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To reviewer #1, 

 

Dear Reviewer, 

Thank you very much for your comments on this paper. We have carefully read all comments and revised the manuscript 

as suggested. The following are our responses to all comments point by point. The italicized sentences are all comments, and 

the other sentences are the author's responses. The green sentences and words are the specific revisions. We also marked all 

relevant changes in the manuscript in the same way. 

 

This study investigated the important impacts of the northeast Asian anomalous anticyclone (NAAA) on the intraseasonal 

variations of PM2.5 pollution in the North China Plain (NCP). The paper presents novel concepts, ideas and tools. The 

scientific methods and assumptions are valid and clearly outlined so that substantial conclusions are reached. The description 

of dataset and calculations are sufficiently complete and precise. Hence, the manuscript is recommended for publication after 

minor revision. Specific comments can be found as follows. 

General comments: 

(1) In this study, the authors reported the air quality deterioration two day prior to the peak day of NAAA and suggested 

that the geopotential height anomaly and meridional wind anomaly were the main causes. However, the cause and effect 

between the anomalies and PM2.5 should be fully discussed. Because, increases in aerosols, especially absorbing aerosols, 

can also heat the air, leading to the atmospheric stagnation (e.g., Ding et al., 2016), and decrease the winds over the NCP 

(e.g., Lou et al., 2019). Therefore, the aerosol accumulation may also cause or at least intensify the dynamical or 

thermodynamical anomalies. 

Response: Thank you so much for your suggestion. 

Following your advice, we have added a discussion about the effect of PM2.5 on the circulation anomalies in Section 4 of 

the revised manuscript. 

Lines 266−272: “In addition, as shown in Figs. 8−9, PM2.5 pollution occurred over the NCP one day before the peak 

day of the NAAA, which implies the former might exert an impact on its formation and thus form a positive feedback of PM2.5 

pollution−atmospheric circulation. The increases in aerosols, especially absorbing aerosols, have been reported to heat the air, 

and therefore lead to the atmospheric stagnation (e.g., Ding et al., 2016) and the weaker ventilation over the NCP (e.g., Lou et 

al., 2019). Therefore, the PM2.5 accumulation before the peak day of the NAAA may also cause or at least intensify the 

dynamical or thermodynamical anomalies, which in turn might support the formation of PM2.5 pollution over the NCP. This 

is a potential interesting topic that deserves further investigation in the future.” 
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Specific comments: 

1. Title: The term “air pollution” was used throughout the text including the title. But this study only focused on PM2.5 

pollution. It should be revised for the whole text. 

Response: Thank you for your valuable idea for this paper. We have revised this description in the whole text. So please 

check the revised manuscript. 

 

2. Lines 16 and 21: “day -3” and day “day -1” should be made clearer. 

Response: Thank you for your good suggestion. We have revised these descriptions in the manuscript. 

Line 17: “… day −3 …” −> “… day 3 prior to its peak day …” 

Line 22: “… day −1 …” −> “… the next day …” 

 

3. Line 39: All sea surface temperature studies listed here are belong to ENSO impacts. It could be more accurately 

presented. Also, a recent study also reveals impacts of different duration of El Nino on PM2.5 over China (Zeng et al., 2021). 

Response: Thank you for your carefully check and help. We have revised this sentence as suggested, so please check the 

revised manuscript.  

Lines 40−41: “… including El Niño (Chang et al., 2016; Jeong et al., 2018; Yu et al., 2020; Zeng et al., 2021), …” 

 

4. Line 43: Studies also revealed that the aerosol pollution over NCP during COVID-19 was related to NAAA, which 

could be included here (Ren et al., 2021). 

Response: Thank you for your carefully check and help. We have revised this sentence as suggested, so please check the 

revised manuscript.  

Lines 43−45: “Studies also revealed that the aerosol pollution over the NCP during COVID-19 was related to the 

northeast Asian anomalous anticyclone (NAAA) (Ren et al., 2021).” 

 

5. Line 77: The PM2.5 data used in this study were from TAP generated using a machine learning approach and covers 

the period from 2000 to present. But the reanalysis data are from 1979 to present. The authors are suggested to use the long-

term aerosol data for the same period as meteorological parameters in future studies (e.g., Li et al., 2021). 

Response: Thank you for your suggestion. We will use this data for future studies as much as possible. In fact, it has been 

used to examine air pollution in our other papers. PM2.5 data provided by Yang (2020) is in excellent agreement with ground 

measurements, and can capture a trend of continuous increase in the mean PM2.5 concentrations from 1985 to 2014 in China 

(Li et al., 2021), even daily evolution characteristics of PM2.5 over the North China Plain (An et al., 2022).  
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6. Line 100: What do the ‘e’ and ‘T’ mean? 

Response: We are sorry for this confusion. “e” represents the spatial pattern of EOF1, which is mentioned in Line 100 

(i.e., the EOF1 spatial pattern (e)). We’re sorry we didn’t use italics for e. eT is called the transpose of e. We have added these 

descriptions into the manuscript. 

Line 99: “… the EOF1 spatial pattern (e) …” 

Line 102: “Here, eT is called the transpose of e.” 

 

7. Line 125: “which is conduced to the accumulation of pollutants in the NCP” should be given after “is weaker than 

normal”. 

Response: Thank you for your carefully check and suggestion. We have revised this sentence. 

Lines 127−128: “… is weaker than normal (Wang et al., 2009), which is conduced to the accumulation of pollutants in 

the NCP (An et al., 2020).”  

 

8. Line 154: Please give a short description about the wavenumbers 1-10. 

Response: Thank you for your valuable advice. We have added the description of the wavenumbers 1-10 in Section 3.1 

of the revised manuscript. 

Lines 153−155: “Wavenumbers 1−10 are the spectral components on wave-number domain produced by Fourier 

transform in the spatial domain. Among them, wavenumbers 1−2 represent ultra-long wave, wavenumbers 3−5 denote long 

wave, and wavenumbers 6−10 are synoptic waves.” 
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Abstract. The canonical view of the northeast Asian anomalous anticyclone (NAAA) is a crucial factor for determining poor 

air quality (i.e., higher PM2.5 concentrations) in the North China Plain (NCP) on the interannual timescale. However, there is 

considerable intraseasonal variability in the NAAA in early winter (November to January), and the corresponding mechanism 15 

of its impacts on PM2.5 pollution in the NCP is not well understood. Here, we find that the intraseasonal NAAA usually 

establishes quickly on day 3 prior to its peak day with a life span of eight days, and its evolution is closely tied to the Rossby 

wave from upstream (i.e., the North Atlantic). Moreover, we find that the NAAA with a westward tilt might be mainly related 

to the wavenumbers 3−4. Further results reveal that under this background, the probability of regional PM2.5 pollution for at 

least three days in the NCP is as high as 69% (80% at least two days) in NDJ period 2000−2021. In particular, air quality in 20 

the NCP tends to deteriorate on day 2 prior to the peak day and reaches a peak on the next day with a life cycle of four days. 

In the course of PM2.5 pollution, a shallower atmospheric boundary layer and stronger surface southerly wind anomaly 

associated with the NAAA in the NCP appear 1 day earlier than poor air quality, which provides dynamic and thermal 

conditions for the accumulation of pollutants and finally occurrence of the PM2.5 pollution on the following day. Furthermore, 

we show that the stagnant air leading to poor air quality is determined by the special structure of temperature in the vertical 25 

direction of the NAAA, while weak ventilation conditions might be related to a rapid buildup of the NAAA. The present results 

quantify the impact of the NAAA on PM2.5 pollution in the NCP on the intraseasonal timescale. 
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1 Introduction 

The North China Plain (NCP, 32–42ºN, 110–120ºE) has undergone a series of air pollution (i.e., higher PM2.5 (fine particulate 30 

matter with a mass median aerodynamic diameter < 2.5 μm) concentrations) episodes, particularly in late autumn and early 

winter (Wang et al., 2019; Yin et al., 2021), which is recognized as significant human health risk and economic activity (Geng 

et al., 2021a). Nevertheless, PM2.5 pollution in China has been successfully reduced (i.e., PM2.5 concentrations fell by 42% 

between 2013 and 2018 across 74 large cities in China), thanks to comprehensive emission control in response to mounting 

public health risks (Cleaner air for China, 2019). However, PM2.5 concentration in this region remains the highest in the world 35 

(Jeong et al., 2021). Additionally, PM2.5 pollution is not only related to emissions (i.e., its long-term trends), but also is 

modulated by the atmospheric circulation (i.e., short-term seasonal variability) (Yang et al., 2016; Dang and Liao, 2019). 

Moreover, Cai et al. (2017) found that global warming will further increase the incidence of haze days in China by reducing 

the wind strength.  

Specific to air pollution in the NCP, previous studies have found many influence factors, including El Niño (Chang et al., 2016; 40 

Jeong et al., 2018; Yu et al., 2020; Zeng et al., 2021), Arctic sea-ice (Wang et al., 2015, Zou et al., 2020), Eurasian snow cover 

and soil (Zou et al., 2017; Yin et al., 2018) and climate internal variability including the Eurasian Teleconnection (Li et al., 

2019) and subtropical westerly jet waveguide (An et al., 2020, 2021; Mei et al., 2021), and so on. Studies also revealed that 

the aerosol pollution over the NCP during COVID-19 was related to the northeast Asian anomalous anticyclone (NAAA) (Ren 

et al., 2021). As a matter of fact, the NAAA is directly related to PM2.5 pollution in the NCP (Wang et al., 2020; Callahan and 45 

Mankin, 2020). Wang et al. (2009) and Song et al. (2016) found a weak East Asian trough is usually related to the NAAA, 

which is mainly induced by the low-frequency Rossby wave and synoptic transient eddy. As a synoptic system, the NAAA not 

only leads to higher temperature over East Asia by weakening East Asian trough (Song et al., 2016), but also directly 

modulating stagnant and ventilated conditions for air pollution in the NCP (e.g., Chang et al., 2016; Zhong et al., 2019). 

Moreover, the interannual variability of the NAAA is regulated by external factors mentioned above via atmospheric 50 

teleconnection (Yin et al., 2017; Wang et al., 2020; An et al., 2020). Therefore, the NAAA can’t be ignored when studying 

meteorological causes of PM2.5 pollution in the NCP.  

Although previous studies have demonstrated that the NAAA is the decisive factor affecting interannual variation of wintertime 

air pollution in the NCP except emissions (An et al., 2020; Wang et al., 2020), the role of the NAAA on air pollution on the 

intraseasonal timescale requires further investigation. On the synoptic scale, Zhong et al. (2019) found that the NAAA also 55 

plays a crucial role in haze of the NCP in December. For the research within the intraseasonal timescale, however, the existing 

studies mainly focus on the analysis of some haze cases (i.e., haze cases are limited to December in the years 2014−2016) 

(Zhong et al., 2019), lacking a more quantitative statistical analysis and further mechanistic analysis. Therefore, this study 

focuses on influence of the NAAA on PM2.5 pollution on the intraseasonal timescale. With the objectives as follows: to derive 

the characteristics of PM2.5 pollution evolution in the NCP under the background of the NAAA in November to January (NDJ) 60 

on the intraseasonal timescale; to assess the probability of the NAAA in relation to PM2.5 pollution in the NCP; and to further 

explore physical mechanisms of the NAAA deriving meteorology conditions for PM2.5 pollution in the NCP. 

The rest of this study is organized as follows: Section 2 describes the data and methods used in this paper. The results of this 

paper are included in Sect. 3. Specifically, the NAAA events and associated weather patterns are described in Sect. 3.1. PM2.5 

pollution in the NCP related to the NAAA is described in Sect. 3.2. Section 3.3 and 3.4 introduce the physical mechanisms of 65 

the NAAA causing PM2.5 pollution. The paper concludes with a brief summary and discussion in Sect. 4. 
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2 Data and methods  

2.1 Data 

The monthly and daily reanalysis data were mainly obtained from the National Center for Environmental Prediction 

(NCEP)/National Center for Atmospheric Research (NCAR) Reanalysis 2 dataset (Kanamitsu et al., 2002, last access: 6 70 

September 2021). The dataset extends from 1979 to present, with a spatial resolution of 2.5°  2.5° and 17 vertical layers 

extending from 1000 to 10 hPa. The variables including zonal and meridional wind, and air temperature are daily data. The 

geopotential height is monthly and daily data. In addition, daily atmospheric boundary layer height (ABLH) with a spatial 

resolution of 1.0°  1.0° in this study averaged from the 6-hourly dataset was taken from the fifth generation the European 

Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA5, Hersbach et al., 2018, last access: 8 October 2021). 75 

Air quality degradation is often accompanied by high PM2.5 concentration (e.g., Yang et al., 2016; Dang and Liao, 2019). 

Consequently, PM2.5 concentration is used to describe PM2.5 pollution in this study. The daily PM2.5 concentration data used in 

this study is a near real-time air pollutant database known as Tracking Air Pollution in China (TAP, http://tapdata.org.cn/, last 

access: 7 October 2021). The daily TAP PM2.5 concentration data extends from 2000 to present, with a spatial resolution of 10 

km in China, which combines information from multiple data sources like ground observations, satellite aerosol optical depth, 80 

operational chemical transport model simulations, and other ancillary data (i.e., meteorological fields, land use data, population 

and elevation) (Geng et al., 2021b). According to Geng et al. (2021b), the TAP PM2.5 concentration is estimated based on a 

two-stage machine learning model coupled with the synthetic minority oversampling technique and a tree-based gap-filling 

method, which has an averaged out-of-bag cross-validation R2 of 0.83 for different years (Geng et al., 2021b), which is widely 

used in PM2.5 pollution research (e.g., Geng et al., 2021a). The results from the TAP PM2.5 concentration are generally 85 

consistent with the observed PM2.5 concentration data during December 2014 to January 2021, which can be downloaded at 

website https://quotsoft.net/air/ (not shown, last access: 7 October 2021). 

It is noteworthy that the anomalies of the reanalysis data in this paper were calculated using climatology covering the period 

1981–2020. Especially, to remove long-term trend due to emission and a comprehensive emission control of Chinese 

government (Cleaner air for China, 2019), PM2.5 concentration anomaly was calculated based on a 3-year running climatology 90 

state.  

2.2 Methods 

Firstly, we get a spatial pattern of the NAAA using the Empirical Orthogonal Function (EOF) based monthly mean geopotential 

height anomaly over domain 25º–55ºN, 100º–160ºE in NDJ period 1979−2021 (Figs. 1a and b). The first EOF mode (EOF1) 

represents the NAAA (Fig. 1a), which explains a total variance of 44.2% and is well separated from the other eigenvalues as 95 

per the criterion of North et al. (1982). To obtain the typical NAAA on the intraseasonal timescale, the NDJ 8–90-day 

Butterworth bandpass-filtered daily geopotential height anomaly field at 500 hPa in the region 25º–55ºN, 100º–160ºE is 

projected onto the EOF1 to obtain a daily principal component (PC, hereafter) time series. Specifically, z is defined as the 

observed daily geopotential height anomaly field at 500 hPa, which is projected onto the EOF1 spatial pattern (e) to obtain the 

PC time series (Fig. 1c) (Baldwin et al. 2009): 100 

𝑃𝐶 =  
𝑧𝑒

𝑒𝑇𝑒
.              (1) 

Here, eT is called the transpose of e. 

Second, the typical NAAA events is defined as the following way (Fig. 2). First, we rank the values of PC time series in 

descending order to select the date with the largest PC (i.e., the peak day). If the PC values on at least three days centered on 

the peak day all exceed one standard deviation, then this peak day is marked as day 0 of a strong NAAA event. Once a day 0 105 

is found, no day within twenty-one days of the central date (day 0) can be defined as a strong NAAA event. This procedure 

prevents the algorithm from counting the same strong NAAA event repeatedly. Third, we repeat the above procedure until the 
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values of PC don’t exceed one standard deviation to guarantee that all the strong NAAA events are identified. Based on the 

above criterion (Fig. 2), 94 NAAA events in NDJ period 1979−2021 are selected in this study. This method is similar to that 

of Franzke et al. (2011), who studied the Pacific–North American teleconnection. In addition, the same method was used by 110 

Song et al. (2016), who studied the intraseasonal variation of the East Asian trough in winter.  

In addition, to examine the propagation of anomalous Rossby waves generating the NAAA, we calculated the horizontal 

stationary wave activity flux (WAF), as defined by Takaya and Nakamura (2001). Daily reanalysis data; i.e., the zonal wind, 

meridional wind, and anomalous geopotential height, are used to calculate the vector W.  

𝑾 =  
𝑝𝑐𝑜𝑠𝜑

2|𝑼|
∙ (

𝑈

𝑎2𝑐𝑜𝑠2𝜙
[(

𝜕𝜓′

𝜕𝜆
)

2

– 𝜓′ 𝜕2𝜓′

𝜕𝜆2 ]  +  
𝑉

𝑎2𝑐𝑜𝑠𝜙
[

𝜕𝜓′

𝜕𝜆

𝜕𝜓′

𝜕𝜙
 – 𝜓′ 𝜕2𝜓′

𝜕𝜆𝜕𝜙
]

𝑈

𝑎2𝑐𝑜𝑠𝜙
[

𝜕𝜓′

𝜕𝜆

𝜕𝜓′

𝜕𝜙
 –  𝜓′ 𝜕2𝜓′

𝜕𝜆𝜕𝜙
]  +  

𝑉

𝑎2 [(
𝜕𝜓′

𝜕𝜙
)

2

– 𝜓′ 𝜕2𝜓′

𝜕𝜙2 ]

),     (2) 115 

where 𝑾 is the wave activity flux (unit: m2 s2), 𝜓 (= Φ/𝑓) is the geostrophic stream function, Φ (unit: m) is geopotential 

height, f (= 2Ωsin𝜙) is the Coriolis parameter, р is the normalized pressure (pressure per 1000 hPa), and a is Earth’s radius. λ 

and ϕ denote the longitude and latitude, respectively. U (= (𝑈, 𝑉)T; unit: m s–1) is the basic flow. 

In addition to methods mentioned above, composite analysis is also used to explore the atmospheric circulation patterns related 

to the NAAA that cause NDJ PM2.5 pollution in the NCP. The zonal Fourier harmonic analysis of atmospheric circulation is 120 

also undertaken to obtain the parameters of the atmospheric waves (van Loon et al., 1973). 

3 Results 

3.1 Spatial and temporal characteristics of the northeast Asian anomalous anticyclone 

Figure 3 presents composite spatial distribution of atmospheric circulation for 94 NAAA events in NDJ period 1979−2021. 

The results show that there is a remarkably positive geopotential height anomaly at 500 hPa over Northeast Asia with a strong 125 

center, i.e., about 40ºN, 135ºE (Fig. 3a). The NCP is located in the southwest of the NAAA, which is controlled by anomalous 

southeasterly wind related to the NAAA (Fig. 3c). This means that the East Asian winter monsoon in the NCP, is weaker than 

normal (Wang et al., 2009), which is conduced to the accumulation of pollutants in the NCP (An et al., 2020). Additionally, 

the warm and moisture flow from the west Pacific is advected by anomalous southeasterly wind into the NCP, favoring the 

hygroscopic growth of pollution (Ma et al., 2014). As a result, the NCP might experience heavy PM2.5 pollution weather. 130 

Significantly, the maximum of the NAAA locates about 300 hPa with a vertical structure of westward-tilt from 1000 hPa to 

850 hPa (Fig. 3b). The corresponding temperature anomaly is a dipole pattern at the lower (1000 hPa to 300 hPa) and high 

(300 hPa to 10 hPa) level. That is to say that the lower is positive and the higher is negative temperature anomaly (Fig. 3b), 

which might lead to a westward-tilt structure of the NAAA via thermal wind and transient eddy feedback (Song et al., 2016). 

To understand the life span of the NAAA, we show the temporal evolution of standardized daily PC time series of 94 NAAA 135 

events (Fig. 4). The PC values become positive from day −4, meaning that the NAAA starts to emerge. Note that the PC index 

reaches its maximum on day 0. And the PC index is almost zero or even negative from day 4, which implies the extinction of 

the NAAA with a life span of eight days. Moreover, the 8-day life cycle of the NAAA suggests that it is enough to investigate 

the intraseasonal evolution and dynamics of the NAAA in the 21-day period described in section of method. The question right 

now is where does the NAAA start? 140 

To investigate the causes and evolution mechanism of the NAAA, horizontal wave activity flux is calculated and shown in the 

form of arrows in Fig. 5. Distinctly, there is a positive geopotential anomaly over the Gulf Stream on day −8 and propagates 

eastward along the upper-tropospheric polar front jet, which serves as a waveguide (Hoskins and Ambrizzi, 1993). On day −6 
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and the next two days, the Rossby wave energy reaches the region of Northeast Asia, but there is no positive geopotential 

height anomaly there. Note that the significantly positive geopotential height anomaly appears in Northeast Asia on day −3 145 

and −2 (Fig. 5), which is an embryo of the NAAA, namely, means a rapid buildup of the NAAA. On day 0, the NAAA reaches 

the peak of its life cycle and wears out almost immediately on the next day (Figs. 4 and 5). There is almost no positive 

geopotential height anomaly in Northeast Asia on day 4. On the interannual timescale, the NAAA seems to always occupy the 

whole winter and sustain degradation effect on air quality in the NCP (Chang et al., 2016; An et al., 2020). On the synoptic 

scale, however, the life cycle of the NAAA is just eight days. The results further suggest the necessity of studying the impact 150 

of the NAAA on PM2.5 pollution in the NCP on the synoptic scale. 

For a deeper understanding generation of the NAAA with a westward-tilting structure from wave theory, zonal harmonic 

analysis is used in this investigation. Wavenumbers 1−10 are the spectral components on wave-number domain produced by 

Fourier transform in the spatial domain. Among them, wavenumbers 1−2 represent ultra-long wave, wavenumbers 3−5 denote 

long wave, and wavenumbers 6−10 are synoptic waves. Figure 6 compares the height–longitude cross section of zonal 155 

harmonic wave anomalies on the peak day of the NAAA, overlapped with raw geopotential height anomaly. Note that the 

reason why other wavenumbers (i.e., wavenumbers 5−10) are not shown in Fig. 6 is that their shape are quite different from 

the shape of the NAAA. From Fig. 6, we find that the shape of wavenumbers 3−4 (referred as the quasi-stationary wave) is 

consistent with that of the NAAA in general. The results suggest that wavenumbers 3−4 might play an important role in the 

generation and elimination of the NAAA (Fig. 6). The amplitudes and variances of the harmonics also support the significant 160 

roles played by the Rossby wave (Fig. 7). For instance, the amplitudes and variances of wavenumbers 3−4 are significantly 

greater than other wavenumbers (Fig. 7). In addition to the quasi-stationary wave characterized by wavenumbers 3−4, transient 

eddy feedback (2−8 days on the timescale) due to a baroclinic atmosphere also plays an important role in the development of 

the NAAA (i.e., contributes to rapid buildup of the NAAA) (Song et al., 2016). 

3.2 The northeast Asian anomalous anticyclone in relation to variation of PM2.5 pollution in the NCP 165 

Sections 3.1 investigates the spatiotemporal characteristics and evolution mechanism of the NAAA on the intraseasonal 

timescale, how it relates to air quality in the NCP, and what potential conditions give rise to this regime. Figure 8 presents 

composite PM2.5 concentration anomaly from day −4 to 4 of 51 NAAA events in NDJ period 2000 to 2021. PM2.5 concentration 

tends to increase on day −3 and then increase rapidly since day −2. By 1 day before the peak of the NAAA, PM2.5 concentration 

anomaly reaches a maximum and maintains on the next day. On day 2 after the peak of the NAAA, positive PM2.5 concentration 170 

anomaly tends to dissipate. Generally, under the background of the NAAA, the NCP experiences heavy PM2.5 pollution for 

four days. Similarly, we investigate evolution of PM2.5 pollution in the NCP based on the TAP PM2.5 concentration and observed 

PM2.5 concentration data since 2013, respectively (not shown). And results are in line with the above conclusions drawn using 

TAP PM2.5 concentration data since 2000, suggesting our finds are reliable despite PM2.5 concentration data from machine 

learning by Geng et al. (2021). 175 

Figure 9 shows daily PM2.5 concentration anomaly averaged in the NCP for eight days before and after peak day of the NAAA. 

The results indicate a distinct evolution of PM2.5 pollution compared with that of the NAAA. Clearly, PM2.5 concentration 

begins to increase after day −4 with a peak on day −1 and then decreases gradually until zero on day 2. The NCP has gone 

through significant PM2.5 pollution for day −2 to 1 of the peak day of the NAAA (Fig. 9), which is consistent with the 

conclusions from Fig. 8. Significantly, the interquartile range (specially interdecile range) of area-averaged PM2.5 concentration 180 

anomaly during −2 to 1 has parts less than 0, meaning that not all of the NAAA events can cause PM2.5 pollution for at least 

three days (i.e., day −2 to 0) in the NCP. This makes us aware that the probability of PM2.5 pollution events in the NCP related 

to the NAAA should be further examined. 

To answer the question what is the probability of PM2.5 pollution in the NCP caused by the NAAA in NDJ period of 2000−2021 

on the intraseasonal timescale. The probability of PM2.5 pollution under the background of the NAAA is presented in Table 1, 185 

and the event of PM2.5 pollution is defined here as exceeding 0 for at least three days (i.e., day −2 to 0) for region-averaged 
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PM2.5 concentration anomaly in the NCP (Table 1). The probability of the NAAA in relation to PM2.5 pollution for at least three 

days in the NCP is 69% if we start counting from 2000. This percent is 64% when we start counting from 2014. Additionally, 

the probability of the NAAA in relation to PM2.5 pollution for at least two days in the NCP is higher (i.e., 80% and 72%) than 

at least three days. These results further illustrate meteorological factors, especially the NAAA, play a crucial role in NDJ 190 

PM2.5 concentration in the NCP in spite of a decline of 42% of the annual mean PM2.5 concentrations between 2013 and 2018 

in China (Cleaner air for China, 2019), which is in line with results by Dang and Liao (2019). From what is mentioned above, 

we come to the robust conclusion that 69% of the NAAA might cause NDJ PM2.5 pollution for at least three days in the NCP 

during the period of 2000−2021. 

3.3 Why does PM2.5 pollution occur in the NCP before the peak day of the NAAA 195 

From the previous section, we see that PM2.5 pollution in the NCP begins to deteriorate significantly from day −2 of the peak 

day of the NAAA. What sort of meteorological conditions causes this observed fact of PM2.5 pollution. The NAAA is usually 

accompanied by southerly wind anomalies on its western flank, corresponding to lower ABLH and weaker surface winds (Yin 

et al., 2017). We therefore explore the possible meteorological conditions favouring PM2.5 pollution in terms of dynamics (i.e., 

diffusion condition) and thermodynamics (i.e., stability). In Fig. 10, the evolution of the ABLH anomaly four days before and 200 

after the peak day of the NAAA is shown. The results show that there is remarkably negative ABLH anomaly on day −3, which 

means a shallow atmospheric boundary layer, favourable to accumulation of pollutants. It should be noted that the ABLH 

reduction one day prior to the appearance of PM2.5 pollution, which provides sufficient time for the accumulation of pollutants 

so that the occurrence of PM2.5 pollution on the following day (Figs. 8 and 11). On day 1, the negative ABLH anomaly decreases 

abruptly, corresponding PM2.5 pollution is also lightly weakened (Figs. 8 and 11). While on the next day (i.e., day 2), there is 205 

no significantly negative ABLH anomaly, corresponding PM2.5 pollution also almost disappears in the NCP (Figs. 8 and 11).  

Similar conclusions can be drawn from the wind field for four days before and after the peak day of the NAAA, which 

represents a diffusion condition for PM2.5 pollution (e.g., Yang et al., 2016, Liu et al., 2017). As shown in Fig. 11, the NCP is 

mainly controlled by anomalous southerly wind with a negative divergence anomaly (not shown), which also appears one day 

(i.e., day −3) earlier than heavy PM2.5 pollution in the NCP. The intensify and range of southerly wind increase significantly 210 

on the following two days (i.e., day −1 and day 0). The intensify and range of southerly wind, however, shrink rapidly on day 

1 and almost disappear on day 2. This process is consistent with PM2.5 pollution in the NCP except that the establishment of 

favourable wind field is earlier (for one day) than the occurrence of PM2.5 pollution. The earlier emergence of southerly wind 

anomaly with a negative divergence anomaly and shallow atmospheric boundary layer together facilitate the accumulation of 

pollutants, leading to the happening of PM2.5 pollution in the following day. And the maintenance of these two parameters 215 

leads to PM2.5 pollution last for the next two days. While the later weakening and even disappearance of southerly wind 

anomaly and shallow atmospheric boundary layer improve PM2.5 quality in the NCP after the day 1 of peak day of the NAAA.  

Overall, both dynamic and thermodynamic conditions associated with the NAAA result in heavy PM2.5 pollution in the NCP. 

Most importantly, PM2.5 pollution in the NCP happens 1 day earlier than the peak of the NAAA, which provides a reference 

for prediction of PM2.5 pollution in the NCP on the synoptic scale. In addition, if we take the positive geopotential height 220 

anomaly over domain 45ºN−60ºN, 80ºE−100ºE as a predictor, the potential prediction of PM2.5 pollution in the NCP might be 

extended to five days (Fig. 5). Now what we wonder is why the favourable meteorological conditions related to the NAAA 

appear before the peak day of the NAAA. 

To further understand physical mechanisms of the NAAA favoring occurrence of PM2.5 pollution in the NCP, the vertical 

structure of temperature and geopotential anomaly and their evolution in position of 37ºN, 115ºE are shown in this section. As 225 

shown in Fig. 12, temperature anomaly features a backward tilt with height below 700 hPa, meaning that the higher temperature 

anomaly moves from higher to lower level from day −3 to −1, which is easier to cause a potential thermal inversion. In addition, 

the ABLH anomaly is significantly negative in this period (Fig. 10 and 12), corresponding negative PM2.5 concentration 

anomaly in the NCP (Fig. 8). While above 700 hPa, it features a forward tilt with height, implying that the positive temperature 
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anomaly moves form lower to higher level from day −1 to 2, which is unfavourable for the formation of a potential thermal 230 

inversion. Besides, there is significantly anomalous ascending motion in the troposphere on day −3 to −1 (not shown), which 

might suppress intrusions of clean air from upper levels (i.e., above 300 hPa) to the lower levels, resulting in a shallower 

atmospheric boundary layer (Zhong et al., 2019). However, the negative ABLH anomaly decreases rapidly from day −1 to 2, 

and corresponding air quality in the NCP is gradually improved (Fig. 10 and 12). The characteristics based on area-averaged 

temperature and ABLH anomaly in the NCP are similar to the results based on single position (not shown). 235 

Similarly, we check the evolution of geopotential height anomaly and meridional wind anomaly with time and height in point 

(37ºN, 115ºE). Unsurprisingly, positive geopotential height anomaly shows a sudden enhancement in the whole troposphere 

from day −4 to 3 (Fig. 13), which is in line with result in Fig. 4b. This means a rapid buildup of the NAAA with a sudden 

enhancement of anomalous southerly wind. As we all know, PM2.5 pollution is closely tied to lower wind field, especially 

surface wind field (e.g., Yang et al., 2016; Liu et al., 2017; Yin et al., 2017). Therefore, on day −3, the NAAA rapidly builds 240 

with the sudden increase of anomalous geopotential height anomaly and southerly wind anomaly (Figs. 7 and 13), resulting in 

PM2.5 pollution prior to the peak day of the NAAA. We can draw the same conclusion compared with an area-averaged 

geopotential height anomaly and 1000 hPa meridional wind anomaly in the NCP.  

4 Conclusions and discussion 

In this study, we investigate the characteristics and evolution mechanisms of the NAAA on the intraseasonal timescale and the 245 

associated PM2.5 pollution in the NCP in NDJ. In particular, the intraseasonal NAAA has a life span of about eight days with 

a structure of westward tilt with height, and its evolution is closely tied to the Rossby wave from upstream (i.e., the North 

Atlantic). On day −8, there is significant circulation anomaly over the Gulf Stream and downstream propagation in the form 

of the Rossby wave. The NAAA reaches its peak on day 0 and decreases rapidly the next day. According to harmonic analysis, 

the NAAA with a westward tilt may be related to the wavenumbers 3−4. Additionally, the NAAA is also enhanced by the 250 

transient eddy, which can be induced by weak baroclinic atmosphere with the characteristic of vertical dipole pattern of 

temperature. For instance, Song et al. (2016) found that the transient eddy feedback leads to 30% of the NAAA amplification 

using geopotential height tendency equation. 

Further results show that 69% of the NAAA in NDJ period of 2000−2021 causes regional PM2.5 pollution for at least three 

days (80% for at least two days) in the NCP and its peak day lags occurrence of PM2.5 pollution for two days. The composite 255 

analysis reveals that the shallower atmospheric boundary layer and stronger surface southerly wind anomaly (weaker northerly 

wind) associated with the NAAA in the NCP appear one day prior to PM2.5 pollution, which provides dynamic and thermal 

conditions for the accumulation of pollutants and finally occurrence of PM2.5 pollution on the following day. We also find that 

the stagnant air and weak ventilation conditions are determined by a special vertical distribution of temperature anomaly and 

a rapid buildup of the NAAA.  260 

It is well known that the wet deposition through scavenging by rainfall is an effective way to remove atmospheric aerosols and 

soluble gases (e.g., Atlas and Giam, 1988). When the NAAA appears, southern China tends to experience heavy rainfall and 

vice versa in the NCP (not shown) (e.g., Ma et al., 2018; An et al., 2020, 2021), which is only not conducive to the wet removal 

of aerosol in the NCP, but usually deteriorates air quality in the NCP via a local north−south circulation (not shown) (An et al., 

2020, 2021; Mei et al., 2021). 265 

In addition, as shown in Figs. 8−9, PM2.5 pollution occurred over the NCP one day before the peak day of the NAAA, which 

implies the former might exert an impact on its formation and thus form a positive feedback of PM2.5 pollution−atmospheric 

circulation. The increases in aerosols, especially absorbing aerosols, have been reported to heat the air, and therefore lead to 

the atmospheric stagnation (e.g., Ding et al., 2016) and the weaker ventilation over the NCP (e.g., Lou et al., 2019). Therefore, 

the PM2.5 accumulation before the peak day of the NAAA may also cause or at least intensify the dynamical or 270 
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thermodynamical anomalies, which in turn might support the formation of PM2.5 pollution over the NCP. This is a potential 

interesting topic that deserves further investigation in the future. 

In brief, the NAAA and associated meteorological parameters play a crucial role in formation of NDJ PM2.5 pollution in the 

NCP on the intraseasonal timescale, which is slightly different from its role on wintertime PM2.5 pollution in this region on the 

interannual timescale. For example, we can't draw a conclusion that the peak time of the NAAA lags PM2.5 pollution in the 275 

NCP in NDJ on the interannual timescale. In addition, there is usually an anomalous descending motion in the NCP in NDJ on 

the interannual timescale (An et al., 2020), while on the intraseasonal timescale is an anomalous ascending motion in this 

region (not shown). The shortcoming of this study only investigates the influence of the NAAA on PM2.5 pollution in the NCP 

in NDJ on the intraseasonal timescale. It should be noticed that cyclone anomaly in Northeast Asia, as a pattern of out-of-

phase of the NAAA (Wang et al., 2009; Song et al., 2016), might be a favorable atmospheric circulation to improve PM2.5 280 

quality, which should also be studied in future. 
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 395 

Figure 1: (a) The spatial pattern of the first EOF and (b) the corresponding standardized PC series over the domain 25ºN–55ºN, 

100ºE–160ºE in NDJ period 1979–2020. (c) The standardized daily PC series in NDJ period 1979–2020, red line is one standard 

deviation. 
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 400 

Figure 2: Process for selecting the NAAA events. Here, PC is daily index of the NAAA, sqsort (PC) represents PC is sorted in 

descending order, dimsize (PC) is the size of one-dimensional array PC. 
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Figure 3: (a) Composite geopotential height anomaly (shaded and contours; unit: m) at 500 hPa on the peak day of 94 NAAA events 405 

in NDJ period 1979 to 2021. (b) Composite longitude-height cross section of geopotential height anomaly (shaded; unit: m) and 

temperature anomaly (contours; unit: ºC) at 37ºN. (c) Composite wind vector (arrows; unit: m s–1) and wind speed (shaded; unit: m 

s–1) at 850 hPa. The white dots denote the 99% confidence level according to the Student’s t test. 
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 410 

Figure 4: The temporal evolution of the standard PC time series for 94 NAAA events. In particular, black and blue curves, light and 

deep gray filling represent mean and median value, interdecile range and interquartile range, respectively. 
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Figure 5: Composite evolution of geopotential height anomaly (shaded; unit: m) and the WAF (arrows; unit: m2 s2) at 500 hPa on 415 

days –8, –6, –4, –2, 0, +2, +4, +6 and +8 in 94 NAAA events since 1979. The white dots denote the 99% confidence level according to 

the Student’s t test. 
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Figure 6: Cross section of zonal harmonic analysis of geopotential height anomaly. (a) wavenumber 1, (b) wavenumber 2, (c) 420 

wavenumber 3 and (d) wavenumber 4 (shaded; unit: m) and geopotential height anomaly (contours; unit: m) from 1000 hPa to 10 

hPa on peak day of 94 NAAA events. The white dots denote the 99% confidence level according to the Student’s t test. 
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Figure 7: Zonal harmonic analysis of geopotential height anomaly at 500 hPa on the peak day of 94 NAAA events since 1979. (a) 425 

Amplitude harmonics of wave 1 to wave 10, (b) variances harmonics of wavenumber 1 to 10. In particular, the thick black curve 

(Ob) represents zonal mean geopotential height anomaly in the peak day of 94 NAAA events. 
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Figure 8: Composite evolution of PM2.5 concentration anomaly (shaded; unit: ug m–3) from day -8 to day 8 in 51 NAAA events in 430 

NDJ period 2000−2021. The white dots denote the 99% confidence level according to the Student’s t test. 
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Figure 9: The same as Fig. 3 except for PM2.5 concentration anomaly in 51 NAAA events in NDJ period 2000−2021. 
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Figure 10: The same as Fig. 5 except for the ABLH anomaly (shaded; unit: m). 
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Figure 11: The same as Fig. 5 except for anomalous wind vector (arrows; unit: m s–1) and anomalous wind speed (shaded; unit: m 440 

s–1) at 1000 hPa.  
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Figure 12: Composite time-height cross section of temperature anomaly (shaded; unit: m) at 37ºN, 115ºE from the developing stage 

(day –8 to day 0) to the decaying stage (day 0 to day +8) for 51 NAAA events in NDJ period 2000−2021. The white dots denote the 445 

99% confidence level according to the Student’s t test. Black bar charts represent the variation of the ABLH anomaly (bars; unit: 

m) at 37ºN, 115ºE from the developing stage (day –8 to day 0) to the decaying stage (day 0 to day +8) of 51 NAAA events in NDJ 

period 2000−2021. Especially, the coordinates on the right represent the value of the ABLH anomaly. The horizontal line denotes 

zero of the ABLH anomaly. 
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Figure 13: The same as Fig. 9, but for geopotential height anomaly (shaded; unit: m) and 1000-hPa meridional wind anomaly (bars; 

unit: m s−1). Positive values of meridional wind anomaly represent southerly wind anomaly. 
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Table 1: The probability of the NAAA in relation to PM2.5 pollution in the NCP. 455 

 The NAAA The number of PM2.5 pollution lasted 

two days (day –1 and day 0) 

The number of PM2.5 pollution lasted 

three days (day –2 and day 0) 

 number number percent number percent 

2000.11–2021.01 51 41 80% 35 69% 

2014.11–2021.01 25 18 72% 16 64% 

 

 

 

 


