu, D., Horn, M.A., Behrendt, T., Muller, S., Li, J., Cole, J.A., Xie, B., Ju, X., Li, G., Ermel, M.,
 Oswald, R., Frohlich-Nowoisky, J., Hoor, P., Hu, C., Liu, M., Andreae, M.O., Poschl, U., Cheng,
 Y., Su, H., Trebs, I., Weber, B., Sorgel, M., 2019. Soil HONO emissions at high moisture content
 are driven by microbial nitrate reduction to nitrite: tackling the HONO puzzle. ISME J 13,
 1688-1699.
- Xing, C., Liu, C., Hu, Q., Fu, Q., Wang, S., Lin, H., Zhu, Y., Wang, S., Wang, W., Javed, Z., 2021.
 Vertical distributions of wintertime atmospheric nitrogenous compounds and the corresponding
 OH radicals production in Leshan, southwest China. Journal of Environmental Sciences 105,
 44-55.
- 1567 Xing, L., Wu, J.R., Elser, M., Tong, S.R., Liu, S.X., Li, X., Liu, L., Cao, J.J., Zhou, J.M., El-Haddad, I.,
 1568 Huang, R.J., Ge, M.F., Tie, X.X., Prevot, A.S.H., Li, G.H., 2019. Wintertime secondary organic
 1569 aerosol formation in Beijing-Tianjin-Hebei (BTH): contributions of HONO sources and
 1570 heterogeneous reactions. Atmospheric Chemistry and Physics 19, 2343-2359.
- 1571 Xu, J., Zhang, Y.H., Wang, W., 2006. Numerical study on the impacts of heterogeneous reactions on
 1572 ozone formation in the Beijing urban area. Advances in Atmospheric Sciences 23, 605-614.
- 1573Xu, W., Yang, W., Han, C., Yang, H., Xue, X., 2021. Significant influences of TiO2 crystal structures on1574NO2 and HONO emissions from the nitrates photolysis. Journal of Environmental Sciences 102,1575198-206.
- 1576 Xue, C., Zhang, C., Ye, C., Liu, P., Catoire, V., Krysztofiak, G., Chen, H., Ren, Y., Zhao, X., Wang, J.,
 1577 Zhang, F., Zhang, C., Zhang, J., An, J., Wang, T., Chen, J., Kleffmann, J., Mellouki, A., Mu, Y.,
 1578 2020. HONO Budget and Its Role in Nitrate Formation in the Rural North China Plain.
 1579 Environmental Science & Technology 54, 11048-11057.
- Xue, C.Y., Ye, C., Zhang, C.L., Catoire, V., Liu, P.F., Gu, R.R., Zhang, J.W., Ma, Z.B., Zhao, X.X.,
 Zhang, W.Q., Ren, Y.G., Krysztofiak, G., Tong, S.R., Xue, L.K., An, J.L., Ge, M.F., Mellouki, A.,
 Mu, Y.J., 2021. Evidence for Strong HONO Emission from Fertilized Agricultural Fields and its
 Remarkable Impact on Regional O₃ Pollution in the Summer North China Plain. ACS Earth Space
 Chem. 5, 340-347.
- Yang, K., Kong, L., Tong, S., Shen, J., Chen, L., Jin, S., Wang, C., Sha, F., Wang, L., 2021a. Double
 High-Level Ozone and PM_{2.5} Co-Pollution Episodes in Shanghai, China: Pollution Characteristics
 and Significant Role of Daytime HONO. Atmosphere 12, 557.
- Yang, W., Han, C., Yang, H., Xue, X., 2018. Significant HONO formation by the photolysis of nitrates
 in the presence of humic acids. Environ Pollut 243, 679-686.

- Yang, W., Han, C., Zhang, T., Tang, N., Yang, H., Xue, X., 2021b. Heterogeneous photochemical
 uptake of NO₂ on the soil surface as an important ground-level HONO source. Environ. Pollut.
 271, 116289.
- 1593Ye, C., Gao, H., Zhang, N., Zhou, X., 2016a. Photolysis of Nitric Acid and Nitrate on Natural and1594Artificial Surfaces. Environmental Science & Technology 50, 3530-3536.
- Ye, C., Zhang, N., Gao, H., Zhou, X., 2017. Photolysis of Particulate Nitrate as a Source of HONO and
 NO_x. Environmental Science & Technology 51, 6849-6856.
- Ye, C., Zhou, X., Pu, D., Stutz, J., Festa, J., Spolaor, M., Cantrell, C., Mauldin, R.L., Weinheimer, A.,
 Haggerty, J., 2015. Comment on "Missing gas-phase source of HONO inferred from Zeppelin measurements in the troposphere". Science 348, 1326-d.
- Ye, C., Zhou, X., Pu, D., Stutz, J., Festa, J., Spolaor, M., Tsai, C., Cantrell, C., Mauldin, R.L., 3rd,
 Campos, T., Weinheimer, A., Hornbrook, R.S., Apel, E.C., Guenther, A., Kaser, L., Yuan, B., Karl,
 T., Haggerty, J., Hall, S., Ullmann, K., Smith, J.N., Ortega, J., Knote, C., 2016b. Rapid cycling of
 reactive nitrogen in the marine boundary layer. Nature 532, 489-491.
- Zaveri, R.A., Easter, R.C., Fast, J.D., Peters, L.K., 2008. Model for Simulating Aerosol Interactions
 and Chemistry (MOSAIC). J Geophys Res-Atmos 113. doi:10.1029/2007JD008782.
- 1606 Zhang, H.L., Li, J.Y., Ying, Q., Yu, J.Z., Wu, D., Cheng, Y., He, K.B., Jiang, J.K., 2012. Source
 1607 apportionment of PM_{2.5} nitrate and sulfate in China using a source-oriented chemical transport
 1608 model. Atmospheric Environment 62, 228-242.
- 1609 Zhang, J., An, J., Qu, Y., Liu, X., Chen, Y., 2019a. Impacts of potential HONO sources on the
 1610 concentrations of oxidants and secondary organic aerosols in the Beijing-Tianjin-Hebei region of
 1611 China. The Science of the total environment 647, 836-852.
- 1612 Zhang, J., Chen, J., Xue, C., Chen, H., Zhang, Q., Liu, X., Mu, Y., Guo, Y., Wang, D., Chen, Y., Li, J.,
 1613 Qu, Y., An, J., 2019b. Impacts of six potential HONO sources on HO_x budgets and SOA formation
 1614 during a wintertime heavy haze period in the North China Plain. The Science of the total
 1615 environment 681, 110-123.
- 1616 Zhang, J., Guo, Y., Qu, Y., Chen, Y., Yu, R., Xue, C., Yang, R., Zhang, Q., Liu, X., Mu, Y., Wang, J., Ye,
 1617 C., Zhao, H., Sun, Q., Wang, Z., An, J., 2020a. Effect of potential HONO sources on peroxyacetyl
 1618 nitrate (PAN) formation in eastern China in winter. Journal of Environmental Sciences 94, 81-87.
- Zhang, J., Ran, H., Guo, Y., Xue, C., Liu, X., Qu, Y., Sun, Y., Zhang, Q., Mu, Y., Chen, Y., Wang, J., An,
 J., 2022. High crop yield losses induced by potential HONO sources A modelling study in the
 North China Plain. Science of The Total Environment 803, 149929.
- 1622 Zhang, L., Wang, T., Zhang, Q., Zheng, J.Y., Xu, Z., Lv, M.Y., 2016. Potential sources of nitrous acid
 1623 (HONO) and their impacts on ozone: A WRF-Chem study in a polluted subtropical region. J
 1624 Geophys Res-Atmos 121, 3645-3662.
- 1625 Zhang, N., Zhou, X.L., Shepson, P.B., Gao, H.L., Alaghmand, M., Stirm, B., 2009. Aircraft
 1626 measurement of HONO vertical profiles over a forested region. Geophysical Research Letters 36.
 1627 doi:10.1029/2009GL038999.
- 1628 Zhang, Q., Geng, G., 2019. Impact of clean air action on PM_{2.5} pollution in China. Science China Earth
 1629 Sciences 62, 1845-1846.
- 1630 Zhang, S., Sarwar, G., Xing, J., Chu, B., Xue, C., Sarav, A., Ding, D., Zheng, H., Mu, Y., Duan, F., Ma,
 1631 T., He, H., 2021. Improving the representation of HONO chemistry in CMAQ and examining its
 1632 impact on haze over China. Atmospheric Chemistry and Physics 21, 15809-15826.
- 1633 Zhang, W., Tong, S., Ge, M., An, J., Shi, Z., Hou, S., Xia, K., Qu, Y., Zhang, H., Chu, B., Sun, Y., He,

- 1634 H., 2019c. Variations and sources of nitrous acid (HONO) during a severe pollution episode in Beijing in winter 2016. The Science of the total environment 648, 253-262. 1635
- 1636 Zhang, W.Q., Tong, S.R., Jia, C.H., Wang, L.L., Liu, B.X., Tang, G.Q., Ji, D.S., Hu, B., Liu, Z.R., Li, 1637 W.R., Wang, Z., Liu, Y., Wang, Y.S., Ge, M.F., 2020b. Different HONO Sources for Three Layers 1638 at the Urban Area of Beijing. Environmental science & technology 54, 12870-12880.
- 1639 Zhao, H., Zhang, Y., Qi, Q., Zhang, H., 2021. Evaluating the Impacts of Ground-Level O3 on Crops in Formatted: Subscript 1640 China. Current Pollution Reports 7, 565-578.
- 1641 Zheng, H., Song, S., Sarwar, G., Gen, M., Wang, S., Ding, D., Chang, X., Zhang, S., Xing, J., Sun, Y., 1642 Ji, D., Chan, C.K., Gao, J., McElroy, M.B., 2020. Contribution of Particulate Nitrate Photolysis to 1643 Heterogeneous Sulfate Formation for Winter Haze in China. Environmental Science & 1644 Technology Letters 7, 632-638.
- Zhou, X., Gao, H., He, Y., Huang, G., Bertman, S.B., Civerolo, K., Schwab, J., 2003. Nitric acid 1645 1646 photolysis on surfaces in low-NOx environments: Significant atmospheric implications. 1647 Geophysical Research Letters 30. doi:10.1029/2003GL018620.
- Zhu, C., Xiang, B., Zhu, L., Cole, R., 2008. Determination of absorption cross sections of 1648 surface-adsorbed HNO3 in the 290-330 nm region by Brewster angle cavity ring-down 1649 spectroscopy. Chemical Physics Letters 458, 373-377. 1650
- 1651 Zhu, Y.W., Liu, W.Q., Fang, J., Xie, P.H., Dou, K., Qin, M., Si, F.Q., 2011. Monitoring and Analysis of 1652 Vertical Profile of Atmospheric HONO, NO2 in Boundary Layer of Beijing. Spectroscopy and 1653 Spectral Analysis 31, 1078-1082.
- 1654