| 1<br>2         | The influence of multiple groups of biological ice nucleating particles on microphysical properties of mixed-phase clouds observed during MC3E                                                   |                                                       |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| 3              |                                                                                                                                                                                                  |                                                       |
| 4              |                                                                                                                                                                                                  |                                                       |
| 5              | Sachin Patade1*, Deepak Waman <sup>1</sup> , Akash Deshmukh <sup>1</sup> , Ashok Kumar Gupta <sup>2</sup> , Arti Jadav <sup>1</sup> ,                                                            | Moved down [5]: Vaughan T. J. Phillips <sup>1</sup> , |
| 6              | Vaughan T. J. Phillips <sup>1</sup> , Aaron Bansemer <sup>4</sup> , Jacob Carlin <sup>3</sup> , Alexander Ryzhkov <sup>3</sup> ,                                                                 | Moved (insertion) [5]                                 |
| 7              |                                                                                                                                                                                                  |                                                       |
| 8              | <sup>1</sup> Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden                                                                                               |                                                       |
| 9<br>10        | <sup>2</sup> Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, TN, 37240, USA                                                                                    |                                                       |
| 11<br>12<br>13 | <sup>3</sup> Cooperative Institute for Severe and High-Impact Weather Research and Operations, The University of Oklahoma, and NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma, USA |                                                       |
| 14             | <sup>4</sup> National Center for Atmospheric Research, Boulder, Colorado, USA                                                                                                                    |                                                       |
| 15             |                                                                                                                                                                                                  |                                                       |
| 16             |                                                                                                                                                                                                  |                                                       |
| 17             |                                                                                                                                                                                                  |                                                       |
| 18             |                                                                                                                                                                                                  |                                                       |
| 19             |                                                                                                                                                                                                  |                                                       |
| 20             |                                                                                                                                                                                                  |                                                       |
| 21             |                                                                                                                                                                                                  |                                                       |
| 22             |                                                                                                                                                                                                  |                                                       |
| 23             |                                                                                                                                                                                                  |                                                       |
| 24             | * Corresponding Author                                                                                                                                                                           |                                                       |
| 25             | Dr. Sachin Patade, Lund University, Sweden                                                                                                                                                       |                                                       |
| 26             | email: sachin.patade@nateko.lu.se                                                                                                                                                                |                                                       |
| 27             |                                                                                                                                                                                                  |                                                       |
| 28             |                                                                                                                                                                                                  |                                                       |
| 29             |                                                                                                                                                                                                  |                                                       |
| 30             |                                                                                                                                                                                                  |                                                       |

## 32 Abstract:

A new empirical parameterization (EP) for multiple groups of primary biological aerosol particles (PBAPs) is implemented in the aerosol-cloud model (AC) to investigate their roles as ice-nucleating particles (INPs). The EP describes the heterogeneous ice nucleation by (1) fungal spores, (2) bacteria, (3) pollen, (4) detritus of plants, animals, and viruses, and (5) algae. Each group includes fragments from the originally emitted particles. A high-resolution simulation of a midlatitude mesoscale squall line by AC is validated against airborne and ground observations.

Deleted:

Deleted: PBAPs

40

| 41 | Sensitivity tests are carried out by varying the initial vertical profiles of the loadings of                |
|----|--------------------------------------------------------------------------------------------------------------|
| 42 | individual <b>PBAP</b> groups. The resulting changes in warm and ice <u>cloud</u> microphysical              |
| 43 | parameters are investigated. The changes in warm microphysical parameters including liquid                   |
| 44 | water content, and cloud droplet number concentration are minimal (< 10%). Overall, PBAPs                    |
| 45 | have little effect on <u>ice number concentration (&lt; 6%)</u> in the convective region. In the             |
| 46 | stratiform region, increasing the initial <u>PBAP</u> loadings by a factor of 1000 resulted in less          |
| 47 | than $\frac{40}{5}$ % change in ice number concentrations. The total ice concentration is mostly             |
| 48 | controlled by various mechanisms of secondary ice production (SIP). However, when SIP is                     |
| 49 | intentionally shut down in sensitivity tests, increasing the PBAP loading by a factor of 100                 |
| 50 | has <u>less than a 3%</u> effect on the ice phase. Further sensitivity tests revealed that <u>PBAPs</u> have |
| 51 | little effect on surface precipitation_as well as on shortwave and longwave flux (< 4%) for                  |
| 52 | 100-fold perturbation in PBAPs.                                                                              |

Deleted: PBAP

| -{ | Deleted:               |
|----|------------------------|
| -( | Deleted: PBAPs         |
| -{ | Deleted: the ice phase |
| 1  | Deleted: , especially  |
| -( | Deleted: PBAP          |
| -( | Deleted: 60            |

| - | Deleted: artificially prohibited |
|---|----------------------------------|
| - | Deleted: PBAP                    |
| - | Deleted: no significant          |
|   | Deleted: PBAPs                   |
|   | Deleted:                         |

- 53
- 54

| 7      | 1. Introduction                                                                                                |           | Deleted: ¶                                                                                                                   |
|--------|----------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------|
| <br>7: | 1 In most climate models, the largest source of uncertainty for estimating the total                           |           |                                                                                                                              |
| 7      | anthropogenic forcing is associated with cloud-aerosol interactions ( <u>Pörtner et al., 2022</u> ).           |           | Deleted: Forster                                                                                                             |
|        |                                                                                                                |           | Deleted: 2007                                                                                                                |
| 73     | Atmospheric aerosol particles can act as cloud condensation nuclei (CCN) and a few of them                     |           |                                                                                                                              |
| 74     | 4 act as ice-nucleating particles (INPs), thereby influencing the microphysical properties of                  |           |                                                                                                                              |
| 7      | clouds and, depending on the cloud type (Fan et al. 2010; Chen et al 2019). The treatment of                   |           | Deleted: -                                                                                                                   |
|        |                                                                                                                |           | <b>Deleted:</b> , potentially affecting precipitation formation                                                              |
| 7      | 5 INP in climate models can strongly affect the atmospheric radiation budget (DeMott et al.                    |           | <b>Deleted:</b> is control of average cloud particle sizes regulates                                                         |
| 7      | 7 <u>2010</u> ). Various sources of aerosol particles, including dust/metallic, marine aerosols,               |           | the radiative properties of layer clouds produced in convection possibly influencing the                                     |
| 7      | anthropogenic carbonaceous emissions, and primary biological aerosol particles (PBAPs),                        |           | Deleted: PBAPs                                                                                                               |
|        |                                                                                                                |           |                                                                                                                              |
| 79     | 9 contribute to the observed INPs (Kanji et al. 2017).                                                         |           |                                                                                                                              |
|        |                                                                                                                |           |                                                                                                                              |
| 8      | )                                                                                                              |           |                                                                                                                              |
|        |                                                                                                                |           |                                                                                                                              |
| 8      | A significant amount of global precipitation, is associated with the ice phase in cold clouds                  |           | Deleted: The formation of most                                                                                               |
|        |                                                                                                                | $\square$ | Deleted: S                                                                                                                   |
| 83     | 2 (Heymsfield and Field 2015; <u>Mülmenstädt et al. 2015</u> , <u>Heymsfield et al. 2020</u> ). In particular, |           | Deleted:                                                                                                                     |
| 83     | mixed-phase clouds are vital for the global climate (Dong and Mace 2003; Zuidema et al.                        |           | Deleted: precipitation                                                                                                       |
| 0.     | , mixed phase clouds are that for the grobal climate <u>Doing and thate 2005</u> , <u>Editerna et al.</u>      |           | Deleted: ly                                                                                                                  |
| 84     | 4 <u>2005; Matus and L'Ecuyer 2017; Korolev et al. 2017 and references therein</u> ). In a <u>multimodel</u>   |           | Deleted: multimodel                                                                                                          |
|        |                                                                                                                |           | Deleted: d                                                                                                                   |
| 8      | simulation study, Tsushima et al. (2006) showed that the doubling of $CO_2$ concentrations                     |           |                                                                                                                              |
| 8      | caused the changes in the distribution of cloud-water in the mixed-phase clouds in a climate                   |           |                                                                                                                              |
|        |                                                                                                                |           |                                                                                                                              |
| 8      | 7 simulation to be significant.                                                                                |           | <b>Deleted:</b> Mixed-phase clouds play an important role (about                                                             |
|        |                                                                                                                |           | -3.4 Wm <sup>-2</sup> ) in the global net cloud radiative forcing of the present-day climate (e.g., Matus and L'Ecuyer 2017) |
| 8      | 3                                                                                                              |           |                                                                                                                              |
|        |                                                                                                                |           |                                                                                                                              |
| 8      | <b>PBAPs</b> are solid particles of biological origin and are emitted from the Earth's surface                 |           | Deleted: PBAPs                                                                                                               |
|        |                                                                                                                |           | Deleted: containing insoluble material                                                                                       |
| 90     | 0 (Després et al. 2012). They are highly active in initiating ice as INPs and include bacteria,                |           |                                                                                                                              |
| 9:     | fungal spores, pollen, algae, lichens, archaea, viruses, and biological fragments (e.g., leaf                  |           |                                                                                                                              |
| 9.     | i fungai spores, ponen, argae, nenens, arenaea, viruses, and biological fragments (e.g., feat                  |           |                                                                                                                              |
| 92     | 2 litters, insects) and molecules (e.g., proteins, polysaccharides, lipids) (Després, et al., 2012;            |           | Deleted: Despr'es                                                                                                            |
|        |                                                                                                                |           |                                                                                                                              |
| 93     | <u>Fröhlich-Nowoisky et al., 2015; Knopf et al., 2011; Szyrmer and Zawadzki, 1997;)</u> .                      |           | Deleted: o                                                                                                                   |
|        |                                                                                                                |           |                                                                                                                              |

| 117  | Considering the onset temperature of freezing, some ice nucleation active fungi and bacteria                                                                                                          |                               |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| 118  | (especially <i>Pseudomonas syringae</i> with onset freezing temperature around -3°C) are among                                                                                                        | Formatted: Superscript        |
| 119  | the most active INPs present in the atmosphere (Després et al. 2012; Hoose and Möhler                                                                                                                 |                               |
| 120  | 2012). The potential impact of <u>PBAP</u> INPs on cloud microphysical characteristics has been                                                                                                       | Deleted: PBAP                 |
| 121  | recognized for many years; however, this topic remains a subject of debate (DeMott and                                                                                                                | Deleted: . H                  |
| 122  | Prenni 2010; Spracklen and Herald, 2014; Hoose et al. 2010b). Some previous modeling                                                                                                                  |                               |
| 123  | studies have shown that on a global scale <u>PBAPs</u> have only a limited influence on clouds and                                                                                                    | Deleted: PBAPs                |
| 124  | precipitation (Hoose et al. 2010; Sesartic et al. 2012, 2013; Spracklen and Heald 2014). On a                                                                                                         |                               |
| 125  | global scale, the percentage contribution of <u>PBAPs</u> to the immersion freezing (ice nucleation                                                                                                   | Deleted: PBAPs                |
| 126  | by INP immersed in supercooled water drop) is predicted to be much smaller (0.6%) as                                                                                                                  |                               |
| 127  | compared to dust (87%) and soot (12%) (Hoose et al. 2010).                                                                                                                                            |                               |
| 128  |                                                                                                                                                                                                       |                               |
| 129  | Many studies have used cloud models to highlight the potential impact of PBAP INPs on                                                                                                                 | Deleted: PBAP                 |
| 130  | cloud microphysics and precipitation (e.g., Levin et al. 1987; Grützun et al. 2008; Phillips et                                                                                                       |                               |
| 131  | al. 2009). For example, the mesoscale aerosol-cloud model by Phillips et al. (2009) had a 3-D                                                                                                         | Deleted: ;                    |
| 132  | domain of about 100 km in width, and many cloud types were present in the mesoscale                                                                                                                   | Deleted: Hummel et al. 2018   |
| 133  | convective system that was simulated. Their simulations revealed that the cloud cover,                                                                                                                |                               |
| 134  | domain radiative fluxes, and surface precipitation rate were significantly altered by boosting                                                                                                        |                               |
| 4.25 |                                                                                                                                                                                                       |                               |
| 135  | organic aerosols representing <u>PBAPs</u> . According to Hummel et al. (2018) in shallow mixed-                                                                                                      | Deleted: PBAPs                |
| 135  | organic aerosols representing <u>PBAPs</u> . According to Hummel et al. (2018) in shallow mixed-<br>phase clouds (i.e., altostratus) when the cloud top temperature is below -15°C, <u>PBAPs</u> have | Deleted: PBAPs Deleted: PBAPs |
|      |                                                                                                                                                                                                       |                               |

INPs.

149 The quest for insights into the broader atmospheric role of PBAP INPs for cloud microphysical properties and precipitation is hampered by the limited availability of 150 151 observations both of their ice nucleation activities for various species and their aerosol 152 distributions in the real atmosphere (Huang et al. 2021). More generally, there is incomplete 153 knowledge about the chemical identity of the key INPs, whether biological or otherwise (Murray et al. 2012). In many global and regional models, the ice nucleation activity of 154 155 bioaerosols is represented either empirically or theoretically based on laboratory measurements of specific biological species of <u>PBAPs</u> that are assumed as representative 156 candidates (e.g., Pseudomonas syringae). This assumption of representativeness introduces 157 uncertainties that would be expected to impact the model results, potentially introducing a 158 bias into the estimation of the effects of bioaerosols on clouds (e.g. Sahyoun et al., 2016; 159 Hoose et al. 2010b; Spracklen and Herald, 2014, Huang et al. 2021 and references therein). 160

161

162 In addition to primary ice nucleation, ice formation in clouds can occur because of processes 163 generating new particles from pre-existing ice, and these are known as Secondary Ice 164 Production (SIP) mechanisms (Korolev and Leisner, 2020; Korolev et al, 2020). SIP can have 165 a considerable impact on cloud micro- and macro-physical properties such as precipitation rate, glaciation time, cloud lifetime, and cloud electrification by increasing the ice number 166 167 concentrations by a few orders of magnitude (e.g., Blyth and Latham 1993; Crawford et al., 2012; Lawson et al., 2015; Phillips et al., 2017b, 2018, 2020; Phillips and Patade, 2021; 168 169 Sotiropoulou et al. 2021a,b). This in turn can influence the global hydrological cycle and 170 climate. For example, Zhao and Liu (2021) demonstrated using a global climate model that SIP dominates ice formation in moderately cold clouds and has a significant influence on 171 their liquid and ice water paths. They showed that including three SIP mechanisms in the 172 173 model simulated global annual average liquid water path decreases by 15 g m<sup>-2</sup> (-22%

Deleted: about
Deleted: PBAP

Deleted: PBAPs

 Deleted: modifying

 Deleted: the

 Deleted: of ice particle concentrations

 Deleted: (

 Deleted: )

Deleted:

183 <u>change</u>) and the ice water path increases by 9 g m<sup>-2</sup> (23%), resulting in better agreement with 184 observations. Accounting for SIP in their model results in a change in the global annual 185 average net cloud radiative forcing by about 1 W m<sup>-2</sup>. Although a small fraction of the total 186 cloud radiative forcing globally, this flux change underlines the ubiquitous role of SIP on 187 cloud properties on the large scale.

188

189 However, in many cloud models, the representations of these SIP mechanisms are uncertain 190 as most of the cloud models include only the Hallet-Mossop (hereafter HM; Hallett and 191 Mossop, 1974) process and neglect other SIP mechanisms (e.g. Fan et 2017; Han et al 2019). 192 A few secondary ice formation processes (e.g., the HM process) have been suggested to be 193 active in the temperature range where active **PBAP** INPs exhibit strong ice nucleation 194 activity. The INPs of biological origin such as bacteria are highly active in the temperature 195 range of the HM process (-3 to -8°C) as compared with non-biological INPs (Möhler et al. 196 2008; Patade et al., 2021, henceforth PT21). At temperatures warmer than -15°C, some of the 197 PBAPs generated by biologically active landscapes (e.g. forests, woodlands) can promote ice formation and crystal growth in clouds (Morris et al., 2014). 198

199

In the USA, about 18% of the total landmass is used as cropland, farmland, and agricultural activities (Garcia et al. 2012). These are major sources of biological particles in the atmosphere. Biogenic particles released from crops, either pre- and post-harvest, have previously been shown to serve as INPs (in Colorado and Nebraska, Garcia et al. 2012). Huffman et al. (2013) found that airborne biological particles increase significantly in concentration, by an order of magnitude or more, during rainfall in a forest in the western US and that bioaerosols are well correlated with INPs. Prenni et al. (2013) observed a similar

| Delete | d• c        |             |  |
|--------|-------------|-------------|--|
| Delete | u. s        |             |  |
|        |             |             |  |
| Delete | d: Hallet-M | ossop, 1974 |  |
|        |             |             |  |
| Delete | d: PBAP     |             |  |
|        |             |             |  |

| Deleted: | the | Hallet-Mossor |
|----------|-----|---------------|
| Deleted: | )   |               |

Deleted: PBAPs

Deleted: this is

Deleted: (

increase in concentrations of ground-level INPs during rain at a forested site in Colorado,
which was associated with increased biological particles. If these potential INPs are detrained
from the convective outflow of a cell at mid-levels, then they may be entrained into other
clouds aloft, influencing the microphysical properties of that subsequent storm. Convective
clouds can efficiently transport lower tropospheric aerosol particles into the upper
troposphere where they can affect the cloud properties (Cui and Carslaw, 2006)

221

| 222 | The current study aims to simulate realistic concentrations of multiple groups of <u>PBAP</u> INPs, | D |
|-----|-----------------------------------------------------------------------------------------------------|---|
| 223 | including bacterial and fungal particles, to investigate their interactions with convective         |   |
| 224 | clouds observed during the Midlatitude Continental Convective Clouds Experiment field               |   |
| 225 | campaign (MC3E), in the USA (Jensen et al. 2016), in the USA. In view of the literature             |   |
| 226 | noted above about the effects of PBAP INPs, there is a need for more detailed analyses of           | D |
| 227 | their role in altering cloud microphysical properties and precipitation because the realistic       | D |
| 228 | treatment of ice nucleation, activity for major PBAP groups was not available, prior to our         | D |
| 229 | empirical scheme (PT21). Hitherto, laboratory measurements of isolated biological species           | D |
| 230 | (e.g., Pseudomonas syringae, Cladosporium sp) have been the basis for attempts to simulate          |   |
| 231 | biological ice nucleation in clouds, but the representativeness of the choice of such species       |   |
| 232 | has been a longstanding issue. For example, Hummel et al (2018) considered three highly ice-        |   |
| 233 | nucleation-active PBAP species in their model which may not represent the ice nucleation            |   |
| 234 | activity of PBAP in the atmosphere. It is not known which biological species of ice                 | D |
| 235 | nucleation active (INA) PBAPs contribute the most to biological ice nucleation.                     | D |
| 236 | Consequently, there is a need for a new approach oriented toward laboratory measurements            |   |
| 237 | of biological INPs sampled from the atmosphere, thus optimizing the representativeness of           | D |
| 238 | the data for studies of clouds.                                                                     | D |

Deleted: PBAP

Deleted: from
Deleted: PBAP

| - | Deleted: IN                 |
|---|-----------------------------|
| 1 | Deleted: PBAP               |
| - | Deleted: Patade et al. 2021 |

| -{ | Deleted: INA   |
|----|----------------|
|    |                |
| -{ | Deleted: PBAPs |

| -{ | Deleted: natural |
|----|------------------|
| -( | Deleted: real    |
| -{ | Deleted: natural |

| 2 | 5 | ٢ |
|---|---|---|
| 2 | J | L |
|   |   |   |

| 251 | In this paper, such an approach is followed to investigate the effect on cloud properties from  |
|-----|-------------------------------------------------------------------------------------------------|
| 252 | various major groups of <u>PBAP</u> . We incorporated a recent empirical parameterization for   |
| 253 | various <u>PBAP</u> groups by <u>PT21</u> into our 3D aerosol-cloud model (AC). PT21 created an |
| 254 | empirical formulation resolving the ice nucleation of each group of <u>PBAPs</u> including 1)   |
| 255 | fungal spores and their fragments, 2) bacteria and their fragments, 3) pollen and their         |
| 256 | fragments, 4) detritus of plants, animals, and viruses, and 5) algae. The empirical formulation |
| 257 | by PT21 is based on observations of PBAP collected at the Amazon Tall Tower Observatory         |
| 258 | (ATTO). It is a research site located in the middle of the Amazon rainforest in northern        |
| 259 | Brazil. In this article, we also examine the relative importance of various secondary ice       |
| 260 | processes in their role in mediating the <u>PBAP</u> effects on cloud microphysical properties, |
| 261 | given the weakness of <u>PBAP</u> effects on cloud microphysical properties.                    |
|     |                                                                                                 |

262

# 264 **2. Description of observations**

## 265 2.1 Selected case of a deep convective system

In the current study, we simulated a squall line that occurred on 20 May 2011 MC3E 266 267 (Jensen et al. 2016). The MC3E campaign took place from 22 April through to 6 June 2011 268 and was centered at the Atmospheric Radiation Measurement (ARM) Southern Great Plains 269 (SGP) Central Facility (CF), (36.6°N, 97.5°W) in north-central Oklahoma. Jensen et al. 270 (2016) describe the squall line as a "golden event" of the MC3E campaign given the robust in situ sampling of extensive stratiform outflow from deep convection on this day. The surface 271 meteorological analysis on 20 May indicated a southerly flow at the surface, which provided 272 273 enough moisture from the Gulf of Mexico to trigger convection. Deep convection, organized

| - | Deleted: PBAP                                  |
|---|------------------------------------------------|
|   |                                                |
| - | Deleted: PBAP                                  |
| + | Deleted: Patade et al. (2021, henceforth PT21) |
| - | Deleted: PBAPs                                 |
|   |                                                |

# Deleted: 1

The paper is structured as follows. In the next two sections, the methodology for the model setup and a description of the observed storm simulated. The subsequent section shows results comparing simulated cloud properties with observations to validate the model. There follows the analysis of sensitivity tests concerning the loading of PBAPs. **Deleted:** PBAP

Deleted: PBAP

Deleted: of field campaign

Deleted: in view of

in the form of a squall line, passed over the measurement site between 1030 and 1100 UTC,
resulting in convective precipitation. It was followed by widespread stratiform precipitation
that was well observed by both airborne and ground-based measurements.

293

294 The skew-T plot from the radiosonde sounding conducted on 20 May 2011, at (00 UTC) is shown in Figure 1a. The skew-T plot shows the vertical sounding before the formation of 295 296 deep convection. The skew-T plot shows that the surface-based Convective Available Potential Energy (CAPE) for this case was <u>2400</u> J kg<sup>-1</sup>, and the Lifting Condensation Level 297 (LCL) was located at 840 hPa. The temperature at LCL, which is generally at the same height 298 299 as the convective cloud base, was 15% C. The vertical profile of the water vapor mixing ratio is 300 also shown in Figure 1b. The water vapor mixing ratio at the surface was around 11.8 gkg-1 which decrease rapidly to 2 gkg<sup>-1</sup> at 5 km. 301





2



317 <u>dashed grey line. The moist adiabat is represented by a dotted red line. The shaded region</u>
318 <u>between moist adiabat and temperature line represents convective available potential energy</u>
319 <u>(CAPE). The LCL is also mentioned in the plot. (b) Vertical profile of water vapor mixing</u>
320 <u>ratio on 20 May 2011 at 00 UTC.</u>

321

322

323 2.2 Aircraft Observations

324 The *in situ* <u>cloud</u> microphysical observations used in this study were obtained from a

325 University of North Dakota Citation II aircraft. The aircraft collected observations of cloud

326 microphysical parameters from the cloud base (1.8 km above MSL) to a maximum altitude of

327 7.5 <u>kilometers</u> above MSL. The MC3E campaign collected extensive airborne measurements

328 of aerosols and cloud microphysical properties over north-central Oklahoma. A detailed

329 description of the scientific objectives of the MC3E program, including the field experiment

330 strategy, airborne and ground-based instrumentation, is given in the paper by Jensen et al.

- 331 (2016). This section summarizes the instrumentation used in the current study.
- **Table 1:** Details of aircraft instruments used in this study.

| Instrument                                                                | Measurement                                               | Typical range                                                              |
|---------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------|
| Cloud imaging probe (CIP) by<br>Droplet Measurement Technologies<br>(DMT) | Size distribution of cloud<br>and precipitation particles | 0.025–1.5 mm<br>(0.2-1 mm for<br>model validation in<br>the current study) |
| 2D cloud imaging probe (2D-C)<br>(PMS)                                    | Size distribution of cloud<br>and precipitation particles | 0.03–1.0 mm<br>(0.2-1 mm for<br>model validation in<br>the current study)  |
| Cloud droplet probe (CDP) (DMT)                                           | Cloud droplet spectra                                     | 2–50 µm                                                                    |
| High-volume precipitation                                                 | Precipitation particle                                    | 0.15–19.2 mm                                                               |

**Deleted:** Figure 1. (a) Vertical profile of water vapor mixing ratio on 20 May 2011 at 00 UTC. (b) The *skew T* plot from May 20, 2011, sounding. The air temperature is represented by the solid black line, while the dew point temperature is represented by a dashed grey line. The moist adiabat is represented by a dotted red line. (c) The CCN spectrum from AC for a simulated squall line case on May 20, 2011, for an environment 500 meters above MSL. The predicted CCN spectrum at the SGP CF (300 m above MSL)....

Formatted: Line spacing: Double

Deleted: ¶

Deleted: kilometres

| spectra                 |                           |
|-------------------------|---------------------------|
|                         |                           |
| Cloud liquid water      | $0.01-5 \text{ g m}^{-3}$ |
|                         |                           |
|                         |                           |
| Ambient air temperature | —                         |
|                         |                           |
| Ambient air pressure    | -                         |
|                         | 1                         |

346

The Citation aircraft was equipped with a standard suite of meteorological instruments, which provided high-resolution measurements of temperature, pressure, and humidity. In addition, it carried microphysical probes for cloud and precipitation, and liquid water content, as listed in Table 1.

351

Particle size distributions (PSDs) from cloud to precipitation particle sizes were measured 352 353 with various probes, including a 2D Cloud Imaging Probe (2D-C), a Cloud Imaging Probe (CIP), and a High-Volume Precipitation Spectrometer Probe (HVPS). The 2D-C and CIP 354 355 probe data were processed objectively using the algorithm developed at the National Center for Atmospheric Research (NCAR) to mitigate artifacts produced by shattering on the probes' 356 leading edges (Field et al. 2006). The 2D-C probe was equipped with anti-shattering tips 357 (Korolev et al., 2011), while the CIP did not have anti-shattering tips. The size distribution of 358 cloud drops with diameters from 2 to 50 µm was measured using a Cloud Droplet Probe 359 (CDP). A King hot-wire liquid water content (LWC) probe measured the LWC. Vertical 360 361 velocity is derived from air motion sensing systems available on the research aircraft.

362

363 *2.3 Ground-based measurements* 

Deleted: Korolev

A comprehensive instrumentation suite deployed at the ARM-SGP central facility provided continuous measurements of atmospheric gases, aerosols, clouds, and local meteorological conditions (e.g., wind, temperature, precipitation, and atmospheric profiles). A cloud condensation nuclei (CCN) counter (CCN-100) (DMT) measured the CCN number concentration at seven supersaturation values with a temporal resolution of 1 hour. Surface precipitation was measured with 16 rain gauge pairs placed within a 6-kilometer radius of the SGP CF.

372

373 During the MC3E campaign, the <u>measurement</u> facility deployed at CF measured the spatial 374 variability of surface fluxes of heat, moisture, and momentum. A radiosonde array of 6 sites, 375 covering an area of 300 km  $\times$  300 km, was designed to capture the large-scale variability of 376 the atmospheric state. Radiosonde observations (Vaisala RS92-SGP) were conducted with a 377 6-hour frequency (four times daily) at around 05:30, 11:30, 16:30, and 22:30 UTC, providing 378 vertical profiles of atmospheric state variables (pressure, temperature, humidity, and winds) 379 of the environment surrounding the ARM SGP site. When aircraft operations were planned 380 based on forecasted convective conditions, the sounding frequency was increased to a 3-hour frequency with the starting time at 05:30 UTC. 381

382

In addition to airborne observations, the ARM radar network was used to conduct unique radar observations during the MC3E campaign. The information about various radar assets during MC3E is given by Jensen et al. (2016). The surface precipitation used for model validation in this study is a radar-based precipitation estimate as described by <u>Giangrande et</u> al. (2014). They used radar observations from the C-band and X-band scanning ARM precipitation radars (C-band Scanning ARM Precipitation Radar and X-band Scanning ARM Deleted: extended

Deleted: ¶

Deleted: to eight times per day.

Deleted: heterogeneous

Deleted: Giangrande

Precipitation Radars, respectively) to estimate rainfall within 100 km of the ARM facility in
Lamont, Oklahoma. Their radar-based rainfall retrievals were in good agreement with
observations with <u>an</u> absolute bias <u>of</u> less than 0.5 mm for accumulations less than 20 mm.

397 398 The Interagency Monitoring of Protected Visual Environments (IMPROVE) network stations 399 close to the location of airborne observations provided ground-level measurements of various chemical species. These included carbonaceous compounds (black and organic carbon), salt, 400 401 ammonium sulfate, and dust. The details of the measurement techniques used for mass 402 mixing ratios of these compounds are summarized in Malm et al. (1994). The measurements 403 of these aerosol species from various IMPROVE sites, including Ellis (36.08°N, 99.93°W), Stilwell (35.75°N, 94.66°W), and Wichita Mountains (34.73 °N, 98.71°W) sites in Oklahoma, 404 405 were averaged to provide inputs to AC. Initial mass concentrations for the aerosol species of 406 AC (<u>11</u> species) including sulfate, sea salt, dust, black carbon, soluble organic, biological and 407 non-biological insoluble organic (five groups of PBAPs) were derived from the Goddard 408 Chemistry Aerosol Radiation and Transport (GOCART) model (Chin et al. 2000). The 409 prescribed mass mixing ratios of aerosol species in A are based on IMPROVE observations and are enlisted in Table 2. It should be noted that for the MC3E case considered in this 410

411 study, coincident IMPROVE measurements were not available. The mean values of the

412 IMPROVE measurements conducted on May 18 and 21 are used to prescribe the mass of

413 <u>various aerosol species.</u>

414 Table 2: The mass mixing ratio of aerosol species based IMPROVE observations which are415 used as input to AC.

| Aerosol species | Mass mixing ratio (µg/m³) |
|-----------------|---------------------------|
| (NH4)2SO4       | 0.56                      |
| Dust            | 0.18                      |
| Sea salt        | 0.021                     |

Deleted: to

Deleted: 10

**Deleted:** and insoluble organic (five groups of bioaerosols) were derived from ...

Moved (insertion) [1]

**Deleted:** Profiles of aerosol mass concentration were scaled at all levels to match simultaneous measurements by IMPROVE. ...

Deleted: C-

**Moved up [1]:** The prescribed mass mixing ratios of aerosol species in AC-based IMPROVE observations are enlisted in Table 2.¶

**Deleted:** The prescribed mass mixing ratios of aerosol aerosol species in AC-based IMPROVE observations are enlisted in Table 2....

| Deleted: PB | APs |
|-------------|-----|

| Black carbon                           | 0.093        |
|----------------------------------------|--------------|
| Soluble organic carbon (80 % of        | 0.45         |
| TOC)                                   |              |
| Insoluble organic carbon (20 % of      | 0.18         |
| TOC)                                   |              |
|                                        |              |
| <u>PBAPs</u> (50% of Insoluble organic | FNG=0.036;   |
| carbon)                                | BCT=0.012;   |
|                                        | PLN=0.028;   |
|                                        | DTS=0.016;   |
|                                        | ALG=0.000022 |

## 431

### 432

## 433 **3. Methodology**

## 434 3.1 Model description

435 The 'aerosol-cloud model' (AC) used in this study is a cloud-resolving model (CRM) with a hybrid spectral bin/two-moment bulk microphysics, interactive radiation, and semi-436 prognostic aerosol schemes (Phillips et al. 2017a, 2020). The model predicts the mass and 437 number concentrations for five types of hydrometeors: cloud liquid, cloud ice (or "crystals"), 438 rain, graupel/hail, and snow. The mixing ratios of the total number and mass of all particles in 439 440 each microphysical species are treated as model prognostic variables. AC treats all known microphysical processes such as droplet nucleation, ice initiation through primary and 441 442 secondary processes, and growth processes such as deposition/sublimation of ice particles, condensation/evaporation of drops, freezing/melting, as well as coagulation by collisions 443 between various hydrometeor types. Both cloud-base and in-cloud activation of aerosols to 444 form cloud-droplets are treated explicitly, with the predicted in-cloud supersaturation 445 resolved on the model grid being used to activate aerosols aloft. Bin-resolved size 446 distributions of each aerosol species are predicted for the interstitial and immersed 447

| 449 | components of each aerosol species. Extra prognostic variables track the number of aerosols     |   |                                  |
|-----|-------------------------------------------------------------------------------------------------|---|----------------------------------|
| 450 | in each aerosol species that have been lost by INP and CCN activation.                          |   |                                  |
| 451 |                                                                                                 |   |                                  |
| 450 | Secondary ice formation is represented by four types of freemontation.                          |   |                                  |
| 452 | Secondary ice formation is represented by four types of fragmentation:                          |   |                                  |
| 453 | • breakup in ice-ice collisions (Phillips et al. 2017a, b) (most active between -10 to -        |   |                                  |
| 454 | <u>20°C);</u>                                                                                   |   | Deleted: ,                       |
| 455 | • Hallett and Mossop (1974), rime splintering (most active between -3 to -8°C);                 | _ | Deleted: ,                       |
| 456 | • fragmentation of freezing rain/drizzle by modes 1 and 2 (Phillips et al. 2018) (most          |   | Formatted: Superscript           |
| 457 | active around $-15^{\circ}_{*}C$ ;                                                              |   | Formatted: Superscript           |
| 458 | • and sublimation breakup (Deshmukh et al. 2021) (most active between -0 to -18°C).             |   |                                  |
| 459 | The empirical parameterization (EP) (Phillips et al. 2013) of heterogeneous ice nucleation      |   |                                  |
| 460 | treats all known modes of ice formation (deposition mode, condensation-/immersion-              |   |                                  |
| 461 | freezing, inside-out and outside-in contact-freezing) in terms of dependencies on the loading,  |   |                                  |
| 462 | size, and chemistry of multiple aerosol species. In the previous version of the EP, prior to    |   |                                  |
| 463 | PT21, there were four species of INP aerosol. One of these was PBAP INPs. However, that         |   | Deleted: PBAP                    |
| 464 | version of the EP did not resolve the individual types of <u>PBAP</u> INP, which exhibit a wide |   | Deleted: PBAP                    |
| 465 | range of ice-nucleating abilities. The current version of AC also includes the ice nucleation   |   |                                  |
| 466 | (IN) activity of dust and black carbon. The ice nucleation parameterization of dust, as well as |   | Deleted: as well as black carbon |
| 467 | black carbon, is based on studies by Phillips et al. (2008) and (2013). The activation of dust  |   |                                  |
| 468 | and black carbon INP starts at temperatures colder than -10 and -15°C.                          |   | Formatted: Superscript           |
| 469 |                                                                                                 |   |                                  |
|     |                                                                                                 |   |                                  |
| 470 | There are two types of homogeneous freezing represented: that of cloud droplets near -36°C      |   |                                  |
| 471 | and that of solute aerosols at colder temperatures. Both schemes are described by Phillips et   |   |                                  |

477 al. (2007, 2009). For cloud droplets, a look-up table from simulations with a spectral bin
478 microphysics parcel model treats the fraction of all supercooled cloud droplets that evaporate
479 without freezing near -36°C, depending on the ascent, initial droplet concentration and
480 supersaturation. The size dependence of the temperature of homogeneous freezing is
481 represented.

482

In a recent study, PT21 provided an empirical formulation for multiple groups of <u>PBAP</u> INPs
based on field observations over <u>the</u> central Amazon. In this study, we modified AC by
implementing the recent empirical parameterization of <u>PBAP</u> INPs by PT21. A summary of
their formulation is provided in section 3.2.

| 1 | Deleted: ¶    |
|---|---------------|
| 1 | Deleted: A    |
| Υ | Deleted: PBAP |
| - | Deleted: PBAP |

487

Cloud processes and rainfall formation have been detected using different radar variables, 488 such as specific differential phase  $K_{DP}$ . Moisseev et al. (2015), for example, noted an increase 489 in observed  $K_{DP}$  because of aggregation. In addition, a few studies have hypothesized 490 evidence of SIP via K<sub>DP</sub> (e.g., Sinclair et al. 2016; Kumjian and Lombardo 2017; Carlin et al. 491 492 2021). In this study, we attempted to detect secondary ice formation signatures by 493 implementing K<sub>DP</sub> estimations into AC. Based on Ryzhkov et al. (2011), K<sub>DP</sub> values were 494 estimated for various hydrometeor types, including cloud drops, raindrops, cloud ice, snow, 495 and graupel (their equations 22, 23, 24, 26, and 29). The scattering amplitudes were calculated using the Rayleigh approximation. The  $K_{DP}$  estimations are made for 0° elevation 496 angle and S-band (radar wavelength of 11 cm). The equivalent volume diameter of the given 497 hydrometeor was used for all calculations. 498

499

Deleted: PBAP

The empirical formulation by PT21 for multiple groups of <u>PBAPs includes: -</u> 1) fungal spores (FNG), 2) bacteria (BCT), 3) pollen (PLN), 4) viral particles, plant/animal detritus (DTS), 5) algae (ALG) and their respective fragments are implemented in AC. This formulation is based primarily on field observations over the central Amazon rainforest, with empirically derived dependencies on the surface area of each group (except algae) and it applies to the particles with diameters greater than 0.1  $\mu$ m. Here, we summarize the formulation by PT21 <u>briefly</u>.

# 513 For X= FNG, PLN, BCT, and DTS

$$n_{IN\_BIO,X} = \int_{\log [0.1 \, \mu m]}^{\infty} \{1 - \exp [-\mu_X]\} \times \frac{dn_X}{d \log D_X} d \log D_X, \tag{1}$$

515 
$$\mu_X = H_X(S_i, T) \,\xi(T) \,\times \,\text{MIN}\{[\exp(-\gamma_X T) - 1], 40\} \,\times \,\frac{1}{\omega_{X, 1, *}} \frac{d\Omega_X}{dn_X} \quad \text{for } T < 0 \,^\circ \text{C} \quad (2)$$

516 In equation (1),  $n_{IN BIO,X}$  is the number mixing ratio of INP active at temperature T for given 517 species X;  $\Omega_X$  is the total surface area mixing ratio of particles with diameters  $D_X$  greater than 518 <u>0.1 µm;</u>  $d\Omega_X/dn_X \approx \pi D_X^2$ . The normalized size distribution of given bioaerosol species is 519 given by  $dn_X/d\log D_X$ . In Eq. (2),  $H_X$  is the empirically determined fraction that inhibits 520 nucleation in substantially water-subsaturated conditions. The factor  $\xi$  varies between 0 to 1 521 and considers the fact during laboratory experiments drop freezing was not observed at 522 temperatures warmer than a certain threshold in the laboratory observations. The parameter 523  $\omega_{X,1*}$  depends on bioaerosol type with the dimensions of area (m<sup>2</sup>). The values of 524  $\omega_{X,1*}$  shown for PLN and DTS are 0.1 m<sup>2</sup>. For FNG and BCT the values of  $\omega_{X,1*}$  are 9.817  $\times$  10<sup>-5</sup> and 9.12  $\times$  10<sup>-5</sup> m<sup>2</sup> respectively. The slope of the fitted curve ( $\gamma_X$ ) has a 525 526 <u>constant value of  $0.5 \text{ C}^{-1}$ .</u>

Deleted: PBAPs
Deleted: including:-

Deleted: em

527

514

| 532 | The concentration, of algal particles at the ATTO, site was much smaller than our detection         | D  | eleted: s                               |
|-----|-----------------------------------------------------------------------------------------------------|----|-----------------------------------------|
|     |                                                                                                     | D  | eleted: Amazon Tall Tower Observatory ( |
| 533 | threshold, so we could not use a similar empirical treatment for ALG. The frozen fraction for       | D  | eleted: )                               |
| 534 | the algal particles (Diatom cell, Thalassiosira pseudonana) available in the literature is used     | D  | eleted: were                            |
|     |                                                                                                     | D  | eleted: , T. pseudomonas                |
| 535 | to estimate INPs from ALG (Wilson et al. 2015). The frozen fraction is given by eq. (3)             | D  | eleted: PT21 elaborate further.         |
| 536 | $f_{algae}(T) = A_1 + \frac{(A_2 - A_1)}{1 + 10^{(B+T) \times p}} $ (3)                             |    |                                         |
| 537 | <u>where</u> $A_1 = -0.03, A_2 = 0.993, B = 27.73$ , and $p = 0.399$ .                              |    |                                         |
| 538 | <u>Also</u> $f_{algae}(T) = 0$ at $T > -24 ^{\circ}C$ and $f_{algae}(T) = 1$ at $T < -35 ^{\circ}C$ |    |                                         |
| 539 | For the given concentration of algal particles in the air $(n_{algae})$ the active INP from ALG is  | D  | eleted: are                             |
|     |                                                                                                     | Fc | ormatted: Indent: First line: 0 cm      |
| 540 | given by                                                                                            |    |                                         |
| 541 | $n_{IN\_BIO,X} = f_{algae} \times n_{algae} (4)$                                                    |    |                                         |
| 542 |                                                                                                     |    |                                         |
| 543 |                                                                                                     |    |                                         |
| 544 | 3.3 Model setup                                                                                     |    |                                         |
| 545 | AC was driven by initial and evolving boundary data for meteorological conditions. The              |    |                                         |
| 546 | large-scale advection of humidity and temperature tendencies maintained the convection.             |    |                                         |
| 547 | Convection was initiated by imposing perturbations onto the initial field of vapour mixing          |    |                                         |
| 548 | ratio. The large-scale forcing condition used for the simulation was derived using the              | M  | oved (insertion) [2]                    |
| 549 | constrained variational analysis method described in Xie et al (2014), Based on this method,        | D  | eleted: (                               |
| 550 | the so-called large-scale forcing including large-scale vertical velocity and advective             |    | eleted: .                               |
| 550 | the so-caned large-scale foreing meriding large-scale vertical vertical vertical vertical           |    | eleted: ;<br>eleted: Jensen et al. 2016 |
| 551 | tendencies of temperature and moisture were derived from the sounding measurements                  |    | eleted: Jensen et al. 2016              |
| 552 | network. During the MC3E campaign, the sounding network consists of five sounding                   |    | ·)                                      |

stations centered on a sixth site at the ARM SGP central facility (CF). An area with a

| 566 | diameter of a | approximately | 300 km was | covered by | this sounding | network covers. | Additional |
|-----|---------------|---------------|------------|------------|---------------|-----------------|------------|
|     |               |               |            |            | -             |                 |            |

567 details about the sounding data are described in section 2.3. Figure S1 shows the time height

568 evolution of potential temperature and water vapor mixing ratio from large-scale forcing data.

569 It also shows the time variation of CAPE based on observations. The maximum value of

570 <u>CAPE 2400 JKg<sup>-1</sup> was noticed around 12 UTC on 20<sup>th</sup> May.</u>

The model simulations were carried out for a three-dimension domain of 80 km x 80 km with horizontal grid spacings of 2 km. In vertical, the model resolution was 0.5 km, and the model top was located at about 16 km. The lateral boundary conditions are doubly periodic on all sides of the domain. The initial time of the simulations was at 1200 UTC on 19 May 2011 and all simulations were performed for 48 hours at a time step of 10 seconds.

577

571

| Deleted: provides additional details about | _ |
|--------------------------------------------|---|
|                                            | _ |

**Deleted:** for the simulated time period

Deleted: domain

|  | Deleted: ¶                           |
|--|--------------------------------------|
|  | Formatted: Superscript               |
|  | Formatted: Superscript               |
|  | Formatted: Tab stops: 12,28 cm, Left |
|  |                                      |

**Moved up [2]:** The large-scale forcing condition used for the simulation was derived using the constrained variational analysis (Xie et al. 2014; Jensen et al. 2016). The initial time

| Deleted: 1 |  |  |
|------------|--|--|
|            |  |  |
|            |  |  |
|            |  |  |
|            |  |  |
|            |  |  |

Deleted: the total organic carbon (

Deleted: )

The GOCART model (Chin et al. 2000) was used to initialize the seven chemical species 578 associated with the EP. The data from the three IMPROVE sites mentioned above (Section 579 580 2.3) was used to rescale the mass concentration profiles at all levels so that they match the 581 measurements near the surface. Table 2 lists the mass mixing ratios of various aerosol species after the corrections. The corresponding vertical profiles of various aerosol species including 582 583 sulfate, dust, sea salt, black carbon, and total organic carbon are shown in Supplementary Figure S2 (panel a-e). The corresponding IMPROVE measurements are also shown in the 584 585 same Figure. There were no direct measurements of PBAP mass during IMPROVE and 586 therefore it was derived from the measured mass of the total organic carbon (TOC). The 587 relative contribution of insoluble and soluble organic carbon to TOC, was assumed to be 20% and 80%, respectively by assuming a water-soluble fraction of 80% for carbonaceous aerosol 588 589 (Phillips et al. 2017b). AC takes into account the soluble fraction of each type of aerosol. The

values of this factor are 0.15 for dust, and 0.8 for carbonaceous species. The value of this
 fraction for all PBAP groups is 0.1.

## 602

603 There are very observations available in the literature showing the fraction of PBAP in the 604 insoluble organics or total aerosol particles. For example, observations by Matthias-Maser et 605 al. (2000) found that 25% of the total insoluble particles are biological. PBAPs can contribute 606 a significant fraction to the number concentrations of total aerosol particles (Mattias-Maser et 607 al., 1999). Mattias-Maser and Jaenicke (1995) showed that PBAPs can amount to 20% and 608 30% of the total aerosol particles. The observation by Jaenicke (2005) in a semi-rural location 609 showed that cellular particles can contribute up to about 50% of total particles. Based on 610 these studies we assumed that 50% of the insoluble organics were biological in origin. The 611 total <u>PBAP</u> loading was prescribed partly based on observations of insoluble organics. The 612 mass fraction of each PBAP group in total PBAP mass is prescribed based on the PT21 613 observations. The fraction of mass mixing ratio for various PBAP groups is: FNG= 0.39, <u>BCT= 0.13; PLN= 0.31; DTS= 0.17; ALG= 2.5  $\times$  10<sup>-4</sup>.</u> 614 615

| Deleted: Due to a lack of observational d | lata, it was |
|-------------------------------------------|--------------|
|                                           |              |
| Deleted: parsimoniously                   |              |
|                                           |              |
| Deleted: PBAP                             |              |
|                                           |              |
| <b>Deleted:</b> and partly                |              |
| Deleted: assumed fraction                 |              |

# 613

| 616 | It should be noted that the observations of PBAPs over different geographical locations     |
|-----|---------------------------------------------------------------------------------------------|
| 617 | (including the region where we carried out the simulation) are rare, which prevents us from |
| 618 | using the region-specific PBAP observations for the present study. Hence, PT21's default    |
| 619 | observations were used to calculate the relative contribution of various PBAP groups to     |
| 620 | insoluble organics. The parameters for the shape of PSD of each PBAP group (modal mean      |
| 621 | diameters, standard deviation ratios, and relative numbers in various modes) are prescribed |
| 622 | based on observations from Amazon (PT21). Supplementary Figure S3 depicts the               |
| 623 | corresponding size distribution of various PBAP groups in AC. The figure depicts unimodal   |
|     |                                                                                             |

**Deleted:** PT21's observations were used to calculate the relative contribution of various PBAPPBAP groups to insoluble organics. ...

| 32 | size distribution for FNG, BCT, PLN, and ALG, whereas DTS has a bimodal size                                                                                                                                                                                                                                                                                                |  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 33 | distribution. To check the validity of the observation from PT21 over the region considered in                                                                                                                                                                                                                                                                              |  |
| 34 | the current study, the model estimated values of one of the major PBAP bacteria are                                                                                                                                                                                                                                                                                         |  |
| 5  | compared with the observations as shown in Figure S4. It shows that the estimated values of                                                                                                                                                                                                                                                                                 |  |
|    | bacterial number concentration are overall in fair agreement with previous observations (e.g.                                                                                                                                                                                                                                                                               |  |
|    | Bowers et al 2009; Bauer et al. 2002; Burrows et al. 2009). The simulated bacterial (~ 10 <sup>4</sup> m <sup>-</sup>                                                                                                                                                                                                                                                       |  |
|    | $\frac{3}{2}$ and fungal (~ $10^3$ m <sup>-3</sup> ) number concentration by AC is in good agreement with their typical                                                                                                                                                                                                                                                     |  |
|    | concentration in the atmosphere (Després et al. 2012). The resulted vertical profiles of mass                                                                                                                                                                                                                                                                               |  |
|    | of the various PBAP groups are shown in Figure S2 (panel f).                                                                                                                                                                                                                                                                                                                |  |
|    | From these prescribed loadings of aerosol species, AC predicts their size distribution and<br>hence the CCN activity spectrum. Using the initial sounding and aerosol profile, AC can<br>predict the in-cloud size distribution of aerosols in each species as well as in-cloud<br>supersaturation. To validate this prediction, Figure 2, shows the predicted CCN spectrum |  |
|    | compared with observations from the CCN counter at the surface at the SGP site.                                                                                                                                                                                                                                                                                             |  |
|    | It should be noted that the aerosol mass loading from IMPROVE observations showed                                                                                                                                                                                                                                                                                           |  |
|    | variations of 20-30% for the simulated case. The uncertainties in the input aerosol mass                                                                                                                                                                                                                                                                                    |  |
|    | loading can result in simulated CCN concentration and are shown by the errors in the CCN                                                                                                                                                                                                                                                                                    |  |
|    | concentration predicted by the AC. During 19-20 May, the measured number concentration                                                                                                                                                                                                                                                                                      |  |
|    | of active CCN at the SGP CF ranged from 400 to 3000 cm <sup>-3</sup> at 1% supersaturation (Fridlind                                                                                                                                                                                                                                                                        |  |
|    | et al. 2017). The measurements were made on 20 May before the start of the rain in clear air.                                                                                                                                                                                                                                                                               |  |

Deleted: 1

**Deleted:** The parameters for the shape of PSD of each PBAPPBAP group (modal mean diameters, standard deviation ratios, and relative numbers in various modes) are prescribed based on observations from Amazon (PT21). ¶

Deleted: 1 Deleted: c

654



## 690 4. Results from control simulation and model validation

# 691 *4.1 Overview of the control simulation*

An intense north-to-south oriented squall line moved over the ARM SGP CF on May 20, 2011, from 1100 to 1400 UTC (Sec. 2.1). The new version of AC simulated this case, after implementing the empirical formulation by PT21 for multiple groups of <u>PBAP</u> INPs ('control' simulation) (Sec. 3). <u>It should be noted that five ensemble runs were carried out for</u> control simulation (See Table 3) varying the perturbing in the initial water vapor mixing for ratio.

698

i.

| 699 | Figure 3 shows the time-height evolution of various liquid and ice cloud microphysical                |
|-----|-------------------------------------------------------------------------------------------------------|
| 700 | parameters derived from the control simulation conditionally averaged over cloudy regions.            |
| 701 | The maximum average cloud droplet number concentration was around 250 cm <sup>-3</sup> . The LWC      |
| 702 | was typically less than 0.5 g m <sup>-3</sup> . The freezing level (0°C) was around 4.1 km above MSL. |
| 703 | The deep convection began around 10 UTC, followed by intense precipitation around 11                  |
| 704 | UTC, and reached its peak around 12 UTC. The time-height evolution of cloud ice, snow,                |
| 705 | and graupel number concentrations shows maxima shortly before 12 UTC, which coincides                 |
| 706 | with the time of peak precipitation. This suggests that the ice phase was important in                |
| 707 | precipitation formation.                                                                              |

708

Deleted: PBAP



Figure 3: Time-height contours of domain averaged a) cloud water mixing ratio (QCLOUD);
b) cloud droplet number concentration (CDNC); c) rainwater mixing ratio (QRAIN); d)
number concentration of cloud ice (NICE); e) number concentration of snow (NSNOW); f)
number concentration of graupel (NGRAUPEL). Due to a wide range of values, the log
values number concentrations are plotted. The surface height is ~ 500 m. The averaging was
done for cloud points with LWC > 0.001gm<sup>-3</sup> or total water content (TWC )> 10<sup>-6</sup> gm<sup>-3</sup>. Also
shown is the time-height evolution of domain averaged (g) radar reflectivity.

719 The time-height map of simulated radar reflectivity during 20 May, unconditionally averaged 720 over the whole domain is shown in Figure <u>3g</u>. It shows the well-defined squall line passing 721 over the domain from 1100 to 1500 UTC. The maximum of this domain-wide simulated 722 reflectivity is around 40 dBZ (Fig. <u>3d</u>) when deep convection was happening. The 723 instantaneous maximum of reflectivity at any grid-point (not shown) was about 50 dBZ. At Deleted: 2

**Deleted:** Figure 2 shows the time-height evolution of various liquid and ice cloud microphysical parameters derived from the control simulation conditionally averaged over cloudy regions. The maximum of the average cloud droplet number concentration was around 250 cm<sup>-3</sup>. The liquid water contentLWC was typically less than 0.5 g m<sup>-3</sup>. The freezing level (0°C) was around 4.1 km above MSL. The deep convection began around 10 UTC, followed by intense precipitation around 11 UTC, and reached its peak around 12 UTC. The time-height evolution of cloud ice, snow, and graupel number concentrations shows maxima shortly before 12 UTC, which coincides with the time of peak precipitation. This suggests that the ice phase was important in precipitation formation.¶

Deleted: 2 Deleted: 2 other times, the average reflectivity was typical of the stratiform cloud of about 15 dBZ. The

cloud top height of the squall line decreases after 1400 UTC.

744

745

## 746 4.2. Model validation against coincident observations of the storm

The extended stratiform region of the squall line while in the vicinity of the SGP CF was 747 sampled by the Citation aircraft equipped with a full suite of cloud microphysical 748 749 instrumentation (Sec. 2). The aircraft started sampling the stratiform precipitation region at 750 around 1300 UTC and continued the observations at sub-freezing temperatures from 1335 to 1515 UTC. Occasionally, the aircraft encountered weak convective updrafts (< 6 m/s). The 751 752 aircraft actively avoided convection that was more vigorous than that. In this section, we validate various microphysical and dynamical quantities from the control simulation against 753 754 aircraft and ground measurements. The control run includes all primary and SIP processes of 755 ice initiation. The vertical profiles shown here are an average of five ensemble runs.

756

| 757 | Figure <u>4</u> compares the aircraft observations against predicted microphysical quantities, with Deleted: 3 |
|-----|----------------------------------------------------------------------------------------------------------------|
| 758 | both the predictions and observations identically averaged, conditionally over convective (6 >                 |
| 759 | /w/ > 1 m/s) and stratiform regions $/w/ < 1$ m/s). The simulated LWC decreases exponentially                  |
| 760 | with height above the cloud base. There is considerable scatter in observed LWC at each                        |
| 761 | level. The various degrees of dilution of sampled parts of the cloud can cause these                           |
| 762 | variations in LWC at a given altitude. The maximum simulated LWC of 0.5 gm <sup>-3</sup> was                   |
| 763 | observed in the convective region at temperatures warmer than -5°C. In the convective region                   |
| 764 | around -5°C, the measured LWC is lower than the simulated LWC by a factor of 3. For the Formatted: Superscript |
| 1   |                                                                                                                |

766 <u>stratiform region, simulated values of LWC are in adequate agreement with observations.</u>

767 Overall, the means of observed LWC are in <u>acceptable agreement</u> with the model results for

768 convective as well as stratiform regions.

769

| 770 | The vertical profiles of simulated and observed Cloud Drop Number Concentration (CDNC)                |
|-----|-------------------------------------------------------------------------------------------------------|
| 771 | (Fig. 4c and 4d) showed that CDNC was lower than 300 cm <sup>-3</sup> , In the convective region, the |
| 772 | measured CDNC is 40% lower than the simulated CDNC at 15°C. However, an adequate                      |
| 773 | agreement between them is found around -5°C. For the stratiform region, simulated CDNC is             |
| 774 | much higher in the mixed-phase region. However, at a temperature warmer than 0°C the                  |
| 775 | values of observed CDNC are in acceptable agreement with observations. The observed and               |
| 776 | simulated mean diameter of cloud droplets varied between 6 to 15 $\mu$ m over height (Figures 4e $<$  |
| 777 | and <u>4f</u> ). There are few points in the convective region e.g., around -5°C, where the observed  |
| 778 | cloud drop diameter is 50% lower than the simulated value. An adequate agreement between              |
| 779 | simulated and observed cloud drop diameter was found for the stratiform region. Overall, the          |
| 780 | predictions of average CDNC and cloud droplet diameter, in both convective and stratiform             |
| 781 | regions, show <u>a fair</u> agreement with observations.                                              |
| 782 |                                                                                                       |

The ice particle number concentration from observations and the control simulation is also
compared as shown in Figures 5a and 5b for convective and stratiform regions, respectively.
It should be noted that the observed number concentration of ice particle particles smaller
than 200 µm is prone to shattering, even with the use of the shattering correction algorithm.
This can introduce a significant bias in the observed ice number concentration (Korolev et al.,
1991). To avoid these biases, we have compared the number concentration of ice particles
with a diameter greater than 200 µm from both observation and model (denoted by 'NT200').

Deleted: good agreement

| Deleted: 3                                                                                |   |
|-------------------------------------------------------------------------------------------|---|
| Deleted: 3                                                                                |   |
| <b>Deleted:</b> Overall, the mean values convective and stratiform regions a observations |   |
| Formatted: Superscript                                                                    |   |
| Formatted: Superscript                                                                    |   |
| Formatted: Superscript                                                                    |   |
|                                                                                           |   |
| Deleted: -                                                                                |   |
|                                                                                           | < |

| 1 | Deleted: -             |
|---|------------------------|
| 1 | Deleted: 3e            |
| - | Deleted: 3f            |
| 1 | Formatted: Superscript |

Deleted: good



800 However, in the rest of the manuscript (in sensitivity studies), the number concentration from

the model included ice particles of all size ranges.

801

**Figure 4:** Comparison of the control simulations by AC with aircraft observations, for liquid water content conditionally averaged over (a) convective (6 m/s > /w/ > 1 m/s) and (b) stratiform (/w/ < 1 m/s) regions; cloud drop number concentration over (c) convective and (d) stratiform regions; average size of cloud droplets (< 20  $\mu$ m) conditionally averaged over (e) convective and (f) stratiform regions. All the vertical profiles shown here are averaged for the whole domain. The error bars were estimated based on five ensemble runs.

813

S14 Observations show that the concentration of ice particles gradually increases as the temperature decreases, as expected. The maximum ice number concentration from the aircraft observations (with  $D > 200 \,\mu$ m) is ~  $0.06 \,\mathrm{cm}^{-3}$  around -15 °C. Good agreement to within 50% at most levels, was found between the model simulated NT200 and that observed for the convective region.

819

820 In the stratiform region, at most levels, model values of NT200 have the same order of magnitude as observations. However, between about the -10 and -16°C levels, the stratiform 821 822 NT200 values are about half an order of magnitude lower than the observations. In similar 823 simulations of the 20 May case, Fan et al. (2015) and Fridlind et al. (2017) also showed 824 underestimation of <u>simulated</u> ice number concentrations. Compared to observations, their 825 simulations showed half an order of magnitude bias in ice crystal number concentration. 826 Comparatively, for the convective region, our model predicted ice number concentrations 827 were in better agreement with observations. As mentioned in section 2.2, imaging probe data is prone to shattering, and various corrections were used to rectify it. However, there are 828 829 currently no ways to determine how many undetected artifacts remain after shattering 830 corrections have been applied (Baumgardner et al. 2022). Such uncertainties in measured ice 831 number concentration could result in such bias in observed and simulated ice number 832 concentrations. In summary, though the AC model is not totally perfect, it did a fair job in 833 simulating observed ice number concentrations.

### Deleted: 3

#### Moved (insertion) [3]

Deleted: The ice particle number concentration from observations and the control simulation is also compared as shown in Figures 4a and 4b for convective and stratiform regions, respectively. It should be noted that the observed number concentration of ice particle particles smaller than 200 um is prone to shattering, even with the use of the shattering correction algorithm. This can introduce a significant bias in the observed ice number concentration. To avoid these biases, we have compared the number concentration of ice particles with a diameter greater than 200 um from both observation and model. However, in the rest of the manuscript, the number concentration from the model included ice particles of all size range. The number concentrations of ice particles from the model with a diameter larger than 200 µm (cloud ice, snow, graupel) (denoted by 'NT200') is compared with observed ice number concentrations from CIP as well as from combined probes including 2DC, CIP, and HVPS. Ice particles smaller than  $200 \ \mu m$  from these imaging probes were excluded due to difficulties in measuring small ice particles (Korolev et al., 1991) as well as to avoid contamination from large cloud droplets.Observations show that the concentration of ice

### Deleted: predicted

**Moved up [3]:** The number concentrations of ice particles from the model with a diameter larger than 200 µm (cloud ice, snow, graupel) (denoted by 'NT200') is compared with observed ice number concentrations from CIP as well as from combined probes including 2DC, CIP, and HVPS. Ice particles smaller than 200 µm from these imaging probes were excluded due to difficulties in measuring small ice particles (Korolev et al., 1991) as well as to avoid contamination from large cloud droplets. G

#### Deleted: 60 L

|  | Deleted: 1             |
|--|------------------------|
|  | Deleted: (             |
|  | Deleted: )             |
|  | Deleted: two-thirds of |
|  | Deleted: measured      |





876 Figure 5: Comparison of the control simulations by AC with aircraft observations, for ice 877 number concentration of all particles > 0.2 (NT200) mm in the maximum dimension of all 878 microphysical species (cloud ice, graupel/hail, snow), averaged over (a) convective (6 m/s > 879 |w| > 1 m/s) and (b) stratiform (|w| < 1 m/s) regions. (c) The vertical profile of simulated radar reflectivity conditionally averaged over all regions of significant reflectivity (> -20 880 dBZ) at each level is compared with observations from ground-based radars. The temperature 881 882 corresponding to each altitude is mentioned on the right axes; (d) predicted precipitation rate 883 (mm/hr) compared with ground observations at the SGP CF. All the vertical profiles shown 884 here are averaged for the whole domain. The error bars were estimated based on five 885 ensemble runs.



886 887

In Figure <u>5</u>c, the radar reflectivity from vertically pointing Ka-band ARM zenith radar is compared with the mean profile from model simulations. This figure illustrates that simulated

890 reflectivity profiles below roughly 3 km and above 8 km MSL altitudes are in good

Deleted: 4

Deleted: illustrates

agreement with observations. Between 3 and 8 km MSL (temperatures of 2 and -30°C), the bias in reflectivity from model simulations and observations is about <u>10 dBZ</u>. Thus, the simulated reflectivity is substantially higher than observed, particularly at levels where the aircraft sampled the clouds. Fridlind et al. (2017), as well as Fan et al. (2015), noticed similar overestimations of reflectivity within stratiform outflow of the squall line case on 20 May. They attributed the reflectivity biases to significantly larger ice particles in the simulations than observed.

902

903 Figure 5d compares the time series of precipitation rate from the control simulation with the 904 radar-based precipitation estimates. In both, control simulation and observations, a maximum 905 precipitation rate of about 5 mm/hr was noticed, with an error in the prediction of less than 906 5%. In comparison to observations, the simulated squall line arrives 1-2 hours later. The lack 907 of resolution of the 3D turbulence in the planetary Boundary Layer and uncertainties 908 associated with the 3D structure of initial and boundary conditions can all have an independent impact on the simulated rainfall structure, resulting in a delayed peak. 909 910 Nonetheless, AC has done a fair job in simulating the peak in the predicted precipitation rate.

911

912 4.3 Analysis of simulation with ice particle budgets and tagging tracers

913 The activated <u>PBAP</u> INPs from the control run are shown in Figure <u>6</u> for the convective and

914 stratiform regions. In addition to the PBAP INPs, Figure 6 also shows the activated INPs

915 from dust and black carbon. It should be noted that these concentrations shown here are based

916 on advective tagging tracers that follow the diffusion, ascent, and descent inside cloud

917 motions. Overall, bacterial, and fungal particles dominate the biological INP concentration in

Deleted: 7-8

Deleted: 4

Deleted: PBL

Deleted: good agreement Deleted: between predicted and retrieved precipitation rates is observed. ¶

|   | Deleted: PBAP          |
|---|------------------------|
|   | Deleted:               |
|   | Deleted: budget of the |
| Y | Deleted: 5             |





Figure 6: The activated number concentration INPs from various <u>PBAP</u> groups along with
dust (DUST) and black carbon (BC) and total INPs at various temperatures for (a) convective
and (b) stratiform regions. All the vertical profiles shown here are averaged for the whole
domain.

- 942
- 943

944 The formation of ice in a cloud is a result of several primary and secondary processes. It is

945 important to understand the relative importance of these processes in precipitation formation.

- To that end, Figure <u>7a shows the ice particles initiated from various sources throughout the</u>
- 947 3D domain of the entire simulation.

| - | Deleted: the maximum of                                                                                             |
|---|---------------------------------------------------------------------------------------------------------------------|
| 1 | Deleted: PBAP                                                                                                       |
| Υ | Deleted: 0.003 L-1                                                                                                  |
|   |                                                                                                                     |
| 1 | Deleted: 0.3 L-1                                                                                                    |
|   | <b>Deleted:</b> In addition to the PBAPPBAP INPs, Figure 5 also shows the activated INPs from dust and black carbon |



Deleted: PBAP



| -{ | Deleted: 5    |
|----|---------------|
| -{ | Deleted: PBAP |

| 2 |    |
|---|----|
|   | н. |
| 9 | -  |

| Deleted: in                              |
|------------------------------------------|
| Deleted: 6a a budget is provided for the |
| Deleted: total numbers of all            |
| Deleted:                                 |







976 <u>The primary homogeneous (PRIM HOM)</u> dominates the total ice budget. Among all SIP
977 mechanisms, breakup caused by collisions between various ice particles is the most important
978 in determining total ice number concentration. The ice production by sublimation breakup of



graupel is slightly lower than <u>PRIM\_HOM</u>. However, the contribution of ice production via sublimation breakup of dendritic ice crystals is negligible.

Deleted: homogeneous freezing

1000

1017

Figure 7b and 7c depict the relative importance of ice concentration from various SIP 1001 1002 mechanisms, as well as active INPs in determining total ice number as a function of 1003 temperature for convective and stratiform regions. Each source of ice displayed is tracked 1004 with advective "tagging tracers" throughout the simulation. Overall, at temperatures warmer 1005 than -15°C, the contribution to the total ice number concentration from various SIP is 2-3 orders of magnitude higher than the concentration of active INPs, highlighting the importance 1006 1007 of SIP mechanisms in ice formation. At -25°C, breakup in ice-ice collisions contributes 1008 around 75% and 20% of the total ice concentration in the convective and stratiform regions, 1009 respectively. At the same temperature, in both convective and stratiform regions, sublimation 1010 breakup and raindrop freezing contribute about 8% and 0.8 %, respectively. It can be 1011 observed that in the convective regions at temperatures warmer than -30°C, SIP mechanisms 1012 are important in determining the total ice concentrations, whereas at colder temperatures 1013 homogeneous nucleation is dominant. In the stratiform region, this crossover occurs at a much warmer temperature around -18°C. At temperatures colder than this homogeneous 1014 1015 nucleation is a major contributor to the total ice whereas at warmer temperatures SIP 1016 mechanisms prevail. Overall, the contribution of active INP to the total ice is lower than 3%.

Secondary ice formation via the HM process of rime-splintering contributes significantly to
ice production at temperatures warmer than about -15 °C (Fig. <u>7b and 7c</u>), enhancing the ice
concentration beyond the primary ice. <u>In the convective region, the contribution of the HM</u>
process in total ice can reach as high as 40% around -5°C. The simulated cloud droplet

Deleted: 6b

Deleted: s
Deleted: dependency on the ambient temperature of components of ice concentration from
Deleted: and total ice number concentration

| -      | Deleted: 30 |
|--------|-------------|
| $\top$ | Deleted: 1  |
| Υ      | Deleted: 2  |

|         | Deleted: 50            |
|---------|------------------------|
|         | Deleted: 10            |
|         | Deleted: for           |
|         |                        |
| - <br>- | Deleted: 7             |
|         | Deleted: 5             |
| -       | Formatted: Superscript |

Formatted: Superscript

Deleted: 6

Deleted: b

**Deleted:** In the convective region, the contribution of this process to the total ice concentration is maximum around -  $5^{\circ}C$  (about 30%)....

| 1041 | diameter is mostly smaller than 15 $\mu$ m. It is smaller than the cloud droplet size required for     |
|------|--------------------------------------------------------------------------------------------------------|
| 1042 | the HM process to occur. In AC, the rate of the rime-splintering mechanism depends on the              |
| 1043 | concentration of droplets > 24 $\mu$ m. <u>It should be noted that in the AC model HM process is</u>   |
| 1044 | treated with a factor multiplying the fragment emission which depends on the cloud droplet             |
| 1045 | size. This factor is zero for cloud diameter below 16 $\mu$ m and unity above 24 $\mu$ m with linearly |
| 1046 | interpolated in between.                                                                               |
| 1047 |                                                                                                        |

## 1048 5. Results from sensitivity tests about <u>the</u> influence <u>of PBAP</u>

1054

1049 To quantify the effect of multiple types of <u>PBAPs</u> on cloud properties, sensitivity tests were 1050 performed by modifying the control simulation and comparing the perturbed simulations with 1051 it.

1052Table 3: Description of various sensitivity simulations carried out in the current study. The1053corresponding figures for each simulation are also mentioned.

| Simulation               | PBAP_included            | Changes in        | Cloud processes        | Corresponding     |   |
|--------------------------|--------------------------|-------------------|------------------------|-------------------|---|
|                          |                          | initial PBAP      | switched on/off        | figures           | ] |
|                          |                          | mass              |                        |                   |   |
| control (five ensembles) | ALL PBAPs act as CCN     | -                 | All cloud processes in | Figures 4 onward  |   |
|                          | and INP                  |                   | the AC are on          | all,              | / |
| no-PBAP (five            | No PBAP can act as CCN   | All PBAPs         | Same as control        | Figures 8, 9, 10, | / |
| ensembles                | and INP                  | mass was set to   |                        | 11.12             |   |
|                          |                          | zero              |                        |                   | / |
| no-PBAP INP (five        | No PBAP, can act as INP  | _                 | Same as control        | Figures 8, 9, 10, |   |
| ensembles                | (CCN activity of PBAP is |                   |                        | 11, 12,           |   |
|                          | <u>on)</u>               |                   |                        |                   |   |
| high-PBAP (five          | Same as control          | All PBAPs         | Same as control        | Figures 8, 9, 10, |   |
| ensembles)               | Same as control          | mass was          | Same as control        | <u>11, 12</u>     |   |
| chisenioies              |                          | <u>111035 Wd5</u> |                        | 11, 1.54          |   |

## Deleted: represents the observed dependency of

**Deleted:** The fluctuations in CCN concentration in the boundary layer can result in larger cloud droplet diameters in some parts of the cloud, favouring secondary ice formation via the HM process.It

| Deleted: from                             |  |
|-------------------------------------------|--|
| Deleted: PBAP                             |  |
| Deleted: PBAPs                            |  |
| Deleted: studies                          |  |
| Formatted: Font: 8 pt                     |  |
| Formatted: Font: 8 pt                     |  |
| Formatted Table                           |  |
| Formatted: Font: 8 pt                     |  |
| Formatted: Font: 8 pt                     |  |
| Deleted: C                                |  |
| Deleted: s                                |  |
| Formatted: Font: 8 pt                     |  |
| Formatted: Font: 8 pt                     |  |
| Formatted: Font: 8 pt                     |  |
| <b>Deleted:</b> 3, 4, 7,8,9,10,13, 14, 15 |  |
| Deleted: -                                |  |
| Formatted: Font: 8 pt                     |  |
| Formatted: Font: 8 pt                     |  |
| <b>Deleted:</b> 7, 8, 9,10                |  |
| Formatted: Font: 8 pt                     |  |
| <b>Deleted:</b> 7, 8, 9,10                |  |
| Formatted: Font: 8 pt                     |  |
| <b>Deleted:</b> 7, 8, 9,10                |  |
| Formatted: Font: 8 pt                     |  |

|                        |                 | -              |                          |                   |
|------------------------|-----------------|----------------|--------------------------|-------------------|
|                        |                 | boosted by a   |                          |                   |
|                        |                 | factor of 10   |                          |                   |
|                        |                 |                |                          |                   |
| very high-PBAP (five   | Same as control | All PBAP mass  | Same as control          | Figures 8, 9, 10, |
| ensembles)             |                 | boosted by a   |                          | <u>11, 12</u>     |
|                        |                 | factor of 100  |                          |                   |
|                        |                 |                |                          |                   |
| ultra high-PBAP (five  | Same as control | All PBAP mass  | Same as control          | Figure 8, 9       |
| ensembles              |                 | boosted by a   |                          |                   |
|                        |                 | factor of 1000 |                          |                   |
|                        |                 |                |                          |                   |
| no-sublimation breakup | Same as control | <u> </u>       | SIP from sublimation     | Figure 13         |
|                        |                 |                | breakup is off           |                   |
|                        |                 |                | bicakup is on            |                   |
| No-collisional ice-ice | Same as control |                | SIP from the collision   | Figure 13         |
| breakup                |                 |                | between ice particles is |                   |
|                        |                 |                |                          |                   |
|                        |                 |                | off                      |                   |
| No-secondary           | Same as control |                | ALL SIP mechanisms       | Figures 13, 14    |
|                        |                 |                |                          |                   |
|                        |                 |                | are off                  |                   |
| very high-PBAP with no | Same as control | All PBAP mass  | ALL SIP mechanisms       | Figure 14         |
| secondary              |                 | boosted by a   | are off                  |                   |
|                        |                 | factor of 100  |                          |                   |
|                        |                 |                |                          |                   |

| Formatted: Font: 8 pt      |   |
|----------------------------|---|
| Formatted: Font: 8 pt      |   |
| <b>Deleted:</b> 7, 8, 9,10 |   |
| Formatted: Font: 8 pt      |   |
| Deleted: 9                 |   |
| Formatted: Font: 8 pt      |   |
| Formatted: Font: 8 pt      |   |
| Formatted: Font: 8 pt      |   |
| Deleted: no-fng            | ( |
| Deleted: 14                |   |
| Formatted: Font: 8 pt      |   |
| Formatted: Font: 8 pt      |   |
| Deleted: 14                |   |
| Formatted: Font: 8 pt      |   |
| <b>Deleted:</b> 14, 15     |   |
| Formatted: Font: 8 pt      |   |
|                            |   |
| Deleted: 15                |   |

Simulations were performed by eliminating all <u>PBAPs</u> from the control ('no-<u>PBAP</u>' case) and 1072 1073 by multiplying their initial loadings at all levels by factors of 10 and 100 ('high-<u>PBAP</u>' and 1074 'very high-<u>PBAP</u>' cases) respectively. Comparison with the control simulation reveals the 1075 overall effect from both the CCN and IN activities of all bioaerosols combined. These factors 1076 are justified by considering the variations in <u>PBAP</u> concentrations in the range of about 0.1 to 30 L<sup>-1</sup> over North American forests (Huffman et al. 2013). An additional simulation was 1077 1078 conducted with a 1000-fold increase in initial <u>PBAP</u> loading ('ultra high-<u>PBAP</u>') to investigate if these unrealistically high concentrations of <u>PBAPs</u> could affect the ice phase in 1079 a purely hypothetical scenario. Five ensemble runs were carried out for all major simulations 1080

| Del  | eted: <#>All PBAPsPBAP¶ |
|------|-------------------------|
| Dele | ted: PBAPs              |
| Dele | ted: pbap               |
| Dele | ted: pbap               |
| Dele | ted: pbap               |

Formatted: Font: 8 pt Formatted: Font: 8 pt Formatted: Font: 8 pt

Formatted: Indent: First line: 0 cm

| -{ | Deleted: PBAP |
|----|---------------|
| -{ | Deleted:      |
|    |               |

| -1 | Deleted: PBAP        |
|----|----------------------|
| 1  | Deleted: <i>pbap</i> |
| -1 | Deleted: PBAPs       |

1098 involving perturbations in PBAP loading. The ensemble runs were carried out by varying the 1099 perturbation in initial conditions (water vapor mixing ratio). 1100 1101 Additional simulations were performed by removing treatment of biological IN activity in the 1102 EP ('no-PBAP INP' case) relative to the control run. A comparison of both additional 1103 simulations against the corresponding simulations with the full change in the **PBAP** loadings 1104 (no-<u>PBAP</u> and high-<u>PBAP</u> cases) reveals the separate roles of the INP and CCN activities for the changes in biological material. Apart from these changes in **PBAPs**, the perturbed 1105 1106 simulations are identical to the control run. 1107 1108 Figure 8 reveals the effects of all bioaerosols on cloud properties in the convective region 1109 (/w) > 1 m/s). Overall, changes in cloud microphysical properties including liquid water 1110 content, cloud droplet size, cloud drop number concentration, ice number concentration are 1111 less sensitive to the changes in PBAPs for the convective part of the simulated clouds and are 1112 not statistically significant. The LWC, cloud droplet number and cloud drop diameter in the 1113 perturbed simulations does not differ much (< 3%) from the control run. For the whole storm, 1114 considerable changes in the spatial distribution of total ice number concentration are observed 1115 due to changes in PBAPs (see Figure S5). However, vertical profiles showed very small changes in the ice number concentrations. In the convective region, changes in ice crystal 1116 1117 number concentration due to changes in PBAPs are negligible (< 6%). This includes the 1118 extreme changes in bioaerosol loading (ultra high-PBAP case).

| -{     | Deleted: pbap       |
|--------|---------------------|
| $\neg$ | Deleted: Comparison |
| -{     | Deleted: PBAP       |
| 0      |                     |
| 1      | Deleted: pbap       |
| ٦      | Deleted: pbap       |
| -      | Deleted: PBAPs      |





**Figure 8:** The temperature dependence of the (a) liquid water content, the (b) cloud droplet number, (c) the cloud droplet diameter, and the (d) total ice number concentration for 'control' simulation and various sensitivity runs involving a change in total <u>PBAP</u> number concentrations for in the convective region. The averaging conditions are mentioned at the top of each figure. The ice number concentration from the ultra high-<u>PBAP</u> is also shown in panel d. All the vertical profiles shown here are averaged for the whole domain.





1134

**1**140 **Table 4:** Changes in mean cloud macro and microphysical properties associated with various sensitivity tests carried out.

1141

| Simulations            | Ice number o | conc. (cm <sup>-3</sup> ) |                   | LWC (g/m <sup>3</sup> ) |              |                   | Downward<br>shortwave | Downward                   | Cloud cover (%) | Accumulated<br>surface |
|------------------------|--------------|---------------------------|-------------------|-------------------------|--------------|-------------------|-----------------------|----------------------------|-----------------|------------------------|
|                        |              |                           |                   |                         |              |                   | radiation flux        | longwave<br>radiation flux |                 | precipitation          |
|                        |              |                           |                   |                         |              |                   |                       |                            |                 | <u>(mm)</u>            |
|                        | <u>Total</u> | <u>Convective</u>         | <u>Stratiform</u> | <u>Total</u>            | Convective.  | <u>Stratiform</u> |                       |                            |                 |                        |
| control                | <u>0.76</u>  | <u>0.47</u>               | <u>0.052</u>      | <u>0.128</u>            | 0.285        | <u>0.063</u>      | <u>165.28</u>         | <u>136.8</u>               | 0.231           | 20.10                  |
| no-PBAP                | <u>0.72</u>  | <u>0.46</u>               | 0.057             | <u>0.13</u>             | <u>0.281</u> | <u>0.069</u>      | <u>163.42</u>         | <u>139.6</u>               | <u>0.224</u>    | <u>19.92</u>           |
| no-PBAP INP            | <u>0.80</u>  | <u>0.48</u>               | 0.053             | <u>0.13</u>             | 0.287        | 0.068             | <u>164.7</u>          | <u>137.3</u>               | <u>0.229</u>    | <u>20.14</u>           |
| high-PBAP              | <u>0.71</u>  | <u>0.44</u>               | <u>0.050</u>      | <u>0.14</u>             | <u>0.30</u>  | 0.068             | <u>168.1</u>          | <u>138.6</u>               | 0.227           | <u>19.96</u>           |
| very high-PBAP         | <u>0.73</u>  | 0.44                      | <u>0.043</u>      | <u>0.135</u>            | <u>0.29</u>  | <u>0.068</u>      | <u>166.07</u>         | <u>138.8</u>               | <u>0.24</u>     | 20.04                  |
| ultra high-PBAP        | <u>0.60</u>  | <u>0.48</u>               | <u>0.03</u>       | <u>0.141</u>            | <u>0.29</u>  | <u>0.070</u>      | <u>159.4</u>          | <u>133.1</u>               | <u>0.26</u>     | <u>20.70</u>           |
| no-sublimation         | <u>0.84</u>  | <u>0.52</u>               | <u>0.054</u>      | <u>0.12</u>             | 0.26         | <u>0.065</u>      | <u>184.1</u>          | <u>144.9</u>               | <u>0.21</u>     | 20.52                  |
| breakup                |              |                           |                   |                         |              |                   |                       |                            |                 |                        |
| No-collisional ice-ice | <u>1.82</u>  | <u>1.35</u>               | <u>0.21</u>       | <u>0.15</u>             | <u>0.32</u>  | 0.082             | <u>153.4</u>          | <u>123.6</u>               | <u>0.24</u>     | <u>15.41</u>           |
| breakup                |              |                           |                   |                         |              |                   |                       |                            |                 |                        |
| <u>No-secondary</u>    | <u>1.89</u>  | <u>1.45</u>               | <u>0.18</u>       | <u>0.15</u>             | <u>0.30</u>  | <u>0.08</u>       | <u>158.6</u>          | <u>115.7</u>               | <u>0.26</u>     | 24.23                  |
| very high-PBAP with    | <u>1.85</u>  | <u>1.38</u>               | 0.20              |                         | <u>0.30</u>  | <u>0.085</u>      | <u>208.3</u>          | <u>127.8</u>               | 0.28            | <u>23.95</u>           |
| no secondary           |              |                           |                   |                         |              |                   |                       |                            |                 |                        |

### Formatted: Font: Bold

**Formatted:** Width: 29,7 cm, Height: 21 cm, Header distance from edge: 1,25 cm, Footer distance from edge: 1,25 cm

1142 Figure 9 shows the corresponding effects in the stratiform region (/w) < 1 m/s) from all 1143 bioaerosols. The changes in warm microphysical properties as a result of changes in **PBAP** 1144 loadings are smaller than 10%. In this part of the cloud, the ice-microphysical parameters are 1145 comparatively more sensitive to the changes in <u>PBAP</u> than in the convective region. The <u>ultra</u> 1146 high-pbap case predicted \_ ~40% lower ice number concentration than the control run, 1147 However, these changes in ice number concentration are not significant as the error bars 1148 associated with ensemble members overlap. For the stratiform region, all other simulations 1149 considered here showed < 10% change in ice number concentrations compared to the control 1150 run. These changes in ice number concentration due to PBAPs are mostly controlled through their effect on homogeneous freezing above the -36°C level as shown in Figure 9e by tagging 1151 1152 tracer for homogeneous nucleation. These ice particles can then advect to lower levels 1153 affecting ice number concentrations in the mixed-phase region.

1155 Figure 10 shows the number of ice particles generated by homogeneous nucleation, various 1156 mechanisms of primary nucleation (10a), and secondary ice production (10b) per 10<sup>15</sup> ice 1157 particles for the entire storm. Homogeneous freezing dominates the ice production among the 1158 three broad types of ice formation mechanisms (heterogeneous and homogeneous ice 1159 nucleation, SIP). The maximum changes in ice nucleated through the primary ice mechanism 1160 are noticed for the very high-PBAP case and can be attributed to the 100-fold increase in all 1161 PBAP loading. The very high-PBAP simulation predicted a 15% lower number of 1162 homogeneously nucleated ice than the control run. The very high-PBAP cases predicted 1163 about 80% more primary ice crystals formed at temperatures warmer than -30°C. At temperatures colder than -30°C, this case predicted 20% more primary ice crystals than the 1164 1165 control run. The very high pbap case showed an increase in primary heterogeneous ice and a 1166 decrease in primary homogenous ice. Since the contribution of primary homogenous ice

1154

**Deleted:** Figure 7 reveals the effects of all bioaerosols on cloud properties in the convective region (/w/ > 1 m/s). Overall, changes in cloud microphysical properties including liquid water content, cloud droplet size, cloud drop number concentration, ice number concentration are less sensitive to the changes in PBAPsPBAP for the convective part of the simulated clouds than the stratiform part (Figure 9). The maximum change in simulated LWC is noted in the very-high pbapPBAP simulation at -25% and is less than 50% as compared to the control. The cloud droplet number and cloud drop diameter in the perturbed simulations does not differ much (< 5%) from the control run. In the convective region, changes in ice crystal number concentration due to changes in PBAPsPBAP are negligible. This includes the extreme changes in bioaerosol loading (ultra high-pbapPBAP case).

# Deleted: PBAP Deleted: very Deleted: PBAPs Deleted: no-pbapPBAP Deleted: INP Deleted: a Deleted: 6 Deleted: at -20°C Deleted: is could be associated with enhanced ice formation Deleted: since the cloud droplet number concentration at this level was slightly higher compared to the control run. At

this temperature level, the changes in ice number

1245 nucleation is much higher in determining the total ice number concentration when compared with primary homogeneous nucleation, the overall effect of the very high pbap case is a 1246 decrease in total ice number concentration as shown in Figure 9 and Table 4. 1247

1248



### Deleted: ¶

Figure 9e shows that at the colder temperatures ( $T < -20^{\circ}$ C) homogeneous freezing aloft with downwelling of homogeneously nucleated ice dominates the ice number in all simulations. The sensitivity of ice number concentrations to PBAPPBAP loading at temperatures colder than ¶

(a)

(c)

control

no-pbap

-30

10 10 Ice conc. from he

no-pbap INP





Deleted: PBAP

# Deleted: ultra Deleted: pbap Deleted: is

**Deleted:** -20°C is mostly associated with homogeneously nucleated ice downwelled in the mixed-phase from above. At temperatures warmer than -15°C the predicted ice number concentrations are less sensitive to the changes in bioaerosol loading. The biggest change was predicted for the very highpbapPBAP case, which had a 20% lower ice number concentration than the control run. The changes in snow and graupel mass (including warm and cold components) were lower than 10% (not shown here). ¶



**Deleted:** Figure 10 shows the number of ice particles generated by homogeneous nucleation, various mechanisms of primary nucleation (10a), and secondary ice production (10b) per 10<sup>15</sup> ice particles for the entire storm. Homogeneous freezing dominates the ice production among the three broad types of ice formation mechanisms (heterogeneous and homogeneous ice nucleation, SIP). The maximum changes in ice nucleated through the primary ice mechanism are noticed for the very high-pbapPBAP case and can be attributed to the 100-fold increase in all PBAPPBAP loading. The high-pbapPBAP cases predicted a 15% higher number of homogeneously nucleated ice than the control run. The very high-pbapPBAP cases predicted about 80% more primary ice crystals formed at temperatures warmer than -30°C. At temperatures colder than -30°C, this case prediced 20% more primary ice crystals than the control run. ¶



1273

1267

1274

74 \_\_\_\_\_

1275 Figure 10b shows that among SIP mechanisms, the contributions of ice-ice collision breakup

1276 and sublimation breakup are higher by an order of magnitude than the HM process and

1308 raindrop fragmentation. However, the budget analysis (not shown in the plot) showed that about 75% of the fragments associated with sublimation breakup are prone to evaporation, 1309 making ice-ice collision breakup a major SIP mechanism. The estimated ice enhancement 1310 ratio, which is a ratio between the number concentrations of total ice (excluding 1311 1312 homogeneous nucleation) and primary ice, is shown in Figures 10c and 10d for convective 1313 and stratiform regions respectively. Overall, the ice enhancement ratio varied between 10 to 1314  $10^4$  which indicates the importance of SIP mechanisms. The budget analysis shows that overall, the perturbations in bioaerosols resulted in very small changes (with maximum 1315 1316 change < 40%) in ice generated by SIP mechanisms.



Deleted: 5



**Figure 11:** The vertical profiles of (a) radar reflectivity are shown for simulations involving changes in <u>PBAP</u>. (b)The temporal evolution of the total surface precipitation rate averaged over the domain is also shown. The time series of surface precipitation rate averaged over the domain is also shown separately for (c) convective and (d) stratiform regions. All the vertical profiles shown here are averaged for the whole domain.

Deleted: PBAPs

1326 Figure 11a shows the effects of <u>PBAP</u> on the simulated radar reflectivity for the whole storm. 1327 When compared to the control run, there is no significant difference in the simulated radar 1328 reflectivity of the perturbed simulations (< 4%). Figure 11b depicts the sensitivity of the total 1329 surface precipitation rate averaged over the domain to the changes in total PBAPs. As shown 1330 in Figure 11b, the peak in surface precipitation rate is boosted by about 10% in the very high-1331 <u>PBAP</u> cases compared to the control run. In remaining perturbed simulations, changes in 1332 surface precipitation rate are less than 5% when compared with the control run. The contribution from the stratiform component of rain is higher in the total amount of rain (90%) 1333 as compared to the convective rain (remaining 10%) (see Fig. 11c and 11d). Convective 1334 1335 rainfall is more sensitive to the changes in **PBAPs** than stratiform rainfall. The increase in 1336 <u>PBAPs</u> by 100-fold results in a 50% higher peak of convective rainfall rate as compared to 1337 the control run.

The changes in accumulated surface precipitation due to PBAPs are shown in Table 4. The
 spatial distribution of accumulated surface rainfall shows considerable variation associated
 with changes in PBAPs (Figure S7). However, the overall effect of PBAPs on accumulated
 surface precipitation is minimal (< 4%).</li>

1344

1343

1338

Figure 12 shows the domain averaged vertical profiles of shortwave, longwave fluxes, and cloud fractions for the different sensitivity tests considered here. Among all the sensitivity runs, only the high-PBAP case showed a noticeable effect on shortwave flux, which was 2% higher than the control run. The variations in longwave fluxes were less than 1%. The vertical profiles of cloud fraction show that a 100-fold increase in total PBAPs results in a 10% higher cloud fraction between 8 and 12 km. However, the overall change in cloud fraction

| De | leted: | 1 |
|----|--------|---|
|    |        |   |

Deleted: PBAPs

| - | Deleted: PBAPs                                                                                          |  |  |  |  |  |
|---|---------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|   | <b>Deleted:</b> Overall, PBAPsPBAP have a minimal effect on surface precipitationAs shown in Figure 11b |  |  |  |  |  |
|   | <b>Deleted:</b> , and it is most effective during the period when precipitation is at its highest T T   |  |  |  |  |  |
|   | Deleted: T                                                                                              |  |  |  |  |  |
|   | Deleted: pbap                                                                                           |  |  |  |  |  |
|   |                                                                                                         |  |  |  |  |  |
|   |                                                                                                         |  |  |  |  |  |
|   |                                                                                                         |  |  |  |  |  |
| 1 | Deleted: PBAPs                                                                                          |  |  |  |  |  |

Deleted: PBAPs

from 100-fold increase in PBAP is less than 4% as shown in Table 4. The cloud fraction in
other sensitivity runs was less sensitive to the changes in PBAP loadings. The ultra high-pbap
case simulated a predicted 10% higher cloud fraction than the control run (see Table 4)



1368

Figure 12: The domain averaged vertical profiles of downward components of (a) shortwave
flux, (b) longwave flux, and (c) cloud fraction for various sensitivity experiments. The data
shown here is an unconditional average over the whole duration and domain of each
simulation. All the vertical profiles shown here are averaged for the whole domain.

1373 1<mark>3</mark>74

1375

10/0

1376

**Deleted:** Figure 12 shows the domain averaged vertical profiles of shortwave, longwave fluxes, and cloud fractions for the different sensitivity tests considered here. Among all the sensitivity runs, only the high-pbapPBAP case showed a noticeable effect on shortwave flux, which was 3% higher than the control run. The variations in longwave fluxes were less than 1%. The vertical profiles of cloud fraction show that a 100-fold increase in total PBAPPBAP results in a 10% higher cloud fraction between 8 and 12 km. The cloud fraction in other sensitivity runs was less sensitive to the changes in PBAPPBAP loadings.¶

### 1388 **6.** Results from sensitivity tests about secondary ice production

Various sensitivity experiments were conducted to evaluate the role of SIP mechanisms in
determining micro- and macrophysical parameters of the clouds. <u>SIP through sublimation</u>
<u>breakup and breakup in ice-ice collisions were switched off in the 'no-sublimation breakup'</u>
and 'no-collisional ice-ice breakup' simulations, respectively, In the 'no-secondary' case, no
SIP mechanisms were active.

1394

1402

The results from these sensitivity experiments are shown in Figure <u>13</u> for the convective as well as the stratiform region of the simulated cloud. <u>Overall, in the convective region, the no-</u> secondary and no-collisional ice-ice breakup cases <u>predicted 5 and 12% higher LWC</u> respectively, than the control run (See Table 4). In the stratiform region, these cases predicted <u>~25% higher LWC than the control run.</u> Lower ice number concentrations due to the absence of SIP mechanisms may reduce the rate of conversion of liquid to ice via mixed-phase processes, resulting in a higher LWC.

1403 In the convective part, the absence of any SIP increased ice number concentration by half an 1404 order of magnitude at temperatures warmer than -25oC. Comparing the no-SIP and control 1405 cases, the effect of the inclusion of SIP mechanisms is to increase the average ice 1406 concentration by up to half an order of magnitude at temperatures warmer than -15°C in the 1407 stratiform region. For the stratiform region, at temperatures colder than this, the absence of 1408 SIP mechanisms resulted in higher ice number concentrations by a similar magnitude. These 1409 changes at the colder levels are associated with homogeneous droplet freezing. The changes in ice number concentration in the no-collisional ice-ice breakup case are comparable with 1410 the no-secondary case. Compared to break up in ice-ice collisions, sublimation breakup has a 1411

### **Deleted:** ¶ <#>Fungi and bacteria¶

To investigate the role of various PBAPPBAP groups on cloud properties, model simulations were carried out by eliminating most IN active PBAPPBAP groups including FNG and BCT from the control ('*no-fng*' and '*no-bct*' cases) run and by multiplying their initial loadings at all levels by a factor of 10 ('*high-fng*' and '*high-bct*' cases). The resulting sensitivity experiments are then compared to the control run to understand how these PBAPPBAP groups may affect cloud properties. ¶

**Deleted:** The microphysical processes of AC include several SIP mechanisms such as breakup in ice-ice collisions, raindrop freezing, sublimation breakup, etc. as mentioned in Section 3.1. ...

**Deleted:** The SIP mechanisms, including sublimation breakup and breakup in ice-ice collisions, were turned off in the control run in the 'no-sublimation breakup' and 'nocollisional ice-ice breakup' simulations....

Deleted: 14

Deleted: In

**Deleted:**, the LWC (Figure 14a) between -5 to -30°C is higher than in the control run for both in the convective (~50%) and stratiform region (~80%). ...

**Deleted:** The absence of all SIP mechanisms in the mixed-phase region results in a larger cloud droplet diameter (between 0.5 to 1  $\mu$ m) (not shown here)....

Deleted: from

Deleted: A



1471

regions.

1472



1473

1481

1482

1483

1484

**1474 Figure 13:** Temperature dependence of the liquid water content in (a) the convective and 1475 (b) the stratiform region for 'control' simulation and various sensitivity runs involving SIPs. 1476 The ice number concentration is also shown for the (c) convective and (d) stratiform regions. 1477 The averaging conditions are mentioned at the top of each figure. The vertical profiles of (e) 1478 radar reflectivity, (f) total specific differential phase are also shown for the same simulations. 1479 (g) The temporal evolution of the total surface precipitation rate averaged over the domain is 1480 also shown. All the vertical profiles shown here are averaged for the whole domain. Deleted: 14

Deleted: 14e

Deleted: 14f Deleted: 14g

**Deleted:** warmer than  $-25^{\circ}$ C in the stratiform region. In the convective part, the absence of any SIP increased ice number concentration by half an order of magnitude at temperatures warmer than  $-15^{\circ}$ C. At temperatures colder than this, the absence of SIP mechanisms resulted in higher ice number concentrations by a similar magnitude. The changes in ice number concentration in the no-collisional ice-ice breakup case are comparable with the no-secondary case. Compared to break up in ice-ice collisions, sublimation breakup has a lower impact (< 40%) on the total ice number concentration in both convective and stratiform regions.¶

The changes in simulated radar reflectivity, total specific differential phase, and surface

precipitation rate with SIP mechanisms are shown in Figures <u>13e</u>, <u>13f</u>, and <u>13g</u>, respectively

1500 for the whole storm. Overall, the simulated radar reflectivity was 1 dBZ lower in the no-SIP and no-collisional ice-ice breakup case than in the control run and can be attributed to the 1501 overall increase in ice number concentration in the control run. The no-sublimation case 1502 predicted slightly higher reflectivity than the control run. The absence of all SIPs resulted in 1503 1504 about a 100% decrease in the  $K_{\rm DP}$  at a temperature colder than -40°C. Between -10°C to -1505 30°C, the absence of no-collisional breakup and no-secondary resulted in higher  $K_{DP}$  (half an 1506 order of magnitude) values than the control run. The absence of all SIP mechanisms results in a higher surface precipitation rate (75%) during the peak rainfall hour, which occurs around 1507 1508 11.30 UTC compared to the control run. In the previous study, Phillips et al. (2017) have 1509 shown that SIP through ice-ice collision breakup can reduce accumulated surface precipitation in the simulated storm by 20%-40%. They attributed it to the increase in snow 1510 1511 particles competing for available liquid and the reduction in their growth by riming. It 1512 resulted in smaller ice particles and a reduction in surface precipitation.

1513

| 1515     | 7. Results about the influence of <u>PBAPs</u> in the absence of SIP mechanisms                     | <br>Deleted: PBAP    |
|----------|-----------------------------------------------------------------------------------------------------|----------------------|
|          |                                                                                                     |                      |
| 1516     | Most SIP mechanisms are highly active at temperatures above -15°C. The majority of <u>PBAP</u>      | Deleted: PBAPs       |
| <br>1517 | showed high ice nucleation activity occurs in this part of the cloud. Most of the ice               |                      |
| 1518     | concentration in this part of the cloud is determined by various SIP mechanisms. Thus, the          |                      |
| 1519     | SIP mechanisms may influence the role of <u>PBAPs</u> in altering cloud microphysical properties.   | Deleted: PBAPs       |
| 1520     | To investigate this aspect, an additional simulation was performed by eliminating all               |                      |
| 1521     | secondary ice processes from the control run and multiplying the initial loading of all <u>PBAP</u> | Deleted: PBAP        |
| 1522     | groups by a factor of 100 (the 'very high- <u>PBAP</u> with no SIP' case). The results of this      | Deleted: <i>pbap</i> |
| 1523     | simulation are then compared to the no-SIP case as shown in Figure <u>14</u> .                      | Deleted: s           |
|          |                                                                                                     | Deleted: 15          |

In the absence of any SIP mechanisms, the 100-fold increase in bioaerosols resulted in 1532 1533 minimal effect on ice number concentration. Overall, without SIP the increase in bioaerosol 1534 loading by 100-fold resulted in less than a 5% change in ice number concentration. This indicates that the ice produced by various SIP mechanisms does not alter the effect of 1535 bioaerosols on-ice number concentration in the simulated clouds. The changes in simulated 1536 1537 radar reflectivity due to a 100-fold increase in bioaerosols are negligible (< 0.5%) (Figure 1538 14c). The difference in predicted surface precipitation rate and accumulated precipitation 1539 between very high-<u>PBAP</u> with no-secondary and no-secondary cases was lower than 3%.



1540

1531

**Figure 14:** The temperature dependence of ice number concentration for the control, very high-<u>PBAP</u> with no SIP and no-SIP simulations averaged for (a) convective and (b) stratiform regions. The (c) vertical profile of radar reflectivity and the temporal evolution of (d) surface precipitation rate is shown for the entire simulation. All the vertical profiles

| -{ | Deleted: 15   |
|----|---------------|
| -{ | Deleted: pbap |

Deleted: 40

Deleted: 15c

Deleted: difference Deleted: pbap Deleted: 5

| 1553 | averaged for the whole domain.                                                                   |                      |                                                     |
|------|--------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------|
| 1554 | τ                                                                                                |                      | Deleted: ¶                                          |
| 1555 |                                                                                                  |                      |                                                     |
| 1556 | <u>8. Discussion</u>                                                                             |                      | Formatted: Font: Bold                               |
| 1557 | Five PBAP groups have been implemented in the mesoscale AC model to predict their ice            |                      | Formatted: Font: Not Bold                           |
| 1558 | nucleation activity based on the empirical formulation by PT21, The simulated concentrations     | $\square$            | Formatted: Font: Not Bold                           |
| 1559 | of major PBAPs including fungi and bacteria are of the same order of magnitude as results        | $\backslash \rangle$ | Formatted: Font: Not Bold                           |
| 1560 | from previous modeling studies (Després et al., 2012; Hoose et al., 2010b). Still, the relative  |                      | Formatted: Font: Not Bold                           |
|      |                                                                                                  |                      |                                                     |
| 1561 | abundance of PBAP groups over the simulated region is unknown due to the lack of                 |                      |                                                     |
| 1562 | measurements. The AC model was run with higher resolution (2 X 2 km) compared to                 | _                    | Formatted: Font: Not Bold                           |
| 1563 | previous studies on a global scale (Hoose et al., 2010b), to investigate the potential impact of |                      | Formatted: Font: Not Bold                           |
| 1564 | variations in PBAP concentration on the properties of simulated squall line events more          | $\backslash$         | Formatted: Font: Not Bold Formatted: Font: Not Bold |
| 1565 | clearly.                                                                                         |                      | Formatted: Font: Not Bold                           |
|      |                                                                                                  |                      |                                                     |
| 1566 |                                                                                                  |                      |                                                     |
| 1567 | Yet the control simulation is not perfectly accurate in all respects. In the stratiform region   |                      |                                                     |
| 1568 | between -10 and -16°C, the predicted ice number concentration was lower than observed by         |                      |                                                     |
| 1569 | aircraft by half an order of magnitude and in a fair agreement at temperatures warmer than -     |                      |                                                     |
| 1570 | 10°C. This uncertainty factor is similar to the uncertainty in the measurements due to various   |                      |                                                     |
| 1571 | biases (e.g., Field et al. 2006. Nevertheless, all other simulated cloud microphysical           |                      |                                                     |
| 1572 | parameters, radar reflectivity, and surface precipitation rate were in acceptable agreement      |                      |                                                     |
| 1573 | with aircraft and ground-based observations.                                                     |                      |                                                     |
| 1574 |                                                                                                  |                      |                                                     |

shown here are averaged for the whole domain. All the vertical profiles shown here are 1552

| 1576 | In the control simulation, the average ice concentration above the -30°C and -18°C levels is    |  |
|------|-------------------------------------------------------------------------------------------------|--|
| 1577 | dominated by downwelling of homogeneously nucleated ice from above the mixed-phase              |  |
| 1578 | region in convective and stratiform clouds respectively. Below both levels, SIP prevails. Both  |  |
| 1579 | processes of ice initiation (homogeneous freezing and SIP) have only weak sensitivity to        |  |
| 1580 | PBAPs, hence the weakness of the impact on simulated cloud glaciation.                          |  |
| 1581 |                                                                                                 |  |
| 1582 | Based on the sensitivity experiments, it can be concluded that PBAP INPs have only a limited    |  |
| 1583 | effect on the average state of the ice phase of the simulated clouds of this mesoscale          |  |
| 1584 | convective system. Most of the changes in ice number concentration associated with changes      |  |
| 1585 | in PBAPs are controlled by their effects on homogeneous nucleation and SIPs. The lower          |  |
| 1586 | dependence of simulated ice number concentration on changes in PBAPs is consistent with         |  |
| 1587 | the findings of Hummel et al. (2018). Based on ensemble simulations of the regional             |  |
| 1588 | atmospheric model for Europe, they showed that the changes in average ice crystal               |  |
| 1589 | concentration by biological INPs are very small and are not statistically significant, implying |  |
| 1590 | that PBAPs play only a minor role in altering the cloud ice phase. The limited effect of        |  |
| 1591 | PBAPs on cloud properties on a global scale has been highlighted in previous studies (Hoose     |  |
| 1592 | et al., 2010b; Sesartic et al., 2012, 2013; Spracklen and Heald, 2014).                         |  |
| 1593 |                                                                                                 |  |
| 1594 | The weakness of the simulated impact from realistic PBAP fluctuations is explicable mostly      |  |
| 1595 | in terms of the low contribution from biological ice nucleation compared to non-biological      |  |
| 1596 | INPs to overall ice initiation. In terms of ice nucleation efficiency and onset temperatures,   |  |
| 1597 | each PBAP group has different ice nucleation properties. Based on vertical profiles of active   |  |
| 1598 | INPs (Figures 6), the overall contribution of activated INPs from all PBAP groups to the total  |  |
| 1599 | active INPs was ~1%. At -15°C, temperature, the active INPs from dust and black carbon was      |  |

Formatted: Superscript

Formatted: Superscript

| 1600 | one order higher than PBAP INPs. At -30°C, the predicted INPs from dust and black carbon       |                           |
|------|------------------------------------------------------------------------------------------------|---------------------------|
| 1601 | were higher by one and two orders of magnitude, respectively, than PBAP INPs. The dust         |                           |
| 1602 | and black carbon INPs activated at these temperatures can be advected down to the levels       |                           |
| 1603 | where PBAP INPs are most important. Overall, this resulted in low sensitivity of the average   |                           |
| 1604 | ice phase to the changes in bioaerosol loading.                                                |                           |
| 1605 |                                                                                                |                           |
| 1606 | The ice production in the simulated cloud system at levels in the mixed-phase region (0 to -36 |                           |
| 1607 | °C) is largely controlled by various SIP mechanisms of which the most important is the         |                           |
| 1608 | breakup in ice-ice collisions. Some of these processes are active at temperatures warmer than  |                           |
| 1609 | -15°C (e.g., the HM process) where PBAP INP are important and expected to enhance the          | Formatte                  |
| 1610 | biological ice nucleation. However, our results showed that the ice production associated with |                           |
| 1611 | SIP mechanisms is less sensitive to the initial PBAP loading because SIP causes positive       |                           |
| 1612 | feedback of ice multiplication with ice fragments growing to become precipitation-size         |                           |
| 1613 | particles that then fragment again.                                                            |                           |
| 1614 |                                                                                                |                           |
| 1615 | In our study, 100-fold increase in PBAPs leads to a < 4% change in surface precipitation.      |                           |
| 1616 | Using mesoscale model simulations, Phillips et al. (2009) reported a 10% increase in           | Moved (in                 |
| 1617 | accumulated surface precipitation associated with deep convective clouds due to a 100-fold     | Deleted:                  |
| 1618 | increase in biological particles. Phillips et al. (2009) also noted an effect (up to 4%) on    | Deleted: 7<br>fungi and b |
| 1619 | surface shortwave and TOA longwave radiation flux because of changes in PBAP number            | precipitatio              |
| 1620 | concentration. In our study, the changes in PBAP loading caused smaller changes in             |                           |
| 1621 | simulated shortwave and longwave fluxes (< 3%). Sesartic et al. (2012, 2013) showed that       |                           |
| 1622 | including fungi and bacteria in the global climate model leads to minor changes (< 0.5%) in    |                           |
| 1623 | the ice water path, total cloud cover, and total precipitation.                                |                           |

Formatted: Superscript

Moved (insertion) [4]

**Deleted:** The perturbations in most active PBPAs such as fungi and bacteria showed little change in surface precipitation. ¶

| 1628 | ۸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | Formatted: Font color: Text 1                                              |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------|
| 1020 | It should be noted that the consistivity experiments around and in the around the last in the second state of the second state | (          |                                                                            |
| 1629 | It should be noted that the sensitivity experiments carried out in the current study are limited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\leq$     | Formatted: Font color: Text 1, Not Highlight                               |
| 1630 | to the small domain (80 X 80 km domain) representing a limited area of the global                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | Formatted: Font color: Text 1                                              |
| 1001 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Formatted: Font color: Text 1, Not Highlight                               |
| 1631 | ecosystem. Also, the model top was located at 16 km, and it may not represent the whole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | Formatted: Font color: Text 1                                              |
| 1632 | atmosphere. The results presented here are based on a mesoscale model and may not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | Formatted: Font color: Text 1, Not Highlight Formatted: Font color: Text 1 |
| 1633 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\searrow$ | Formatted: Font color: Text 1                                              |
| 1633 | represent the global impact of PBAPs on clouds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (          |                                                                            |
| 1634 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                            |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                            |
| 1635 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                            |
| 1636 | 9. Conclusions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _          | Deleted: 1                                                                 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 1                                                                          |
| 1637 | A framework describing the ice nucleation activity of five major groups of PBAPs including                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | ¶<br>¶                                                                     |
| 1638 | fungal spores, bacteria, pollen, viral particles, plant/animal detritus, algae, and their                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | ¶<br>¶<br>¶                                                                |
| 1639 | respective fragments was provided by PT21. The ice nucleation activity of these major PBAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | ¶<br>¶<br>¶                                                                |
| 1640 | groups in the EP was based on samples from the real atmosphere. The present study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                                                                            |
| 1641 | implements this EP in AC and investigates the role of these five PBAP groups as INPs in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | ן<br>1<br>1                                                                |
| 1642 | deep convective clouds. The high-resolution (2 km horizontally) simulations over a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | ¶<br>¶<br>¶                                                                |
| 1643 | mesoscale 3D domain (80 km wide) using AC elucidate the impact of these PBAP groups on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | ¶<br>¶                                                                     |
| 1644 | the cloud properties. A series of sensitivity experiments were conducted to test the impact of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | Deleted: 8 Deleted: Summary and                                            |
| 1645 | PBAP groups on cloud properties.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (          |                                                                            |
| 1646 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                            |
| 1010 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                            |
| 1647 | A mid-latitude squall line that occurred on 20 May 2011 during MC3E over the US Southern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                                                                            |
| 1648 | Great Plains is simulated with the model. The simulated number concentration of ice particles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                                                                            |
| 1649 | showed good agreement (to within about 50%) with aircraft observations for the convective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                                                                            |
| 1650 | clouds within the mesoscale system. In the stratiform region between -10 and -16°C, the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                                                                            |
| I    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                            |

1674 model predicted ice number concentration was lower than the aircraft observation by half an
 1675 order of magnitude and in a fair agreement at temperatures warmer than -10°C. Various
 1676 sensitivity experiments were carried out by perturbing the initial PBAP loading and by
 1677 altering various SIP mechanisms.

### 1678

Each PBAP group has diverse properties including its shape, size, and abundance in the atmosphere. A small fraction of PBAPs is found to be ice nucleation active and can therefore act as PBAP INPs. The relative contribution of each PBAP within the total PBAPs may vary from one ecosystem to another. In the current study, their relative contribution is based on previous observations from Amazonia and can be considered as the main limitations of this study. However, the simulated number concentrations of major PBAPs including fungi, and bacteria look reasonable and are close to their typical abundance in the atmosphere.

### 1686

1697

1687 Any perturbation in the PBAP concentration by factors up to 1000 assumed in the current 1688 study (resulted in maximum changes in ice number concentration by < 6% convective region 1689 and by < 40% in the stratiform region with respect to the control run. The simulations showed 1690 that simulated ice particle number concentration is much higher than the number 1691 concentrations of PBAP INPs. Even at temperatures warmer than -15°C, where PBAP INPs 1692 are thought to be the most important INP, ice crystals originated from primary heterogeneous 1693 nucleation of dust and black carbon from higher levels of the cloud frequently perturb the lower levels due to sedimentation. The major ice formation comes from SIP mechanisms and 1694 1695 homogeneous nucleation, both are less sensitive to the changes in PBAPs. Therefore, PBAP 1696 INPs do not show a significant impact on the average ice phase of the simulated storm.

### Deleted: ¶

Formatted: Font: (Default) Times New Roman, 12 pt Formatted: Font: (Default) Times New Roman, 12 pt Formatted: Font: (Default) Times New Roman, 12 pt

### Formatted: Superscript

**Deleted:** A framework describing the ice nucleation activity of five major groups of PBAPsPBAP including fungal spores, bacteria, pollen, viral particles, plant/animal detritus, alga, and their respective fragments was provided by PT21. The ice nucleation activity of these major PBAPPBAP groups in the EP was based on samples from the real atmosphere. The present study implements this EP in AC and investigates the role of these five PBAPPBAP groups as INPs in deep convective clouds. The high-resolution (2 km horizontally) simulations over a mesoscale 3D domain (80 km wide) using AC elucidate the impact of these PBAPPBAP groups on the cloud properties. A series of sensitivity experiments were conducted to test the impact of PBAPPBAP groups on cloud properties. ¶

Formatted: Normal, Justified, No bullets or numbering

| 1713 | <u>PBAPs have minimal effect on the warm microphysical properties of simulated clouds. The</u> | $\times$ | Form                     |
|------|------------------------------------------------------------------------------------------------|----------|--------------------------|
| 1714 | effect on liquid water content and cloud droplet number concentration was lower than 10% in    |          | Form                     |
| 1715 | both convective and stratiform regions. Since both ice and warm microphysical processes are    |          | Forn<br>Dele             |
| 1716 | less sensitive to PBAPs, surface precipitation is not affected significantly by changes in     | /        | A mi<br>durir<br>with    |
| 1717 | PBAPs. A 100-fold increase in all PBAPs resulted in less than a 5% change in surface           |          | parti<br>with            |
| 1718 | precipitation.                                                                                 |          | the n<br>conc<br>the s   |
| 1719 |                                                                                                |          | 16°C<br>simila           |
|      |                                                                                                |          | vario<br>relat<br>abou   |
| 1720 | ٠                                                                                              |          | micro<br>preci           |
| 1721 | ۲                                                                                              |          | grou<br>adeq<br>proce    |
| 1722 |                                                                                                |          | Dele<br>concl            |
| 1723 |                                                                                                |          | on th<br>of th<br>PBA    |
|      |                                                                                                |          | conc<br>strati<br>chan   |
| 1724 |                                                                                                |          | in PE<br>home            |
| 1725 |                                                                                                |          | ¶<br>The y<br>PBA        |
| 1726 |                                                                                                |          | low o<br>non-l<br>nucle  |
| 1727 |                                                                                                |          | PBA<br>Base<br>overa     |
| 1720 |                                                                                                |          | grou<br>temp             |
| 1728 |                                                                                                |          | and t<br>INPs<br>carbo   |
| 1729 |                                                                                                |          | respe<br>low s<br>bioae  |
| 1730 |                                                                                                |          | Dele<br>level            |
| 1731 |                                                                                                |          | contr<br>impo<br>phase   |
| 1722 |                                                                                                |          | of ma<br>produ<br>the in |
| 1732 |                                                                                                |          | feedl<br>beco            |
| 1733 |                                                                                                |          | The e<br>limite<br>mech  |
| 1    |                                                                                                |          |                          |

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt Deleted: ¶

d-latitude squall line that occurred on 20 May 2011 ng MC3E over the US Southern Great Plains is simulated the model. The simulated number concentration of ice cles showed good agreement (to within about 10%) aircraft observations for the convective clouds within nesoscale system. The model predicted an ice number entration slightly lower than the aircraft observation in tratiform region by up to a factor of 3 between -10 and but agreed better at all other levels. This factor of 3 is ar to the uncertainty in the measurements due to ous biases (e.g., Field et al. 2006), though it may also be ed to the radar reflectivity there being too low (by It 8 dBZ). Nevertheless, all other simulated cloud ophysical parameters, radar reflectivity, and surface ipitation rate were in good agreement with aircraft and nd-based observations. This confirms that AC uately reproduced the warm and cold microphysical esses of the simulated squall line case.

**Deleted:** Based on the sensitivity experiments, it can be concluded that PBAPPBAP INPs have only a limited effect on the average state of the ice phase of the simulated clouds of this mesoscale convective system. Any perturbation in the PBAPPBAP concentration resulted in changes in ice number concentration by < 5% convective region and by < 60% in the stratiform region with respect to the control run. Most of the changes in ice number concentration associated with changes in PBAPsBAP are controlled by their effect on homogeneous nucleation. ¶

### -

weakness of the simulated impact from realistic PPBAP fluctuations is explicable mostly in terms of the contribution from biological ice nucleation compared to biological INPs to overall ice initiation. In terms of ice eation efficiency and onset temperatures, each PPBAP group has different ice nucleation properties. d on vertical profiles of active INPs (Figures 5), the all contribution of activated INPs from all PBAPPBAP ps to the total active INPs was ~1%. At -15°C, perature, the predicted number of active INPs from dust black carbon were one order higher than PBAPPBAP s. At -30°C, the predicted INPs from dust and black on were higher by one and two orders of magnitude, ectively, than PBAPPBAP INPs. Overall, this resulted in sensitivity of the average ice phase to the changes in erosol loading. ¶

**Deleted:** The ice production in the simulated cloud system at levels in the mixed-phase region (0 to -36 °C) is largely controlled by various SIP mechanisms of which the most important is the breakup in ice-ice collisions. In the mixed-phase region, the total ice number concentration is 1-2 orders of magnitude higher than that of active INPs. The ice production associated with SIP mechanisms is insensitive to the initial PBAPPBAP loading because SIP causes positive feedback of ice multiplication with ice fragments growing to become precipitation size particles that then fragment again. The explosive growth of ice concentrations occurs until limited by other factors. In the absence of any SIP mechanisms in the model, the effect of PBAPPBAP on the [...]

1814 *Code and data availability*: Data and the code for the empirical formulation of <u>PBAPs</u> are

1815 available on request by contacting the corresponding author.

1816 *Competing interests*: The authors declare no conflict of interest

1817 *Author Contributions:* VJTP designed and monitored this study. SP conducted model
1818 simulation, most of the data analysis, and wrote the initial manuscript. All authors contributed
1819 to the scientific discussion and model development.

1820 Financial support: This work was completed for a sub-award (award number: 2019-26-03) to VTJP from a US Department of Energy (DoE) direct grant to the Ryzhkov at the 1821 1822 University of Oklahoma (award number: DE-SC0018967). The first author was also supported by a past award from the Swedish Research Council ('VR'), which concerns 1823 1824 modeling bio-aerosol effects on glaciated clouds (2015-05104) and Sweden's Innovation Agency (Vinnova; 2020-03406). Other co-authors were supported by a current award from 1825 1826 the Swedish Research Council for Sustainable Development (FORMAS; award number 1827 2018-01795) and US Department of Energy Atmospheric Sciences Research Program (award number: DE-SC0018932). 1828

**Moved up [4]:** Using mesoscale model simulations, Phillips et al. (2009) reported a 10% increase in accumulated surface precipitation associated with deep convective clouds due to a 100-fold increase in biological particles. The perturbations in most active PBPAs such as fungi and bacteria showed little change in surface precipitation.

### Deleted: ¶

Our results showed that surface precipitation is not affected significantly affected by changes in PBAPsPBAP. A tenfold increase in all PBAPsPBAP resulted in less than 10% change in peak values of surface precipitation rate. Using mesoscale model simulations, Phillips et al. (2009) reported a 10% increase in accumulated surface precipitation associated with deep convective clouds due to a 100-fold increase in biological particles. The perturbations in most active PBPAs such as fungi and bacteria showed little change in surface precipitation. ¶

Our results showed that the perturbations in PBAPsPBAP have only a limited effect (< 50% in number and < 15% in mass) on the ice phase as well as on precipitation. This is consistent with the findings of Hummel *et al.* (2018). Based on ensemble simulations of the regional atmospheric model for Europe, they showed that the average ice crystal concentration by biological INPs is not statistically significant, implying that PBAPsPBAP play only a minor role in altering the cloud ice phase. Sesartic et al. (2012, 2013) showed that including fungi and bacteria in the global climate model leads to minor changes (< 0.5%) in ice water path, total cloud cover, and total precipitation on a global scale. ¶

To conclude, our simulations involving various changes in SIP indicated that peak surface precipitation rate is highly sensitive (~75%) to the inclusion of SIP mechanisms. Eliminating all SIP mechanisms from the model results in a higher and much narrower peak in surface precipitation rate. However, even in the absence of SIP mechanisms, an increase in PBAPPBAP number still causes only a minor increase in precipitation because the contribution of active PBAPPBAP INPs to the total IN activity was only 1%. ¶

Deleted: PBAPs

1829

1830

### 1879 References:

- 1887 Blyth AM, Latham J. 1993. Development of ice and precipitation in New Mexican
  1888 summertime cumulus clouds. Q. J. R. Meteorol. Soc. 119:91–120
- Baumgardner, D., Abel, S. J., Axisa, D., Cotton, R., Crosier, J., Field, P., Gurganus, C., Heymsfield, A., Korolev, A., Krämer, M., Lawson, P., McFarquhar, G., Ulanowski, Z., & Um, J. (2017). Cloud Ice Properties: In Situ Measurement Challenges, *Meteorological Monographs*, 58, 9.1-9.23.
- Bowers RM, Lauber CL, Wiedinmyer C, Hamady M, Hallar AG, Fall R, Knight R, Fierer N.
   Characterization of airborne microbial communities at a high-elevation site and their
   potential to act as atmospheric ice nuclei. Appl Environ Microbiol. 2009
   Aug;75(15):5121-30. doi: 10.1128/AEM.00447-09
- Bauer, H., Kasper-Giebl, A., Loflund, M., Giebl, H., Hitzenberger, R., Zibuschka, F., and
   Puxbaum, H.: The contribution of bacteria and fungal spores to the organic carbon
   content of cloud water, precipitation and aerosols, Atmos. Res., 64, 109–119, 2002.
- Burrows, S. M., Elbert, W., Lawrence, M. G., and Pöschl, U.: Bacteria in the global atmosphere – Part 1: Review and synthesis of literature data for different ecosystems, Atmos. Chem. Phys., 9, 9263–9280
- 1903
- Carlin, J. T., Reeves, H. D., & Ryzhkov, A. V. 2021: Polarimetric Observations and
   Simulations of Sublimating Snow: Implications for Nowcasting, Journal of Applied
   Meteorology and Climatology, 60(8), 1035-1054.
- Chen, Q., Yin, Y., Jiang, H., Chu, Z., Xue, L., Shi, R., et al. (2019). The roles of mineral dust
   as cloud condensation nuclei and ice nuclei during the evolution of a hail storm. *Journal of Geophysical Research: Atmospheres*, 2019; 124: 14262–14284.
- 1910 Chin, M., R. B. Rood, S. J. Lin, J. F. Müller, and A. M. Thompson, 2000: Atmospheric sulfur
  1911 cycle simulated in the global model GOCART: Model description and global properties.
  1912 Journal of Geophysical Research Atmospheres, 105, 24671–24687,
  1913 https://doi.org/10.1029/2000JD900384.
- Crawford, I., Bower, K. N., Choularton, T. W., Dearden, C., Crosier, J., Westbrook, C.,
  Capes, G., Coe, H., Connolly, P. J., Dorsey, J. R., Gallagher, M. W., Williams, P.,
  Trembath, J., Cui, Z., and Blyth, A.: Ice formation and development in aged, wintertime
  cumulus over the UK: observations and modelling, Atmos. Chem. Phys., 12, 4963–
  4985, https://doi.org/10.5194/acp-12-4963-2012, 2012.
- Cui, Z., and K. S. Carslaw , 2006: Enhanced vertical transport efficiency of aerosol in convective clouds due to increases in tropospheric aerosol abundance, J. Geophys. Res., 111, D15212, doi:10.1029/2005JD006781
- Deshmukh A., Vaughan T. J. Phillips, Aaron Bansemer, Sachin Patade, and Deepak Waman,
   2021: New Empirical Formulation for the Sublimational Breakup of Graupel and
   Dendritic Snow, DOI: <u>https://doi.org/10.1175/JAS-D-20-0275.1</u>

| 1925<br>1926<br>1927                 | Després, V. R., and Coauthors, 2012: Primary biological aerosol particles in the atmosphere:<br>A review. <i>Tellus, Series B: Chemical and Physical Meteorology</i> , <b>64</b> , <u>https://doi.org/10.3402/tellusb.v64i0.15598</u> .                                                                                                                                                                           |                                 |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 1928                                 | DeMott P. J., A.J. Prenni, X. Liu, S.M. Kreidenweis, M.D. Petters, C.H. Twohy, et al.                                                                                                                                                                                                                                                                                                                             |                                 |
| 1929                                 | Predicting global atmospheric ice nuclei distributions and their impacts on climate Proc.                                                                                                                                                                                                                                                                                                                         | Formatted: Font: Not Bold       |
| 1930                                 | Natl. Acad. Sci. U. S. A., 107 (2010), pp. 11217-11222.                                                                                                                                                                                                                                                                                                                                                           |                                 |
| 1931                                 | DeMott, P. J. and Prenni, A. J.: New Directions: Need for defining the numbers and sources                                                                                                                                                                                                                                                                                                                        |                                 |
| 1932                                 | of biological aerosols acting as ice nuclei, Atmos. Environ., 44, 1944–1945, 2010.                                                                                                                                                                                                                                                                                                                                |                                 |
| 1933                                 | Despres, V.R., Huffman, J.A., Burrows, S.M., Hoose, C., Safatov, A.S., Buryak, G.,                                                                                                                                                                                                                                                                                                                                | Formatted: Line spacing: Double |
| 1934                                 | Fröhlich-Nowoisky, J., Elbert, W., Andreae, M.O., Pöschl, U., 2012. Primary                                                                                                                                                                                                                                                                                                                                       |                                 |
| 1935                                 | biological aerosol particles in the atmosphere: a review. Tellus B Chem. Phy.                                                                                                                                                                                                                                                                                                                                     |                                 |
| 1936                                 | <u>Meteorol. 64 (1), 15598.</u>                                                                                                                                                                                                                                                                                                                                                                                   |                                 |
| 1937<br>1938<br>1939                 | Dong, X., and G. G. Mace, 2003: Arctic stratus cloud properties and radiative forcing derived<br>from ground-based data collected at Barrow, Alaska. J. Climate, 16, 445–461,<br>doi:10.1175/1520-0442(2003)016<0445:ASCPAR>2.0.CO;2.                                                                                                                                                                             |                                 |
| 1940<br>1941<br>1942<br>1943         | Han, B., Fan, J., Varble, A., Morrison, H., Williams, C. R., Chen, B., et al. (2019). Cloud-<br>resolving model intercomparison of an MC3E squall line case: Part II. Stratiform<br>precipitation properties. <i>Journal of Geophysical Research: Atmospheres</i> , 124, 1090–<br>1117.                                                                                                                           |                                 |
| 1944<br>1945<br>1946<br>1947<br>1948 | Fan, J, Liu, Y-C, Xu, K-M, North, K, Collis, S, Dong, X, Zhang, GJ, Chen, Q, Kollias, P, and<br>Ghan, SJ (2015), Improving representation of convective transport for scale-aware<br>parameterization: 1. Convection and cloud properties simulated with spectral bin and<br>bulk microphysics. J. Geophys. Res. Atmos., 120, 3485–3509. doi:<br>10.1002/2014JD022142.                                            |                                 |
| 1949<br>1950<br>1951                 | Fan J., J.M. Comstock, M. Ovchinnikov, 2010: The cloud condensation nuclei and ice nuclei effects on tropical anvil characteristics and water vapor of the tropical tropopause layer Environ. Res. Lett., 5 (2010), Article 044005, 10.1088/1748-9326/5/4/044005                                                                                                                                                  |                                 |
| 1952<br>1953<br>1954<br>1955<br>1956 | <ul> <li>Fan J., Bin Han, Adam Varble, Hugh Morrison, Kirk North, Pavlos Kollias, Baojun Chen,<br/>Xiquan Dong, Scott E. Giangrande, Alexander Khain, Yun Lin, Edward Mansell, Jason<br/>A. Milbrandt, Ronald Stenz, Gregory Thompson, Yuan Wang, 2017: Cloud-resolving<br/>model intercomparison of an MC3E squall line case: Part I—Convective updrafts, J.<br/>Geophys. Res. Atmos., 122, 9351–9378</li> </ul> |                                 |
| 1957<br>1958                         | Field, P. R., and A. J. Heymsfield (2015): Importance of snow to global precipitation, Geo-<br>phys. Res. Lett., 42, 9512–9520,doi:10.1002/2015GL065497.                                                                                                                                                                                                                                                          |                                 |

- Field, P. R., Heymsfield, A. J., & Bansemer, A. (2006). Shattering and Particle Interarrival
  Times Measured by Optical Array Probes in Ice Clouds, Journal of Atmospheric and
  Oceanic Technology, 23(10), 1357-1371.
- Fridlind, A. M., and Coauthors, 2017: Derivation of aerosol profiles for MC3E convection
   studies and use in simulations of the 20 May squall line case. *Atmospheric Chemistry and Physics*, 17, 5947–5972, <u>https://doi.org/10.5194/acp-17-5947-2017</u>.
- 1965 <u>Fröhlich-Nowoisky, J., Kampf, C.J., Weber, B., Huffman, J.A., Pöhlker, C., Andreae, M.</u>
   1966 <u>O., Lang-Yona, N., Burrows, S.M., Gunthe, S.S., Elbert, W., Su, H., Hoor, P.,</u>
   1967 <u>Thines, E., Hoffmann, T., Després, V.R., Pöschl, U., 2016. Bioaerosols in the Earth</u>
   1968 system: climate, health, and ecosystem interactions. Atmos. Res. 182, 346–376.
- Garcia, E., T. C. J. Hill, A. J. Prenni, P. J. DeMott, G. D. Franc, and S. M. Kreidenweis,
   2012: Biogenic ice nuclei in boundary layer air over two US high plains agricultural
   regions. *Journal of Geophysical Research Atmospheres*, **117**, 1–12,
   https://doi.org/10.1029/2012JD018343.
- Giangrande, S. E., S. Collis, A. K. Theisen, and A. Tokay, 2014: Precipitation estimation
   from the ARM distributed radar network during the MC3E campaign. *Journal of Applied Meteorology and Climatology*, 53, 2130–2147, https://doi.org/10.1175/JAMC D-13-0321.1.
- 1977 Grützun, V., O. Knoth, and M. Simmel, 2008: Simulation of the influence of aerosol particle
   1978 characteristics on clouds and precipitation with LM-SPECS: Model description and first
   1979 results. *Atmospheric Research*, 90, 233–242,
   1980 https://doi.org/10.1016/j.atmosres.2008.03.002.
- Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 26–28, <u>https://doi.org/10.1038/249026a0</u>.
- Heymsfield, A. J., Schmitt, C., Chen, C., Bansemer, A., Gettelman, A., Field, P. R., & Liu, C.
   (2020). Contributions of the Liquid and Ice Phases to Global Surface Precipitation:
   Observations and Global Climate Modeling, Journal of the Atmospheric Sciences, 77(8),
   2629-2648
- Hoose, C., and O. Möhler, 2012: Heterogeneous ice nucleation on atmospheric aerosols: A
  review of results from laboratory experiments. *Atmospheric Chemistry and Physics*, 12,
  9817–9854, https://doi.org/10.5194/acp-12-9817-2012.
- Hoose, C., J. E. Kristjánsson, and S. M. Burrows, 2010: How important is biological ice
   nucleation in clouds on a global scale? *Environmental Research Letters*, 5,
   <u>https://doi.org/10.1088/1748-9326/5/2/024009</u>.
- Hoose, C., Kristjánsson, J. E., Chen, J.-P., and Hazra, A.: A Classical-Theory-Based
   Parameterization of Heterogeneous Ice Nucleation by Mineral Dust, Soot, and
   Biological Particles in a Global Climate Model, J. Atmos. Sci., 67, 2483–
   2503, https://doi.org/10.1175/2010jas3425.1, 2010b.
- Huang S., Wei Hu, Jie Chen, Zhijun Wu, Daizhou Zhang, Pingqing Fu, Overview of
   biological ice nucleating particles in the atmosphere, Environment International,
   Volume 146, 2021,106197

**Deleted:** Forster, P., et al. (2007), Changes in atmospheric constituents and in radiative forcing, in Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the IPCC, edited by S. Solomon et al., pp. 131–234, Cambridge Univ. Press, New York.¶

- Huffman, J. A., and Coauthors, 2013: High concentrations of biological aerosol particles and
   ice nuclei during and after rain. *Atmospheric Chemistry and Physics*, 13, 6151–6164,
   https://doi.org/10.5194/acp-13-6151-2013.
- Hummel, M., C. Hoose, B. Pummer, C. Schaupp, J. Fröhlich-Nowoisky, and O. Möhler,
  2010 2018: Simulating the influence of primary biological aerosol particles on clouds by
  heterogeneous ice nucleation. *Atmospheric Chemistry and Physics*, 18, 15437–15450,
  https://doi.org/10.5194/acp-18-15437-2018.
- Jensen, M. P., and Coauthors, 2016: The midlatitude continental convective clouds
   experiment (MC3E). *Bulletin of the American Meteorological Society*, 97, 1667–1686,
   https://doi.org/10.1175/BAMS-D-14-00228.1.
- 2016 Jaenicke, R., 2005. Abundance of cellular material and proteins in the atmospheric. Science 2017 308, 73.
- Kanji, Z. A., Ladino, L. A., Wex, H., Boose, Y., Burkert-Kohn, M., Cziczo, D. J., & Krämer,
   M. (2017). Overview of Ice Nucleating Particles, Meteorological Monographs, 58, 1.1 1.33.
- Korolev, A. V., Kuznetsov, S. V., Makarov, Y. E., & Novikov, V. S. (1991). Evaluation of
   Measurements of Particle Size and Sample Area from Optical Array Probes, Journal of
   Atmospheric and Oceanic Technology, 8(4), 514-522.
- 2024 Korolev, A. V., Emery, E. F., Strapp, J. W., Cober, S. G., Isaac, G. A., Wasey, M., &
  2025 Marcotte, D. (2011). Small Ice Particles in Tropospheric Clouds: Fact or Artifact?
  2026 Airborne Icing Instrumentation Evaluation Experiment, Bulletin of the American
  2027 Meteorological Society, 92(8), 967-973
- <u>Korolev, A., McFarquhar, G., Field, P. R., Franklin, C., Lawson, P., Wang, Z., Williams, E.,</u>
   <u>Abel, S. J., Axisa, D., Borrmann, S., Crosier, J., Fugal, J., Krämer, M., Lohmann, U.,</u>
   <u>Schlenczek, O., Schnaiter, M., & Wendisch, M. (2017). Mixed-Phase Clouds: Progress</u>
   <u>and Challenges, *Meteorological Monographs*, 58, 51-550</u>
- <u>Korolev, A. and Leisner, T.: Review of experimental studies of secondary ice production,</u>
   <u>Atmos. Chem. Phys., 20, 11767–11797, https://doi.org/10.5194/acp-20-11767-2020,</u>
   <u>2020.</u>
- <u>Korolev, A., Heckman, I., Wolde, M., Ackerman, A. S., Fridlind, A. M., Ladino, L. A.,</u>
   <u>Lawson, R. P., Milbrandt, J., and Williams, E.: A new look at the environmental</u>
   <u>conditions favorable to secondary ice production, Atmos. Chem. Phys., 20, 1391–1429,</u>
   <u>https://doi.org/10.5194/acp-20-1391-2020, 2020.</u>
- Kumjian, M. R, and K. A. Lombardo, 2017: Insights into the evolving microphysical and kinematic structure of northeastern U.S. winter storms from dual-polarization Doppler radar. Mon. Wea. Rev., 145, 1033–1061, <u>https://doi.org/10.1175/MWR-D-15-0451.1</u>.
- 2042 Knopf, D.A., Alpert, P.A., Wang, B., Aller, J.Y., 2011. Stimulation of ice nucleation by marine diatoms. Nat. Geosci. 4, 88–90. https://doi.org/10.1038/ngeo1037

**Field Code Changed** 

- Lawson, R. P., Woods, S. and Morrison, H., 2015: The microphysics of ice and precipitation
  1195 development in tropical cumulus clouds, J. Atmos. Sci., 72(6), 2429–2445, 1196
  doi:10.1175/JAS-D-14-0274.1, 2015.
- 2047 Levin Z, Yankofsky S, Pardes D and Magal N. 1987, J. Clim. Appl. Meteorol. 26 1188–97
- Matus, A. V. and L'Ecuyer, T. S. (2017), The role of cloud phase in Earth's radiation budget,
  J. Geophys. Res. Atmos., 122, 2559–2578, doi:10.1002/2016JD025951.
- Malm, W. C., J. F. Sisler, D. Huffman, R. A. Eldred, and T. A. Cahill (1994), Spatial and seasonal trends in particle concentration and optical extinction in the United States, J.
   <u>Geophys. Res., 99, 1347-1370.</u>
- 2053 <u>Matthias-Maser S., Berit Bogs, Ruprecht Jaenicke, The size distribution of primary biological</u>
   2054 <u>aerosol particles in cloud water on the mountain Kleiner Feldberg/Taunus (FRG),</u>
   2055 <u>Atmospheric Research, Volume 54, Issue 1, 2000, Pages 1-13</u>
- Mattias-Maser, S., Brinkmann, J., Schneider, W., 1999. The size distribution of marine
   atmospheric aerosol with regard to primary biological aerosol particles over the South
   Atlantic Ocean. Atmospheric Environment 33, 3569–3575.
- 2059Mattias-Maser, S., Jaenicke, R., 1995. The size distribution of primary biological aerosol2060particles with radii > 0.2 mm in an urban/rural influenced region. Atmospheric Research206139, 279–286
- 2062 <u>Mülmenstädt, J., Sourdeval, O., Delanoë, J., and Quaas, J. (2015), Frequency of occurrence</u>
   2063 of rain from liquid-, mixed-, and ice-phase clouds derived from A-Train satellite
   2064 retrievals, Geophys. Res. Lett., 42, 6502–6509

Deleted: ¶

- Möhler, O., and Coauthors, 2008: *Heterogeneous ice nucleation activity of bacteria: new laboratory experiments at simulated cloud conditions*. 1425–1435 pp.
   www.biogeosciences.net/5/1425/2008/.
- 2072 Moisseev, D. N., Lautaportti, S., Tyynela, J., and Lim, S. (2015), Dual-polarization radar
  2073 signatures in snowstorms: Role of snowflake aggregation, *J. Geophys. Res.*2074 *Atmos.*, 120, 12644–12655, doi:10.1002/2015JD023884.
- Morris, C. E., F. Conen, J. Alex Huffman, V. Phillips, U. Pöschl, and D. C. Sands, 2014:
   Bioprecipitation: A feedback cycle linking Earth history, ecosystem dynamics and land
   use through biological ice nucleators in the atmosphere. *Global Change Biology*, 20, 341–351, <u>https://doi.org/10.1111/gcb.12447</u>.
- Murray, B. J., D. O'Sullivan, J. D. Atkinson, and M. E. Webb, 2012: Ice nucleation by particles immersed in supercooled cloud droplets. Chem. Soc. Rev., 41, 6519–6554, <a href="https://doi.org/10.1039/c2cs35200a">https://doi.org/10.1039/c2cs35200a</a>.
- Patade, S., Phillips, V. T. J., Amato, P., Bingemer, H. G., Burrows, S. M., DeMott, P. J.,
  Goncalves, F. L. T., Knopf, D. A., Morris, C. E., Alwmark, C., Artaxo, P., Pöhlker, C.,
  Schrod, J., & Weber, B. (2021). Empirical Formulation for Multiple Groups of Primary
  Biological Ice Nucleating Particles from Field Observations over Amazonia, Journal of
  the Atmospheric Sciences, 78(7), 2195-2220.

- 2088 Phillips, V. T. J., Donner, L. J., and Garner, S.: Nucleation processes in deep convection simulated by a cloud-system resolving model with double-moment bulk microphysics, J.
   2090 Atmos. Sci., 64, 738–761, 2007.
- 2091 Phillips, V. T. J., DeMott, P. J., & Andronache, C. (2008). An Empirical Parameterization of 2092 Heterogeneous Ice Nucleation for Multiple Chemical Species of Aerosol, Journal of the 2093 Atmospheric Sciences, 65(9), 2757-2783.
- Phillips, V. T. J., and Coauthors, 2009: Potential impacts from biological aerosols on
   ensembles of continental clouds simulated numerically. *Biogeosciences*, 6, 987–1014,
   https://doi.org/10.5194/bg-6-987-2009.
- 2097 Phillips, V. T. J., Yano, J., Formenton, M., Ilotoviz, E., Kanawade, V., Kudzotsa, I., Sun, J.,
   2098 Bansemer, A., Detwiler, A. G., Khain, A., & Tessendorf, S. A. (2017). Ice
   2099 Multiplication by Breakup in Ice–Ice Collisions. Part II: Numerical Simulations, Journal
   2010 of the Atmospheric Sciences, 74(9), 2789-2811.
- 2101 Phillips, V. T. J., Formenton, M., Kanawade, V. P., Karlsson, L. R., Patade, S., Sun, J.,
   2102 Barthe, C., Pinty, J., Detwiler, A. G., Lyu, W., & Tessendorf, S. A. (2020). Multiple
   2103 Environmental Influences on the Lightning of Cold-Based Continental Cumulonimbus
   2104 Clouds. Part I: Description and Validation of Model, Journal of the Atmospheric
   2105 Sciences, 77(12), 3999-4024
- Phillips, V. T. J., J. I. Yano, and A. Khain, 2017c: Ice multiplication by breakup in ice-ice collisions. Part I: Theoretical formulation. *Journal of the Atmospheric Sciences*, 74, 1705–1719, https://doi.org/10.1175/JAS-D-16-0224.1.
- Phillips, V. T. J., P. J. Demott, C. Andronache, K. A. Pratt, K. A. Prather, R. Subramanian, and C. Twohy, 2013: Improvements to an empirical parameterization of heterogeneous ice nucleation and its comparison with observations. *Journal of the Atmospheric Sciences*, **70**, 378–409, https://doi.org/10.1175/JAS-D-12-080.1.
- Phillips, V. T. J., S. Patade, 2021: Multiple Environmental Influences on the Lightning of
  Cold-based Continental Convection. Part II: Sensitivity Tests for its Charge Structure
  and Land-Ocean Contrast. *Journal of the Atmospheric Sciences*,
  https://doi.org/10.1175/JAS-D-20-0234.1
- Phillips, V. T. J., S. Patade, J. Gutierrez, and A. Bansemer, 2018: Secondary ice production
  by fragmentation of freezing drops: Formulation and theory. *Journal of the Atmospheric Sciences*, **75**, 3031–3070, https://doi.org/10.1175/JAS-D-17-0190.1.
- Prenni, A. J., and Coauthors, 2013: The impact of rain on ice nuclei populations at a forested
  site in Colorado. *Geophysical Research Letters*, 40, 227–231,
  https://doi.org/10.1029/2012GL053953.
- 2123 <u>Pörtner, Hans O., et al., 2022: Summary for policymakers. In: Climate change 2022: Impact, adaptation, and vulnerability: Summary for policy makers: Working group II
   2125 <u>Contribution to the sixth assessment report of the Intergovernmental Panel on Climate Change.</u>
  </u>

Deleted: Phillips, V. T. J., and Coauthors, 2017a: Ice multiplication by breakup in ice-ice collisions. Part II: Numerical simulations. *Journal of the Atmospheric Sciences*, **74**, 2789–2811, https://doi.org/10.1175/JAS-D-16-0223.1.¶

**Deleted:** Phillips, V. T. J., and Coauthors, 2017b: Ice multiplication by breakup in ice-ice collisions. Part II: Numerical simulations. *Journal of the Atmospheric Sciences*, **74**, 2789–2811, ....

**Deleted:** Phillips, V. T. J., and Coauthors, 2020: Multiple environmental influences on the lightning of cold-based continental cumulonimbus clouds. Part I: Description and validation of model. *Journal of the Atmospheric Sciences*, **77**, 3999–4024, https://doi.org/10.1175/JAS-D-19-0200.1.¶

- Ryzhkov, A., Pinsky, M., Pokrovsky, A., & Khain, A. (2011). Polarimetric Radar
  Observation Operator for a Cloud Model with Spectral Microphysics, Journal of Applied
  Meteorology and Climatology, 50(4), 873-894
- 2144 Sahyoun, M., Wex, H., Gosewinkel, U., Šantl-Temkiv, T., Nielsen, N. W., Finster, K.,
  2145 Sørensen, J. H., Stratmann, F., and Korsholm, U. S.: On the usage of classical nucleation
  2146 theory in quantification of the impact of bacterial INP on weather and climate, Atmos.
  2147 Environ., 139, 230–240, https://doi.org/10.1016/j.atmosenv.2016.05.034, 2016.
- Sesartic, A., U. Lohmann, and T. Storelvmo, 2012: Bacteria in the ECHAM5-HAM global
  climate model. *Atmospheric Chemistry and Physics*, 12, 8645–8661,
  https://doi.org/10.5194/acp-12-8645-2012.
- Sesartic, A., U. Lohmann, and T. Storelvmo, 2013: Modelling the impact of fungal spore ice
   nuclei on clouds and precipitation. *Environmental Research Letters*, 8,
   https://doi.org/10.1088/1748-9326/8/1/014029.
- Sinclair, V. A., Moisseev, D., and von Lerber, A. (2016), How dual-polarization radar
  observations can be used to verify model representation of secondary ice, J. Geophys.
  Res. Atmos., 121, 10,954–10,970, doi:10.1002/2016JD025381.
- Sotiropoulou, G., Ickes, L., Nenes, A. and Ekman, A.: Ice multiplication from ice–ice
  collisions in the high Arctic, 2021b: sensitivity to ice habit, rimed fraction, ice type and
  uncertainties in the numerical description of the process, Atmos. Chem. Phys., 21, 9741–
  9760, 1313 doi:10.5194/acp-21-9741-2021,
- Sotiropoulou, G., Vignon, E., Young, G., Morrison, H., O'Shea, S. J., Lachlan-Cope, T.,
  Berne, A. and Nenes, A. 2021a: Secondary ice production in summer clouds over the
  Antarctic coast: 1308 An underappreciated process in atmospheric models, Atmos.
  Chem. Phys., 21(2), 755–1309 771, doi:10.5194/acp-21-755-2021,
- Spracklen, D. v., and C. L. Heald, 2014: The contribution of fungal spores and bacteria to regional and global aerosol number and ice nucleation immersion freezing rates.
   *Atmospheric Chemistry and Physics*, 14, 9051–9059, <u>https://doi.org/10.5194/acp-14-9051-2014</u>.
- 2169 <u>Szyrmer, W., Zawadzki, I., 1997. Biogenic and anthropogenic sources of ice-forming</u>
   2170 <u>nuclei: A review. Bull. Am. Meteorol. Soc. 78, 209–228.</u>
- 2171 Tsushima, Y., S. Emori, T.Ogura, et al., 2006: Importance of the mixed-phase cloud 2172 distribution in the control climate for assessing the response of clouds to carbon dioxide 2173 increase: а multi-model study. Clim Dyn 27, 113-126 (2006). https://doi.org/10.1007/s00382-006-0127-7. 2174
- Wilson, T., and Coauthors, 2015: A marine biogenic source of atmospheric ice-nucleating
   particles. Nature, 525, 234–238, https://doi.org/10.1038/nature14986.
- Xie, S., Y. Zhang, S. E. Giangrande, M. P. Jensen, R. McCoy, and M. Zhang, 2014: Interactions between cumulus convection and its environment as revealed by the MC3E
  sounding array. *Journal of Geophysical Research*, **119**, 11,784-11,808, https://doi.org/10.1002/2014JD022011.

| 2181<br>2182 | Zhao, X., & Liu, X. (2021). Global importance of secondary ice production. <i>Geophysical Research Letters</i> , 48, e2021GL092581. <u>https://doi.org/10.1029/2021GL092581</u> |  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 2183         | Zuidema, P., E. R. Westwater, C. Fairall, and D. Hazen, 2005: Ship-based liquid water path                                                                                      |  |
| 2184         | estimates in marine stratocumulus. J. Geophys. Res., 110, D20206,                                                                                                               |  |
| 2185         | doi:10.1029/2005JD005833.                                                                                                                                                       |  |
| <br>2186     |                                                                                                                                                                                 |  |
| 2187         |                                                                                                                                                                                 |  |