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Abstract 26 

To investigate the characteristics and changes in the sources of carbonaceous 27 

aerosols in northern Chinese cities after the implementation of the Action Plan for Air 28 

Pollution Prevention and Control in 2013, we collected PM2.5 samples from three 29 

representative inland cities, viz. Beijing (BJ), Xi’an (XA), and Linfen (LF) from 30 

January 2018 to April 2019. Elemental carbon (EC), organic carbon (OC), 31 

levoglucosan, stable carbon isotope, and radiocarbon were measured in PM2.5 to 32 

quantify the sources of carbonaceous aerosol, combined with Latin hypercube 33 

sampling. The best estimate of source apportionment showed that the emissions from 34 

liquid fossil fuels contributed 29.3 ± 12.7%, 24.9 ± 18.0%, and 20.9 ± 12.3% of the 35 

total carbon (TC) in BJ, XA, and LF, respectively, whereas coal combustion 36 

contributed 15.5 ± 8.8%, 20.9 ± 18.0%, and 42.9 ± 19.4%, respectively. Non-fossil 37 

sources accounted for 55 ± 11%, 54 ± 10%, and 36 ± 14% of the TC in BJ, XA, and 38 

LF, respectively. In XA, 44.8 ± 26.8% of non-fossil sources was attributed to biomass 39 

burning. The highest contributors to OC in LF and XA were fossil sources (74.2 ± 9.6% 40 

and 43.2 ± 10.8%, respectively), whereas that in BJ was non-fossil sources (66.8 ± 41 

13.9%). The main contributors to EC were fossil sources, accounting for 91.4 ± 7.5%, 42 

66.8 ± 23.8%, and 88.4 ± 10.8% in BJ, XA, and LF, respectively. The decline (6–16%) 43 

in fossil source contributions in BJ since the implementation of the Action Plan 44 

indicates the effectiveness of air quality management. We suggest that specific 45 

measures targeted to coal combustion, biomass burning and vehicle emissions in 46 

different cities should be strengthened in the future. 47 

 48 
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burning; fossil fuel combustion; source apportionment  50 



2 
 

1 Introduction 51 

Atmospheric aerosols are extremely complex suspension systems. Carbonaceous 52 

aerosols are an important component of atmospheric aerosols, accounting for 53 

approximately 10–60% of the total mass of global fine particulate matter (Cao et al., 54 

2003, 2007; Feng et al., 2009). Carbonaceous aerosols contain elemental carbon (EC), 55 

organic carbon (OC), and inorganic carbon (IC). IC is mainly derived from sand dust, 56 

it has a low concentration and simple composition, and it can be removed via acid 57 

treatment (Clarke et al., 1992). EC is produced by incomplete combustion and is 58 

directly discharged from pollution sources. It can cause global warming by changing 59 

the radiative forcing and ice albedo (Jacobson et al., 2001; Kiehl et al., 2007). OC is a 60 

complex mixture of primary and secondary pollutants produced by the combustion of 61 

domestic biomass and fossil fuels. It is an important contributor to tropospheric ozone, 62 

photochemical smog, and rainwater acidification, and it can significantly impact 63 

regional and global environments through biogeochemical cycling (Jacobson et al., 64 

2000; Seinfeld et al., 1998). Therefore, identifying and quantifying the source 65 

contributions of carbonaceous aerosols can provide a scientific basis for the 66 

management of regional air quality. 67 

The natural radiocarbon (
14

C) is completely depleted in fossil emissions, due to 68 

the age of fossil fuels well above the half-life of 
14

C (5730 years), whereas non-fossil 69 

sources show the similar 
14

C as environment (Szidat, 2009; Heal, 2014). Therefore, 70 

14
C can be used to study the source of atmospheric particulate matter and to 71 

quantitatively and accurately distinguish the contributions of fossil and non-fossil 72 

sources (Clayton et al., 1955; Currie, 2000; Szidat, 2009). In recent decades, this 73 

method has been widely used to trace non-fossil carbonaceous aerosols in various 74 

regions (Ceburnis et al., 2011; Lewis et al., 2004; Szidat et al., 2009; Vonwiller et al., 75 
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2017; Yang et al., 2005; Zhang et al., 2012, 2017a). Stable carbon isotope (
13

C) is a 76 

useful geochemical marker that can provide valuable information about both the 77 

sources and atmospheric processing of carbonaceous aerosols (López-Veneroni, 2009; 78 

Widory, 2006), and it has been applied in various types of environmental research to 79 

identify emission sources (Cachier et al., 1985, 1986; Cao et al., 2011; Chesselet et al., 80 

1981; Fang et al., 2017; Kawashima & Haneishi, 2012; Kirillova et al., 2013). The 81 

analysis of 
13

C/
12

C can refine 
14

C source apportionment because both coal and liquid 82 

fossil fuels are depleted of 
14

C while their 
13

C source signatures are different 83 

(Andersson et al., 2015; Li et al., 2016; Winiger et al., 2017). Levoglucosan (Lev), a 84 

thermal degradation product of cellulose combustion, is a common molecular tracer 85 

that can be used to evaluate the contribution of biomass burning (Hoffmann et al., 86 

2010; Locker et al., 1988; Simoneit et al., 1999). The combination of the carbon 87 

isotope analysis and Lev can further divide the contributions of different 88 

carbonaceous sources. Some studies have confirmed the feasibility of this 89 

combination (Claeys et al., 2010; Gelencsér et al., 2007; Genberg et al., 2011; Huang 90 

et al., 2014; Kumagai et al., 2010; Liu et al., 2013; Niu et al., 2013; Zhang et al., 91 

2015). 92 

Cities in northern China have been affected by severe haze for several decades 93 

(Cao et al., 2012; Han et al., 2016; Sun et al., 2006; Wang et al., 1990). After the 94 

Action Plan for Air Pollution Prevention and Control (hereafter simplified as “Action 95 

Plan”) was promulgated in 2013, all parts of China responded to the issue and held 96 

numerous air quality management practices (CSC, 2013). In 2020, the average PM2.5 97 

concentration in Chinese cities across the country decreased by 54.2% compared to 98 

that in 2013 (MEE, 2014, 2021). In 2020, the proportion of clean energy consumption, 99 

such as that of natural gas and electricity, increased by 7.9% compared to that in 2013, 100 
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and the proportion of coal combustion decreased by 9.7% (NBS, 2021). Before the 101 

Action Plan, fossil fuel sources were identified as the main contributor to 102 

carbonaceous aerosols in Chinese cities (56–81%) (Ni et al., 2018, Niu et al., 2013, 103 

Shao et al., 1996; Sun et al., 2012; Yang et al., 2005). In this study, we aimed to 104 

determine the main contribution of the current carbonaceous aerosols in northern 105 

Chinese cities. Also, we aimed to identify whether changes in energy type and 106 

emission control caused a change in the source of carbonaceous aerosols. 107 

To address those issues, we conducted a source apportionment of carbonaceous 108 

aerosols based on yearly measurements of OC, EC, Lev, 
13

C, and 
14

C in PM2.5, 109 

combined with Latin hypercube sampling (LHS), in three representative northern 110 

Chinese cities during 2018–2019. This study provides a comprehensive understanding 111 

of current sources of carbonaceous aerosol after the implementation of the Action 112 

Plan in Chinese cities. 113 

 114 

2 Methods 115 

2.1 Research sites 116 

We selected one urban sampling site in Beijing (BJ), one in Xi’an (XA), and one 117 

in Linfen (LF) (Fig. 1). BJ is the capital of China, one of the largest megacities in the 118 

world, and the central city of the Beijing–Tianjin–Hebei economic region. It has a 119 

population of more than 20 million and has experienced serious air pollution problems 120 

in the past few decades. XA, the capital of Shaanxi Province, is the ninth-largest 121 

central city and an important city of the Northwest Economic Belt in China. It is 122 

located in a basin surrounded by mountains on three sides, where atmospheric 123 

pollutants are discharged mainly from the basin and are less affected by other urban 124 

areas (Cao et al., 2009; Shen et al., 2011). LF is located in western Shanxi Province 125 
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and is one of the representative cities in the northern air-polluted region. Shanxi 126 

Province is the center of Chinese energy production and chemical metallurgy 127 

industries; its coal production and consumption were approximately 736.81 million 128 

tons and 349.07 million tons, accounting for 27.1% and 12.4% of the Chinese total in 129 

2019, respectively (NBS, 2020; SPBS, 2020). The air quality in LF was ranked in the 130 

worst ten in China from 2018 to 2020 (MEE, 2019, 2020, 2021). According to the 131 

pollutant data released by the National Air Quality Real-time Release Platform, 132 

Ministry of Ecology and Environment (MEE) of the People’s Republic of China 133 

(http://106.37.208.233:20035/), the daily average atmospheric SO2 concentration in 134 

LF exceeded 850 μg m
-3

 on January 4
th

, 2017. XA and LF heavily suffer from air 135 

pollution in the Fenwei Plain. In July 2018, the State Council issued the Three-Year 136 

Action Plan to Win the Blue Sky Defense War. This included the Fenwei Plain as one 137 

of the key areas in which to prevent and control pollution (CSC, 2018).  138 

The first site was located in the northwest of BJ, on the rooftop of the Research 139 

Center for Eco-Environmental Sciences, Chinese Academy of Sciences (40°0′33″ N, 140 

116°20′38″ E). The site was approximately 200 m from the road. The second site was 141 

located southwest of XA, on the rooftop of the School of Urban and Environmental 142 

Sciences in Northwest University (34°15′36″ N, 108°88′53″ E). Living quarters and 143 

teaching areas were located around these two sampling sites. The third site was 144 

located in Houma, a county-level city of LF, on the rooftop of a residential building 145 

(35°63′56″ N, 111°39′53″ E). There was no industrial pollution near each site and 146 

they were representative urban sites. 147 
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 148 

Fig. 1 Locations and PM2.5 concentration of Beijing (BJ), Xi’an (XA), and Linfen 149 

(LF). The background map shows the distribution of PM2.5 concentrations in most of 150 

China from 2015 to 2019 (Li et al., 2021a). The pink bars are the average PM2.5 151 

concentrations of the samples collected in this study during 2018 to 2019.  152 

 153 

2.2 Sample collection 154 

At BJ and XA, PM2.5, samples were collected on the 7
th

, 14
th

, 21
st
, and 28

th
 of 155 

each month from April 28, 2018, to April 21, 2019. In LF, seven consecutive days in 156 

each season were selected for sample collection, and the sampling periods were 157 

concentrated in January, April, July, and October 2018. A total of 124 24-hour (10 158 

a.m. to 10 a.m. on the following day) PM2.5 samples and 4 field blanks were obtained. 159 

Samples in each city were collected continuously on pre-baked quartz fiber 160 

filters (203 mm × 254 mm, Whatman UK) using a high-volume (1.05 m
3
 min

-1
) 161 
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sampler (TH-1000CII). The sampler was equipped with an impact collector to collect 162 

the particles less than 2.5 μm in aerodynamic diameter. To remove the existing carbon 163 

in the materials, the filter and foil used for wrapping should be baked in a muffle 164 

furnace at 375 °C for 5 h before use. After sampling, the filters were folded, wrapped 165 

in pre-baked aluminum foil, and stored at −18 °C. All filters were weighed after 166 

equilibrating at 25 ± 1 °C and 52 ± 5% humidity for more than 24 h. The PM2.5 mass 167 

loadings were determined gravimetrically using a 0.1 mg sensitivity electronic 168 

microbalance. Carbonate has been removed from the filters by spraying with 169 

hydrochloric acid (1 mol L
-1

) before measurement. 170 

2.3 OC and EC analyses 171 

Filter pieces of 0.526 cm
2
 were used to measure the OC and EC using a DRI 172 

Model 2001 (Thermal/Optical Carbon Analyzer) at the Institute of Earth Environment, 173 

Chinese Academy of Sciences. The Interagency Monitoring of Protected Visual 174 

Environments (IMPROVE) thermal/optical reflectance protocol must be followed 175 

because OC and EC have different oxidation priorities under different temperatures 176 

(Cao et al., 2007; Chow & Watson, 2002). OC and EC were defined as OC1 + OC2 + 177 

OC3 + OC4 + OP and EC1 + EC2 + EC3 − OP, respectively, in accordance with the 178 

IMPROVE protocol (Chow et al., 2004). Sample analysis results were corrected by 179 

the average blank and standard sucrose concentrations of OC and EC, respectively.  180 

2.4 Lev analysis 181 

The molecular tracer (Lev) was determined by high-performance anion exchange 182 

chromatography with pulsed amperometric detection (HPAEC-PAD) method at the 183 

South China Institute of Environmental Science, Ministry of Ecology and 184 

Environment. A quartz filter sample (2 cm
2
) was extracted with 3 ml of deionized 185 

water in a prebaked glass bottle under ultrasonic agitation and was subsequently 186 
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analyzed using a Dionex ICS-3000 system after filtration. The separation requires an 187 

equilibrium period, isocratic elution, and gradient elution. (For a specific description, 188 

refer to Zhang et al., 2013.) The instrument sample loop was 100 µL and the detection 189 

limit of Lev was 1×10
-8

 μg ml
-1

. 190 

Recent studies indicated that Lev was degraded to some extent during 191 

atmospheric transportation, and about 25% of them came from other non-biomass 192 

burning sources (Hoffmann et al., 2010; Wu et al., 2021). Therefore, correction of the 193 

biomass burning source lev (Levbb) is required before the source apportionment: 194 

Levbb = 
Lev   0. 5

p
                                                  (1) 195 

where p (0.4–0.65) is the degradation rate of Lev, which has different 196 

characteristics in each seasons. For specific p value in each season, please refer to the 197 

research of Li et al. (2021b). 198 

2.5 Stable carbon isotope analysis 199 

The 
13

C compositions were determined using a gas isotopic analyzer (Picarro 200 

G2131-i) in conjunction with an elemental analyzer (Elemental Combustion System 201 

4010) at the Institute of Earth Environment, Chinese Academy of Sciences. 202 

Specifically, 0.2–0.4 mgC of sample has been placed in a precombusted tin capsule 203 

(6×10 mm) and the air was removed by squeezing. The samples were tested at 980 °C 204 

and 650 °C with 70–80 ml min
-1

 helium as the carrier gas and 20–30 ml min
-1

 oxygen 205 

as the reaction gas. The resulting gas mixture was then collected in Gas Isotopic 206 

Analyzer (Bachar et al., 2020). Urea standard (CAS Number: 57-13-6) was used as 207 

standard sample. 
13

C data are expressed in delta notation with respect to Vienna Pee 208 

Dee Belemnite (VPDB) (Coplen, 1996): 209 

δ
13

C = [
13C 12C ample

13C 12C P B

 – 1] × 1000‰                                       (2) 210 
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2.6 Radiocarbon analysis 211 

The 
14

C samples were prepared and tested in the laboratory of Xi’an accelerator 212 

mass spectrometer (AMS) Center. The processed sample was packed in a sealed 213 

quartz tube with a silver wire and excessive CuO. The solid sample was then 214 

combusted at 850 °C for 2.5 h to convert it into gas after the vacuum degree was less 215 

than 5×10
-5

 mbar. The gas sample was passed through a liquid nitrogen cold trap 216 

(−196 °C) to freeze CO2 and water vapor, and then passed through an ethanol–liquid 217 

nitrogen cold trap (−90 °C) to remove water vapor and purify CO2 (Turnbull et al., 218 

2007; Zhou et al., 2014). The collected CO2 was reduced to graphite via a reduction 219 

reaction with zinc particles and iron powder as the reductant and catalyst, respectively 220 

(Jull, 2007; Slota et al., 1987). The graphite was pressed into an aluminum holder and 221 

measured using a 3 Megavolt AMS, with a precision of 3‰ (Zhou et al., 2006, 2007). 222 

Forty-nine targets were arranged in sequence in the sample fixed wheel, including 223 

fourty samples, six OX-II standard samples, two anthracite standard samples and one 224 

sugar carbon standard sample each time. AM  online δ
13

C of was used for isotope 225 

fractionation correction. 226 

The 
14

C results were expressed as a fraction of modern carbon (fM) (Currie, 2000; 227 

Mook & Plicht, 1999). It defines as the 
14

C/
12

C ratio of the sample related to the 228 

isotopic ratio of the reference year 1950 (Stuiver & Polach, 1977):  229 

fM = (
14

C/
12

CSample)/(
14

C/
12

C1950).                                        (3) 230 

Atmospheric nuclear bomb tests in the late 1950s and the early 1960s released a 231 

large amount of 
14

C, and the ratio of 
14

C/
12

C in atmospheric CO2 roughly doubled in 232 

the mid-1960s (Hua & Barbetti, 2004; Levin et al., 2003, 2010; Lewis et al., 2004; 233 

Niu et al., 2021). However, fM in the atmosphere has been decreasing because of the 234 

dilution effect produced by the absorption of marine and terrestrial biospheres and the 235 
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release of fossil fuels. In recent years, studies on background 
14

CO2 in China and 236 

other countries have shown that the fM value in the atmosphere has decreased and 237 

approached 1 (Hammer et al., 2017; Niu et al., 2016). This means that the impact of 238 

the nuclear explosions has almost disappeared for current atmosphere, and the change 239 

in current atmospheric 
14

C was mainly influenced by the regional natural carbon cycle 240 

and fossil fuel CO2 emissions. Thus, the fM values were not corrected in this study, 241 

because the material used for biomass burning in China was mainly from crop straw 242 

(Fu et al., 2012; Street et al, 2003b; Yan et al., 2006; Zhang et al., 2017b), and the 243 

influence of atmospheric nuclear bomb test has basically vanished for the annual 244 

plants.  245 

Non-fossil fractions (fnf) and fossil fractions (ff) were determined from the fM 246 

values. 247 

fnf = fM × 100%                                                      (4) 248 

ff = (1− fM) × 100%                                                   (5) 249 

2.7 Source apportionment of total carbon using 
14

C and 
13

C 250 

To study the contribution of each fossil source to the total carbon (TC), we used 251 

the principle of isotopic chemical mass balance to further separate fossil sources into 252 

liquid fossil fuels and coal. Since the amount of carbonaceous aerosol produced by 253 

natural gas is very low compared to coal and liquid fossil combustion, its contribution 254 

was not considered here (Chen et al., 2005; England et al., 2002; Guo et al., 2014; Yan 255 

et al., 2010). In this part, 
13

C and 
14

C were combined to calculate the contributions of 256 

non-fossil, coal, and liquid fossil sources. 257 

fnf × δ
13

Cnf + fcoal × δ
13

Ccoal + fliq.fossil × δ
13

Cliq.fossil = δ
13

Csample + β               (6) 258 

fcoal + fliq.fossil = ff                                                     (7) 259 

where fnf, fcoal, and fliq.fossil represent the proportions of non-fossil source, coal and 260 
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liquid fossil combustion, respectively, δ
13

Cnf, δ
13

Ccoal, and δ
13

Cliq.fossil represent δ
13

C 261 

from the corresponding sources. δ
13

Csample is the δ
13

C of the samples at each site, and 262 

β is a small correction. 263 

Since the formation process of OC can cause the fractionation of 
13

C, with a 264 

range mainly in 0.03–1.40 ‰ (mean 0.2‰) (Aggarwal and Kawamura, 2008; Cao et 265 

al, 2011; Ho et al., 2006; Zhao et al., 2018), a small correction (0.2‰) was made for 266 

the δ
13

C sample used in Eq. 6. The selection of the reference value was described in 267 

detail in Section 2.9. 268 

2.8 Source apportionment of OC and EC using 
14

C and Levbb 269 

The method combines 
14

C with the concentration of carbon components and a 270 

molecular tracer (Levbb) to quantify the sources of OC and EC. Carbon was assumed 271 

to originate from fossil fuel combustion, biomass burning, and other non-fossil 272 

emissions (Gelencsér et al., 2007). The following is a simple calculation method. 273 

EC consists of biomass burning (ECbb) and fossil fuel combustion (ECff). 274 

EC = ECff + ECbb                                                    (8) 275 

ECbb was calculated based on the Levbb concentration and the estimated 276 

ECbb/Levbb ratio: 277 

ECbb = Levbb × (ECbb/Levbb) = Levbb × [(EC/OC)bb/(Levbb/OCbb)]              (9) 278 

Then, ECff was calculated by subtraction (Eq. 8). 279 

OC consists of OC from biomass burning (OCbb), fossil fuel combustion (OCff), 280 

and other sources (OCother), including primary and secondary biogenic OC and SOC 281 

(secondary organic carbon) from non-fossil emissions. 282 

OC = OCbb + OCff + OCother                                           (10) 283 

OCbb was calculated based on the Levbb concentration and the estimated 284 

Levbb/OCbb ratio: 285 



12 
 

OCbb = Levbb/(Levbb/OCbb)                                            (11) 286 

OCother was calculated by balancing the 
14

C content that was not attributed to 287 

OCbb. 288 

OCother = (OC ×fnf (OC) − OCbb × fM(bb))/ fM (nf).                         (12) 289 

Furthermore, fnf(OC) was calculated based on the 
14

C concentration measured in 290 

the sample (detailed description of the formulas can be found in Genberg et al., 2011); 291 

fM(bb) and fM(nf) are the 
14

C concentrations in biomass burning and other non-fossil 292 

emissions, respectively.  293 

Finally, OCff was calculated by subtraction (Eq. 10). 294 

2.9 Uncertainties of source apportionment  295 

Some uncertainties exist in some parameters in Eqs. 5–11 and need to be 296 

evaluated. Table 1 lists the range of reference values used in this study. The ratios 297 

Levbb/OCbb and ECbb/OCbb depend on the type of biofuel and the burning conditions 298 

(Oros et al., 2001a, b). In foreign studies, the most common distributions of 299 

Levbb/OCbb and ECbb/OCbb are 0.08–0.2 and 0.07–0.45, respectively (Gelencsér et al., 300 

2007; Puxbaumet et al., 2007; Szidat et al., 2006). The distribution ranges of 301 

Levbb/OCbb and ECbb/OCbb burned by trees, shrubs, and rice are approximately 302 

0.01–0.04 and 0.05–0.31, respectively (Engling et al., 2006, 2009; Wang et al., 2009). 303 

Zhang et al. (2007) found that the values of Levbb/OCbb and ECbb/OCbb in the cereal 304 

straw of BJ were 0.08 and 0.13, respectively. 305 

The δ
13

C of aerosols derived from liquid fossil fuels (gasoline and diesel oil) was 306 

approximately −31 ‰ to −25 ‰ (Agnihotri et al., 2011; Huang et al., 2006; 307 

Lopez-Veneroni, 2009; Pugliese et al., 2017; Vardag et al., 2015; Widory, 2006). The 308 

δ
13

C derived from coal combustion was relatively high, ranging from −25 ‰ to −21 ‰ 309 

(Agnihotri et al., 2011; Pugliese et al., 2017; Widory, 2006). The results of Agnihotri 310 
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et al. (2011) showed that the δ
13

C characteristic of biomass burning emissions ranged 311 

from −25.9 ‰ to −29.4 ‰.  mith & Epstein (19 1) found that plants with C3 (e.g., 312 

wheat, soybeans, and most woody plants) and C4 (e.g., corn, grass, and sugar cane) 313 

metabolism had significantly different δ
13

C, with an average of −2  ‰ and −13 ‰, 314 

respectively. In other studies, these two types of plant-derived aerosols had different 315 

characteristics; the 
13

C from C3 and C4 plants ranged from approximately −23.9 ‰ to 316 

−32 ‰ (Moura et al., 2008; Turekian et al., 1998) and from −11.5‰ to −13.5 ‰ 317 

(Martinelli et al., 2002), respectively. 318 

Because of the differences in the structure of biomass fuels in different cities, we 319 

selected the δ
13

C value based on the current status of biomass fuel used in research 320 

Table 1. Values with limits of input parameters for source apportionment 

using Latin hypercube sampling (LHS). 

Parameters Low Probable value High 

Levbb/OCbb 0.01 0.11 0.20 

ECbb/OCbb 0.13 0.22 0.31 

δ
13

Cliq.fossil (‰) −31.00 −27.00 −25.00 

δ
13

CCoal (‰) −25.00 −22.95 −21.00 

δ
13

Cnf 
a
 (‰) −26.00 −25.25 −24.00 

δ
13

Cnf 
b
 (‰) −27.00 −26.50 −25.00 

Agnihotri et al., 2011; Engling et al., 2006, 2009; Gelencsér et al., 2007; Huang et 

al., 2006; Lopez-Veneroni, 2009; Martinelli et al., 2002; Moura et al., 2008; Oros 

et al., 2001a, b; Puxbaumet et al., 2007; Smith & Epstein, 1971; Szidat et al., 2006; 

Turekian et al., 1998; Wang et al., 2009; Widory, 2006; Zhang et al., 2007. 

a
 Values used in BJ/LF 

b
 Values used in XA 
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regions. In China, biomass fuels mainly include crop residues, branches, and leaves, 321 

and the amount of perennial wood is quite small (Zhang et al., 2015). BJ has a small 322 

area of arable land, with low agricultural output and corn production (BJMBS, 2020). 323 

The neighboring province, Hebei, is a large agricultural province that produces a large 324 

amount of wheat and corn annually; the latter has a larger sown area (PGHP, 2020). 325 

Shanxi Province also mainly produces wheat and corn; however, the sown area of 326 

corn is more than three times that of wheat (SPBS, 2020). Agricultural production in 327 

XA and the surrounding Guanzhong area is relatively large. The agricultural structure 328 

is dominated by wheat and corn, and their sown areas are not very different (SAPBS, 329 

2020). This shows that the δ
13

C of agricultural straw burning in LF is likely to be 330 

higher and that in XA may be lower. Some studies considered that δ
13

C used for 331 

quantitative mass–balance source apportionment calculations from biomass burning 332 

should mainly be defined as C3 plants (Anderson et al., 2015; Fang et al., 2017; Ni et 333 

al., 2020). Based on this information, the δ
13

C value of biomass burning in BJ and LF 334 

was found to be approximately −26 ‰ to −24 ‰, and that in XA is likely to be from 335 

approximately −27 ‰ to −25 ‰. According to the researches about biomass burning 336 

type, perennial biomass fuel was less frequently used in China (Fu et al., 2012; Street 337 

et al, 2003b; Yan et al., 2006; Zhang et al., 2017b), the impact of nuclear explosions 338 

on 
14

C data can be ignored, and the fM(nf) and fM(bb) of the local station should be 339 

close to the atmospheric value.  340 

To evaluate the uncertainties of the quantification of source contributions, which 341 

resulted from the uncertainties of the parameters used, we used Python software to 342 

generate 3000 random variable simulations based on the LHS method (Gelencsér et 343 

al., 2007). After excluding part of the out-of-range data, the median value of the 344 

remaining simulations of each sample were considered as the best estimate. The 345 
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results of the uncertainties analysis had been discussed further in Section 3.6. 346 

2.10 Air mass backward trajectory analysis  347 

For Backward trajectory analysis, air-mass back trajectories from the previous 48 348 

h were determined by using the HYbrid Single-Particle Lagrangian Integrated 349 

Trajectory (HYSPLIT) model (Draxler and Hess, 1998) at three different endpoint 350 

heights (e.g., 100 m, 500 m, and 1000 m) and a time interval of 6 h for sampling day 351 

(https://www.arl.noaa.gov/). 352 

 353 

3 Results and discussion 354 

3.1 Characteristics and variation of carbonaceous components 355 

During the sampling period, the average mass concentration of PM2.5 in BJ, XA, 356 

and LF was 72.1 ± 44.9, 98.6 ± 64.5, and 175.0 ± 134.4 μg m
-3

, respectively. All 357 

concentrations were higher in winter and lower in summer; LF showed the highest 358 

value of 368.7 ± 75.0 μg m
-3

 in winter. 359 

Fig. 2 shows the changes in OC and EC and their ratios at the sampling sites. The 360 

carbon components in the BJ, XA, and LF samples accounted for approximately 17.5 361 

± 6.0%, 21.5 ± 21.0%, and 17.8 ± 7.2% of PM2.5, respectively. Both OC and EC were 362 

changing simultaneously and were characterized by low carbonaceous concentrations 363 

in summer (OC: 8.9 ± 3.  μg m
-3

; EC: 1.6 ± 0.9 μg m
-3

) and high concentrations in 364 

winter (OC: 69.2 ± 58.9 μg m
-3

; EC: 11.8 ± 7.9 μg m
-3

). The average OC/EC ratios in 365 

BJ, XA, and LF were 4.0 ± 1.4, 9.0 ± 6.1, and 6.6 ± 2.0, respectively. Recent studies 366 

have shown that the average ratio of OC/EC in BJ, XA, and Shanxi Province was 367 

approximately 1.22–6.5 (Han et al., 2016; Ji et al., 2018; Wang et al., 2015; Zhao et 368 

al., 2013). Generally, secondary OC (SOC) is considered to occur when OC/EC > 2 369 

(Castro et al., 1999; Novakov et al., 2005; Turpin & Huntzicker, 1995). Additionally, 370 

https://www.arl.noaa.gov/
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the use of biomass fuels can also enhance the OC/EC ratio (Popovicheva et al., 2014; 371 

Rajput et al., 2011). Therefore, the high OC/EC ratio indicates that carbonaceous 372 

aerosols contained a large number of SOCs or biomass burning sources, especially in 373 

XA.  374 

 375 

Fig. 2 Variations of elemental carbon (EC), organic carbon (OC) and their ratios in 376 

PM2.5 at the sampling sites in Beijing (BJ), Xi’an (XA), and Linfen (LF) (date, 377 

“yymmdd”). 378 

The average mass concentrations of TC, OC, and EC at the sampling site in BJ 379 

were 12.5 ± 11.8, 9.7 ± 10.0, and 2.8 ± 2.1 μgC m
-3

. The concentration of carbon 380 

components was relatively stable in spring and summer but fluctuated greatly in 381 

autumn and winter. The concentration of carbon components in most cases was close 382 
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to that of other periods, but there was a rapid increase in autumn and winter. The 383 

highest TC value was observed in the middle of January 2019 (81.5 μgC m
-3

). 384 

The average concentrations of TC, OC, and EC in XA were 14.6 ± 7.5, 12.8 ± 385 

6.3, and 1.9 ± 1.6 μgC m
-3

, respectively. In contrast to that in BJ, the concentration of 386 

the carbon components in XA fluctuated greatly throughout the year. Specifically, the 387 

concentration was lower from July to October and significantly higher from 388 

December to February. However, there were high concentrations of TC on some days 389 

in spring and summer, such as June 21, 2018, with the concentration reaching 28.8 390 

μgC m
-3

.  391 

The average concentrations of TC, OC, and EC in LF were 35.7 ± 36.5, 30.0 ± 392 

30.4, and 5.6 ± 6.2 μgC m
-3

, respectively. In contrast to those in BJ and XA, the 393 

concentration of the carbon components in LF was persistently high in winter and 394 

stable and low in other seasons.  395 

 396 

3.2 Variations of 
14

C 397 

The 
14

C results showed that the average fnf values in BJ, XA, and LF were 54 ± 398 

11%, 54 ± 10%, and 36 ± 14%, respectively. Non-fossil sources were the main 399 

contributors in the BJ and XA samples (Fig. 3). Furthermore, the fnf in the BJ samples 400 

showed a higher average value in spring (59 ± 6%), whereas that in the XA samples 401 

had higher average values in autumn (fnf, 59 ± 7%) and winter (fnf, 63 ± 6%). In the 402 

LF samples, fossil sources were the main contributors, contributing 81 ± 1% in 403 

winter. 404 

By analyzing the fnf characteristics of samples with different pollution levels 405 

based on the PM2.5 concentration, we can study the causes and characteristics of air 406 

pollution more effectively. Using the relevant classification index of the daily average 407 
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PM2.5 concentration in the Technical Regulation on Ambient Air Quality Index (MEE, 408 

2012), we divided the samples into clean (with a concentration of less than  5 μg m
-3

), 409 

regular (with a concentration between  5 and 150 μg m
-3

), and polluted (with a 410 

concentration greater than 150 μg m
-3

). The fnf value in most samples in BJ (44 ± 8%) 411 

and LF (19 ± 2%) was lower during serious air pollution (Fig. 4), indicating that the 412 

high concentrations of aerosols in BJ and LF were more affected by fossil sources. 413 

One BJ sample had a low fnf value (36%) in January and another had a high fnf value 414 

(89%) in February. These samples were collected when the atmosphere was severely 415 

polluted and very clean, respectively. This might indicate that emissions from fossil 416 

fuel sources are a decisive factor of air pollution in BJ. In the XA samples, when the 417 

atmosphere was clean, fnf decreased by 2–3%, indicating that the carbonaceous 418 

aerosol pollution may be more affected by biomass burning or secondary non-fossil 419 

sources from local emissions. 420 

As can be seen in Fig. 5, the contribution of fossil sources in BJ decreased by 421 

about 6-15% for the different sampling season/period after the implementation of 422 

Action Plan, based on previous studies (Fang et al., 2017; Lim et al., 2020; Liu et al., 423 

2016a, b; Ni et al., 2018, 2020; Shao et al., 1996; Sun et al., 2012; Yang et al., 2005; 424 

Zhang et al., 2015, 2017a) and this study. Among them, fossil sources decreased 425 

significantly in autumn and winter after the Action Plan, which were 15% and 14%, 426 

respectively. The contribution of fossil sources in our study decreased by 16% in 427 

winter compared with the previous results. For the polluted and clean periods, the 428 

proportion of fossil sources reduced by 6% and 9%, respectively. With the 429 

implementation of energy conservation and emission reduction policies, many 430 

non-clean fossil fuels have been replaced by clean energy. In 2019, the coal 431 
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consumption in BJ was only 1.3 million tons, which was 91.5% lower than that in 432 

2013 (BJMBS, 2020). 433 

 434 

Fig. 3 Variations in proportion of non-fossil sources (fnf) of carbonaceous aerosols at 435 

the sampling sites in Beijing (BJ), Xi’an (XA), and Linfen (LF). The red scatter dot 436 

represents the fnf of each sample, and the black solid line represents the sliding 437 

average fnf value of every five samples (date, “yymmdd”). 438 

Different from the results in BJ, the proportion of fossil sources in XA has not 439 

decreased significantly for each season/period (Fig. 5). This difference might be 440 

related with a small decline (< 0.5%) in coal consumption in Xi’an during 2019 441 

compared to 2013 (XAMBS, 2014, 2020). Due to the less attention to LF, there is still 442 
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a lack of related research of carbonaceous aerosols using radiocarbon in this city to 443 

compare. 444 

 445 

Fig. 4 Boxplot distribution of fnf of samples with different pollution levels. Clean 446 

samples: PM2.5 <  5 μg m
-3

; regular samples:  5 μg m
-3

 ≤ PM2.5 < 150 μg m
-3

;  447 

polluted samples: PM2.5 ≥ 150 μg m
-3

. 448 

 449 

Fig. 5 Comparison of fossil proportion (ff) of carbonaceous aerosol reported in 450 

different studies in Beijing (BJ) and Xi’an (XA), China for each season period. The 451 
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data has been converted to the ratio of total carbon. The ranges shown in the upper 452 

part of the figure are the average values of each season/period before and after the 453 

Action Plan. (a) Shao et al., 1996; (b) Yang et al., 2005; (c) Sun et al., 2012; (d) 454 

Zhang et al., 2015; (e) Liu et al., 2016b; (f) Zhang et al., 2017; (g) Liu et al., 2016a; (h) 455 

Fang et al, 2017; (i) Lim et al., 2020; (j)This study; (k) Ni et al., 2018; (l) Ni et al., 456 

2021. 457 

 458 

3.3 Air mass backward trajectory analysis 459 

We analyzed and counted the backward trajectory during the sampling period; 460 

several typical types were presented in Fig. S1. Figure S1 (a) shows the type of 461 

backward trajectory with the highest frequency during the sample collection in BJ. 462 

This type of long-distance transportation from the northwest accounted for 463 

approximately 43.9% of all cases. The average PM2.5 concentration, carbonaceous 464 

aerosol concentration, and fnf of the sample were 45.4 ± 22.7 μg m
-3

, 9.5 ± 6.4 μgC 465 

m
-3

, and 56 ± 10%, respectively. As shown in Fig. S1 (b), when air mass was 466 

transported from the south or stayed for a long time in the Hebei province, air 467 

pollution was usually more serious. These cases accounted for approximately 26.3% 468 

of all cases. The average concentrations of PM2.5 and carbonaceous aerosols were 469 

97.3 ± 43.6 μg m
-3

 and 15.6 ± 7.9 μgC m
-3

, which were 2.1 and 1.6 times of those in 470 

the northwest, respectively. The aerosol concentration of air masses transported from 471 

the southern region was higher than that from the northern regions. The fnf value in 472 

these cases was 46 ± 5%, which was 10% higher than in the northwest cases. Thus, air 473 

pollution in BJ might be affected by fossil sources in the Hebei province and other 474 

southern regions. 475 
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The PM2.5 and carbonaceous concentrations were low when the air mass 476 

transported from the northwest for a long distance at the XA site (Fig. S1 (c)). In this 477 

case, the average PM2.5 concentration, carbonaceous aerosol concentration, and fnf of 478 

the samples were 93.1 ± 65.1 μg m
-3

, 17.4 ± 9.6 μgC m
-3

, and 62 ± 7%, respectively. 479 

However, when air masses circulated in the Guanzhong Basin or converged into the 480 

basin from multiple directions due to the local topography (Fig. S1 (d)), the 481 

concentration of carbonaceous aerosol was usually high. The proportion of this type 482 

of air mass transportation accounted for 53.6% of the total cases. The average PM2.5 483 

concentration, carbonaceous aerosol concentration, and fnf of the corresponding 484 

samples were 132.0 ± 72.8 μg m
-3

, 19.7 ± 10.4 μgC m
-3

, and 58 ± 9%, respectively. 485 

Thus, air pollution in XA was mainly affected by the diffusion environment. The air 486 

mass remained in the upper part of the Guanzhong region for a long time when the 487 

diffusion environment was poor, causing secondary reactions and air pollution. 488 

Moreover, when the air mass came from eastern cities (e.g., Henan or Hubei 489 

provinces), fnf was 47%, which was significantly lower than that in other cases. This 490 

indicated that fossil source emissions in Henan and other eastern regions might 491 

contribute to air pollution in XA.  492 

As shown in Fig. S1 (e), when the air mass was long-distance transported to the 493 

LF, the concentration of carbonaceous aerosols was relatively stable. However, 494 

pollutants accumulated when the air mass returned over and around the city (Fig. S1 495 

(f)). In these cases, the concentrations of PM2.5 and carbonaceous aerosols of the 496 

sample increased by 46.35–57.10%, and fnf decreased by 5%. Thus, the LF samples 497 

were more susceptible to the diffusion environment and the proportion of fossil 498 

sources discharged locally.  499 
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Air pollution in BJ was more susceptible to the impact of transportation from the 500 

southern region, whereas XA and LF were more affected by local emissions and 501 

diffusion environments. 502 

 503 

3.4 Best estimate of source apportionment of TC using 
14

C and 
13

C 504 

The δ
13

C values at the sampling sites in BJ, XA, and LF were −25.65 ± 0.79‰, 505 

−26.94 ± 0.92‰, and −23.84 ± 0.16‰, respectively. Figure 6 shows the δ
13

C values 506 

of the samples from each city and various sources. Specifically, δ
13

C had lower values 507 

in the BJ and LF samples during summer (−26.11 ± 0.49‰ and −24.88 ± 0.18‰, 508 

respectively) and higher values during winter (−25.07 ± 0.79‰ and −23.84 ± 0.16‰, 509 

respectively). Conversely, the lower and higher δ
13

C values in the XA samples 510 

appeared in winter (−27.49± 0.44‰) and spring (−26.34 ± 1.23‰). 511 

 512 

Fig. 6 δ
13

C values of samples from Beijing (BJ), Xi’an (XA), and Linfen (LF), and 513 

comparison with the δ
13

C distribution of various sources. The abscissa represents the 514 

sampling date (yymmdd). The tick labels of top axis represent the date of BJ and XA, 515 

and the bottom represents the date of LF. The gray box indicates the δ
13

C of the main 516 

source (Agnihotri et al., 2011; Huang et al., 2006; Lopez-Veneroni, 2009; Martinelli 517 



24 
 

et al., 2002; Moura et al., 2008; Pugliese et al., 2017; Smith & Epstein, 1971; Vardag 518 

et al., 2015; Widory, 2006). 519 

Compared with the existing isotope indicators of various sources (Fig. 6), the 520 

increase in δ
13

C in the BJ and LF samples during winter may be more related to the 521 

increase in coal combustion from local and the surrounding cities. The increase in 522 

δ
13

C in XA samples during autumn and winter may be related to the use of C4 plant 523 

fuel, whereas the decrease during winter may be related to vehicle emissions and the 524 

use of C3 plant fuels, such as wheat straw or wood. 525 

14
C and 

13
C were used to quantify the sources of TC in the carbonaceous aerosols 526 

(Fig. 7). For the carbonaceous aerosols in BJ and XA, the best estimate of source 527 

apportionment showed that the contributions of liquid fossil fuels were 29.3 ± 12.7% 528 

and 24.9 ± 18.0%, respectively, which were greater than the contribution of coal (15.5 529 

± 8.8% and 20.9 ± 14.2%, respectively). In 2019, coal accounted for only 2.6% of all 530 

fossil fuels used in BJ (BJMBS, 2020). This indicates that the local combustion of 531 

coal was very low, and the coal contribution might be somewhat related to 532 

transportation from the surrounding regions. Moreover, the higher contribution of 533 

liquid fossil fuels in BJ was due to the high number of motor vehicles (6.4 million), 534 

which was 1.7 times higher than that in XA in 2019(BJMBS, 2020; XAMBS, 2020). 535 

Figure S2 shows some studies on the source apportionment of coal and liquid fossil 536 

fuels in aerosols in BJ over the past few decades. The coal contribution in BJ 537 

decreased, whereas liquid fossil fuels gradually became the main source of fossil fuels. 538 

After the implementation of the Action Plan, the proportion of coal in fossil sources 539 

decreased by approximately 32% in BJ (Gao et al., 2018; Li et al., 2013; Liu et al., 540 

2014; Shang et al., 2019; Song et al., 2006; Tian et al., 2016; Wang et al., 2008; 541 

Zhang et al., 2014).  542 



25 
 

In contrast, coal combustion contributed 42.9 ± 19.4% to LF samples, which was 543 

greater than the contribution of liquid fossil emissions (20.9 ± 12.3%) and 544 

significantly higher than those in BJ and XA. Especially in winter, coal contributed as 545 

much as 68.6 ± 3.6% (59.1 ± 10.0 μgC m
-3

). According to the data released by the 546 

Shanxi Provincial Bureau of Statistics, coal consumption in Shanxi Province was as 547 

high as 349.06 million tons in 2019, which was 46.7 times of the consumption of 548 

liquid fossil fuels, accounting for 70.3% of the total fossil fuel consumption (SPBS, 549 

2020). The high contribution of coal combustion in winter might be related to the use 550 

of household coal for heating by rural residents in Shanxi. This is because household 551 

coal can emit a large amount of carbonaceous particles and is an important source of 552 

carbonaceous aerosols in rural areas in northern China (Chen et al., 2005; Shen et al., 553 

2010; Streets et al., 2003a; Zhi et al., 2008).  554 

 555 

Fig. 7 Mass concentrations (μgC m
-3

) (a) and percentage (b) of coal combustion, 556 

liquid fossil fuel, and non-fossil sources emissions for carbonaceous aerosols samples 557 

in Beijing (BJ), Xi’an (XA), and Linfen (LF) during different seasons. 558 

 559 

3.5 Best estimate of source apportionment of OC and EC by 
14

C and Lev 560 
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The concentration of each carbon component in BJ, XA, and LF was calculated 561 

based on the combination of Lev and 
14

C. The best estimate of source apportionment 562 

showed in Fig. 8. The contributions of OCother (43.6 ± 12.9%), OCff (25.5 ± 11.7%), 563 

and ECff (20.5 ± 6.5%) were relatively high in BJ. The OCbb (23.0 ± 17.3%) and OCff 564 

(39.7 ± 9.7%) were the highest contributors in XA. The LF samples showed different 565 

characteristics, and the contribution of fossil sources was significantly high, especially 566 

for the OCff (56.1 ± 11.9%). 567 

568 
Fig. 8 Percentage of elemental carbon from biomass burning (ECbb) and fossil-fuel 569 

combustion (ECff) and percentage of organic carbon from biomass burning (OCbb), 570 

fossil-fuel combustion (OCff), and other sources (OCother) for the PM2.5 samples in 571 

Beijing (BJ), Xi’an (XA), and Linfen (LF). 572 

3.5.1 Biomass burning contribution to TC  573 

The concentrations (0.3± 0.3 μgC m
-3

) and contributions (1.9 ± 1.4%) of ECbb in 574 

BJ were relatively low during the whole year (Fig. 9). The ECbb at the XA and LF 575 

sites had high concentrations in autumn (0.7 ± 0.5 μgC m
-3

 and 0.6 ± 0.1 μgC m
-3

) and 576 

winter (1.5 ± 0.7 μgC m
-3

 and 1.7 ± 0.3 μgC m
-3

) and low concentrations in summer 577 

(0.2 ± 0.1 μgC m
-3

 and 0.1 ± 0.0 μgC m
-3

), respectively. The OCbb concentrations in 578 

the BJ, XA, and LF samples showed an increase in autumn (1.6 ± 1.4 μgC m
-3

, 3.3 ± 579 

2.2 μgC m
-3

, and 2.9 ± 0.4 μgC m
-3

) and winter (2.5 ± 2.1 μgC m
-3

, 6.9 ± 3.3 μgC m
-3

, 580 

and 7.9 ± 1.3 μgC m
-3

), respectively. Especially in the XA samples, OCbb had high 581 
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contributions in autumn (28.6 ± 15.8%) and winter (32.8 ± 12.3%). The contribution 582 

of biomass combustion in XA (24.1 ± 18.0%) was significantly larger than that in BJ 583 

(10.8 ± 7.9%) and LF (8.8 ± 8.9%), which was also reflected in the concentration of 584 

Lev (Fig. S3). The Lev concentration in XA (0.36 ± 0.38 μg m
-3

) was higher than that 585 

in BJ (0.15 ± 0.17 μg m
-3

) and slightly higher than that in LF (0.32 ± 0.34 μg m
-3

). 586 

Furthermore, the Lev concentration in XA during autumn and winter was up to 5.3 587 

times higher than that during the other seasons. Especially in winter, the proportion of 588 

Lev in the TC was 4.0 ± 2.3% in XA, which was 3.9 and 3.8 times those in BJ and LF, 589 

respectively. Zhang et al. (2015) attributed this to emissions from neighboring rural 590 

regions because such areas use biofuels for heating and cooking more commonly in 591 

winter. China produces 939 million tons of agricultural biomass residues annually, 592 

which is the main energy source for some rural areas (Liao et al., 2004; Lu et al., 593 

2009). In addition, the increase in urban vegetation coverage may also increase the 594 

photochemical reactions of biological volatile organic compounds (VOCs) (Gelencsér 595 

et al., 2007; NBS, 2021). Therefore, in recent years, non-fossil fuels have gradually 596 

become a major contributor to carbonaceous aerosols in BJ and XA with the reduction 597 

in the use of fossil energy. 598 

3.5.2 Fossil contribution to TC 599 

The ECff concentrations at BJ (spring: 2.7 ± 1.4 μgC m
-3

; summer: 2.0 ± 0.8 μgC 600 

m
-3

; autumn: 2.3 ± 2.0 μgC m
-3

; winter: 2.9 ± 2.6 μgC m
-3

) and XA (spring: 1.1 ± 0.8 601 

μgC m
-3

; summer: 1.1 ± 1.1 μgC m
-3

; autumn: 1.6 ± 2.3 μgC m
-3

; winter: 1.4 ± 0.8 602 

μgC m
-3

) did not fluctuate significantly during the year. The concentration of ECff in 603 

LF during spring, summer, and autumn was relatively stable (1.0–1.2 μgC m
-3

), but it 604 

was high during winter (12.5 ± 2.5 μgC m
-3

), reaching 10.2 times that in summer. 605 
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 606 

Fig. 9 Mass concentrations (μgC m
-3

) (a) and percentage (b) of elemental carbon from 607 

biomass burning (ECbb) and fossil-fuel combustion (ECff), organic carbon from 608 

biomass burning (OCbb), fossil-fuel combustion (OCff), and other sources (OCother) for 609 

carbonaceous aerosols samples in Beijing (BJ), Xi’an (XA), and Linfen (LF) during 610 

different seasons. 611 

The concentration of OCff was slightly higher in XA during summer (6.2 ± 2.2 612 

μgC m
-3

) and winter (6.1 ± 2.1 μgC m
-3

). The contribution of OCff in the BJ samples 613 

increased to 32.4 ± 14.5% during winter and decreased to 18.4 ± 8.4% during spring. 614 

The OCff/ECff ratios in BJ and LF during winter were approximately 2.3 ± 1.2 and 4.7 615 

± 0.7, respectively, suggesting that the fossil source secondary carbonaceous aerosols 616 

were higher in winter. This can be explained by the lower temperature in the winter 617 

altering the gas–particle equilibrium, suggesting that a larger portion of the OCff 618 

during winter was secondary aerosol (Genberg et al., 2011). OCff in LF had high 619 

concentrations in winter (57.6 ± 9.2 μgC m
-3

) and low concentrations in summer (5.2 620 

± 1.2 μgC m
-3

). This indicated that the burning of fossil sources was an important 621 

source of OC in BJ (OCff: 32.4 ± 14.5%) and LF (OCff: 66.8 ± 1.7%) during winter. 622 

Fang et al. (2017) found that fossil fuels contributed significantly (> 50%) to carbon 623 
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components in the haze in East Asia during January 2014, suggesting that the aerosol 624 

contribution was generally dominated by fossil combustion sources. Therefore, using 625 

cleaner energy and cleaner residential stoves to reduce and replace the high-emission 626 

end-use coal combustion processes and control the emissions from liquid-fossil-fueled 627 

vehicles in megacities should be beneficial to the air quality. 628 

3.5.3 Other non-fossil contributions to OC 629 

In addition to the OC directly emitted from fossil and biomass fuels, there are 630 

many components of OC, such as SOC, whose source is difficult to identify. 631 

Residential oil fume emissions from urban residents, emissions from biological 632 

sources, and secondary bio-organic aerosols generated by the secondary reaction of 633 

biomass fuels are also important components of OC (Gelencsér et al., 2007; Zhang et 634 

al., 2015).  635 

The concentration of OCother in the LF samples did not vary greatly during spring 636 

(3.7 ± 1.2 μgC m
-3

) and summer (3.2 ± 0.5 μgC m
-3

) but it was lower in autumn (2.6 ± 637 

0.3 μgC m
-3

) and higher in winter (6.5 ± 2.8 μgC m
-3

),. In BJ, the contribution of 638 

OCother was high during spring (49.9 ± 9.9%) and summer (45.8 ± 9.8 %), and its 639 

concentration was relatively high during winter (6.1 ± 5.6 μgC m
-3

). Zhang et al. 640 

(2015) mainly attributed the presence of OCother in northern China to SOC formation 641 

from non-fossil, non-biogenic precursors. In general, secondary bio-organic aerosols 642 

in spring and autumn are mainly caused by biological emissions or long-distance 643 

transportation of biological VOCs and secondary organic aerosols (SOAs) in 644 

particulates (Gelencsér et al., 2007; Jimenez et al., 2009). The high concentration in 645 

winter may be because low temperatures drive condensable semi-volatile organic 646 

compounds (SVOCs) into the particulate phase (Simpson et al., 2007; Tanarit et al., 647 

2008). 648 
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The OCother contribution and concentration in XA were high in summer (35.2 ± 649 

10.0%) and winter (5.4 ± 4.2 μgC m
-3

), respectively. We assume that this excess is 650 

mainly attributed to SOC formation from non-fossil and primary biogenic particles. 651 

Some SOAs are formed by VOCs that are produced by burning wood or biofuels (e.g., 652 

ethanol), and they increase the load of these sources on organic aerosols (Genberg et 653 

al., 2011). Huang et al. (2014) found that severe haze pollution was largely driven by 654 

secondary aerosol formation, and non-fossil SOAs dominated, accounting for 66 ± 8% 655 

of the SOAs in XA despite extensive urban emissions. Ni et al. (2020) also considered 656 

that non-fossil sources largely contributed (56%) to SOC in XA. Thus, the control of 657 

biomass burning activities could be an efficient strategy for reducing aerosols, 658 

especially in XA. Furthermore, SOC formation from these non-fossil VOCs may be 659 

enhanced when they are mixed with other pollutants, such as VOCs and NOx (Hoyle 660 

et al., 2011; Weber et al., 2007). Motor vehicles are one of the main anthropogenic 661 

sources of VOCs and NOx (Barletta et al., 2005; Liu et al., 2008). In Section 3.4, we 662 

found that the carbonaceous concentrations from motor vehicle emissions were high 663 

in XA during winter and summer (Fig. 7a), and the increasing of motor vehicle 664 

activities might partly explain the high concentration of OCother during the two 665 

seasons. 666 

 667 

3.6 Uncertainty analysis 668 

The results of the uncertainty analysis of the given set (Table 1) of the 669 

parameters in the three cities were shown in Fig. 10. Each curve represents the 670 

probability distribution of the sources of carbon components that contribute to the TC, 671 

from which the uncertainty of the source allocation can be derived. Some results were 672 

uncertain because the input parameters of the LHS calculation varied greatly. The 673 
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contributions of OCff and OCother to the TC were mostly uncertain. This is mainly 674 

related to the uncertainty of the two parameters, Lev/OCbb and (EC/OC)bb. Both these 675 

parameters depend on the burning conditions and type of biomass, as mentioned in 676 

Section 2.9. More reliable data would be obtained if 
13

C/
14

C could be performed on 677 

the pure OC fractions of the samples, which has been proven to be feasible (Huang et 678 

al., 2014; Szidat et al., 2004, 2006; Zhang et al., 2015). Other contributions have 679 

single peaks, which prove that the results of the source analysis are reliable. These 680 

results demonstrate that we can identify the main contributors. 681 

 682 
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Fig. 10 Latin hypercube sampling of frequency distributions of the source 683 

contributions to total carbon (TC) from fossil, organic carbon (OC), and elemental 684 

carbon (EC) source categories (Table 1) for the samples collected in Beijing (BJ), 685 

Xi’an (XA), and Linfen (LF). 686 

 687 

4 Conclusions 688 

PM2.5 samples were collected from BJ, XA, and LF in northern China from 689 

January 2018 to April 2019. The main objective of this study was to quantify the 690 

sources of carbonaceous aerosols by measuring the EC, OC, Lev, 
13

C, and 
14

C 691 

combined with LHS. 692 

The TC accounted for approximately 17.5 ± 6%, 21.5 ± 21%, and 17.8 ± 7.2% of 693 

PM2.5 in the samples from BJ, XA, and LF, and the corresponding concentrations 694 

were 12.5 ± 11.8 μgC m
-3

, 14.6 ± 7.5 μgC m
-3

, and 35.7 ± 36.5 μgC m
-3

, respectively. 695 

The concentrations at the three sites showed high values in winter and low values in 696 

summer. Based on backward trajectory analysis, we found that carbonaceous aerosols 697 

in BJ were more susceptible to transportation from the southern regions. Local 698 

emissions and the diffusion environment significantly impacted carbonaceous 699 

aerosols in XA and LF. 700 

The best estimate of source apportionment of the fossil components in the TC 701 

showed that the contribution of liquid fossil fuel combustion was 29.3 ± 12.7% and 702 

24.9 ± 18.0% in BJ and XA, respectively, which was greater than the contribution of 703 

coal combustion (15.5 ± 8.8%; 20.9 ± 14.5%). In contrast, coal combustion 704 

contributed 42.9 ± 19.4% in LF, which was greater than the contribution of liquid 705 

fossil fuel combustion (20.9 ± 12.3%).  706 

The best estimate of source apportionment of OC and EC indicated that the 707 
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contributions of ECff (20.0 ± 6.5%), OCff (25.9 ± 11.6%), and OCother (43.6 ± 12.9%) 708 

were relatively high in BJ. The OCff contribution was higher in winter (32.4 ± 14.5%), 709 

and its concentration was 3.3 times higher than that in other seasons. The contribution 710 

of OCbb (20.0 ± 15.3%) and OCff (37.9 ± 10.8%) was higher in XA. The contribution 711 

of biomass burning to the TC was as high as 39.6 ± 14.5% in winter. The contribution 712 

of OCff in LF was significantly high (55.7 ± 12.2%), especially in winter (66.8 ± 713 

1.7%). 714 

The decline (6–16%) in the contribution of fossil sources since the 715 

implementation of the Action Plan indicates the effectiveness of air quality 716 

management. In the future, the government needs to further regulate and control 717 

emissions from motor vehicles in megacities such as BJ and XA. The cleaner use of 718 

coal must be further strengthened in coal-based cities such as LF in the eastern part of 719 

the Fenwei Plain. This study indicates that attention should be paid to the control of 720 

biomass burning in northern China, especially in the Guanzhong region. 721 
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