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 22 

Abstract:  23 

Co-occurrences of high concentrations of PM2.5 and ozone (O3) have been 24 

frequently observed in haze aggravating processes in the North China Plain (NCP) 25 

over the past few years. Higher O3 concentrations in hazy days were supposed to be 26 

related to nitrous acid (HONO), but the key sources of HONO enhancing O3 during 27 

haze aggravating processes remain unclear. We added six potential HONO sources, 28 

i.e., four ground-based (traffic, soil, and indoor emissions, and the NO2 heterogeneous 29 

reaction on ground surface (Hetground)) sources, and two aerosol-related (the NO2 30 

heterogeneous reaction on aerosol surfaces (Hetaerosol) and nitrate photolysis 31 

(Photnitrate)) sources into the WRF-Chem model and designed 23 simulation scenarios 32 
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to explore the unclear key sources. The results indicate that ground-based HONO 59 

sources producing HONO enhancements showed a rapid decrease with height, while 60 

the NO+OH reaction and aerosol-related HONO sources decreased slowly with height. 61 

Photnitrate contributions to HONO concentrations enhanced with aggravated pollution 62 

levels, the enhanced HONO due to Photnitrate in hazy days was about ten times larger 63 

than in clean days and Photnitrate dominated daytime HONO sources (~30–70% when 64 

the ratio of the photolysis frequency of nitrate (Jnitrate) to gas nitric acid (JHNO3) equals 65 

30) at higher layers (>800 m). Compared with that in clean days, the Photnitrate 66 

contribution to the enhanced daily maximum 8-h averaged (DMA8) O3 was increased 67 

by over one magnitude during the haze aggravating process. Photnitrate contributed 68 

only ~5% of the surface HONO in daytime with a Jnitrate/JHNO3 ratio of 30 but 69 

contributed ~30–50% of the enhanced O3 near the surface in NCP in hazy days. 70 

Surface O3 was dominated by volatile organic compounds-sensitive chemistry, while 71 

O3 at higher altitude (>800m) was dominated by NOx-sensitive chemistry. Photnitrate 72 

had a limited impact on nitrate concentrations (<15%) even with a Jnitrate/JHNO3 ratio of 73 

120. The above results suggest the potential but significant impact of Photnitrate on O3 74 

formation, and that more comprehensive studies on Photnitrate in the atmosphere are 75 

still needed. 76 

 77 

1. Introduction 78 

Nitrous acid (HONO) is an important source of the hydroxyl radical (OH) through 79 
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its photolysis (R1), and contributes ~20–80% of the primary OH production (Alicke 84 

et al., 2002; Hendrick et al., 2014; Kim et al., 2014). 85 

𝐻𝑂𝑁𝑂 + ℎ𝑣 →  𝑁𝑂 + 𝑂𝐻   (𝑅1) 86 

Although it has passed forty years since the first detection of HONO in the 87 

atmosphere (Perner and Platt, 1979), the sources of HONO (especially daytime) and 88 

the dynamic parameters of HONO formation mechanisms are still not well understood 89 

(Ge et al., 2021). The current air quality models with the default gas-phase reaction 90 

(the reverse reaction of R1) always severely underestimate HONO observations, 91 

resulting in low atmospheric oxidation capacity and underestimation of secondary 92 

pollutants like ozone (O3) (Li et al., 2010, 2011; Sarwar et al., 2008; Zhang et al., 93 

2016, 2019a). 94 

HONO sources can be generally classified into three categories, i.e., direct 95 

emissions, homogeneous and heterogeneous reactions. Direction emissions are mainly 96 

from traffic (Kramer et al., 2020; Kurtenbach et al., 2001; Liao et al., 2021), soil 97 

(Kubota and Asami, 1985; Oswald et al., 2013; Wu et al., 2019; Xue et al., 2021), 98 

biomass burning (Cui et al., 2021; Rondon and Sanhueza, 1989; Theys et al., 2020) 99 

and indoor combustion processes (Klosterkother et al., 2021; Liu et al., 2019; Pitts et 100 

al., 1985). The reaction of nitric oxide (NO) with OH (Pagsberg et al., 1997; Stuhl and 101 

Niki, 1972) is usually thought as the dominant homogeneous reaction and is important 102 

during daytime but could be neglected at night due to low OH concentrations, other 103 

minor homogeneous HONO sources including nucleation of NO2, H2O, and NH3 104 

(Zhang and Tao, 2010), via the photolysis of ortho-nitrophenols (Bejan et al., 2006; 105 
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Chen et al., 2021; Lee et al., 2016), via the electronically excited NO2 and H2O 108 

(Crowley and Carl, 1997; Dillon and Crowley, 2018; Li et al., 2008) and via 109 

HO2·H2O+NO2 reaction (Li et al., 2015; Li et al., 2014; Ye et al., 2015). The 110 

heterogeneous reactions mainly include nitrogen dioxide (NO2) hydrolysis and 111 

reduction reactions on various humid surfaces (Finlayson-Pitts et al., 2003; Ge et al., 112 

2019; Gómez Alvarez et al., 2014; Ma et al., 2013; Marion et al., 2021; Sakamaki et 113 

al., 1983; Tang et al., 2017; Yang et al., 2021b) and nitrate photolysis (Photnitrate) 114 

(Romer et al., 2018; Ye et al., 2016a, b; Zhou et al., 2003), and are usually thought as 115 

the main contributors to HONO concentrations in the atmosphere. 116 

Among those potential HONO sources, the photolysis of nitrate to produce HONO 117 

in the atmosphere has received extensive attention over the past several years, and the 118 

Photnitrate frequency (Jnitrate) is still argued (Gen et al.., 2022). In the laboratory studies, 119 

some researchers (Bao et al., 2018; Ye et al., 2016a, 2017) showed that Photnitrate was 120 

an important HONO source, the measured Jnitrate was 1–3 orders larger than the gas 121 

nitric acid (HNO3) photolysis frequency (JHNO3) and could reach up to 10-4 s-1, and a 122 

number of substances including humic acid (Yang et al., 2018), sulfate (Bao et al., 123 

2020) and TiO2 (Xu et al., 2021) might enhance the reaction significantly; while Shi et 124 

al. (2021) found that the Jnitrate/JHNO3 ratio was <10 when using suspended submicron 125 

particulate sodium and ammonium nitrate rather than PM2.5 samples. In the field 126 

studies combining with model simulations, Kasibhatla et al. (2018) compared NOx 127 

observations in Cape Verde Atmospheric Observatory with GEOS-Chem (Goddard 128 

Earth Observing System-Chemistry) model simulations and reported a Jnitrate/JHNO3 129 
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ratio of 25–50, Romer et al. (2018) reported a Jnitrate/JHNO3 ratio of < 30 based on 134 

observations of NOx (= NO + NO2) and HNO3 over the Yellow Sea and a box model 135 

simulation, while larger Jnitrate/JHNO3 ratios (e.g., 300) were inconsistent with the 136 

observed NOx to HNO3 ratios. Adopting a Jnitrate/JHNO3 ratio of ~120 could greatly 137 

improve daytime surface HONO simulations (contributed ~30–40% of noontime 138 

HONO) by using the Community Multiscale Air Quality model (CMAQ) in the Pearl 139 

River Delta (Fu et al., 2019) or a box model in the Yangtze River Delta (Shi et al., 140 

2020), while a Jnitrate/JHNO3 ratio of 30 produced negligible HONO in clean periods 141 

(~2%) and slightly higher HONO in heavy haze periods (~8%) in the North China 142 

Plain (NCP) by using a box model (Xue et al., 2020) and ~1% by using CMAQ in 143 

urban Beijing (Zhang et al., 2021). Recently, Zheng et al. (2020) evaluated the effect 144 

of three Jnitrate/JHNO3 ratios (1, 10 and 100) on heterogeneous sulfate formation by 145 

using CMAQ and large uncertainties of simulated sulfate concentrations were 146 

reported. The mostly adopted Jnitrate/JHNO3 ratios were 1–30 or 100–120 with large 147 

uncertainties, so more efforts are needed to better understand the Photnitrate impact on 148 

atmospheric oxidation capacity and concentrations of HONO and other secondary 149 

pollutants. 150 

A number of potential HONO sources (e.g., direct emissions, NO2 heterogeneous 151 

reactions and Photnitrate) have been coupled into several air quality models (An et al., 152 

2013; Fu et al., 2019; Guo et al., 2020; Li et al., 2010, 2011; Sarwar et al., 2008; Tang 153 

et al., 2015; Xu et al., 2006; Zhang et al., 2019a, 2019b, 2020a, 2021, 2022) to 154 

improve HONO simulations. The improved HONO sources can produce more OH, 155 
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which is favorable for the formation of O3 (Fu et al., 2019; Guo et al., 2020; Li et al., 164 

2010; Xing et al., 2019; Zhang et al., 2016, 2019a, 2022). O3 can directly damage 165 

plants and threaten human health (Avnery et al., 2011a, b; Feng et al., 2015, 2019, 166 

2022; Mills et al., 2007, 2018; Richards et al., 1958; Selin et al., 2009; Wilkinson et 167 

al., 2012; Zhao et al., 2021), an increasing trend of O3 concentrations in China has 168 

been widely reported in recent years (Chen et al., 2020a; Li et al., 2020; Lu et al., 169 

2020; Ma et al., 2016; Maji and Namdeo, 2021), and made O3 pollution be a severe 170 

concern. A co-occurrence of high PM2.5 and O3 concentrations has been frequently 171 

found in China over the past few years, researchers speculated the significant role of 172 

HONO in producing O3 enhancements (Feng et al., 2021; Fu et al., 2019; Tie et al., 173 

2019; Yang et al., 2021a). Nevertheless, the current knowledge on the HONO 174 

difference in O3 formation during clean and hazy days is still unclear, especially the 175 

relative contribution of each potential HONO source to O3 enhancements during haze 176 

aggravating processes with a co-occurrence of high PM2.5 and O3 concentrations. 177 

In this study, time series of pollutants including HONO, O3, and nitrate were 178 

collected in NCP in Oct.11–31 of 2018, in which high concentrations of PM2.5 179 

accompanying by high O3 concentrations were found at least twice in haze events. 180 

The specific role of each of potential HONO sources in O3 formation will be explored 181 

during these haze events by coupling these potential HONO sources into the Weather 182 

Research and Forecasting model with Chemistry (WRF-Chem). The relative 183 

contribution of each potential HONO source to surface-averaged and 184 

vertically-averaged concentrations of HONO and O3 will be quantified and the 185 
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uncertainty in key potential HONO sources (e.g., Jnitrate) will be discussed, in order to 195 

find the key HONO sources resulting in O3 enhancements in NCP in different 196 

pollution levels (especially during haze aggravating processes). 197 

2. Data and methods 198 

2.1 Observed data 199 

The field observation was carried out during October 11–31, 2018, and the 200 

observation site was located in the west campus of Beijing University of Chemical 201 

Technology (BUCT, 116°18’37’’ E, 39°56’56’’ N) in Beijing. BUCT is an urban site 202 

close to the third ring road of Beijing, with large human activities, including vehicle 203 

emissions. Instruments were set on the 5th floor of the main teaching building. HONO 204 

was measured with a home-made water-based long-path absorption photometer (Chen 205 

et al., 2020b). A dual-channel absorption system was deployed to subtract the 206 

potential interferences, e.g., NO2 hydrolysis. A set of on-line commercial analyzers 207 

(Thermo 48i, 42i, 49i, 43i) was used for measurements of CO, NOx, O3, and SO2. To 208 

be specific, the 42i used molybdenum NO2-to-NO converter, there would be a NO2 209 

overestimation for the conversion of HONO, HNO3, or other NOy. Considering the 210 

relatively lower concentration compared with NO2, the impact would be minor. The 211 

chemical composition of PM2.5 was analyzed with a Time-of-Flight Aerosol Chemical 212 

Speciation Monitor (ToF-ACSM, Aerodyne), ToF-ACSM was developed via Fröhlich 213 

et al. (2013) for Non-refractory PM2.5 measurement. The detailed usage could be 214 

found in Liu et al. (2020), where ionization efficiency calibration of nitrate was 215 
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performed using 300 nm dry NH4NO3 every month during the observation. An online 217 

Single Photon Ionization Time-of-Flight Mass Spectrometer (SPI-ToF-MS, Hexin) 218 

was used for the detection of a large variety of volatile organic compounds (VOCs) 219 

(Gao et al., 2013). Surface observations of O3, NO2, PM2.5 and PM10 at 95 sites in 220 

NCP were obtained from https://quotsoft.net/air/, issued by the China Ministry of 221 

Ecology and Environment; surface meteorological observations at 284 sites in NCP 222 

were taken from the National Climatic Data Center, China Meteorological 223 

Administration (Fig.1). 224 

The vertical HONO observations were not available during the Oct.11–31 of 2018 225 

at the BUCT site, we used the observed vertical HONO concentrations from Meng et 226 

al. (2020) in urban Beijing in December of 2016 to evaluate our simulation of vertical 227 

HONO concentrations, which were also used by Zhang et al. (2021) in their CMAQ 228 

evaluation. 229 

 230 

2.2 Model description  231 

The improved WRF-Chem (version 3.7.1), which contained six potential HONO 232 

sources, i.e., traffic (Etraffic), soil (Esoil), and indoor (Eindoor) emissions, Photnitrate in the 233 

atmosphere, and NO2 heterogeneous reactions on aerosol (Hetaerosol) and ground 234 

(Hetground) surfaces (Zhang et al., 2019a), was used in this study. Photnitrate was newly 235 

added in WRF-Chem (R2) following the work of Fu et al. (2019), Ye et al. (2017), 236 

and Zhou et al. (2003): 237 

𝑝𝑁𝑂3 + ℎ𝑣 → 0.67𝐻𝑂𝑁𝑂 + 0.33𝑁𝑂2   (R2) 238 
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For Hetaerosol and Hetground, laboratory studies suggest that these heterogeneous 245 

reactions of NO2 to HONO are first order in NO2 (Aumont et al., 2003; 246 

Finlayson-Pitts et al., 2003; Saliba et al., 2000): 247 

𝑁𝑂2 → 𝐻𝑂𝑁𝑂    𝑘𝑎   (R3) 248 

𝑁𝑂2 → 𝐻𝑂𝑁𝑂    𝑘𝑔   (R4) 249 

The first-order rate constants for aerosol (𝑘𝑎) and ground (𝑘𝑔) surface reactions 250 

are calculated below: 251 

𝑘𝑎 =
1

4
× 𝑣𝑁𝑂2

× (
𝑆

𝑉
) × 𝛾   (E1) 252 

𝑘𝑔 =
𝑓×𝑣𝑑

𝐻
               (E2) 253 

where 𝑣𝑁𝑂2
 is the mean molecular speed of NO2, 

𝑆

𝑉
 is the surface to volume ratio for 254 

aerosols, 𝛾 is the reactive uptake coefficient of aerosols, 𝑓 is the proportion of 255 

deposited NO2 reaching the surface in participating HONO formation, 𝑣𝑑 is the dry 256 

deposition velocity of NO2, and 𝐻 is the first model layer height above the ground 257 

(~35 m). It should be noted that not 100% (50% is commonly accepted) of the 258 

participated NO2 could be converted to HONO in R3 and R4, so 𝑘𝑎 and 𝑘𝑔 were 259 

multiplied by 0.5 in the final calculation of HONO heterogeneous formation via NO2. 260 

The two factors 𝛾 and 𝑓 were improved from previous studies (Li et al., 2010; Liu 261 

et al., 2014; Zhang et al., 2019a) and calculated by: 262 

𝛾 = 5 × 10−6 × (1 +
𝑆𝑅

α
)   (E3) 263 

𝑓 = 0.08 × (1 +
𝑆𝑅

α
)       (E4) 264 

where SR denotes solar radiation (W m-2), α is an adjusted parameter and set as 100 265 

(W m-2), thus γ and f became continuous functions during the whole day (γ and f 266 
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enhanced by ten times and reached 5×10-5 and 0.8 when SR reached 900 W m-2 at 283 

noontime, respectively).  284 

The physical and chemical schemes used in this study are given in Table 1. Two 285 

domains were adopted, domain one contains 82×64 grid cells with a horizontal 286 

resolution of 81 km, domain two contains 51×51 grid cells with a horizontal 287 

resolution of 27 km (Fig.1), both with 17 vertical layers encompassing from the 288 

surface to 100 hPa. The observational sites are shown in the right panel of Fig.1, 289 

including one HONO observation site (the orange dot in urban Beijing), 95 290 

observation sites of PM2.5, NO2 and O3 (pink dots) and 284 meteorological monitoring 291 

sites (black dots). 292 

 293 

Figure 1 Domains of WRF-Chem used in this study (left panel), and the locations of one HONO 294 

observation site (the orange dot in urban Beijing), 95 environmental monitoring (PM2.5, NO2 and 295 

O3) sites (deep pink dots), and 284 meteorological observation sites (black dots) in domain 2 (right 296 

panel). 297 

 298 

The anthropogenic emissions in East Asia in 2010 were taken from the MIX 299 
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emission inventory (Li et al., 2017) (http://www.meicmodel.org/), including both 302 

gaseous and aerosol species, i.e., SO2, NOx, CO, VOCs, NH3, PM10, PM2.5, BC, OC 303 

and CO2, and were provided monthly by five sectors (power, industry, residential, 304 

transportation, and agriculture) at a resolution of 0.25˚ × 0.25˚. VOC emissions were 305 

speciated into model-ready inputs according to the MOZART chemical mechanism to 306 

build the WRF-Chem emission files. The anthropogenic emissions in China were 307 

replaced by employing the MEIC 2016 (the Multi-resolution Emission Inventory for 308 

China) developed by Tsinghua University. The NH3 emissions in China were from 309 

Dong et al. (2010), biomass burning emissions were from Huang et al. (2012) and 310 

biogenic emissions were calculated using the Model of Emissions of Gases and 311 

Aerosols from Nature (MEGAN) (Guenther et al., 2012). Due to the sharp reduction 312 

of anthropogenic emissions in recent years, the default emission inventory was 313 

systematically overestimated in autumn of 2018, especially for SO2 and PM2.5 314 

concentrations. Based on the comparison of simulations and observations (the urban 315 

Beijing site plus other 95 pollutant monitoring sites in NCP), we cut off 80% of SO2 316 

emissions, 50% of NH3 emissions, 30% of toluene emissions, and 50% of PM2.5 and 317 

PM10 emissions. The cut-off emissions are largely close to the emission reductions in 318 

east China during 2013 to 2017 (Zhang and Geng, 2019). The revised emissions 319 

significantly improved regional PM2.5 simulations in NCP (Fig.S1), and the 320 

simulations of gases and PM2.5 in urban Beijing (Fig.S2). 321 

The National Centers for Environmental Prediction (NCEP) 1° × 1° final 322 

reanalysis data (FNL) (https://rda.ucar.edu/datasets/ds083.2/) were used in this study 323 

http://www.meicmodel.org/
https://rda/
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to obtain the meteorological initial and boundary conditions every 6 h. The global 324 

simulations of MOZART-4 (https://www.acom.ucar.edu/wrf-chem/mozart.shtml) 325 

were used as the chemical initial and boundary conditions (every 6 h). 326 

 327 

Table1 Physical and chemical options in WRF-Chem used in this study 328 

Options WRF-Chem 

Advection scheme  Runge-Kutta 3rd order 

Boundary layer scheme YSU 

Cloud microphysics Lin et al. (1983) 

Cumulus parameterization New Grell scheme 

Land-surface model Noah 

Long-wave radiation RRTM 

Short-wave radiation Goddard 

Surface layer  Revised MM5 Monin-Obukhov scheme 

Aerosol option MOSAIC (Zaveri et al., 2008) 

Chemistry option  Updated MOZART mechanism (Emmons et al., 2010) 

Photolysis scheme F-TUV 

 329 

Totally 23 simulation scenarios were performed in this study (Table 2), in which 330 

the base case only considered the default homogeneous reaction (OH + NO → 331 

HONO), case 6S contained six potential HONO sources while case A, B, C, D, E and 332 

F contained each of the six potential HONO sources, respectively. Other 15 cases 333 

(A_double, A_half, …, Nit_120, D_NO2 and D_HONO) were used to evaluate the 334 

uncertainties of the six potential HONO sources (Table 2). All of the cases were 335 

simulated with a spin-up of 7 days. Jnitrate and JHNO3 denote the photolysis frequency of 336 

nitrate and gas nitric acid in the atmosphere, respectively. The enhancement factor for 337 

F_double was 1.25 rather than 2.0 to avoid the production rate of HONO from NO2 338 

reaching the surface exceeding 100%. The 0.33NO2 in D_NO2 or 0.67HONO in 339 

D_HONO referred to the assumed Photnitrate products in R2. 340 
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 347 

Table 2. Simulation scenarios designed in this study. 348 
Case HONO sources 

Base Default (OH + NO → HONO) 

6S Default + Etraffic + Esoil + Eindoor +  

Photnitrate (Jnitrate/JHNO3 = 30) + Hetaerosol + Hetground 

A Default + Etraffic 

B Default + Esoil 
C Default + Eindoor 

D Default + Photnitrate (Jnitrate/JHNO3 = 30) 

E Default + Hetaerosol 

F Default + Hetground 

A_double Default + 2×Etraffic 

A_half Default + 0.5×Etraffic 

B_double Default + 2×Esoil 

B_half Default + 0.5×Esoil 

C_double Default + 2×Eindoor 

C_half Default + 0.5×Eindoor 

E_double Default + Hetaerosol (2×γ) 

E_half Default + Hetaerosol (0.5×γ) 

F_double Default + Hetground (1.25×f) 

F_half Default + Hetground (0.5×f) 

Nit_1 Default + Photnitrate (Jnitrate/JHNO3 =1) 

Nit_7 Default + Photnitrate (Jnitrate/JHNO3 = 7) 

Nit_120 Default + Photnitrate (Jnitrate/JHNO3 = 120) 

D_NO2 Only 0.33NO2 produced in Photnitrate for case D 

D_HONO Only 0.67HONO produced in Photnitrate for case D 

3.Results 349 

3.1 Comparison of simulations and observations 350 

3.1.1 Meteorological factors 351 

The statistical metrics of simulated meteorological parameters at 284 sites in NCP 352 

including air temperature (T), relative humidity (RH) and wind speed (WS) were 353 

comparable with the previous modelling results of other researchers (Table 3). The 354 

simulated wind direction (WD) bias within 45° accounted for ~56%, and the bias 355 

within 90° accounted for ~80%, suggesting that the simulated WD captured the main 356 

observed WD. 357 
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 360 

Table 3. Performance metrics (index of agreement (IOA), RMSE (root-mean-square error) 361 

and MB (mean bias)) of WRF-Chem simulated air temperature, relative humidity, wind speed and 362 

direction at 284 meteorological sites in the North China Plain during Oct. 11–31 of 2018. The 363 

definitions of the metrics used in this study are given in Text S1. 364 

 IOA RMSE MB Reference 

T (℃) 0.97 1.4 -1.1 This work 

 0.90 2.5 0.2 (Wang et al., 2014) 

 0.90 / -0.9 (Wang et al., 2010) 

 0.88 / 0.5 (Li et al., 2012) 

 / 3.1 0.8 (Zhang et al., 2012) 

RH (%) 0.90 9.0 -7.1 This work 

 0.78 16.3 -5.5 (Wang et al., 2014) 

 0.78 / -1.3 (Wang et al., 2010) 

 0.86 / -1.1 (Li et al., 2012) 

 / 17.4 -5.7 (Zhang et al., 2012) 

WS (m s-1) 0.48 1.4 1.3 This work 

 0.56 2.5 1.6 (Wang et al., 2014) 

 0.65 2.1 0.9 (Wang et al., 2010) 

 0.62 1.5 0.6 (Li et al., 2012) 

 / 2.2 1.1 (Zhang et al., 2012) 

     

WD Bias 0-45° 45-90° >90°  

Count 75701 21500 28075 135276(Total) 

Percentage 55.96% 23.29% 20.75%  

3.1.2 Pollutant concentrations at the BUCT site 365 

Time series of the observational data at the BUCT site are shown in Fig.2, the 366 

gray shaded periods stand for three haze aggravating processes, while the cyan shaded 367 

period denotes typical clean days, respectively. The hourly largest observations of O3 368 

(~50–75 ppb) and PM2.5 (~100–200 μg/m3) were both relatively higher in hazy days 369 

than in clean days, especially for the first two haze events (the O3 concentrations in 370 

the third haze event was relatively lower due to the higher NOx concentrations in the 371 

urban area). 372 

The observed PM2.5 and nitrate trends at the BUCT site were well simulated 373 
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(Fig.2a&b), and NO2 simulations generally agreed with the observations (Fig.2c). 375 

The promotion effect of the six potential HONO sources on the formation of 376 

secondary aerosols leads to an increase in concentrations of PM2.5 and nitrate for case 377 

6S, despite nitrate consumption through Photnitrate (Li et al., 2010; Qu et al., 2019; Fu 378 

et al., 2019; Zhang et al., 2019a, 2021), detailed nitrate variation caused by each of 379 

the six potential HONO sources in case 6S is presented in Fig.S3. Hourly and diurnal 380 

HONO simulations at the BUCT site (Fig.2d&3a) were significantly improved in the 381 

6S case (mean is 1.47 ppb) compared with the base case (mean is 0.05 ppb). The 382 

normalized mean bias (NMB) was remarkably reduced to -14.22% (6S) from -97.11% 383 

(Base), and the index of agreement (IOA) was improved significantly to 0.80 (6S) 384 

from 0.45 (Base) (Fig.2d). The underestimation of the simulated HONO (6S) on 385 

Oct.15 and Oct.22 was mainly caused by the earlier scavenging of pollutants at the 386 

BUCT site in the used model (Fig.2a&d). 387 

As for O3, noticeable improvements could be found at the BUCT site after 388 

considering the six potential HONO sources, especially in hazy days (Fig.2e&f). The 389 

mean bias (MB) was improved to -3.61 ppb (6S) from -7.09 ppb (Base), and the IOA 390 

was improved to 0.86 (6S) from 0.78 (Base) (Fig.2e). Specially, the 6S case 391 

significantly enhanced daytime hourly O3 by 15–35 ppb compared with the base case 392 

and the simulated O3 was very close to the observations in hazy days (Fig.2e). Larger 393 

daytime O3 enhancements were accompanied with higher PM2.5 concentrations during 394 

haze aggravating processes, while in clean days the daytime enhanced O3 due to the 395 

potential HONO sources was mostly < 5 ppb (Fig.2e&f). The diurnal O3 pattern 396 
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during the first two haze aggravating processes is presented in Fig.3b, significant 408 

improvements in daily maximum 8-h (10:00–17:59) averaged (DMA8) O3 (18.8 ppb) 409 

occurred at the BUCT site after considering the six potential HONO sources, and the 410 

NMB of DMA8 O3 was remarkably improved to -2.38% (6S) from -47.14% (Base). 411 

 412 

413 

Figure 2 Comparison of simulated (Base and 6S cases) and observed hourly concentrations of 414 

PM2.5, nitrate, NO2, HONO and O3 (a–e), and the hourly enhanced concentrations of O3 (△O3) (f) 415 

caused by the six potential HONO sources (6S minus Base) at the BUCT site during Oct.11–31 of 416 

2018. 417 

 418 

 419 
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 421 

Figure 3 Comparison of diurnal mean simulations (Base and 6S cases) and observations of 422 

HONO during the study period (a) and O3 during the first two haze events at the BUCT site (b), 423 

and O3 averages at the 95 NCP monitoring sites during the study period (c); and the relative 424 

contributions of each of the six potential HONO sources and the reaction of OH with NO to 425 

surface HONO concentrations for the 6S case at the BUCT site (d), at the 95 monitoring sites (e) 426 

and in the whole NCP region (f) (The calculated 24-h mean HONO concentrations and DMA8 O3 427 

concentrations were given in panels (a) – (c)). 428 

 429 

The relative contribution of each HONO source near the surface at the BUCT site 430 

for the 6S case is shown in Fig.3d. Briefly, Hetground was the largest source during 431 

daytime and nighttime (~50–70%), consistent with the results of Zhang et al. (2021). 432 

Photnitrate (Jnitrate/JHNO3 = 30) and the NO+OH reaction contributed similarly ~1–12% 433 

during daytime. Etraffic was important during nighttime (~10–20%) but small during 434 

daytime (<5%). The contribution of Hetaerosol to HONO concentrations was minor 435 
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(~2–3%) in daytime and ~6–10% in nighttime. Esoil could be neglected while the 437 

contribution of Eindoor was close to that of Etraffic in urban Beijing. The relative 438 

contribution of the potential HONO sources in this study was comparable with the 439 

result of Fu et al. (2019) by using CMAQ, except for the contribution of Photnitrate due 440 

to the different Jnitrate/JHNO3 ratios (30 in our study and ~120 in Fu et al. (2019)). 441 

 442 

3.1.3 Pollutant concentrations in NCP 443 

The 95-site-averaged hourly simulations and observations of O3, NO2 and PM2.5 444 

during the study period are shown in Fig.4. The six potential HONO sources 445 

significantly improved hourly O3 simulations, remarkably enhanced the daily 446 

maximum O3 by ~5–10 ppb during Oct. 11–25, and by ~2–4 ppb during Oct. 26–31 447 

(Fig.4a&b). The simulations of NO2 well agreed with the observations, and the mean 448 

concentrations were 22.55 (Base), 21.62 (6S) and 20.74 (Obs) ppb (Fig.4c). The 449 

PM2.5 simulations generally followed the observed PM2.5 trend but were 450 

overestimated by ~8 μg m-3, with averaged concentrations of 49.94 (Base), 53.30 (6S) 451 

and 45.31 (Obs) μg m-3 (Fig.4d), respectively. 452 

 453 
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454 

Figure 4 Comparison of 95-site-averaged hourly simulations (Base and 6S cases) and observations of 455 

O3(a), NO2 (c) and PM2.5 (d), and O3 enhancements due to the six potential HONO sources (6S minus 456 

Base case) (b) in the North China Plain during Oct.11–31 of 2018. 457 

 458 

The 95-site-averaged diurnal simulations and observations of O3 are presented in 459 

Fig.3c, O3 simulations showed a remarkable improvement when the six potential 460 

HONO sources were considered, the six potential HONO sources produced a mean 461 

enhancement of 5.7 ppb in DMA8 O3 and improved the NMB to -7.16% from -20.32% 462 

at the 95 sites in NCP. The 95-site-averaged diurnal simulations and observations of 463 

NO2 and PM2.5 during the study period are demonstrated in Fig.S4. NO2 simulations 464 

generally followed the observed trend but were underestimated during 04:00 to 16:00 465 

and overestimated after 18:00 (Fig.S4a), PM2.5 simulations agreed with the observed 466 

diurnal pattern but were overestimated for both cases during the whole day (Fig.S4b). 467 

The relative contribution of each HONO source near the surface at the 95 NCP 468 

sites for the 6S case is shown in Fig.3e. Hetground was the dominant source during 469 
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daytime and nighttime (~70–80%). Photnitrate (Jnitrate/JHNO3 = 30) and the NO+OH 478 

reaction nearly equaled and contributed ~2–8% during daytime (~5% on average). 479 

Etraffic was important during nighttime (~10–15%) but small during daytime (<3%). 480 

The contribution of Hetaerosol to HONO concentrations was <3% in daytime and <10% 481 

in nighttime. Esoil contributed ~3% in nighttime but could be neglected in daytime. 482 

The contribution of Eindoor was too small to be noticed at the 95 NCP sites, implying 483 

that this source was noticeable only in megacities. The relative contribution of each 484 

HONO source in the whole NCP region (all grid cells in domain two except for the 485 

seas) is presented in Fig.3f, the results were quite similar with those at the 95 sites 486 

(Fig.3f), which were representative for the whole NCP region. To further understand 487 

the role of potential HONO sources in haze aggravating processes in regional O3 488 

concentrations, the 95 site-averaged surface/vertical HONO concentrations and their 489 

impacts during a typical haze event (Oct. 19–21) and a clean period (Oct. 27–29) were 490 

analyzed and are shown in the following sections. 491 

 492 

3.2 Spatial distribution of enhanced DMA8 O3 by potential HONO sources 493 

3.2.1 General patterns of enhanced DMA8 O3 494 

Fig.S5 shows surface-averaged and zonal-averaged DMA8 O3 enhancements due 495 

to the six potential HONO sources in NCP during the study period (Oct.11-31) and 496 

three haze events (Oct.12–14, Oct.18–21 and Oct.24–25). The overall surface DMA8 497 

O3 enhancement decreased gradually from south (6–10 ppb) to north (2–6 ppb) 498 
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(Fig.S5a) and could reach 10–20 ppb under unfavorable meteorological conditions 502 

during haze events (Fig.S5b–d). For the first two haze events, the anti-cyclone in the 503 

Shandong peninsula carried pollutants being transported from the southeastern NCP 504 

to the western (108–112°E) and northern (39–41°N) NCP, and the six potential 505 

HONO sources led to a DMA8 O3 enhancement of 10–20 ppb (Fig.S5b) and 10–15 506 

ppb (Fig.S5c) in Beijing, respectively. For the third haze event, two air masses were 507 

converged to form a transport channel from south to north, the O3 enhancement 508 

caused by the six potential HONO sources can reach 10–18 ppb in the southern NCP 509 

and decreased to 6–10 ppb in the northern NCP along the transport channel. Vertically, 510 

the DMA8 O3 enhancements were 2–8 ppb during the whole period (Fig.S5e) and 511 

increased to 6–12 ppb in these haze events (Fig.S5f–h). The enhanced O3 near the 512 

surface (0–100 m) was slightly smaller than that at higher altitude (Fig.S5f–h), due 513 

mainly to the stronger titration of O3 by NO near the surface. The above results 514 

demonstrated that the six potential HONO sources significantly enhanced surface and 515 

vertical O3 concentrations in NCP, especially during haze events. 516 

 517 

3.2.2 During a typical haze aggravating process and a clean period 518 

Fig.5 demonstrates surface-averaged and zonally-averaged DMA8 O3 519 

enhancements due to the six potential HONO sources in NCP during a typical haze 520 

aggravating process (Oct.19–21, 2018) and a clean period (Oct.27–29, 2018). The 521 

increasing trend of DMA8 O3 enhancements can be clearly seen from Oct.19 to 522 
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Oct.21 near the surface and in the vertical direction. During the haze aggravating 530 

process, the surface DMA8 O3 enhancements were ~2–10 ppb (Oct.19), ~6–12 ppb 531 

(Oct.20) and ~8–15 ppb (Oct.21), respectively; the vertical DMA8 O3 enhancements 532 

were ~4–7 ppb (Oct.19), ~6–10 ppb (Oct.20), and ~8–15 ppb (Oct.21), respectively. 533 

While during clean days, the surface/vertical DMA8 O3 enhancements were usually 534 

<4 ppb. The six potential HONO sources significantly enhanced surface and vertical 535 

O3 concentrations in NCP during haze aggravating processes, the detailed role of the 536 

potential HONO sources on vertical HONO concentrations and their impacts are 537 

presented in the next section. 538 

 539 
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   546 

   547 

Figure 5 Surface-averaged (a1–a3, c1–c3) and zonal-averaged (b1–b3, d1–d3) DMA8 O3 548 

enhancements due to the six potential HONO sources in the North China Plain during a typical 549 

haze aggravating process (Oct.19–21, 2018) and a clean period (Oct.27–29, 2018) (The dashed 550 

line denotes the latitude of the BUCT site).  551 

 552 

3.3 Vertical variations of the six potential HONO sources and their impacts 553 

3.3.1 Six potential HONO sources and their impacts on HONO concentrations 554 

A number of studies have conducted vertical HONO observations abroad 555 

(Kleffmann et al., 2003; Ryan et al., 2018; Sorgel et al., 2011; VandenBoer et al., 2013; 556 

Villena et al., 2011; Wang et al., 2020; Wong et al., 2011, 2012; Zhang et al., 2009) 557 

and in China (Meng et al., 2020; Wang et al., 2019; Xing et al., 2021; Zhu et al., 2011). 558 
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A decreasing trend of HONO with height was mostly observed among these studies, 563 

and our simulations also reproduced this vertical variation and were comparable with 564 

another model simulation by Zhang et al. (2021) who used CMAQ (Fig.S6). For a 565 

deep understanding of the role of each considered HONO source in HONO 566 

concentrations at different heights, we assessed the contributions of each potential 567 

HONO source to HONO concentrations at different heights (Fig.6) during Oct.11–31 568 

of 2018. 569 

Generally, the impacts of ground-based potential HONO sources (Etraffic, Esoil, 570 

Eindoor and Hetground) on HONO concentrations decreased rapidly with height, while 571 

the NO+OH reaction and aerosol related HONO sources (Photnitrate and Hetaerosol) 572 

decreased slowly with height (Fig.6). During daytime the NO+OH reaction, Photnitrate 573 

and Hetground were the three main HONO sources, while during nighttime Etraffic, 574 

Hetaerosol and Hetground were the three main contributors to HONO concentrations 575 

(Fig.6). The HONO concentrations via the NO+OH reaction and Photnitrate were 576 

higher during daytime. The impact of Esoil in the NCP was small, nevertheless, Xue et 577 

al. (2021) found strong soil HONO emissions in NCP agricultural fields after 578 

fertilization, suggesting that this source may have a remarkable enhancement on 579 

regional HONO and secondary pollutants in crop growing seasons. 580 
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  587 

Figure 6 The 95-site-averaged daytime/nighttime HONO concentrations/enhancements at 588 

different heights when the NO+OH reaction (a1&a2) and each of the six potential HONO sources 589 

(b1–g1&b2–g2) were considered during Oct.11–31 of 2018 (The error bar denotes the 590 

uncertainties of each potential HONO source in HONO concentrations (Table 2). The right panel 591 

denotes the approximate height of each vertical layer above the ground). 592 

 593 

The comparison of HONO concentrations/enhancements during a haze 594 

aggravating process and a clean period is shown in Figs.7&8. Generally, daytime 595 

HONO concentrations increased in haze aggravating processes and were higher than 596 

those in clean days. Hetground was the dominant source of the surface HONO in both 597 

hazy and clean days and contributed 80–90% of daytime averaged HONO 598 

concentrations (Fig.8), however, this reaction occurred only on the ground surface, 599 

thus its relative contribution decreased with height, especially in haze aggravating 600 

processes (Fig.8). Although the contribution of the NO+OH reaction to daytime 601 

HONO was small near the surface, its relative contribution to HONO increased with 602 

height, especially in clean days (Fig.8). As for Photnitrate, a much larger enhancement 603 
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could be found in hazy days compared with clean days. In clean days the daytime 608 

enhanced HONO by Photnitrate was only 1–3 ppt in general and its contribution to 609 

daytime HONO was usually <10%, while in the haze aggravating process, the 610 

enhanced HONO concentration by Photnitrate was about ten times higher than that in 611 

clean days and Photnitrate became the dominant HONO source (~30–70%) at higher 612 

altitude, and both HONO concentrations and contributions by Photnitrate increased with 613 

the air pollution aggravation (Fig.7a–c, Fig.8a–c). The contributions of direct 614 

emission sources were small and decreased when PM2.5 increased, compared with 615 

those heterogeneous reactions. Higher concentrations of NO2, nitrate, and PM2.5 616 

favored heterogeneous formation of HONO, while direct emission sources were 617 

relatively invariable under different pollution levels. 618 

Based on our results, nitrate concentrations increased with the haze aggravating 619 

processes (Fig.2b), as a positive feedback effect, the elevated nitrate could in turn 620 

enhance HONO formation and further enhance the atmospheric oxidation capacity 621 

during daytime. Considering Jnitrate was still unclear, sensitivity tests were conducted 622 

and are presented in the discussion section. 623 

 624 

Deleted: one order of magnitude625 

Deleted: Photnitrate 626 



27 

 

 627 

Figure 7 The 95-NCP-site-averaged daytime HONO concentrations at different heights when the 628 

NO+OH reaction and the six potential HONO sources were included during a typical haze 629 

aggravating process of Oct.19–21 (a–c) and a clean period of Oct.27–29 (d–f) of 2018 (The first 630 

column numbers in black in each graph are for Photnitrate, and the second column numbers in gray 631 

are for Hetground). 632 

 633 

 634 

Figure 8 The 95-NCP-site-averaged relative contributions of the NO+OH reaction and each of the 635 

six potential HONO sources to daytime HONO concentrations at different heights during a typical 636 
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haze aggravating process of Oct.19–21 (a–c) and a clean period of Oct.27–29 (d–f) of 2018 (The 638 

first column numbers in blue in each graph are for the NO+OH reaction, the second column 639 

numbers in black are for Photnitrate, the third column numbers in white are for Hetaerosol, and the 640 

fourth column numbers in gray are for Hetground). 641 

 642 

3.3.2 Enhanced OH and its production rate 643 

Fig.9 demonstrates daytime variations of OH production (P(OH)) and loss 644 

(L(OH)) rates near the surface and in the vertically-averaged layer (from ground to 645 

the height of 2.5km) at the 95 NCP sites for the Base and 6S cases during Oct.11–31, 646 

2018. A significant enhancement of P/L(OH) can be found near the surface and 647 

vertically, the six potential HONO sources accelerated OH production and loss rates 648 

remarkably near the surface and noticeably in the considered vertical layers. 649 

Near the surface, daytime P(OH) and L(OH) were significantly enhanced by~320% 650 

for the 6S case (mean was 5.27 ppb h-1) compared with the base case (mean was 1.26 651 

ppb h-1). For the base case, the daytime P(OH) via the photolysis of HONO and O3 652 

was 0.09 ppb h-1 and 0.09 ppb h-1, respectively, while the daytime L(OH) via the 653 

NO+OH reaction was 0.11 ppb h-1 and the net contribution of HONO photolysis to 654 

P(OH) was -0.02 ppb h-1. After adding the six potential HONO sources in case 6S, the 655 

daytime P(OH) via the photolysis of HONO and O3 was 1.81 ppb h-1 and 0.10 ppb h-1, 656 

respectively, the daytime L(OH) via the NO+OH reaction was 0.48 ppb h-1 and the net 657 

contribution of HONO photolysis to P(OH) reached 1.33 ppb h-1. HONO photolysis 658 
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was the main source of the primary formation of OH, while the secondary formed OH 667 

via the reaction of HO2+NO (3.14 ppb h-1) was the dominant source of the total OH 668 

formation. 669 

Vertically, daytime P(OH) or L(OH) was enhanced by ~105% for the 6S case 670 

(mean was 2.21 ppb h-1) compared with the base case (mean was 1.08 ppb h-1). For 671 

the base case, the daytime P(OH) via the photolysis of HONO and O3 was 0.06 ppb 672 

h-1 and 0.10 ppb h-1, respectively, while the daytime L(OH) via the NO+OH reaction 673 

was 0.07 ppb h-1 and the net contribution of HONO photolysis to P(OH) was -0.01 674 

ppb h-1. After coupling the six potential HONO sources in case 6S, the daytime P(OH) 675 

via the photolysis of HONO and O3 and via the HO2+NO reaction was 0.48 ppb h-1, 676 

0.12 ppb h-1 and 1.52 ppb h-1, respectively, the daytime L(OH) via the NO+OH 677 

reaction was 0.15 ppb h-1 and the net contribution of HONO photolysis to P(OH) was 678 

0.33 ppb h-1. 679 

 680 

 681 

Figure 9 Diurnal mean variations of OH production (P(OH)) and loss (L(OH)) rates including 682 

major production and loss reactions near the surface and in the vertically-averaged layer (from 683 

ground to the height of 2.5km) at the 95 NCP sites for the Base and 6S cases during Oct.11–31, 684 

2018. 685 
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 693 

Fig.10 shows the linear relationships between daytime-averaged P(OH) and 694 

PM2.5 concentrations and between daytime-averaged OH and PM2.5 concentrations 695 

from ground to the height of 2.5km at the 95 NCP sites during Oct. 11–31 of 2018. 696 

Both P(OH) for the two cases (Base and 6S) and the enhanced P(OH) due to the six 697 

potential HONO sources showed a strong positive correlation (r>0.8) with PM2.5 698 

concentrations at the 95 NCP sites, because Hetaerosol, Hetground and Photnitrate were 699 

significantly increased with the elevated PM2.5. The enhanced P(OH) for the 6S case 700 

reached 0.043 ppb h-1 per 1μg m-3 of a PM2.5 enhancement. Similarly, high positive 701 

correlation (r>0.6) could be found between OH and PM2.5 concentrations, the OH 702 

concentrations and enhancements due to the six potential HONO sources were both 703 

higher in hazy days than those in clean days, and the enhancement of OH reached 704 

3.62×104 molec cm-3 per μg m-3 of PM2.5 for case 6S. These results were consistent 705 

with a recent field study reported by Slater et al. (2020), who found that the OH 706 

observed in haze events was elevated in central Beijing in November–December of 707 

2016. Furthermore, two observations confirmed the key role of HONO in producing 708 

primary OH despite the relatively lower photolysis frequency in haze aggravating 709 

processes (Slater et al., 2020; Tan et al., 2018), consistent with our simulations 710 

(Fig.S7 shows the relationship between surface PM2.5 and photolysis frequencies of 711 

NO2, HONO and HNO3 in this study, ). 712 
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 719 

Figure 10 The linear relationships between daytime-averaged P(OH) and PM2.5 concentrations (a) 720 

and between daytime-averaged OH and PM2.5 concentrations (b) from ground to the height of 721 

2.5km at the 95 NCP sites during Oct. 11–31 of 2018. 722 

 723 

Figs.11&12 show the detailed comparisons of P(OH) and OH enhancements 724 

during a haze aggravating process and a clean period. It can be seen that both P(OH) 725 

and OH were enhanced in hazy days compared with clean days, and P(OH) and OH 726 

increased with the aggravated haze pollution. Among the six potential HONO sources, 727 

Hetground was the largest contributor to the enhanced P(OH) and OH near the surface, 728 

but its contribution was relatively stable under different pollution levels and was 729 

attenuated rapidly with height in both hazy and clean days; the contribution induced 730 

by Photnitrate was remarkably increased in haze aggravating processes and was about 731 

ten times higher than that in clean days; Hetaerosol also increased with the pollution 732 

levels but with relatively small values, while the impact of other three direct emission 733 

sources of HONO was quite small. 734 
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 737 

Figure 11 The 95-NCP-site-averaged daytime P(OH) for the base case and the enhancements due 738 

to the six potential HONO sources during a typical haze aggravating process of Oct.19–21 (a–c) 739 

and a clean period of Oct.27–29 (d–f) of 2018 (The first column number in black in each graph is 740 

for Photnitrate, and the second column number in gray is for Hetground). 741 

 742 

 743 

Figure 12 The 95-NCP-site-averaged daytime OH concentrations for the base case and the 744 

enhancements due to the six potential HONO sources during a typical haze aggravating process of 745 

Oct.19–21 (a–c) and a clean period of Oct.27–29 (d–f) of 2018 (The first column number in black 746 
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in each graph is for Photnitrate, and the second column number in gray is for Hetground). 749 

 750 

3.3.3 Enhanced DMA8 O3 751 

Fig.13 demonstrates the linear relationship between DMA8 O3 enhancements and 752 

daytime PM2.5 concentrations in each vertical layer and the averaged vertical layer for 753 

the considered eleven layers at the 95 NCP sites during Oct. 11–31 of 2018. A good 754 

correlation (r>0.8) between DMA8 O3 enhancements and daytime PM2.5 755 

concentrations in the vertical averaged layer (similar reasons for the strong positive 756 

correlation between the enhanced P(OH) and PM2.5 concentrations shown above) 757 

suggests that the enhanced O3 due to the six potential HONO sources was larger in 758 

polluted days and increased during the haze aggravating processes. The enhanced 759 

DMA8 O3 was < 2ppb when PM2.5 was < 20μg m-3 and was >10 ppb when PM2.5 was > 760 

60μg m-3 on average, with a mean DMA8 O3 enhancement of 0.24 ppb per g m-3 of 761 

PM2.5. 762 
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  771 

Figure 13 The linear relationship between DMA8 O3 enhancements and daytime PM2.5 772 

concentrations in each vertical layer (a) and the averaged vertical layer for the considered eleven 773 

layers (b) at the 95 NCP sites during Oct. 11–31 of 2018. 774 

 775 

Fig.14 shows the 95-NCP-site-averaged DMA8 O3 enhancements due to the six 776 

potential HONO sources during a typical haze aggravating process of Oct.19–21 and 777 

a clean period of Oct.27–29 of 2018. A significant enhancement of DMA8 O3 can be 778 

found during the haze aggravating process compared with during clean days. The 779 

enhanced DMA8 O3 was ~5.5 ppb (Oct.19), ~ 7 ppb (Oct.20) and ~ 10 ppb (Oct.21), 780 

respectively, during the haze aggravating process, while that was usually ~2 ppb in 781 

clean days.  782 

In clean days, Hetground was the dominant contributor (~1.5–2 ppb) to the 783 

enhanced DMA8 O3 among the six potential HONO sources, the contribution of 784 

Photnitrate to the enhanced DMA8 O3 was ~0.1–0.4 ppb, while that of the other four 785 

sources was minor. When it comes to the comparison between the haze aggravating 786 
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process (Oct.19–21) and clean days, the DMA8 O3 enhancements induced by Hetground 787 

were doubled and reached ~3–4 ppb; the contribution of Photnitrate to the enhanced 788 

DMA8 O3 substantially increased and reached ~2–4.5 ppb (Oct.19), ~3–6 ppb (Oct.20) 789 

and ~5–10 ppb (Oct.21), respectively; Hetaerosol showed an increasing contribution to 790 

the enhanced DMA8 O3 during haze aggravating process (~0.3 ppb on Oct.19, ~0.4 791 

ppb on Oct.20 and ~0.7 ppb on Oct.21), while the impacts of the other three direct 792 

emission sources (Etraffic, Esoil, and Eindoor) on the enhanced DMA8 O3 were minor. 793 

 794 

 795 

Figure 14 The 95-NCP-site-averaged DMA8 O3 enhancements due to the six potential HONO 796 

sources during a typical haze aggravating process of Oct.19–21 (a–c) and a clean period of 797 

Oct.27–29 (d–f) of 2018 (The column in black numbers in each graph is for Photnitrate, the column 798 

in purple numbers in each graph is for Hetaerosol, and the column in gray numbers is for Hetground). 799 
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3.4 Vertical variations of O3-NOx-VOCs sensitivity 805 

Based on the results above, Photnitrate could significantly enhance the DMA8 O3 806 

by ten times in the considered vertical layers (especially at elevated heights) in 807 

polluted events, but previous studies have not fully discussed. To better understand its 808 

role in vertical O3 formation, the O3-NOx-VOCs sensitivity was analyzed by using the 809 

P(H2O2)/P(HNO3) ratio proposed by Sillman (1995), which is more suitable than the 810 

concentration ratio of H2O2/HNO3 because of the large dry deposition velocity of the 811 

two gases in the troposphere (Sillman, 1995). A transition point of P(H2O2)/P(HNO3) 812 

= 0.35 was suggested by Sillman (1995), when P(H2O2)/P(HNO3) was <0.35, O3 813 

shows VOCs-sensitive chemistry (increasing VOC concentrations can significantly 814 

elevate O3 levels) and when P(H2O2)/P(HNO3) was >0.35, O3 tends to NOx-sensitive 815 

chemistry (increasing NOx concentrations can significantly elevate O3 levels). 816 

Fig.15 demonstrates the 95-NCP-site-averaged P(H2O2)/P(HNO3) ratio at each 817 

vertical layer for the 6S case during a typical haze aggravating process of Oct.19–21 818 

and a clean period of Oct.27–29 of 2018. Obviously opposite O3 sensitivity appeared 819 

between the lower layers (VOCs sensitive) and the higher layers (NOx sensitive) in 820 

both clean and hazy days, and the transition point usually appeared at the eighth layer 821 

(~600–800 m). 822 

The Photnitrate reaction is assumed to produce HONO and NOx (Zhou et al., 2003; 823 

Romer et al., 2018; Gen et al., 2022), this reaction not only enhances OH 824 

concentrations via HONO photolysis, but also directly releases NOx back into the 825 

troposphere. Considering the NOx-sensitive O3 chemistry at higher layers (>800m), 826 
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elevating OH and NOx concentrations are both favorable for O3 formation, especially 829 

in haze aggravating processes with abundant nitrate (detailed vertically enhanced O3 830 

production/loss rates induced by Photnitrate are shown in Fig.S8). 831 

 832 

  833 

Figure 15 The 95-NCP-site-averaged P(H2O2)/P(HNO3) ratio at each vertical layer for the 6S case 834 

during a typical haze aggravating process of Oct.19–21 (a–c) and a clean period of Oct.27–29 (d–f) 835 

of 2018. 836 

 837 

The specific role of the produced HONO or NO2 via the Photnitrate reaction (R2) in 838 

DMA8 O3 enhancements was further analyzed and is shown in Fig. 16, the produced 839 

NO2 and HONO jointly promoted O3 formation and increased DMA8 O3 840 

concentrations. From the surface to ~1200m (Level 9), the DMA8 O3 enhancements 841 

for case D_HONO was ~5 times those for case D_NO2, while at ~2000 m (Level 11) 842 

the DMA8 O3 enhancements for case D_HONO was ~2 times those for case D_NO2. 843 

A balance exists between the propagation of the free radical interconversion cycle and 844 

the rate of termination of the cycle for the O3 formation chemistry (Gligorovski et al., 845 
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2015), considering the 0.67 and 0.33 yields (ratio is 2) for the two products, we could 850 

conclude that the impact of produced HONO on O3 enhancements was larger than that 851 

of produced NO2 near the surface, while at higher altitude (>2000 m) the impacts of 852 

the two products were similar. 853 

 854 

 855 

Figure 16 The 95-NCP-site-averaged DMA8 O3 enhancements due to nitrate photolysis with three 856 

product scenarios (cases D_NO2, D_HONO and D) during a typical haze aggravating process of 857 

Oct.19–21 (a–c) and a clean period of Oct.27–29 (d–f) in 2018. 858 

 859 

4. Discussion 860 

4.1 Vertical variations of potential HONO sources 861 

The relative contribution of potential HONO sources near the surface, 862 

corresponding to the first model layer (0 to ~35 m) in our simulation, was quantified 863 
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in previous modelling studies (Fu et al., 2019; Xue et al., 2020; Zhang et al., 2021), 864 

however, for those potential HONO sources, their relative contributions to HONO 865 

concentrations near and above the surface should be different. Based on our results 866 

(Figs.7&8), the effects of aerosol related HONO sources would be severely 867 

underestimated in hazy days when only focused surface HONO, especially for 868 

Photnitrate. Near the surface in NCP, the daytime contribution of Photnitrate to HONO 869 

concentrations in hazy days was only ~4–6%, but this source contributed ~35–50% of 870 

the enhanced DMA8 O3 (Fig.14a–c); above the eighth layer (~800 m), this source 871 

contributed ~50–70% of HONO concentrations and ~50–95% of the enhanced DMA8 872 

O3 (Fig.14a–c). 873 

A recent observation in urban Beijing reported vertical HONO concentrations 874 

from three heights above the ground and found that extremely high HONO 875 

concentrations occurred at 120 m (~5 ppb) and 240 m (~3 ppb) rather than near the 876 

surface (~1.2 ppb) during 12:00 in a typical hazy day (Zhang et al., 2020b). The 877 

observation was unusual at noontime under strong convection conditions, inconsistent 878 

with those most previous observations indicating a HONO decrease trend with height, 879 

especially with the observational results of Zhu et al. (2011) and Meng et al. (2020) 880 

and simulated results of Zhang et al. (2021) and ours in Fig.S6 at the same 881 

observational site. The contributions of different HONO sources at each layer were 882 

analyzed by using a box model, but ~80–90% of the noontime HONO at higher layers 883 

could not be explained by the known HONO formation mechanisms (Zhang et al., 884 

2019c). The box model neglected the vertical convection, so the ground related 885 
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HONO sources had no contribution to HONO concentrations at the higher layers, thus 889 

their HONO simulations were actually underestimated compared with our results and 890 

the previous studies of Wong et al. (2011) and Zhang et al. (2021).  891 

 892 

4.2 Uncertainties of Jnitrate/JHNO3 ratios and their impacts 893 

4.2.1 Uncertainties of Jnitrate/JHNO3 ratios in DMA8 O3 enhancements 894 

Based on our results, Hetground and Photnitrate were the two major contributors to 895 

the enhanced DMA8 O3, especially for Photnitrate in hazy days with higher PM2.5 896 

concentrations. The uncertainties of Photnitrate (four Jnitrate/JHNO3 ratios) in O3 897 

enhancements were analyzed and are shown in Fig.17 (The uncertainties of Hetground 898 

are presented in text S2). During the haze aggravating process, the enhanced DMA8 899 

O3 near the surface increased from ~0.3 to ~0.5 ppb, from ~0.9 to ~2 ppb, from ~2 to 900 

~6 ppb, and from ~5 to ~12 ppb, with the Jnitrate/JHNO3 ratio being 1, 7, 30, 120, 901 

respectively, and the enhanced O3 increased with altitude. In clean days, the impact of 902 

Photnitrate on O3 enhancements was small (<1 ppb) even with a Jnitrate/JHNO3 ratio of 903 

120. 904 
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 909 

Figure 17 The 95-NCP-site-averaged DMA8 O3 enhancement induced by nitrate photolysis with 910 

four Jnitrate/JHNO3 ratios (1, 7, 30 and 120) during a typical haze aggravating process of Oct.19–21 911 

(a–c) and a clean period of Oct.27–29 (d–f) of 2018. 912 

 913 

4.2.2 Uncertainties of Jnitrate/JHNO3 ratios in nitrate concentrations 914 

We found considerable enhancements in O3 concentrations induced by Photnitrate, 915 

yet it is still unclear that to what extent Photnitrate could influence nitrate 916 

concentrations. The overall nitrate concentrations for the base case and the nitrate 917 

enhancements induced by the potential HONO sources decreased with rising altitude 918 

except for Photnitrate (Fig.S9a). Hetground enhanced nitrate concentrations by ~1.5 μg 919 

m-3 near the surface and the enhancements decreased to < 0.5μg m-3 above the eighth 920 

model layer (~800m); the nitrate enhancements due to Hetaerosol and Etraffic near the 921 

surface were ~0.2 and ~0.1 μg m-3, respectively, and were < 0.1 and < 0.04 μg m-3 922 

above the sixth model layer (~500m). For Photnitrate, the overall impact of four 923 
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Jnitrate/JHNO3 ratios on nitrate concentrations is shown in Fig.S9b, a smaller Jnitrate/JHNO3 927 

ratio of 1 or 7 had a limited impact on nitrate concentrations of ~0–0.05 μg m-3, a 928 

Jnitrate/JHNO3 ratio of 30 slightly decreased nitrate concentrations by ~0.2 μg m-3, while 929 

the Jnitrate/JHNO3 ratio of 120 decreased vertical nitrate concentrations by ~0.3–0.8 μg 930 

m-3. The relative nitrate changes caused by Photnitrate were calculated by the 931 

differences between four cases added Photnitrate (cases Nit_1, Nit_7, D and Nit_120) 932 

and the base case (Fig.S9c). The vertical nitrate concentrations were reduced by ~0–933 

0.4% (Jnitrate/JHNO3=1), ~0–2% (7), ~2–5% (30) and ~10–14% (120) at the 95 NCP 934 

sites, meaning that the Photnitrate impact on vertical nitrate concentrations is limited 935 

(<5%) when adopting a relatively small Jnitrate/JHNO3 ratio (< 30) (Fig.S9c). 936 

Romer et al. (2018) found a Jnitrate/JHNO3 ratio of 10 or 30 had a much larger effect 937 

on HONO than on HNO3, and Photnitrate accounted for an average of 40% of the total 938 

production of HONO, and only 10% of HNO3 loss with a Jnitrate/JHNO3 ratio of 10 939 

(Fig.5 in Romer et al. (2018)), consistent with our study. From the production rate of 940 

gas HNO3 (PHNO3) in Fig.S10, we can find that an increase in the Jnitrate/JHNO3 ratio for 941 

Photnitrate simultaneously enhances the HNO3 production rate, and is favorable for 942 

nitrate formation via the reaction between HNO3 and NH3. Nitrate consumption is 943 

mitigated by the faster nitrate formation, this is the main reason for less perturbation 944 

of the nitrate budget influenced by Photnitrate. 945 

Fig.18 shows the detailed relative changes of nitrate caused by Photnitrate during a 946 

typical haze aggravating process and a clean period (corresponding concentrations are 947 

shown in Fig.S11). The percentage nitrate reduction was usually smaller in hazy days 948 
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than in clean days, mainly due to the slightly weaker photolysis frequency in pollution 968 

events (Fig.S7). The nitrate reduction was <5% when adopting a Jnitrate/JHNO3 ratio of 969 

30 in both clean and hazy days and was <15% in most cases even when the 970 

Jnitrate/JHNO3 ratio reached 120. 971 

 972 

 973 

Figure 18 The 95-NCP-site-averaged relative changes of nitrate with four Jnitrate/JHNO3 ratios (1, 7, 974 

30 and 120) compared with the base case during a typical haze aggravating process of Oct.19–21 975 

(a–c) and a clean period of Oct.27–29 (d–f) of 2018. 976 

 977 

4.2.3 Possible ranges of the Jnitrate/JHNO3 ratio 978 

From the above discussion, we can find that the enhanced OH and O3 due to 979 

Photnitrate are remarkable during haze aggravating processes, and the exact value of the 980 

Jnitrate/JHNO3 ratio requires more studies. 981 
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Fig. 19 shows diurnal patterns of surface-averaged and vertically-averaged 991 

simulations of the Photnitrate frequency with four different Jnitrate/JHNO3 ratios at the 95 992 

NCP sites during the study period. The Photnitrate frequency at 12:00 was 3.7×10-7, 993 

2.6×10-6, 1.1×10-5 and 4.5×10-5 s-1, when adopting a Jnitrate/JHNO3 ratio of 1, 7, 30 and 994 

120, respectively. The corresponding vertically-averaged Photnitrate frequency was 995 

slightly larger (~10%) and was 4.2×10-7, 2.9×10-6, 1.3×10-5 and 5.0×10-5 s-1, 996 

respectively. Adopting a Jnitrate/JHNO3 ratio of 30 in the 6S case, with the corresponding 997 

Jnitrate of 1.1–1.3×10-5 s-1, produced ~30–50% of the enhanced O3 near the surface in 998 

hazy days (Fig.13), and ~70–90% of the enhanced O3 at higher layers (>800 m). 999 

The reported values of Jnitrate from previous studies are summarized in Table 4. 1000 

The experimental Jnitrate values have been controversial over the past two decades and 1001 

are still arguable currently. In our simulations for the 6S case, Photnitrate contributed 1002 

from ~1% (clean days) to ~5% (hazy days) to surface HONO during daytime when 1003 

using the Jnitrate/JHNO3 ratio of 30 in NCP, consistent with <8% at a rural site in NCP 1004 

reported by Xue et al. (2020) and ~1% at urban Beijing reported by Zhang et al. (2021) 1005 

using the same ratio; however, the increasing contribution of Photnitrate to HONO 1006 

concentrations with rising altitude based on our simulations (Fig.7), has not been 1007 

discussed in previous research. Furthermore, we found that the overall Photnitrate 1008 

impact to OH and O3 would be severely underestimated when the Photnitrate 1009 

contribution to vertical HONO was excluded.  1010 

A larger Jnitrate/JHNO3 ratio of 120 for Photnitrate (4.5–5.0×10-5 s-1 at 12:00) produced 1011 

~25–30% of noontime HONO in NCP in our study (Fig.S12), comparable with 30–40% 1012 
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in previous modelling studies (Fu et al., 2019; Shi et al., 2020) when using the 1022 

Jnitrate/JHNO3 ratio of 118.57 (8.3×10-5/ 7×10-7). In haze aggravating processes, the 1023 

contribution of Photnitrate (Jnitrate/JHNO3 = 120) to the DMA8 O3 enhancements reached 1024 

~5–10 ppb near the surface and ~8–20 ppb above the tenth model layer (Fig.17), these 1025 

enhancements were extremely large. In a previous modelling study by Fu et al. (2020), 1026 

the daytime surface O3 simulations were systematically overestimated by ~ 5 ppb in 1027 

NCP in winter (Fig.S4 in Fu et al. (2020)), the inclusion of Photnitrate (Jnitrate/JHNO3 = 1028 

118.57) in their study might cause the overestimation. From the above, a Jnitrate/JHNO3 1029 

ratio of 120, or a Jnitrate value of ~4–5×10-5 s-1 is possibly overestimated. When 1030 

adopting the maximum Jnitrate value of 10-4 s-1 reported by Ye et al. (2016a) and Bao et 1031 

al. (2018), we reasonably speculate that O3 simulations will be significantly 1032 

overestimated, especially at higher altitude with NOx-sensitive O3 chemistry (Fig.15). 1033 

Romer et al. (2018) and Kasibhatla et al. (2018) suggested that a Jnitrate/JHNO3 ratio 1034 

of 30 or smaller would be more suitable, being about the minimum value reported by 1035 

Ye et al. (2016a) and Bao et al. (2018), this ratio has shown significant influence on 1036 

the O3 simulations in haze aggravating processes in this study. The lack of 1037 

photo-catalyzer in suspended submicron particulate sodium and ammonium nitrate 1038 

may cause a lower Jnitrate/JHNO3 ratio (<10) reported by Shi et al. (2021), so more 1039 

chamber experiments need to be conducted by using the particles collected in the real 1040 

atmosphere. Choosing a larger Jnitrate value might cover up other ground-based 1041 

unknown HONO sources, creating an illusion of good model simulations of daytime 1042 

HONO, but resulting in overestimation of O3 concentrations. Considering the 1043 
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uncertainties of NOx or VOCs emissions, which also significantly impact O3 1049 

simulations, more studies are needed to find the exact value of Jnitrate in the real 1050 

atmosphere. 1051 

 1052 

 1053 

Figure 19 Diurnal patterns of surface-averaged (a) and vertically-averaged (b) simulations of the 1054 

nitrate photolysis frequency with four different Jnitrate/JHNO3 ratios (1, 7, 30, 120) at the 95 NCP 1055 

sites during the study period (The nitrate photolysis frequencies at 12:00 are shown in each graph).  1056 

 1057 

 1058 

 1059 

Table 4. Summary of studies on the nitrate photolysis frequency (Jnitrate) (JHNO3 denotes the photolysis 1060 

frequency of gas HNO3) 1061 

Experimental 

conditions 
Main conclusion Reference 

HNO3 absorbed 

on Pyrex surface 

Jnitrate (1.2×10-5 s-1) is 1–2 orders of magnitude faster than in 

the gas and aqueous phases. 

(Zhou et al., 

2003) 

Atmosphere 

simulation 

chamber 

Jnitrate on snow, ground, and glass surfaces, can be excluded 

in the chamber. 

(Rohrer et al., 

2005) 

HNO3 absorbed 

on glass surface 

Photolysis frequency of surfaces adsorbed HNO3 is > 2 

orders of magnitude larger than JHNO3. 

(Zhu et al., 

2008) 

Urban 

grime-coated 

surface 

Jnitrate (1.2×10-3 s-1) is 4 orders of magnitude faster than in 

water (10-7 s-1). 

(Baergen and 

Donaldson, 

2013) 

Various 

natural/artificial 

surfaces 

Jnitrate ranges from 6.0×10−6 s−1 to 3.7×10−4s−1, 1–3 orders of 

magnitude higher than JHNO3 

(Ye et al., 

2016a) 

Adsorbed HNO3 

on glass surfaces 

Photolysis frequency of surfaces adsorbed HNO3 (2.4×10-7 

s-1) is very low. 

(Laufs and 

Kleffmann, 

2016) 
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Aerosol filter 

samples 

Jnitrate ranges from 6.2×10−6 s−1 to 5.0×10−4 s−1 with a mean 

of 1.3×10−4 s−1. 

(Ye et al., 

2017) 

Nitrate aerosol in 

the MBL 
Jnitrate is ~10 times higher than JHNO3. 

(Reed et al., 

2017) 

PM2.5 in Beijing 
Jnitrate (1.22×10−5 s−1 to 4.84×10−4 s−1) is 1–3 orders of 

magnitude higher than JHNO3. 

(Bao et al., 

2018) 

Sea-salt 

particulate nitrate 
Jnitrate is 25–50 times higher than JHNO3. 

(Kasibhatla et 

al., 2018) 

Particles collected 

on filters 
Jnitrate is ≤ 30 times JHNO3. 

(Romer et al., 

2018) 

CMAQ 

simulation 

Nitrate photolysis contributed ~30% of noontime HONO 

with a Jnitrate/JHNO3 ratio of ~120. 

(Fu et al., 

2019) 

CMAQ 

simulation 

A Jnitrate/JHNO3 ratio of 100 better improved sulfate 

simulations than a Jnitrate/JHNO3 ratio of 10. 

(Zheng et al., 

2020) 

MCM Box model 
Nitrate photolysis contribution to HONO was < 8% with a 

Jnitrate/JHNO3 ratio of 30. 

(Xue et al., 

2020) 

MCM Box model 
Nitrate photolysis contributed ~40% of noontime HONO 

with a Jnitrate/JHNO3 ratio of ~120. 

(Shi et al., 

2020) 

Smog chamber 
The Jnitrate/JHNO3 ratio was <10 for suspended submicron 

NaNO3 and NH4NO3. 

(Shi et al., 

2021) 

CMAQ 

simulation 

Nitrate photolysis contribution to surface HONO was ~1.0% 

with a Jnitrate/JHNO3 ratio of 30. 

(Zhang et al., 

2021) 

WRF-Chem 

simulation 

The relative contribution of nitrate photolysis to HONO 

increased with rising altitude and nitrate photolysis 

contributed much larger in the ABL than near the surfaceto 

the enhanced O3. On average, nitrate photolysis contributed 

~5% of surface daytime HONO with a Jnitrate/JHNO3 ratio of 

30 (~1×10-5 s-1) but contributed ~30–50% of the enhanced 

O3 near the surface in NCP in hazy days. 

This study 

MBL: marine boundary layer; ABL: atmospheric boundary layer. 1063 

 1064 

 1065 

 1066 

4.3 Interactions between heterogeneous HONO sources 1067 

Form the comparison of nitrate budget induced by the six potential HONO 1068 

sources in Fig.S3&S9, we can find that Hetground led to an significant increase in 1069 

nitrate concentrations. In the real atmosphere, the NO2 heterogeneous reactions and 1070 
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the Photnitrate reaction occur simultaneously, while the sensitivity tests only considered 1078 

one specific HONO source for each case and neglected their interactions, leading to 1079 

the underestimation of the Photnitrate impact to some extent. Take it into consideration, 1080 

the Photnitrate impact on atmospheric oxidants and secondary pollutants would be even 1081 

larger, especially during the haze aggravating process. 1082 

Photnitrate would in turn change NOx concentrations to some extent. From the 1083 

95-site-averaged NO2 concentrations shown in Fig. 20, we can find that Photnitrate 1084 

slightly increased NO2 concentrations in hazy days. The elevated NO2 concentration 1085 

could enhance HONO formation via the NO2 heterogeneous reactions, nevertheless, 1086 

due to the high background NO2 concentrations in NCP (up to ~ 40 ppb at nighttime), 1087 

the increment of NO2 and the enhanced HONO formation from NO2 caused by 1088 

Photnitrate were small (<10%), but might have a larger impact on NOx budgets in clean 1089 

regions. From the above, a positive feedback relationship between the NO2 1090 

heterogeneous reactions and the Photnitrate reaction could be found, these 1091 

multi-processes worse the air quality during the haze aggravating processes. 1092 
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Figure 20 Comparison of 95-site-averaged simulations of NO2 concentrations for the base case and 1131 

four cases with different Jnitrate/JHNO3 ratios (1, 7, 30 and 120) (a), and the corresponding NO2 variations 1132 

(b) compared with the base case in the North China Plain during Oct.11–31 of 2018. 1133 
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5. Conclusions 1141 

In this study, three direct emission sources, the improved NO2 heterogeneous 1142 

reactions on aerosol and ground surfaces, and particulate nitrate photolysis in the 1143 

atmosphere were included into the WRF-Chem model to explore the key HONO 1144 

sources producing O3 enhancements during typical autumn haze aggravating 1145 

processes with co-occurrence of high PM2.5 and O3 in NCP. The six potential HONO 1146 

sources produced a significant enhancement in surface HONO simulations and 1147 

improved the mean HONO concentration at the BUCT site to 1.47 ppb from 0.05 ppb 1148 

(improved the NMB to -14.22% from -97.11% and the IOA to 0.80 from 0.45). The 1149 

improved HONO significantly enhanced the atmospheric oxidation capacity near the 1150 

surface and at elevated heights, especially in hazy days, resulting in fast formation of 1151 

and significant improvements of O3 during haze aggravating processes in NCP. 1152 

Although the photolysis frequency is usually lower during hazy days, higher 1153 

concentrations of NO2, PM2.5 and nitrate favored HONO formation via heterogeneous 1154 

reactions, leading to stronger atmospheric oxidation capacity. The major results 1155 

include: 1156 

(1) For the surface HONO in NCP, Hetground was the largest source during 1157 

daytime and nighttime (~50–80%); the contribution of Photnitrate (Jnitrate/JHNO3 = 30) to 1158 

surface HONO concentrations was close to that of the NO+OH reaction during 1159 

daytime (~1–12%) and was ~5% for daytime average; Etraffic was important during 1160 

nighttime (~10–20%) but small during daytime (<5%); the contribution of Hetaerosol 1161 

was minor (~2–3%) in daytime and <10% in nighttime; the contribution of Esoil was 1162 
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<3%, and Eindoor could be neglected. Vertically, the HONO enhancements due to 1166 

ground-based potential HONO sources (Etraffic, Esoil, Eindoor and Hetground) decreased 1167 

rapidly with height, while the NO+OH reaction and aerosol-related HONO sources 1168 

(Photnitrate and Hetaerosol) decreased with height much slower. The enhanced HONO 1169 

due to Photnitrate in hazy days was about ten times larger than in clean days and 1170 

became the dominant HONO source (~30–70% when Jnitrate/JHNO3 = 30) at higher 1171 

layers, and both HONO concentrations and Photnitrate contributions increased with the 1172 

aggravated pollution levels.  1173 

(2) Near the surface, daytime OH production/loss rates were significantly 1174 

enhanced by~320% for the 6S case (mean was 5.27 ppb h-1) compared with the base 1175 

case (mean was 1.26 ppb h-1); vertically, daytime OH production/loss rates were 1176 

enhanced by ~105% for the 6S case (mean was 2.21 ppb h-1) compared with the base 1177 

case (mean was 1.08 ppb h-1). The enhanced OH production rate and OH due to the 1178 

six potential HONO sources both showed a strong positive correlation with PM2.5 1179 

concentrations at the 95 NCP sites, with a slope of 0.043 ppb h-1/μg m-3 of PM2.5 and 1180 

3.62×104 molec cm-3/μg m-3 of PM2.5 from the surface to the height of 2.5 km for case 1181 

6S, respectively. The atmospheric oxidation capacity (e.g., OH) was enhanced in the 1182 

haze aggravating process. 1183 

(3) A strong positive correlation (r>0.8) between enhanced O3 by the six potential 1184 

HONO sources and PM2.5 concentrations was found in NCP, and nitrate photolysis 1185 

was the largest contributor to the enhanced DMA8 O3 in hazy days. Vertically, the 1186 

enhanced DMA8 O3 was < 2ppb when PM2.5 was < 20μg m-3, and that was >10 ppb 1187 
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when PM2.5 was > 60μg m-3 on average, with a slope of 0.24 ppb DMA8 O3 1189 

enhancement /g m-3 of PM2.5. The surface enhanced DMA8 O3 was ~5.5 ppb 1190 

(Oct.19), ~7 ppb (Oct.20) and ~10 ppb (Oct.21), respectively, during a typical haze 1191 

aggravating process, while that was usually ~2 ppb in clean days. The contribution of 1192 

Photnitrate to the enhanced DMA8 O3 was increased by over one magnitude during the 1193 

haze aggravating process (up to 5–10 ppb) compared with that in clean days (~0.1–0.5 1194 

ppb), reached ~2–4.5 ppb (Oct.19), ~3–6 ppb (Oct.20) and ~5–10 ppb (Oct.21), 1195 

respectively, during a typical haze aggravating process vertically. 1196 

(4) Surface O3 was controlled by VOCs-sensitive chemistry, while O3 at higher 1197 

altitude (>800m) was controlled by NOx-sensitive chemistry in NCP during autumn. 1198 

The nitrate photolysis reaction enhanced OH and NOx concentrations, both favored O3 1199 

formation at high altitude, especially in haze aggravating processes with abundant 1200 

nitrate. The produced HONO rather than the produced NO2 through nitrate photolysis 1201 

had a stronger promotion for O3 formation near the surface, but the impacts of the two 1202 

products on O3 enhancements were similar at higher altitude (~2000 m). 1203 

(5) Nitrate photolysis only contributed ~5% of the surface HONO in daytime 1204 

with a Jnitrate/JHNO3 ratio of 30 (~1×10-5 s-1) but contributed ~30–50% of the enhanced 1205 

O3 near the surface in NCP in hazy days. The photolysis of nitrate had a limited 1206 

impact on nitrate concentrations (reduced by <5% with Jnitrate/JHNO3 =30, and <15% 1207 

even with a Jnitrate/JHNO3 ratio of 120), due mainly to the simultaneously enhanced 1208 

atmospheric oxidants favoring the formation of HNO3 and nitrate. Choosing a larger 1209 

Jnitrate value might cover up other ground-based unknown HONO sources, but 1210 
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overestimate vertical sources of HONO, and NOx and O3 concentrations, so more 1215 

studies are still needed to find the exact value of Jnitrate in the real atmosphere. 1216 
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