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Abstract: Volatile organic compounds (VOCs) regulate atmospheric oxidation capacity,
and the reactions of VOCs are key in understanding ozone formation and its mitigation
strategies. When evaluating its impact, most previous studies did not fully consider the
role of oxygenated VOCs due to limitations of measurement technology. By using a
proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) combined
with gas chromatography mass spectrometer (GC-MS) technology, a large number of
oxygenated VOCs have been quantified in Guangzhou city, China. Based on the new
dataset, we demonstrate that constraints using OVOCs observations are essential in
modeling radical and ozone production, as modelled OVOCs can be substantially lower
than measurements, potentially due to primary emissions and/or missing secondary
sources. Non-formaldehyde (HCHO) OVOCs can contribute to large fractions (22-44%)
of total ROx radical production, which is comparable to or larger than the contributions
from nitrous acid and formaldehyde. Our results show that models without OVOC
constraints using ambient measurements will underestimate the production rates of
ROx and ozone, and may also affect the determination of sensitivity regime in ozone
formation. Therefore, a thorough quantification of photodegradable OVOCs species is
in urgent need to understand accurately the ozone chemistry and to develop effective

control strategies.

Keywords: photolysis reactions; oxygenated volatile organic compounds; radical

production; ozone production
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1 Introduction

Ground-level ozone is generated by photochemical oxidation of volatile organic
compounds (VOCs) under the catalysis of nitrogen oxides (NOx) and hydrogen oxide
radicals (HOx=OH-+HO:) (Atkinson, 2000;Monks et al., 2015). In this process,
photolysis reactions are a crucial driving force (Wang et al., 2019). Photolysis of O3,
nitrous acid (HONO), and oxygenated VOCs (OVOCs) can contribute to primary
production of ROx (OH+HO2+RO2) radicals, thereby accelerating the recycling of
radicals to generate ozone (Volkamer et al., 2010). The strong dependence of OH
concentration on j(O'D) was found in a number of field measurements (Ehhalt and
Rohrer, 2000;Rohrer et al., 2014b;Stone et al., 2012), implying the dominant role of
ultraviolet radiation and photolysis reactions in the production of HOx radicals.
Edwards et al. (2014) found that the high ozone pollution in an oil and gas producing
basin in the U.S. in winter was caused by the photolysis of high concentrations of
OVOCs to generate sufficient oxidants. A recent model simulation with limited
OVOCs measurements by Qu et al.(Qu et al., 2021) indicated that OVOC species is
the largest free-radical source in the boundary layer. Another study indicated that fast
ozone production during winter haze episodes in China was driven by HOx radicals
derived from photolysis of formaldehyde (HCHO), overcoming radical titration
induced by NOx emissions (Li et al., 2021). Furthermore, high loading of aerosols can
largely influence the production of radicals and ozone through altering photolysis
reaction rate (Wang et al., 2019;Wang et al., 2020b; Wang et al., 2021a). Therefore, an
accurate quantification of numerous photolysis reactions is necessary to understand
the mechanism of ROx radical and ozone production.

However, only limited number of photodegradable OVOCs species, such as
formaldehyde, acetaldehyde and acetone, have been measured in the field campaigns
in China due to the limitations of measurement technology (Lu et al., 2013;Lu et al.,
2012;Tan et al., 2018;Tan et al., 2019¢). Many important photodegradable OVOC:s,
such as larger aldehydes and ketones, carboxylic acids, nitrophenols, organic peroxides

and multifunctional species, have been rarely quantified accurately in ambient
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environments. In such cases, the quantification of the primary production of ROx
radicals induced by photolysis reactions may not be adequately accurate. Many studies
used photochemical models to simulate unmeasured OVOC species (Tan et al,
2019b;Volkamer et al., 2010;Ling et al., 2014;Edwards et al., 2014). However, large
uncertainties in the simulation of OVOCs remain due to primary emissions of OVOCs
(McDonald et al., 2018;Karl et al., 2018;Gkatzelis et al., 2021), missing secondary
sources (Bloss et al., 2005;Ji et al., 2017), heterogenous uptake of aerosols and
unknown dilution and transmission processes (Li et al., 2014). For instance, chamber
experiments of the oxidation of aromatics by OH radical indicated that MCM
mechanism generally underestimated the formation of aldehydes, ketones and phenols
by 10-70% (Bloss et al., 2005;Ji et al., 2017), implying the existence of unknown
production pathways for these OVOC species. Furthermore, model simulations
frequently underestimated observed ROx radicals in ambient studies of ROx radicals
(Hofzumahaus et al., 2009;Tan et al., 2018;Lelieveld et al., 2008;Rohrer et al.,
2014a;Sheehy et al., 2010;Emmerson et al., 2005;Ma et al., 2019). Given that only
limited photodegradable OVOCs species were measured in these studies, the lack of
comprehensive measurements of OVOCs to constrain the model is likely to be a cause
of the underestimation.

Thus far, the concrete effects of photodegradable OVOCs on radical and ozone
production remains unexplored in China. Based on comprehensive field observations
in a mega-city in southern China, a variety of important photodegradable OVOC
species were measured. The contributions of these photodegradable OVOCs species
to the production of ROx radicals are quantified, and the effect of photolysis reactions

on ozone production is quantitatively assessed.

2 Materials and Methods

2.1 OVOC measurements

Field measurements were conducted at an urban site in Guangzhou (113.2°E, 23°N)

from 14 September to 20 November 2018. The sampling site is located on the 9th floor
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of a building on the campus of Guangzhou Institute of Geochemistry, Chinese Academy
of Sciences, 25 m above the ground level. This site is regarded as a typical urban site
in Guangzhou influenced by industrial and vehicle emissions.

During this campaign, an online PTR-ToF-MS (Ionicon Analytic GmbH,
Innsbruck, Austria) with H3O" and NO" chemistry was used to measure ambient volatile
organic compounds (VOCs) (Wang et al., 2020a;Wu et al., 2020). The PTR-ToF-MS
automatically switches between H3O" and NO" modes every 10-20 minutes. In each
mode, the background and ambient measurements were automatically switched to a
custom-built Platinum catalytic converter heated to 365 °C for 3 minutes to detect
background of the instrument. The time resolution of the measurement of PTR-ToF -
MS was 10 s. A total of 31 VOCs species were calibrated using either gas cylinders or
liquid standards. For other measured VOCs, we used the method proposed by Sekimoto
et al. (2017) to determine the relationship between VOC sensitivity and kinetic rate
constants for proton transfer reactions of H3O" with VOCs. The fitted line was used to
determine the concentrations of those uncalibrated species. Following the discussions
in Sekimoto, et al. (Sekimoto et al., 2017), the uncertainties of the concentrations for
uncalibrated species were about 50 %. Humidity dependencies of various VOCs were
determined in the laboratory with absolute humidity in the range of 0—30 mmol/mol
(relative humidity of 0 %-92 % at 25 °C), which fully covered the humidity range
encountered during the entire campaign. The detailed introduction of this method has
been reported by Wu et al. (Wu et al., 2020).

Notably, PTR-ToF-MS is not capable of distinguishing isomers (Yuan et al., 2017).
GC-MS technique was used to measure several carbonyls that PTR-ToF-MS cannot
distinguish, including acetaldehyde, propionaldehyde, n-butanal, n-pentanal, n-hexanal,
methacrolein (MACR), methyl vinyl ketone (MVK). We compared concentrations of
common OVOC species measured by both GC-MS and PTR-ToF-MS. The agreement
of measurement results from the two instruments are quite consistent (Figure S1). In
addition to GC-MS, an iodide time-of flight chemical ionization mass spectrometer
(ToF-CIMS) was used to measure propionic acid. Combined with the measurements of
GC-MS and CIMS, the isomers measured by PTR-ToF-MS can be distinguished. In

5
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OVOC species, hydroxyacetone and propionic acid (C3HsOz2), acetone and propanal
(C3Hs0O), methyl ethyl ketone and butanal (C4sHsO), MVK and MACR (C4HO) are all
isomers. The average concentration of propionic acid measured by CIMS was 0.23 ppb,
significantly lower than that of the concentration of C3HsO2 measured by PTR-ToF-MS
(~1.5 ppb). The hydroxyacetone concentrations were determined by the difference
between PTR-ToF-MS and CIMS measurements. Meanwhile, the concentration of
propanal (average of 0.35 ppb) and n-butanal (average of 0.17 ppb) measured by GC-
MS were also respectively far lower than the concentration of C3HsO (average of 4.4
ppb) and C4HsO (average of 1.8 ppb) measured by PTR-ToF-MS. The concentrations
of acetone and methyl ethyl ketone were determined by the difference between PTR-
ToF-MS and GC-MS measurements. The concentrations of MVK and MACR were
determined according to C4HsO concentration measured by PTR-ToF-MS and the ratio
of MVK to MACR measured by GC-MS. In this way, the uncertainty of PTR-ToF-MS
induced by isomers is greatly reduced.

Concentrations of CH402 and CH40O3 were quantified by PTR-ToF-MS, which
were tentatively attributed to methyl hydroperoxide (CH3OOH) and hydroxymethyl
hydroperoxide (HOCH200H), respectively. Furthermore, concentrations of several
small carbon-number acids, including formic acid, acetic acid, and propionic acid were
measured by PTR-ToF-MS (Figure S1). However, the photolysis wavelength bands of
these species are all less than 260 nm. Given the sunlight that can reach the ground is
generally greater than 290 nm, these small carbon-number acids cannot photolyze
significantly near the ground. An exception is pyruvic acid which is also a small carbon-
number acid but with a wide photolysis band that can reach 460 nm because of its
carbonyl functional group (Horowitz et al., 2001;Mellouki and Mu, 2003;Berges and
Warneck, 1992). Therefore, the photolysis of pyruvic acid was included in the analysis
as it can significantly contribute to the production of ROx radicals.

In addition to the specific species mentioned above, PTR-ToF-MS measured
carbonyls with higher carbon number including CxH200 (n>5), CaH2020 (n>3), CnHon-
202 (n>3), CaH2n402 (n>3) and CnH2n-403 (n>3). Apparently, multiple isomers that
can’t be distinguished specifically may contribute to these species. The measured
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photodegradable OVOC:s species and their concentrations are summarized in Table S1.

2.2 Other measurements

HONO was measured by a custom-built LOPAP (LOng Path Absorption
Photometer) based on wet chemical sampling and photometric detection (Yu et al.,
2021). HCHO was measured by a custom-built instrument based on the Hantzsch
reaction and absorption photometry. Total OH reactivity was measured by the
comparative reactivity method (CRM) (Sinha et al., 2008;Wang et al., 2021b). In this
method, pyrrole (C4HsN) was used as the reference substance and was quantified by a
quadrupole PTR-MS (Ionicon Analytic, Austria). Non-methane hydrocarbons
(NMHCs) were measured using a gas chromatography-mass spectrometer/flame
ionization detector (GC-MS/FID) system, coupled with a cryogen-free pre-
concentration device. Nitrogen oxides (NOx= NO + NO), ozone (O3), sulfur dioxide
(SO2) and carbon monoxide (CO) were measured by NOx analyzer (Thermo
Scientific, Model 42i), O3 analyzer (Thermo Scientific, 150 Model 491), SO2 analyzer
(Thermo Scientific, Model 431) and CO analyzer (Thermo Scientific, Model 481). The
meteorological data, including temperature (T), relative humidity (RH) and wind
speed and direction 160 (WS, WD) were recorded by Vantage Pro2 Weather Station
(Davis Instruments Inc., Vantage Pro2) with the time resolution of 1 min. Photolysis
frequencies including j(HONO), j(NO2), j(H202), j(HCHO) and j(O'D) were

measured by a spectrometer (Focused Photonics Inc., PFS-100).

2.3 Observation-based box model

A zero-dimensional box model coupled with the Master Chemical Mechanism
(MCM) v3.3.1 chemical mechanism (Jenkin et al., 2003;Saunders et al., 2003) was
used to simulate ROx production and losses, and O3 production rates during the field
campaign. The model simulation was constrained to the observations of
meteorological parameters, photolysis frequencies, and concentrations of non-
methane hydrocarbons (NMHCs), OVOCs, NO, NOz, O3, CO, SO: and nitrous acid

(HONO). All constraints were averaged to generate a synchronized 1-h time
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resolution dataset. The model runs were performed in a time-dependent mode with
time resolution of 1 hour and spin-up of two days. There is no significant difference in
simulated OH and HO:2 concentrations between 1-hour and 5-minute time resolution
(Figure S3). A 24-h lifetime was introduced for all simulated species, including
secondary species and radicals, to approximately simulate dry deposition and other
losses of these species (Lu et al., 2013;Wang et al., 2020c¢). Sensitivity tests show that
this assumed physical loss lifetime has a relatively small influence on the reactivity of
modeled oxidation products, ROx radicals and ozone production rates. A 50% change
in the physical loss lifetime leads to 3%, 6% and 10% changes in OH concentration,
HO: concentration and ozone production rate. The ozone production rate (P(O3)) were

calculated according to E1:

P(03) = kpoz+no[HOL1INOT + Xi(kkoz+no [Rozi][NO]) El
The production rate of ROx radicals (P(ROx)) is equal to the sum of the rates at

which all photodegradable species generate ROx radicals through the photolysis
reactions, as shown in E2.

P(ROy) = 2 X [03] X j(0'D) x 8 + [HONO] X j(HONO) + ¥;[0VOC;] X j; X k; E2
where 6 is the fraction of O'D from ozone photolysis that reacts with water vapor.
OVOCi represents each OVOCs species, ji represents the photolysis frequency of each
OVOC species, and ki represents the number of ROx radicals generated from the
photolysis of each OVOC molecule. For most OVOCs species, ki is equal to 2 or 1.

The photolysis frequencies of measured photodegradable species were calculated
based on measured actinic flux combined with absorption cross sections and
photolysis quantum yields reported in Jet Propulsion Laboratory (JPL) publication
(Burkholder et al., 2020). Note that absorption cross sections and quantum yields used
all corresponds to radical formation channel, not including molecule formation
channel. However, absorption cross sections and photolysis quantum yields for
nitrophenol and methyl nitrophenol are unavailable from JPL publication. Yuan et al.
(2016) have reported that photolysis was the most efficient loss pathway for

nitrophenol in the gas phase. Different values of absorption cross sections and
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quantum yields for nitrophenol have been reported (Chen et al., 2011;Sangwan and
Zhu, 2018;Bejan et al., 2006). In this study, we used the values from Chen et al. (Chen
et al., 2011), which can reproduce well the observed concentrations of nitrophenol and

methyl nitrophenol during the measurement period.

Absorption cross sections and quantum yields are not available for carbonyls
with large carbon number, and absorption cross sections and quantum yields of
species with similar structure are used as a surrogate, following the method described
in Jenkin et al., (Jenkin et al., 1997) (e.g. C2HsC(O)CHs is used as a surrogate for
aliphatic ketones with more carbons). Another issue is that carbonyls with large
carbon number (CaH200, n>5; CaH2n20, n>3; CaH2n202, n>3; CaH20-402, n>3; CoHon-
403, n>3) measured by PTR-ToF-MS may include contributions from multiple
isomers, and the fraction of each individual species cannot be obtained. Hence, each
molecular formula corresponds to multiple molecular structures and thus corresponds
to multiple photolysis frequencies. Here, we calculate the P(ROx) of these species in
two scenarios: (1) each molecular formula corresponds to minimum photolysis
frequency of all potential species (e.g. aliphatic ketones); (2) each molecular formula
corresponds to maximum photolysis frequency of all potential species (e.g.
aldehydes). As a result, photolysis frequencies of these carbonyls with large carbon
number were assigned to the ranges of 1.2x10%~6.5x10%, 1.2x10%~6.5x106, 1.2x10
6~1.2x104,1.2x10°~3.0x10* and 1.2x10~1.8x10"* s}, respectively (Jenkin et al.,
1997) (Table S1). The lowest and highest values of these photolysis frequencies were
separately used to determine the lower and upper limits of P(ROx). Therefore, the

total P(ROx) contributed by all these OVOC species could be investigated.

3 Results and discussion

3.1 Overview of the observations

During the observation period, we used PTR-ToF-MS and GC-MS technology to
measure more than 20 photodegradable OVOCs species. The concentrations and
photolysis frequencies of measured photodegradable OVOCs species are summarized

9
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in Table S1 and Figure 1. Previous studies have reported that these species have
relatively large absorption cross section and quantum yield (Burkholder et al., 2020).
The measured daytime average photolysis frequencies for these species were generally
larger than 1.3x10° s,

Figure 1 presents the average diurnal variation of photodegradable OVOCs
species during the measurement period. The concentrations of these species ranged
from 0.01 to 10 ppb. HCHO, methylglyoxal, propionaldehyde, n-butanal, n-pentanal,
MVK+MACR, pyruvic acid, formic acid, acetic acid, and CH3OOH had similar diurnal
variation patterns. The concentrations of these species started to increase from about
6:00 in the morning, and peaked at 13:00-16:00, after which the concentrations
gradually decreased. This diurnal variation pattern is a typical secondary production
pattern, and thus we deduce that these species primarily came from secondary
production. Acetaldehyde, acetone and acrolein showed diurnal variations without
significant variations throughout the day, as these species were contributed by both
secondary generation and primary emissions or background contribution (Wu et al.,
2020). It is notable that acrolein, nitrophenol and methylnitrophenol all peaked at 20:00
in the evening, which is likely due to primary emissions e.g. biomass burning due to
wild/agricultural fires (Ye et al., 2021) and vehicle emissions.

The ratio of secondary OVOCs to NMHCs can characterize the degree of the
conversion of emitted NMHC to secondary OVOCs through oxidation reactions.
Figure S4 presents the correlation between daily daytime average of HCHO (and
pyruvic acid) concentration versus OH reactivity from hydrocarbons, i.e.,
HCHO/Ron nvuc  ratio (and pyruvic acid/Ron nmuc ratio) and j(NO2). Both
HCHO/Ron nvuc and pyruvic acid/Ron nmuce ratios displayed significant positive
correlation with j(NO2). These results suggest that the enhancement of the photolysis
rates converted more NMHCs into secondary OVOCs, suggesting the crucial role of

photolysis reactions in the airmass aging and the occurrence of secondary pollution.
3.2 Contribution of photolysis reactions to the production of ROx radicals

The photolysis of O3, HONO and OVOCs are the most important contributors to

10



278  the production of ROx radicals. All observed photodegradable species, including Os,
279  HONO and OVOCs, were constrained in the box model to calculate P(ROx). The
280  simulated total P(ROx) contains the contributions from all observed photodegradable
281  species and several simulated OVOCs that was not measured such as glyoxal. Using
282  the possible ranges of photolysis frequencies of carbonyls with more carbon number
283  thatare not possible to assign into specific individual species, we can obtain the possible
284  widest variation range of P(ROx). As shown in Figure 2a, the minimum (solid line)
285  and maximum (dashed line) of P(ROx) calculated during the campaign peaked at 3.6
286  ppbh!and 5.4 ppb h'l, respectively. The P(ROx) determined in this study is very close
287  to those reported in the Autumn 2014 in Pearl River Delta with peak values of 3 ~ 4
288  ppbh'! (Tan et al., 2019a) and the summer 2014 in Wangdu, Hebei (peak value of 5 ppb
289  h') (Tan et al., 2017), and lower than those in the summer 2006 in Beijing (peak value
290  ofabout 7 ppb h'') (Lu et al., 2013) and the summer 2006 in Guangzhou (peak value of
291  about 10 ppb h'!) (Lu et al., 2012), and higher than those in the winter of 2016 in Beijing
292  (peak value of about 1 ppb h!') (Tan et al., 2018) and the winter in the oil and gas basin
293  of Utah, USA (daytime average value of 0.77 ppb h'!) (Edwards et al., 2014). Note that
294  these previous studies mentioned above usually only measured a few simple carbonyls
295  such as HCHO, acetaldehyde and acetone and the P(ROx) contributed by photolysis of
296  other OVOCs was calculated by model simulations, which may lead to large
297  uncertainties.

298 For the scenario of minimum OVOCs contribution, HONO contributed the most
299  to P(ROx) (37%), followed by O3 (20%) and HCHO (20%). The contribution of non-
300 HCHO OVOCs was 21% (Figure 2a). Figure 2b and Figure S5 show the relative
301  contributions of different non-HCHO OVOC species to P(ROx) for the scenarios with
302 minimum and maximum OVOC contribution, respectively. Ozonolysis of alkenes
303  played a minor role in P(ROx). For the scenario of maximum OVOCs contribution, the
304  contribution of non-HCHO OVOC:s increased to 44%. In total, OVOCs contributed 43%
305 ~ 59% of P(ROx), which is higher than previous studies that reported OVOCs
306  contributed 17%~40% of P(ROx) in major cities in China and the US (Tan et al,,
307 2019a;Tan et al., 2017;Tan et al., 2018;Tan et al., 2019b;Young et al., 2012;Griffith et
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al., 2016). In this study the contribution of OVOCs to P(ROx) was higher than that of
HONO. This is different from previous studies reporting HONO contributed more to
P(ROx) than OVOCs in China (Tan et al., 2019a;Tan et al., 2017;Tan et al., 2018;Tan
et al., 2019b). Nevertheless, it is notable that the contributions of HONO to P(ROx) in
the early morning were higher than those of OVOCs due to the accumulation of HONO
in nighttime, while OVOCs dominate P(ROx) at noon when photochemistry was most
active (Figure 2a). Furthermore, those previous studies in China indicated that HCHO
was the dominant contributor to P(ROx) among OVOC species and the contributions
of other OVOC species was generally smaller than that of HCHO (Tan et al., 2019a;Tan
et al.,, 2017;Tan et al., 2018;Tan et al., 2019b). In contrast, the results of this study
suggest that non-HCHO OVOC:s have a potential to be a larger contributor than HCHO
and HONO, revealing the importance of non-HCHO OVOC:s in radical production. The
difference between this study and previous studies in China is primarily attributed to
more OVOC species measured in this study than previous studies. The Nevertheless,
the existing isomers of carbonyls with more carbons lead to large uncertainties in the
quantification of P(ROx) as shown in Figure 2a. Therefore, precise distinction of these
isomers in the future is crucial to accurately quantify P(ROx). In addition, absorption
cross-section and quantum yield of many photodegradable OVOC species with large
carbon numbers, especially multifunctional species, are not experimentally determined.
As a result, the photolysis frequencies of these species are not available, which also
leads to uncertainties in quantifying P(ROx). As measurements of many organic
compounds may not be possible at least in the near future, construction of
parameterization method for photolysis frequencies of oxygenated VOCs either based
on chemical formula or functional groups at isomeric level will help to reduce this
uncertainty in the future. observation-determined P(ROx)

As a comparison with the scenario with all observed OVOC species constrained
in the box model, P(ROx) was also simulated by the box model without observed
OVOC species constrained. As shown in Figure 3a, the simulation of the box model
without observed OVOC species constrained (blue line in Figure 3a) underestimated
P(ROx) significantly compared to the scenario with all observed OVOC species
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constrained (red lines in Figure 3a). The underestimation of P(ROx) was 16% and 44%
when using the lower and higher limits of OVOCs photolysis frequencies, respectively
(red solid line and red dashed line in Figure 3a). In this case, the underestimation of
OH and HO: concentrations were 15~38% and 25%~64%, respectively. The
underestimation of P(ROx) and radical concentrations was due to the underestimation
of photodegradable OVOCs simulated by the photochemical model (Table S2). In
general, most photodegradable OVOCs were underestimated by 10~100% by box
model except for MVK and MACR. The underestimation of photodegradable OVOCs
can be caused by missing primary emissions (McDonald et al., 2018;Karl et al.,
2018;Gkatzelis et al., 2021) or unknown secondary source of these OVOCs species
(Bloss et al., 2005;Ji et al., 2017). Direct flux measurements of VOCs based on the eddy
covariance technique showed that the contribution of typical urban emission sources
comprised of a surprisingly large portion of OVOCs (Karl et al., 2018). In addition,
some experimental studies indicated that MCM mechanism generally underestimated
formation of aldehydes, ketones and phenols from the oxidation of aromatics by OH
radical (Bloss et al., 2005;Ji et al.,, 2017), suggesting the existence of unknown
secondary source of these OVOC:s species. This evidence suggests that it is essential to
use ambient measurements of OVOCs as constraints in models at least until primary
and secondary sources of OVOC:s are better understood.

Previous studies in Pearl River Delta and North China Plain of China found that
photochemical models significantly underestimated measured concentrations of OH
radicals, indicating the existence of unknown sources of ROx radicals in the atmosphere
(Lu et al., 2012;Lu et al., 2013;Tan et al., 2019¢c;Hofzumahaus et al., 2009;Ma et al.,
2019). For instance, comprehensive measurements in winter in Beijing showed that the
photochemical box model greatly underestimated OH, HO2 and ROz radicals by 50%
~ 12 fold during the pollution periods (Tan et al., 2018;Ma et al., 2019). Through the
budget analysis of the source and sink of radicals, the researchers believed that the
missing P(ROx) was the primary cause of the underestimation of HO2 and ROz
concentrations (Tan et al., 2018). Given that most photodegradable OVOCs were not
constrained in box model used in these previous studies of ROx radicals, the results of
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our study provide a direction for solving this issue regarding underestimated ROx
radical concentrations. Therefore, it is imperative to continuously improve
measurement technologies to achieve accurate quantification of more photodegradable
OVOC species, thereby improving our understanding of the issues with respect to the

closure of ROx radicals in the atmosphere.

3.3 The role of photolysis reactions in ozone pollution

The box model was used to evaluate the effect of the photodegradable OVOCs
species on ozone production rate during the whole campaign. P(O3) were simulated
with and without all of measured photodegradable OVOCs species constrained in the
box model, respectively. As shown in Figure 3b, compared to the scenario with
observed photodegradable OVOC:s species constrained in box model (red lines in
Figure 3b), the scenario without constraining observed OVOC:s (blue line in Figure
3b) underestimated peak value of P(O3) by 15~38%. The underestimation of P(O3)
was due to the underestimation of OVOCs by the box model (Table S2).

As shown in Figure 4, the dependence of daily peak O3 concentrations on NOx
concentrations was calculated by the box model with and without all of measured
photodegradable OVOC:s species constrained. The NOx concentration level
corresponding to maximum of ozone concentration (NOX (O3 max)) was determined. In
reality, this NOx concentration level is the threshold to distinguish between VOC-
limited and NOx-limited regimes (Edwards et al., 2014;Womack et al., 2019). Ozone
production is NOx-limited if the ambient NOx concentration is lower than the
threshold of NOx, but is in VOC-limited regime if ambient NOx concentration higher
than the threshold of NOx. The larger threshold of NOx represents higher possibility
of ozone production in NOx limited regime. The threshold of NOx for the scenario
with observed photodegradable OVOC:s species constrained is 21%~52% higher than
that without observed photodegradable OVOCs species constrained (Figure 4). This
suggests that the box model simulation without constraining OVOCs will
overestimate the VOC-limited degree due to the underestimation of OVOCs, and thus

overestimate the effect of VOCs reduction in reducing ozone pollution, which in turn
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may not determine the ozone control strategy correctly. Therefore, it is necessary to
constrain these important photodegradable species in photochemical models to
calculate P(O3) level and to diagnose ozone sensitivity regimes accurately.

O3 production rate can be expressed as the product of P(ROx) and radical chain

length (ChL) as shown in E3 (Tonnesen and Dennis, 2000).

Rate(HO,+NO)+Rate(RO,+NO)
P(ROy)

where Rate (HO2+NO) and Rate (RO2+NO) represent the reaction rates between HO2
and NO and between ROz and NO, respectively. ChL characterizes the number of
iterations each ROx radical makes prior to termination. It is equal to the ratio between
the radical recycling rate and primary production rate (or equivalently, termination
rate), indicating the efficiency of radical propagation.

Two ozone pollution episodes (from 19 September to 27 September and from 30
September to 9 October, respectively) were identified during the campaign from 14
September to 20 November 2018 (Figure S6, Table S3). The temporal variations of
P(03) and P(ROx) overall showed good consistency with those of ozone concentrations
(Figure S7). P(0O3) in the two ozone pollution episodes was a factor of 2.6~2.8 that in
the non-pollution period (Figure 5, Figure S8). P(ROx) in the two ozone pollution
episodes was a factor of 2.2~2.6 that in the non-pollution period. ChL in episode 2 was
similar to that in non-pollution period, while ChL for episode 1 was a factor of 1.7 that
in non-pollution period (Figure S8). Therefore, the substantial increase of P(ROx) in
both ozone pollution episodes played a crucial role in the accelerated ozone production.
Furthermore, the ratio of P(ROx) from OVOCs photolysis to total P(ROx) in the two
ozone pollution episodes is higher than that in the non-pollution period, denoting higher
contribution of OVOCs photolysis to P(ROx) in the ozone pollution episodes (Figure
5). These results indicate that the accelerating production of OVOCs had a significant
positive feedback effect on ozone pollution (Qu et al., 2021). This is broadly consistent
with the wintertime observations in an oil and gas basin in Utah, USA, which found
that a very high VOC to NOx ratio optimized production of secondary OVOC:s, leading

to OVOC photolysis as a dominant oxidant source (Edwards et al., 2014).
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4 Summary and Conclusion

In summary, comprehensive measurements of photodegradable species advance
our understand of radical sources and ozone production in an urban environment. By
using PTR-ToF-MS in a representative urban environment, a large number of
photodegradable OVOCs were measured. These measurements make it possible to
directly quantify their contribution to ROx radical production. We found that non-
HCHO OVOCs can be a larger contributor to P(ROx) than HCHO and HONO.
Photochemical models without constrained OVOC species will significantly
underestimate P(ROx) and ozone production rates and overestimate the effect of VOCs
reduction in reducing ozone pollution. Therefore, it is important to measure these
photodegradable species and use these observations as constraints to better quantify
radical and ozone production.

Thanks to the improvement of technology in the recent years, large number of
OVOC:s species in the atmosphere can be measured by the emerging online chemical
ionization mass spectrometers, including PTR-ToF-MS and CIMS. However,
photolysis frequencies of these OVOCs species, especially those with multiple
functional groups, are still not available or difficult to quantify using current existing
information, which poses large uncertainties in the quantification of P(ROx) and ozone
production. Hence, more laboratory studies on photolysis of organic compounds, better
parameterization of photolysis frequencies using chemical formula/functional groups,
and measurements of oxygenated VOCs at isomeric level will help to decrease this

uncertainty in the future.
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706 Figure 1. The average diurnal variations of the concentrations of photodegradable
707  OVOC:s species during the field campaign in Guangzhou. Lines and shading represent
708  averages and standard deviations, respectively.
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Figure 2. The P(ROx) calculated by box model with all observed photodegradable
species constrained. (a): The source composition of total P(ROx) during the campaign;
the solid and dashed lines represent the scenarios with minimum and maximum OVOC
contributions to P(ROx), respectively. (b): the relative contributions of non-HCHO
OVOC species to P(ROx) for the scenarios with minimum OVOC contribution to
P(ROx).
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752  Figure 3. Model simulated P(ROx) (a) and P(O3) (b) without and with all observed
753  photodegradable OVOCs constrained. (a): Model simulated P(ROx) without (blue line)
754  and with all observed photodegradable OVOCs constrained (red lines). The sum
755  contribution of O3 photolysis, HONO photolysis and ozonolysis is also displayed
756 (yellow line). (b): Model simulated P(O3) without (blue line) and with observed
757  photodegradable OVOCs constrained (red lines). The red solid and red dashed lines
758  represent the scenarios with minimum and maximum OVOC contributions to P(ROx),
759  respectively.
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781  Figure 5. Averaged P(O3), P(ROx), the ratio of P(ROx) contributed by OVOC:s to total
782  P(ROx) (P(ROx)ovoc/P(ROx)) during two ozone pollution episodes (episode 1,

783  episode 2) and non-pollution periods. Both P(O3) and P(ROx) correspond to the

784  scenarios with minimum OVOC contributions to P(ROx).
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